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Abstract

We use large N duality to study brane/antibrane configurations on a class of Calabi–Yau manifolds. With
only branes present, the Calabi–Yau manifolds in question give rise to N = 2 ADE quiver theories deformed
by superpotential terms. We show that the large N duality conjecture of [M. Aganagic, C. Beem, J. Seo,
C. Vafa, Geometrically induced metastability and holography, hep-th/0610249] reproduces correctly the
known qualitative features of the brane/antibrane physics. In the supersymmetric case, the gauge theories
have Seiberg dualities, which are represented as flops in the geometry. Moreover, the holographic dual
geometry encodes the whole RG flow of the gauge theory. In the non-supersymmetric case, the large N

duality predicts that the brane/antibrane theories also enjoy such dualities, and allows one to pick out the
good description at a given energy scale.
© 2007 Elsevier B.V. All rights reserved.

PACS: 11.25.Uv; 11.25.Tq; 11.25.Mj
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1. Introduction

Geometric transitions have proven to be a powerful means of studying the dynamics of su-
persymmetric D-branes. String theory relates these transitions to large N dualities, where before
the transition, at small ’t Hooft coupling, one has D-branes wrapping cycles in the geometry, and
after the transition, at large ’t Hooft coupling, the system is represented by a different geometry,
with branes replaced by fluxes. The AdS/CFT correspondence can be thought of in this way.
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Geometric transitions are particularly powerful when the D-branes in question wrap cycles in a
Calabi–Yau manifold. Then, the topological string can be used to study the dual geometry ex-
actly to all orders in the ’t Hooft coupling. In [1] it was conjectured that topological strings and
large N dualities can also be used to study non-supersymmetric, metastable configurations of
branes in Calabi–Yau manifolds, that confine at low energies. This conjecture was considered in
greater detail in [2,3]. String theory realizations of metastable, supersymmetry breaking vacua
have appeared in [4–13]. The gauge theoretic mechanism of [14] has further been explored in
string theory in [15–22].

In this paper we study D5 brane/anti-D5 brane systems in IIB on non-compact, Calabi–Yau
manifolds that are ADE type ALE space fibrations over a plane. These generalize the case of
the A1 ALE space studied in detail in [1–3]. The ALE space is fibered over the complex plane
in such a way that at isolated points, the 2-cycles inherited from the ALE space have minimal
area. These minimal 2-cycles are associated to positive roots of the corresponding ADE Lie
algebra. Wrapping these with branes and antibranes is equivalent to considering only branes, but
allowing both positive and negative roots to appear, corresponding to two different orientations
of the S2’s. The system can be metastable since the branes wrap isolated minimal 2-cycles, and
the cost in energy for the branes to move, due to the tensions of the branes, can overwhelm the
Coulomb/gravitational attraction between them.

The geometries in question have geometric transitions in which the sizes of the minimal S2’s
go to zero, and the singularities are resolved instead by finite sized S3’s. The conjecture of [1]
is that at large N , the S2’s disappear along with the branes and antibranes and are replaced by
S3’s with positive and negative fluxes, the sign depending on the charge of the replaced branes.
As in the supersymmetric case (see [23–25]), the dual gravity theory has N = 2 supersymmetry
softly broken to N = 1 by the fluxes. The only difference is that now some of the fluxes are
negative. On-shell, the positive and the negative fluxes preserve different halves of the original
supersymmetry, and with both present, the N = 2 supersymmetry is completely broken in the
vacuum (see [26] for discussion of a similar supersymmetry breaking mechanism and its phe-
nomenological features in the context of heterotic M-theory). The topological string computes
not only the superpotential, but also the Kähler potential.1 We show that the Calabi–Yau’s with
fluxes obtained in this way are indeed metastable, as expected by holography. In particular, for
widely separated branes, the supersymmetry breaking can be made arbitrarily weak.2 In fact, we
can use the gravity dual to learn about the physics of branes and antibranes. We find that at one-
loop, the interaction between the branes depends on the topological data of the Calabi–Yau in a
simple way. Namely, for every brane/antibrane pair, so for every positive root e+ and negative
root e−, we find that the branes and the antibranes attract if the inner product

e+ · e−
is positive. They repel if it is negative, and do not interact at all if it is zero. In the Ak type ALE
spaces, this result is already known from the direct open string computation [27,28], so this is a
simple but nice test of the conjecture for these geometries. Moreover, we show that certain aspects

1 While the superpotential is exact, the Kähler potential is not. Corrections to the Kähler potential coming from warp-
ing, present when the Calabi–Yau is compact, have been investigated in [13].

2 The natural measure of supersymmetry breaking in this case is the mass splitting between the bosons and their
superpartners. For a compact Calabi–Yau, the scale of supersymmetry breaking is set by the mass of the gravitino, which
is of the order of the cosmological constant. In our case, gravity is not dynamical, and the mass splittings of the dynamical
fields are tunable [1].
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of these systems are universal. We find that generically, just like in [2], metastability is lost when
the ’t Hooft coupling becomes sufficiently large. Moreover, once stability is lost, the system ap-
pears to roll down toward a vacuum in which domain walls interpolating between different values
of the fluxes become light. We also present some special cases where the non-supersymmetric
brane/antibrane systems are exactly stable. In these cases, there are no supersymmetric vacua to
which the system can decay.

When all the branes are D5 branes and supersymmetry is preserved, the low energy theory
geometrically realizes [24,25] a 4d N = 2 supersymmetric quiver gauge theory with a superpo-
tential for the world-volume adjoints which breaks N = 2 to N = 1. These theories are known
to have Seiberg-like dualities [29] in which the dual theories flow to the same IR fixed point,
and where different descriptions are more weakly coupled, and hence preferred, at different en-
ergy scales. The Seiberg dualities are realized in the geometry in a beautiful way [25]. The ADE
fibered Calabi–Yau geometries used to engineer the gauge theories have intrinsic ambiguities
in how one resolves the singularities by blowing up S2’s. The different possible resolutions are
related by flops that shrink some 2-cycles, and blow up others. The flops act non-trivially on the
brane charges, and hence on the ranks of the gauge groups. The flop of a 2-cycle S2

i0
corresponds

to a Weyl reflection about the corresponding root of the Lie algebra. On the simple roots ei , this
acts by

S2
i → S̃2

i = S2
i − (ei · ei0)S

2
i0
.

Brane charge conservation then implies that the net brane charges transform satisfying

(1.1)
∑

i

NiS
2
i =

∑
i

Ñi S̃
2
i .

Moreover, from the dual gravity solution one can reconstruct the whole RG flow of the gauge
theory. The sizes of the wrapped 2-cycles encode the gauge couplings, and one can read off how
these vary over the geometry, and correspondingly, what is the weakly coupled description at a
given scale. Near the S3’s, close to where the branes were prior to the transition, corresponds to
long distances in the gauge theory. There, the S2’s have shrunken, corresponding to the fact that
in the deep IR the gauge theories confine. As one goes to higher energies, the gauge couplings
may simply become weaker, and the corresponding S2’s larger, in which case the same theory
will describe physics at all energy scales. Sometimes, however, some of the gauge couplings
grow stronger, and the areas of the S2’s eventually become negative. Then, to keep the cou-
plings positive, the geometry must undergo flop transitions.3 This rearranges the brane charges
and corresponds to replacing the original description at low energies by a different one at high
energies. Moreover, the flops of the S2’s were found to coincide exactly with Seiberg dualities of
the supersymmetric gauge theories.

In the non-supersymmetric case, there is generally no limit in which these brane constructions
reduce to field theories with a finite number of degrees of freedom. Thus there are no gauge
theory predictions to guide us. However, the string theory still has intrinsic ambiguities in how
the singularities are resolved. This is exactly the same as in the supersymmetric case, except
that now not all Ni in (1.1) need be positive. Moreover, we can use holography to follow the
varying sizes of 2-cycles over the geometry, and find that indeed in some cases they can undergo

3 It is important, and one can verify this, that this happens in a completely smooth way in the geometry, as the gauge
coupling going to infinity corresponds to zero Kähler volume of the 2-cycle, while the physical size of the 2-cycle is
finite everywhere away from the S3’s.
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flops in going from the IR to the UV. When this happens, descriptions in terms of different
brane/antibrane configurations are more natural at different energy scales, and one can smoothly
interpolate between them. This is to be contrasted with, say, the A1 case, where regardless of
whether one considers just branes or branes and antibranes, it is only one description that is ever
really weakly coupled, and the fact that another exists is purely formal.

The paper is organized as follows. In Section 2 we introduce the metastable D5 brane/anti-D5
brane configurations, focusing on Ak singularities, and review the conjecture of [1] applied to this
setting. In Section 3 we study in detail the A2 case with a quadratic superpotential. In Section 4
we consider general ADE type geometries. In Section 5 we discuss Seiberg-like dualities of these
theories. In Section 6 we study a very simple, exactly solvable case. In Appendices A and B, we
present the matrix model computation of the prepotential for A2 ALE space fibration, as well
as the direct computation from the geometry. To our knowledge, these computations have not
been done before, and the agreement provides a direct check of the Dijkgraaf–Vafa conjecture
for these geometries. Moreover, our methods extend easily to the other An cases. In Appendix C,
we collect some formulas useful in studying the metastability of our solutions in Section 3.

2. Quiver branes and antibranes

Consider a Calabi–Yau which is an Ak type ALE space,

(2.1)x2 + y2 +
k+1∏
i=1

(
z − zi(t)

) = 0,

fibered over the t plane. Here, zi(t) are polynomials in t . Viewed as a family of ALE spaces
parameterized by t , there are k vanishing 2-cycles,

(2.2)S2
i , i = 1, . . . , k

that deform the singularities of (2.1). In the fiber over each point t in the base, the 2-cycle in the
class S2

i has holomorphic area given by

(2.3)
∫

S2
i,t

ω2,0 = zi(t) − zi+1(t),

where ω2,0 is the reduction of the holomorphic three-form Ω on the fiber. The only singularities
are at points where x = y = 0 and

(2.4)zi(t) = zj (t), i �= j

for some i and j . At these points, the area of one of the 2-cycles inherited from the ALE space
goes to zero.

These singularities can be smoothed out by blowing up the 2-cycles, i.e., by changing the
Kähler structure of the Calabi–Yau to give them all non-vanishing area.4 The homology classes
of the vanishing cycles (2.4) then correspond to positive roots of the Ak Lie algebra (see e.g.
[24]).5 In this case, the k simple, positive roots ei correspond to the generators of the second

4 As we will review later, the blowup is not unique, as not all the Kähler areas of the cycles in (2.2) need to be positive
for the space to be smooth. Instead, there are different possible blowups which differ by flops.

5 The negative roots correspond to 2-cycles of the opposite orientation.
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homology group. These are the classes of the S2
i mentioned above which resolve the singularities

where zi(t) = zi+1(t). We denote the complexified Kähler areas of the simple roots by

ri =
∫
S2

i

k + iBNS,

where k is the Kähler form. In most of our applications, will take the real part of ri to vanish.
The string theory background is nonsingular as long as the imaginary parts do not also vanish.
They are positive, per definition, since we have taken the S2

i to correspond to positive roots. In
classical geometry, the ri are independent of t . Quantum mechanically, in the presence of branes,
one finds that they are not.

There are also positive, non-simple roots eI = ∑l
i=j ei , for l > j where zl+1(t) = zj (t). The

2-cycle that resolves the singularity is given by

S2
I =

l∑
i=j

S2
i

in homology. Its complexified Kähler area is given as a sum of Kähler areas of simple roots

rI =
l∑

i=j

ri .

The total area A(t) of a 2-cycle S2
I at a fixed t receives contributions from both Kähler and

holomorphic areas:

(2.5)AI (t) =
√

|rI |2 + ∣∣W ′
I (t)

∣∣2
.

The functions W ′
I capture the holomorphic volumes of 2-cycles, and are related to the geometry

by

WI(t) =
k∑

i=j

Wi(t),

(2.6)Wi(t) =
∫ (

zi(t) − zi+1(t)
)

dt.

These will reappear as superpotentials in matrix models which govern the open and closed topo-
logical string theory on these geometries.

For each positive root I there may be more than one solution to (2.4). We will label these with
an additional index p when denoting the corresponding 2-cycles, S2

I,p . For each solution there

is an isolated, minimal area S2, but they are all in the same homology class, labeled by the root.
They have minimal area because (2.5) is minimized at those points in the t plane where W ′

I (t)

vanishes. These, in turn, correspond to solutions of (2.4).
We will consider wrapping branes in the homology class∑

I,p

MI,pS2
I ,
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with I running over all positive roots, and p over the corresponding critical points. We get
branes or antibranes on S2

I,p depending on whether the charge MI,p is positive or negative.6 We

will study what happens when we wrap branes on some of the minimal S2’s and antibranes on
others.

The brane/antibrane system is not supersymmetric. If we had branes wrapping all of the S2’s,
they would have each preserved the same half of the original N = 2 supersymmetry. However,
with some of the branes replaced by antibranes, some stacks preserve the opposite half of the
original supersymmetry, and so globally, supersymmetry is completely broken. The system can
still be metastable. As in flat space, there can be attractive Coulomb/gravitational forces between
the branes and the antibranes. For them to annihilate, however, they have to leave the minimal
2-cycles that they wrap. In doing so, the area of the wrapped 2-cycle increases, as can be seen
from (2.5), and this costs energy due to the tension of the branes. At sufficiently weak coupling,
the Coulomb and gravitational interactions should be negligible compared to the tension forces—
the former are a one-loop effect in the open string theory, while the latter are present already at
tree-level—so the system should indeed be metastable. For this to be possible, it is crucial that
the parameters of the background, i.e. the Kähler moduli ri and the complex structure moduli
that enter into the Wi(t), are all non-normalizable, and so can be tuned at will.

While this theory is hard to study directly in the open string language, it was conjectured in
[1] to have a holographic dual which gives an excellent description when the number of branes
is large.

2.1. Supersymmetric large N duality

Here we review the case where only branes are wrapped on the minimal S2’s, and so super-
symmetry is preserved. Denoting the net brane charge in the class S2

i by Ni , this geometrically

engineers an N = 2 supersymmetric
∏k

i=1 U(Ni) quiver gauge theory in four dimensions, de-
formed to N = 1 by the presence of a superpotential. The corresponding quiver diagram is the
same as the Dynkin diagram of the Ak Lie algebra. The k nodes correspond to the k gauge
groups, and the links between them to bifundamental hypermultiplets coming from the lowest
lying string modes at the intersections of the S2’s in the ALE space. The superpotential for the
adjoint valued chiral field Φi , which breaks the supersymmetry to N = 1, is

Wi(Φi), i = 1, . . . , k,

where Wi(t) is given in (2.6). The chiral field Φi describes the position of the branes on the t

plane. As shown in [24], the gauge theory has many supersymmetric vacua, corresponding to all
possible ways of distributing the branes on the S2’s,

k∑
i=1

NiS
2
i =

∑
I,p

Mp,I S
2
I ,

where I labels the positive roots and p the critical points associated with a given root. This breaks
the gauge symmetry as

(2.7)
∏
i

U(Ni) →
∏
p,I

U(Mp,I ).

6 We could have instead declared all the MI,p to be positive, and summed instead over positive and negative roots.
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At low energies the branes are isolated and the theory is a pure N = 1 gauge theory with gauge
group (2.7). The SU(MI,p) subgroups of the U(MI,p) gauge groups experience confinement and
gaugino condensation.

This theory has a holographic, large N dual where branes are replaced by fluxes. The large N

duality is a geometric transition which replaces (2.1) with a dual geometry

(2.8)x2 + y2 +
k+1∏
i=1

(
z − zi(t)

) = fr−1(t)z
k−1 + f2r−1(t)z

k−2 + · · · + fkr−1(t),

where fn(t) are polynomials of degree n, with r being the highest of the degrees of zi(t). The
geometric transition replaces each of the S2

I,p’s by a three-sphere, which will be denoted AI,p ,
with MI,p units of Ramond–Ramond flux through it,∫

AI,p

HRR + τHNS = MI,p.

In addition, there is flux through the non-compact dual cycles BI,p ,∫
BI,p

HRR + τHNS = −αI ,

where τ is the IIB axion-dilaton τ = a + i
gs

. These cycles arise by fibering S2
I,p over the t plane,

with the 2-cycles vanishing at the branch cuts where the S3’s open up. The nonzero H flux
through the B-type cycles means that∫

S2
I,p

BRR + τBNS

varies over the t plane. In the gauge theory, this combination determines the complexified gauge
coupling. Since

4π

g2
i

= 1

gs

∫
S2

i

BNS,
θi

2π
=

∫
S2

i

BRR + aBNS,

one naturally identifies αi with the gauge coupling of the U(Ni), N = 2 theory at a high scale7

αi = − θi

2π
− 4πi

g2
i

.

For each positive root I , we then define αI as

αI =
k∑

i=j

αi

7 For the large N dual to be an honest Calabi–Yau, as opposed to a generalized one, we will work with
∫
S2 k = 0.

i
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Turning on fluxes gives rise to an effective superpotential [30]

Weff =
∫

CY

(
HRR + τHNS) ∧ Ω.

Using the special geometry relations∫
AI,p

Ω = SI,p,

∫
BI,p

Ω = ∂SI,p
F0,

the effective superpotential can be written as

(2.9)Weff =
∑
I,p

αI SI,p + MI,p∂SI,p
F0.

Here, SI,p gets identified with the value of the gaugino bilinear of the U(MI,p) gauge group
factor on the open string side. The effective superpotential (2.9) can be computed directly in
the gauge theory. Alternatively, it can be shown [31,32] that the relevant computation reduces to
computing planar diagrams in a gauged matrix model given by the zero-dimensional path integral

1∏k
i=1 volU(Ni)

∫ k∏
i=1

dΦi dQi,i+1 dQi+1,i exp

(
− 1

gs

TrW(Φ,Q)

)

where

TrW(Φ,Q) =
r∑

i=1

TrW(Φi) + Tr(Qi+1,iΦiQi,i+1 − Qi,i+1Φi+1Qi+1,i ).

The critical points of the matrix model superpotential correspond to the supersymmetric vacua
of the gauge theory. The prepotential F0(SI,p) that enters the superpotential (2.9) is the planar
free energy of the matrix model [31,33–35], expanded about a critical point where the gauge
group is broken as in (2.7). More precisely, we have

2πiF0(S) =Fnp

0 (S) +
∑
{ha}

F0,{ha}
∏
a

Sha
a

where F0,{ha}
∏

a(Mags)
ha is the contribution to the planar free energy coming from diagrams

with ha boundaries carrying the index of the U(Ma) factor of the unbroken gauge group. Here a

represents a pair of indices,

a = (I,p),

and we have denoted Sa = Mags . The “nonperturbative” contribution, Fnp

0 (S), to the matrix
model amplitude comes from the volume of the gauge group (2.7) that is unbroken in the vacuum
at hand [33,35], and is the prepotential of the leading order conifold singularity corresponding
to the shrinking S3, which is universal. We will explain how to compute the matrix integrals in
Appendix A. The supersymmetric vacua of the theory are then given by the critical points of the
superpotential Weff,

∂SaWeff = 0.
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2.2. Non-supersymmetric large N duality

Now consider replacing some of the branes with antibranes while keeping the background
fixed. The charge of the branes, as measured at infinity, is computed by the RR flux through
the S3 that surrounds the branes. In the large N dual geometry, the S3 surrounding the wrapped
S2

I,p is just the cycle AI,p . Replacing the branes with antibranes on some of the S2’s then has
the effect of changing the signs of the corresponding MI,p’s. Moreover, supersymmetry is now
broken, so the vacua of the theory will appear as critical points of the physical potential

(2.10)V = GSaS̄b∂SaWeff∂Sb
Weff + V0.

The superpotential Weff is still given by (2.9), and G is the Kähler metric of the N = 2 theory,

Gab̄ = Im(τ )ab̄

where

τab = ∂Sa ∂Sb
F0

and a, b stand for pairs of indices (I,p). In the absence of gravity, we are free to add a constant,
V0, to the potential,8 which we will take to be

(2.11)V0 =
∑
I,p

MI,p

g2
I

.

A priori, V0 can be either positive or negative, depending on the charges. However, will see that
in all the vacua where the theory is weakly coupled, the leading contribution to the effective
potential at the critical point will turn out to be just the tensions of all the branes, which is strictly
positive.

3. A simple example

We now specialize to an A2 quiver theory with quadratic superpotential. The geometry which
engineers this theory is given by (2.1), with

z1(t) = −m1(t − a1), z2(t) = 0, z3(t) = m2(t − a2).

There are three singular critical points (2.4) (assuming generic mi ) corresponding to

t = ai, i = 1,2,3,

where a3 = (m1a1 +m2a2)/(m1 +m2). Blowing up to recover a smooth Calabi–Yau, the singular
points are replaced by three positive area S2’s,

S2
1 , S2

2 , S2
3

with one homological relation among them,

(3.1)S2
3 = S2

1 + S2
2 .

8 This simply adds a constant to the Lagrangian, having nothing to do with supersymmetry, or its breaking.
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S2
1,2 then correspond to the two simple roots of the A2 Lie algebra, e1,2, and S2

3 is the one non-
simple positive root, e1 + e2. Now consider wrapping branes on the three minimal 2-cycles so
that the total wrapped cycle C is given by

C = M1S
2
1 + M2S

2
2 + M3S

2
3 .

If some, but not all, of the MI are negative, supersymmetry is broken. As was explained in the
previous section, as long as the branes are widely separated, this system should be perturbatively
stable.

Non-perturbatively, we expect the branes to be able to tunnel to a lower energy state. The
minimum energy configuration that this system can achieve depends on the net brane charges in
the homology classes S2

1 and S2
2 , given by N1 = M1 + M3 and N2 = M2 + M3. When N1 and

N2 have the same sign, the system can tunnel to a supersymmetric vacuum with new charges

MI → M ′
I

where all the M ′
I share the same sign, and the net charges N1 = M ′

1 + M ′
3 and N2 = M ′

2 + M ′
3

are unchanged. All the supersymmetric vacua are degenerate in energy, but for the metastable,
non-supersymmetric vacua, the decay rates will depend on the M ′

I . Alternatively, if one of the
N1,2 is positive and the other is negative, the lowest energy configuration is necessarily not
supersymmetric. In this way we get a stable, non-supersymmetric state which has nowhere to
which it can decay.

In the remainder of this section, we will study these systems using the large N dual geometry
with fluxes.

3.1. The large N dual

The large N dual geometry in this case is given by

(3.2)x2 + y2 + z
(
z − m1(t − a1)

)(
z + m2(t − a2)

) = cz + dt + e.

The three S2’s at the critical points have been replaced by three S3’s, AI , whose sizes are re-
lated to the coefficients c, d, e above. There are also three non-compact, dual 3-cycles BI . The
geometry of the Calabi–Yau is closely related to the geometry of the Riemann surface obtained
by setting x = y = 0 in (2.8). The Riemann surface can be viewed as a triple cover of the t plane,
by writing (3.2) as

0 = (
z − z′

1(t)
)(

z − z′
2(t)

)(
z − z′

3(t)
)

where z′
i (t) correspond to the zi(t) which are deformed in going from (2.1) to (3.2). In particular,

the holomorphic three-form Ω of the Calabi–Yau manifold descends to a 1-form on the Riemann
surface, as can be seen by writing

Ω = ω2,0 ∧ dt

and integrating ω2,0 over the S2 fibers, as in (2.3). The A and B cycles then project to 1-cycles
on the Riemann surface. The three sheets are glued together over branch cuts which open up at
t = aI . We have

SI = 1

2πi

aI
+∫

−

(
z′
J (t) − z′

K(t)
)
dt, ∂SI

F0 = 1

2πi

Λ0∫
+

(
z′
J (t) − z′

K(t)
)
dt
aI aI
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for cyclic permutations of distinct I, J and K . This allows one to compute the prepotential F0
by direct integration (see Appendix B). Alternatively, by the conjecture of [33], the same prepo-
tential can be computed from the corresponding matrix model. The gauge fixing of the matrix
model is somewhat involved, and we have relegated it to Appendix A, but the end result is very
simple. The field content consists of:

(a) Three sets of adjoints Φii of U(Mi), which describe the fluctuations of the branes around
the three S2’s.

(b) A pair of bifundamental matter fields Q12, Q̃21, coming from the 12 strings.
(c) Anticommuting bosonic ghosts, B13, C31 and B32, C23, representing the 23 and 31 strings.

Note that physical bifundamental matter from S2’s with positive intersection corresponds to
commuting bosonic bifundamentals in the matrix model, whereas W bosons between S2’s with
negative intersection in the physical theory correspond to bosonic ghosts, similarly to what hap-
pened in [35].

The effective superpotential for these fields is

Weff = 1

2
m1 TrΦ2

11 + 1

2
m2 TrΦ2

22 + 1

2
m3 TrΦ2

33

+ a12 TrQ12Q̃21 + a23 TrB32C23 + a31 TrB13C31

+ Tr(B32Φ22C23 − C23Φ33B32) + Tr(B13Φ33C31 − C31Φ11B13)

+ Tr(Q̃21Φ11Q12 − Q12Φ22Q̃21)

where aij = ai − aj . From this we can read off the propagators

〈ΦiiΦii〉 = 1

mi

, 〈Q12Q̃21〉 = 1

a12

and

〈B23C32〉 = − 1

a23
, 〈B31C13〉 = − 1

a31
,

as well as the vertices.
Keeping only those contractions of color indices that correspond to planar diagrams, and

carefully keeping track of the signs associated with fermion loops, we find:

2πiF0(Si) = 1

2
S2

1

(
log

(
S1

m1Λ
2
0

)
− 3

2

)
+ 1

2
S2

2

(
log

(
S2

m2Λ
2
0

)
− 3

2

)

+ 1

2
S2

3

(
log

(
S3

m3Λ
2
0

)
− 3

2

)

− log

(
a12

Λ0

)
S1S2 + log

(
a31

Λ0

)
S1S3 + log

(
a23

Λ0

)
S2S3

+ 1

2Δ3

(
S2

1S2 + S2
2S1 + S2

3S1 + S2
3S2 − S2

1S3 − S2
2S3 − 6S1S2S3

) + · · · ,
where

(3.3)Δ3 = m1m2

m3
a2

12, m3 = m1 + m2.
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The terms quadratic in the Si ’s correspond to one-loop terms in the matrix model, the cubic
terms to two-loop terms, and so on. The fact that the matrix model result agrees with the direct
computation from the geometry is a nice direct check of the Dijkgraaf–Vafa conjecture for quiver
theories. The large N limit of quiver matrix models was previously studied using large N saddle
point techniques in [24,25,36,37].

Consider now the critical points of the potential (2.10),

∂SI
V = 0.

The full potential is very complicated, but at weak ’t Hooft coupling (we will show this is con-
sistent a posteriori) it should be sufficient to keep only the leading terms in the expansion of F0
in powers of S/Δ3. These correspond to keeping only the one-loop terms in the matrix model.
In this approximation, the physical vacua of the potential (2.10) correspond to solutions of

(3.4)αI +
∑

MJ >0

τIJ MJ +
∑

MJ <0

τ IJ MJ = 0.

To be more precise, there are more solutions with other sign choices for ±MJ , but only this
choice leads to Im(τ ) being positive definite. Since Im(τ ) is also the metric on the moduli space,
only this solution is physical.

Depending on how we choose to distribute the branes, there are two distinct classes of non-
supersymmetric vacua which can be constructed in this way. We will discuss both of them
presently.

3.2. M1 < 0, M2,3 > 0

In this case, the critical points of the potential correspond to

S̄
|M1|
1 = (

Λ2
0m1

)|M1|
(

a12

Λ0

)|M2|(a31

Λ0

)−|M3|
exp(−2πiα1),

S2
|M2| = (

Λ2
0m2

)|M2|
(

a12

Λ0

)|M1|(a23

Λ0

)−|M3|
exp(−2πiα2),

S3
|M3| = (

Λ2
0m3

)|M3|
(

a23

Λ0

)−|M2|(a31

Λ0

)−|M1|
exp(−2πiα3).

The Si are identified with the gaugino condensates of the low energy, U(M1)×U(M2)×U(M3)

gauge theory. The gaugino condensates are the order parameters of the low energy physics and
as such should not depend on the cutoff Λ0. Let us then introduce three new confinement scales,
Λi , defined as

Si = Λ3
i .

In fact, only two of these are independent. As a consequence of homology relation (3.1), the
gauge couplings satisfy α1 + α2 = α3, which implies that

(
Λ1

Δ

)3|M1|(Λ2

Δ

)3|M2|
=

(
Λ3

Δ

)3|M3|
,
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where Δ is given in (3.3). Requiring that the scales Λi do not depend on the cutoff scale, we can
read off how the gauge couplings run with Λ0,

g−2
1 (Λ0) = − log

(
Λ3

1

Λ2
0m1

)|M1|
− log

(
Λ0

a12

)|M2|
− log

(
Λ0

a13

)−|M3|
,

(3.5)g−2
2 (Λ0) = − log

(
Λ3

2

Λ2
0m2

)|M2|
− log

(
Λ0

a12

)|M1|
− log

(
Λ0

a23

)−|M3|
.

As was noticed in [1], this kind of running of the gauge couplings and relation between strong
coupling scales is very similar to what occurs in the supersymmetric gauge theory (as studied in
[25]) obtained by wrapping Mi branes of the same kind on the three S2’s. The only difference
is that branes and antibranes lead to complex conjugate running, as if the spectrum of the theory
remained the same, apart from the chirality of the fermions on the brane and the antibrane getting
flipped. This is natural, as the branes and the antibranes have opposite GSO projections, so indeed
a different chirality fermion is kept. In addition, the open string RR sectors with one boundary
on branes and the other on antibranes has opposite chirality kept as well, and this is reflected in
the above formulas.

To this order, the value of the potential at the critical point is

V∗ =
∑
I

|MI |
g2

I

− 1

2π
|M1||M2| log

(∣∣∣∣a12

Λ0

∣∣∣∣
)

+ 1

2π
|M1||M3| log

(∣∣∣∣a13

Λ0

∣∣∣∣
)

.

The first terms are just due to the tensions of the branes. The remaining terms are due to the
Coulomb and gravitational interactions of the branes, which come from the one-loop interaction
in the open string theory. There is no force between the M2 branes wrapping S2

2 and the M3

branes on S2
3 , since M2,3 are both positive, so the open strings stretching between them should be

supersymmetric. On the other hand, the M1 antibranes on S2
1 should interact with the M2,3 branes

as the Coulomb and gravitational interactions should no longer cancel. This is exactly what one
sees above. The M1 antibranes on S2

1 attract the M3 branes on S2
3 , while they repel the branes on

S2
2 . We will see in the next section that more generally, branes and antibranes wrapping 2-cycles

with negative intersection numbers (in the ALE space) attract, and those wrapping 2-cycles with
positive intersection numbers repel. Since9

e1 · e2 = 1, e1 · e3 = −1,

this is exactly what we see here.

3.3. M1,2 > 0, M3 < 0

With only the non-simple root wrapped by antibranes, the critical points of the potential now
correspond to

S
|M1|
1 = (

Λ2
0m1

)|M1|
(

a12

Λ0

)|M2|(a31

Λ0

)−|M3|
exp(−2πiα1),

S
|M2|
2 = (

Λ2
0m2

)|M2|
(

a12

Λ0

)|M1|(a23

Λ0

)−|M3|
exp(−2πiα2),

9 The second relation is due to the self intersection numbers of S2
1 and S2

2 being −2.
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S̄
|M3|
3 = (

Λ2
0m3

)|M3|
(

a23

Λ0

)−|M2|(a31

Λ0

)−|M1|
exp(−2πiα3).

In this case, the Kähler parameters α1,2 run as

g−2
1 (Λ0) = − log

(
Λ3

1

Λ2
0m1

)|M1|
− log

(
Λ0

a12

)|M2|
− log

(
Λ0

a13

)−|M3|
,

g−2
2 (Λ0) = − log

(
Λ3

2

Λ2
0m2

)|M2|
− log

(
Λ0

a12

)|M1|
− log

(
Λ0

a23

)−|M3|
,

where(
Λ1

Δ

)3|M1|(Λ2

Δ

)3|M2|
=

(
Λ3

Δ

)3|M3|
.

This follows the same pattern as seen in [1] and in the previous subsection. The branes and
antibranes give complex conjugate running, as do the strings stretching between them.

The value of potential at the critical point is, to this order,

V∗ =
∑
I

|MI |
g2

I

+ 1

2π
|M1||M3| log

(∣∣∣∣a13

Λ0

∣∣∣∣
)

+ 1

2π
|M2||M3| log

(∣∣∣∣a23

Λ0

∣∣∣∣
)

.

Again, the first terms are universal, coming from the brane tensions. The remaining terms are the
one-loop interaction terms. There is no force between the M1 branes wrapping S2

1 and the M2

branes on S2
2 , since now both M1,2 have the same sign. The M3 antibranes on S2

3 attract both M1

branes on S2
1 and the M2 branes on S2

2 , since, in the ALE space

e1 · e3 = e2 · e3 = −1.

In the next subsection, we will show that both of these brane/antibrane systems are perturba-
tively stable for large separations.

3.4. Metastability

The system of branes and antibranes engineered above should be perturbatively stable when
the branes are weakly interacting—in particular, at weak ’t Hooft coupling. The open/closed
string duality implies that the dual closed string vacuum should be metastable as well. In this
subsection, will show that this indeed is the case. Moreover, following [2], will show that per-
turbative stability is lost as we increase the ’t Hooft coupling. While some details of this section
will be specific to the A2 case discussed above, the general aspects of the analysis will be valid
for any of the ADE fibrations discussed in the next section.

To begin with, we note that the equations of motion, derived from the potential (2.10), are

(3.6)∂kV = −1

2i
Fkef GaeGbf

(
αa + Mcτ̄ac

)(
ᾱb + Mdτ̄bd

) = 0,

and moreover, the elements of the Hessian are

∂p∂qV = GiaGbj iFabpq

(
αi + Mkτ̄ki

)(
ᾱj + Mrτ̄rj

)
+ 2GiaGbcGdj iFabpiFcdq

(
αi + Mkτ̄ki

)(
ᾱj + Mrτ̄rj

)
,
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∂q∂q̄V = −GiaGbcGdj iFabpiF̄cdq

(
αi + Mkτ̄ki

)(
ᾱj + Mrτrj

)
(3.7)− GicGdaGbj iFabpiF̄cdq

(
αi + Mkτki

)(
ᾱj + Mrτ̄rj

)
,

where we have denoted ∂cτab =Fabc , and similarly for higher derivatives of τ .
In the limit where all the ’t Hooft couplings g2

i Ni are very small, the sizes of the dual 3-cycles
Sa = Λ3

a are small compared to the separations between them, so we can keep only the leading
terms in the expansion of F0 in powers of S, i.e., the one-loop terms in the matrix model. At one-
loop, the third and fourth derivatives of the prepotential are nonzero only if all of the derivatives
are with respect to the same variable. Expanding about the physical solution to this order,

(3.8)αa +
∑

Mb>0

τabMb +
∑

Mb<0

τ̄abMb = 0.

The non-vanishing elements of the Hessian are

∂i∂jV = 1

4π2

|MiMj |
SiSj

Gij , i, j opposite type,

(3.9)∂i∂j̄V = 1

4π2

|MiMj |
SiS̄j

Gij , i, j same type,

where the ‘type’ of an index refers to whether it corresponds to branes or antibranes.
To get a measure of supersymmetry breaking, consider the fermion bilinear couplings. Before

turning on fluxes, the theory has N = 2 supersymmetry, and the choice of superpotential (2.6)
breaks this explicitly to N = 1. For each 3-cycle, we get a chiral multiplet (Si,ψi) and a vector
multiplet (Ai, λi) where ψi,λi are a pair of Weyl fermions. It is easy to work out [1] that the
coefficients of the non-vanishing fermion bilinears are

mψaψb = 1

2
Gcd

(
αd + Meτ̄de

)
Fabc,

mλaλb = 1

2
Gcd

(
ᾱd + Meτ̄de

)
Fabc,

and evaluating this in the vacuum we find

mψaψb = − 1

4π

Ma + |Ma|
Sa

δab,

mλaλb = − 1

4π

Ma − |Ma |
Sa

δab.

Bose–Fermi degeneracy is restored in the limit where we take

(Gij )
2/GiiGjj 	 1, i, j opposite type.

In this limit we get a decoupled system of branes and antibranes except that for nodes wrapped
with branes, the Sa get paired up with ψ ’s, and for nodes wrapped with antibranes they pair
with λ’s, corresponding to a different half of N = 2 supersymmetry being preserved in the two
cases.10 This is the limit of extremely weak ’t Hooft coupling, and the sizes of the cuts are the

10 The kinetic terms of both bosons and fermions are computed with the same metric Gab .
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smallest scale in the problem by far

(3.10)
Λi

Δ
	 aij

Λ0
,

Δ

Λ0
< 1.

In this limit the Hessian is manifestly positive definite. In fact the Hessian is positive definite as
long as the one-loop approximation is valid. To see this note that the determinant of the Hessian
is, up to a constant, given by

(3.11)Det
(
∂2V

) ∼
(

1

DetG

n∏
i=1

∣∣∣∣Mi

Si

∣∣∣∣
2
)2

.

It is never zero while the metric remains positive definite, so a negative eigenvalue can never
appear. Thus, one can conclude that as long as all the moduli are in the regime where the ’t Hooft
couplings are small enough for the one-loop approximation to be valid, the system will remain
stable to small perturbations.

Let us now find how the solutions are affected by the inclusion of higher order corrections. At
two loops, an exact analysis of stability becomes difficult in practice. However, in various limits
one can recover systems which can be understood quite well. For simplicity, we will assume that
the αi are all pure imaginary, and all the parameters aij and Λ0 are purely real. Then there are
solutions where the Si are real. In Appendix B, we show that in this case, upon including the
two-loop terms, the determinant of the Hessian becomes

(
DetGab

)2
(∏

c

|Mc|
iFccc

)4

Det

(
δcb + Gcb

iFbbbbδ
b

iFbbbiFccc|Mc|
)

(3.12)× Det

(
δcb − Gcb

iFbbbbδ
b

iFbbbiFccc|Mc|
)

where

(3.13)δk = 1

2|Mk|Fkkk

Fkab

(−∣∣Ma
∣∣∣∣Mb

∣∣ + MaMb
)

and δcb is the Kronecker delta. The first two terms in (3.12) never vanish, since the metric has to
remain positive definite, so we need only analyze the last two determinants. We can plug in the
one-loop values for the various derivatives of the prepotential, and in doing so obtain

(3.14)Det

(
δab ± 2πGab

Sa

Δ3

xb

|Ma |
)

= 0

with either choice of sign. Above, we have rewritten Eq. (3.13) as

(3.15)δa = Sa

Δ3
xa.

This is a convenient rewriting because S/Δ3 is the parameter controlling the loop expansion, and
xa is simply a number which depends on the Ni but no other parameters.

Consider the case where, for some i, a given S3
i grows much larger than the other two. We

can think of this as increasing the effective ’t Hooft coupling for that node, or more precisely,
increasing(

ΛMi

Δ

)3

= exp

(
− 1

|Mi |g2 (Δ)

)
.

i,eff
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Recall that the two-loop equations of motion for real Si , are given by

(3.16)g−2
i,eff(Δ) = −|Mi | log

(∣∣∣∣ Si

Δ3

∣∣∣∣
)

+ Gikδ
k

where

g−2
1,eff(Δ) = g−2

1 (Λ0) − |M1|(L12 + L13) + |M2|L12 − |M3|L13,

g−2
2,eff(Δ) = g−2

2 (Λ0) − |M2|(L12 + L23) + |M1|L12 − |M3|L13,

g−2
3,eff(Δ) = g−2

3 (Λ0) − |M3|(L13 + L23) − |M1|L13 − |M2|L23.

Here we have adopted the notation Lij = log Λ0
aij

and the δk are as defined in (3.13). Note that
in each case, two of the equations can be solved straight off. It is the remaining equations which
provide interesting behavior and can result in a loss of stability. Correspondingly, the vanishing
of the Hessian determinant in (3.12) is then equivalent to the vanishing of its ii entry (where we
have assumed a vacuum at real S):

(3.17)1 ± Gii

Si

Δ3

xi

|Mi | = 0.

We will see that we can approximate

Gii = − log

(∣∣∣∣ Si

Δ3

∣∣∣∣
)

+ Li ∼ Li

where we have defined

Li = Lij + Lik, i �= j �= k,

so this provides the following conditions:

(3.18)±1 = Li

xi

|Mi |
Si

Δ3
.

The above equation, taken with positive sign, is equivalent to the condition for stability being
lost by setting the determinant of the gradient matrix of the equations to zero. The equation with
minus sign comes from losing stability in imaginary direction. Correspondingly, the equation of
motion for the one node with growing ’t Hooft coupling becomes

(3.19)g−2
i,eff = −|Mi | log

Si

Δ3
+ Lixi

Si

Δ3
.

One of Eqs. (3.18) must be solved in conjunction with (3.19) if stability is to be lost.
The sign of xi can vary depending on the specifics of the charges. In all the cases, as the

effective ’t Hooft coupling increases, solutions move to larger values of Si . For sufficiently large
values, in the absence of some special tuning of the charges, (3.18) will be satisfied for one of the
two signs. The only question then is whether the Si can get large enough, or whether a critical
value above which the equation of motion can no longer be solved is reached before an instability
sets in. In the equation above, if xi is negative, then there will be no such critical value, and Si

can continue to grow unbounded. Correspondingly, a large enough value of the ’t Hooft coupling
can always be reached where (3.18) is satisfied with negative sign. Alternatively, if the coefficient
xi is positive, there will be a critical value for Li at which the right-hand side of the equation
takes a minimum value. This occurs at (Si,∗/Δ3) = |Mi | , which is precisely (3.18) with positive
xiLi
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left-hand side. So, for any value of xi an instability develops at finite effective ’t Hooft coupling
corresponding to

Si,∗
Δ3

= |Mi |
|xi |Li

,

or more precisely, at

|Mi |g2
i,eff(Δ) = log−1

( |Mi |
xiLi

)
.

This critical value of the effective ’t Hooft coupling can be achieved by increasing the number of
branes on that node, or, in case of nodes one and two, by letting the corresponding bare ’t Hooft
coupling increase. This is true as long as supersymmetry is broken and the corresponding two-
loop correction is non-vanishing, i.e. as long as xi �= 0. It is reasonable to suspect that in the
degenerate case, where charges conspire to set xi to zero even with broken supersymmetry, the
instability would set in at three loops.

It is natural to ask the fate of the system once metastability is lost. It should be the case [2]
that it rolls to another a critical point corresponding to shrinking the one compact B-type cycle,
B1 + B2 − B3. To describe this point in the moduli space, introduce a new basis of periods in
which this shrinking B-cycle becomes one of the A periods:∮

A′
1

H = M1 + M3,

∮
A′

2

H = M2 + M3,

∮
A′

3

H = 0,

∫
B ′

1

H = α1,

∫
B ′

2

H = α2,

∫
B ′

3

H = M3,

where H = HRR + τHNS. In particular, there is no flux through the new cycle A′
3. In fact, by

setting M1 = M2 = −M3 = M , there is no flux through any of the A′ cycles.11 For S′
i = ∫

A′ Ω
sufficiently large that we can ignore the light D3 branes wrapping this cycle,

τ ′
ii ∼ 1

2πi
log

S′
i

Δ3
, τ ′

i �=j ∼ const,

it is easy to see that the system has an effective potential that would attract it to the point where
the S′

i = 0 and the cycles shrink:

Veff ∼ V0 +
∑

i

∣∣∣∣ ci

log | S′
i

Δ3 |

∣∣∣∣
2

where ci ∼ ∫
B ′

i
H . By incorporating the light D3 branes wrapping the flux-less, shrinking cycles,

the system would undergo a geometric transition to a non-Kähler manifold [38]. There, the cycle
shrinks and a new 2-cycle opens up, corresponding to condensing a D3 brane hypermultiplet.
However, this 2-cycle becomes the boundary of a compact 3-cycle B ′ which get punctured in
the transition that shrinks the A′ cycles. A manifold where such a 2-cycle has nonzero volume is
automatically non-Kähler, but it is supersymmetric. As will review shortly, the shrinking cycle A′

3

11 In the more general case, the system should be attracted to a point where only A′
3 shrinks.
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is also the cycle wrapped by the D5 brane domain walls that mediate the non-perturbative decay
of the metastable flux vacua. The loss of metastability seems to be correlated with existence of
a point in the moduli space where the domain walls become light and presumably fluxes can
annihilate classically (this also happened in the A1 model studied in [2]). In particular, in the last
section of this paper, will provide two examples of a system where the corresponding points in
the complex structure moduli space are absent, but which are exactly stable perturbatively even
though they are non-supersymmetric (one of them will be stable non-perturbatively as well). It
must be added, as discussed in [2], that it is far from clear whether the light domain walls can
be ignored, and so whether the system truly rolls down to a supersymmetric vacuum. A more
detailed analysis of the physics at this critical point is beyond the scope of this paper.

It was suggested in [2] that the loss of stability might be related to the difference in the value
of V∗ between the starting vacuum and a vacuum to which it might tunnel becoming small, and
thus the point where Coulomb attraction starts to dominate in a subset of branes. In the more
complicated geometries at hand, it seems that such a simple statement does not carry over. This
can be seen by noting that, for certain configurations of brane charges in our case, an instability
can be induced without having any effect on the �V∗ between vacua connected by tunneling
events. We are led to conclude that the loss of stability is a strong coupling effect in the non-
supersymmetric system, which has no simple explanation in terms of our open string intuition.
This should have perhaps been clear, in that the point to which the system apparently rolls has
no straightforward explanation in terms of brane annihilation.

3.5. Decay rates

We now study the decays of the brane/antibrane systems of the previous section. This closely
parallels the analysis of [1]. We have shown that when the branes and antibranes are sufficiently
well-separated, the system is perturbatively stable. Non-perturbatively, the system can tunnel to
lower energy vacua, if they are available. In this case, the available vacua are constrained by
charge conservation—any two vacua with the same net charges

N1 = M1 + M3, N2 = M2 + M3

are connected by finite energy barriers. The false vacuum decay proceeds by the nucleation of a
bubble of lower energy vacuum.

The decay process is easy to understand in the closed string language. The vacua are labeled
by the fluxes through the three S3’s∫

AI

HRR = MI, I = 1,2,3.

Since RR three-form fluxes jump in going from the false vacuum to the true vacuum, the domain
walls that interpolate between the vacua are D5 branes. Over a D5 brane wrapping a compact
3-cycle C in the Calabi–Yau, the fluxes jump by an amount

�MI = #(C ∩ AI ).

In the present case, it is easy to see that there is only one compact 3-cycle C that intersects the
A-cycles,

C = B1 + B2 − B3.
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So, across a D5 brane wrapping C, the fluxes through A1,2 decrease by one unit, and the flux
through A3 increases by one unit. Note that this is consistent with charge conservation for the
branes. In fact, the domain walls in the open and the closed picture are essentially the same.
In the open string language, the domain wall is also a D5 brane, but in this case it wraps a
3-chain obtained by pushing C through the geometric transition. The 3-chain has boundaries on
the minimal S2’s, and facilitates the homology relation (3.1) between the 2-cycles.

The decay rate Γ is given in terms of the action Sinst of the relevant instanton

Γ ∼ exp(−Sinst).

Since the Calabi–Yau we have been considering is non-compact, we can neglect gravity, and the
instanton action is given by

Sinst = 27π

2

S4
D

(�V∗)3

where SD is the tension of the domain wall, and �V∗ is the change in the vacuum energy across
the domain wall. While this formula was derived in [39] in a scalar field theory, it is governed
by energetics, and does not depend on the details of the theory as long as the semi-classical
approximation is applicable.

In the present case, the tension of the domain wall is bounded below by

(3.20)SD = 1

gs

∫
C

Ω,

since the
∫
C

Ω computes the lower bound on the volume of any 3-cycle in this class, and the
classical geometry is valid to the leading order in 1/N , the order to which we are working.
The tension of the domain wall is thus the same as the tension of a domain wall interpolating
between the supersymmetric vacua, and to leading order (open-string tree-level) this is given by
the difference between the tree-level superpotentials (2.6)∫

C

Ω ∼ W3(a3) − W1(a1) − W2(a2) = 1

2
Δ3,

where Δ3 is defined in (3.3). This is just the “holomorphic area” of the triangle in Fig. 1. The area
is large as long as all the brane separations are large, and as long as this is so, it is independent
of the fluxes on the two sides of the domain wall.

At the same time, the difference in the potential energy between the initial and the final states
is given by the classical brane tensions,

�V = Vi − Vf =
∑
I

(|MI | − |M ′
I |

)
/g2

I .

The fate of the vacuum depends on the net charges. If N1,2 are both positive, then the true vacuum
is supersymmetric. Moreover, there is a landscape of degenerate such vacua, corresponding to
all possible ways of distributing branes consistent with charge conservation such that M ′

I are all
positive. Starting with, say, (M1,M2,M3) = (N1 + k,N2 + k,−k), where k > 0, this can decay
to (N1,N2,0) since

�V = Vi − Vf = 2
k|r3|
gs

,
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Fig. 1. The figure corresponds to the A2 singularity in the z–t plane with quadratic “superpotential”. There are three
conifold singularities at zi = zj which can be blown up by three S2’s, spanning two homology classes. Wrapping M1

anti-D5 branes on S2
1 and M2,3 D5 branes on S2

2,3, we can engineer a metastable vacuum. The orientations of the branes
are indicated by arrows.

corresponding to k branes on S2
3 getting annihilated, where r3 is the Kähler area of S2

3 . The decay
is highly suppressed as long as string coupling gs is weak and the separation between the branes
is large. The action of the domain wall is k times that of (3.20),12 so

(3.21)Sinst = 27π

32

k

gs

|Δ|12

|r3|3 = 27π

32

|g3|3
g4

s

k|Δ|12.

The instanton action (3.21) depends on the cutoff scale Λ0 due to the running of the gauge
coupling g−2

3 (Λ0). The dependence on Λ0 implies [12] that (3.21) should be interpreted as the
rate of decay corresponding to fluxes decaying in the portion of the Calabi–Yau bounded by Λ0.

If instead we take say N1 > 0 > N2, then the lowest energy state corresponds to N1 branes
on node 1, N2 antibranes on node 2, with node 3 unoccupied. This is the case at least for those
values of parameters corresponding to the system being weakly coupled. In this regime, this
particular configuration gives an example of an exactly stable, non-supersymmetric vacuum in
string theory—there is no other vacuum with the same charges that has lower energy. Moreover,
as will discuss in Section 6, for some special values of the parameters m1,2 the system is exactly
solvable, and can be shown to be exactly stable even when the branes and the antibranes are close
to each other.

4. Generalizations

Consider now other ADE fibrations over the complex plane. As in (2.1) we start with the
deformations of 2-complex dimensional ALE singularities:

Ak: x2 + y2 + zk+1 = 0,

Dr : x2 + y2z + zr−1 = 0,

12 All quantities being measured in string units.
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Fig. 2. Some of the two-loop Feynman graphs of the matrix model path integral, which are computing the prepotential
F0. The path integral is expanded about a vacuum corresponding to distributing branes on the three nodes. Here, the
boundaries on node one are colored red, on node two are green and on node three are blue. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

E6: x2 + y3 + z4 = 0,

E7: x2 + y3 + yz3 = 0,

E8: x2 + y3 + z5 = 0

and fiber these over the complex t plane, allowing the coefficients parameterizing the deforma-
tions to be t dependent. The requisite deformations of the singularities are canonical (see [24]
and references therein). For example, the deformation of the Dr singularity is

x2 + y2z + z−1

(
r∏

i=1

(
z − z2

i

) −
r∏

i=1

z2
i

)
+ 2

r∏
i=1

ziy.

In fibering this over the t plane, the zi become polynomials zi(t) in t .13 After deformation, at a
generic point in the t plane, the ALE space is smooth, with singularities resolved by a set of r

independent 2-cycle classes

S2
i , i = 1, . . . , r

where r is the rank of the corresponding Lie algebra. The 2-cycle classes intersect according to
the ADE Dynkin diagram of the singularity: The deformations can be characterized by “super-
potentials”,

W ′
i (t) =

∫
S2

i,t

ω2,0,

which compute the holomorphic volumes of the 2-cycles at fixed t . For each positive root eI ,
which can be expanded in terms of simple roots ei as

eI =
∑
I

ni
I ei

13 This is the so-called “non-monodromic” fibration. The case where the zi are instead multi-valued functions of t

corresponds to the “monodromic” fibration [24].
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Fig. 3. Dynkin diagrams of the ADE Lie algebras. Every node corresponds to a simple root and to a 2-cycle class of
self intersection −2 in the ALE space. The nodes that are linked correspond to 2-cycles which intersect with intersection
number +1.

for some positive integers ni
I , one gets a zero-sized, primitive 2-cycle at points in the t -plane

where

(4.1)W ′
I (t) =

∑
i

ni
IW

′
i (t) = 0.

Blowing up the singularities supplies a minimal area to the 2-cycles at solutions of (4.1),

t = aI,p,

where I labels the positive root and p runs over all the solutions to (4.1) for that root.
As shown in [24] and references therein, the normal bundles to the minimal, holomorphic S2’s

obtained in this way are always O(−1) ⊕ O(−1), and correspondingly the S2’s are isolated.14

This implies that when branes or antibranes are wrapped on the S2’s, there is an energy cost to
moving them off. Moreover, the parameters that enter into defining the Wi , as well as the Kähler
classes of the S2’s, are all non-dynamical in the Calabi–Yau. As a consequence, if we wrap branes
and antibranes on minimal S2’s, the non-supersymmetric system obtained is metastable, at least
in the regime of parameters where the S2’s are well separated.

The ALE fibrations have geometric transitions in which each minimal S2 is replaced by a
minimal S3. A key point here is that none of the 2-cycles have compact, dual 4-cycles, so the
transitions are all locally conifold transitions. The one-loop prepotential F0 for all these singu-
larities was computed in [25], and is given by

2πiF0(S) = 1

2

∑
b

S2
b

(
log

(
Sb

W ′′
I (ab)Λ

2
0

)
− 3

2

)

(4.2)+ 1

2

∑
b �=c

eI (b) · eJ (c)SbSc log

(
abc

Λ0

)
,

14 In [24] the authors also considered the monodromic ADE fibrations, where the 2-cycles of the ALE space undergo

monodromies around paths in the t plane. In this case, the novelty is that the S2’s can appear with normal bundles
O⊕O(−2) or O(−1)⊕O(3). Wrapping branes and antibranes on these cycles is not going to give rise to new metastable
vacua, since there will be massless deformations moving the branes off of the S2’s. It would be interesting to check this
explicitly in the large N dual.
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where the sum is over all critical points b = (I,p), and I (b) = I denotes the root I to which
the critical point labeled by b corresponds. We are neglecting cubic and higher order terms in
the SI,p , which are related to higher loop corrections in the open string theory. Above, WI(t) is
the superpotential corresponding to the root eI , and eI · eJ is the inner product of two positive,
though not necessarily simple, roots. Geometrically, the inner product is the same as minus the
intersection number of the corresponding 2-cycles classes in the ALE space.

Consider wrapping Mb branes or antibranes on the minimal S2’s labeled by b = (I,p). We’ll
take all the roots to be positive, so we get branes or antibranes depending on whether Mb is
positive or negative. The effective superpotential for the dual, closed-string theory is given by
(2.9). From this and the corresponding effective potential (2.10), we compute the expectation
values for Sb in the metastable vacuum to be

S̄
|Mb|
b = (

Λ2
0W

′′
I (ab)

)|Mb|
Mc<0∏
b �=c

(
abc

Λ0

)|Mc| Mc>0∏
c

(
abc

Λ0

)|Mc|
exp(−2πiαI (b)),

Mb < 0,

S
|Mb|
b = (

Λ2
0W

′′
I (ab)

)|Mb|
Mc>0∏
b �=c

(
abc

Λ0

)|Mc| Mc<0∏
c

(
abc

Λ0

)|Mc|
exp(−2πiαI (b)),

Mb > 0.

The value of the effective potential at the critical point is given by

V∗ =
∑

b

|Mb|
g2

I (b)

+
Mb>0>Mc∑

b,c

1

2π
eI (b) · eJ (c) log

(∣∣∣∣abc

Λ0

∣∣∣∣
)

.

The first term in the potential is just the contribution of the tensions of all the branes and
antibranes. The second term comes from the Coulomb and gravitational interactions between
branes, which is a one-loop effect in the open string theory. As expected, at this order only the
brane/antibrane interactions affect the potential energy. The open strings stretching between a
pair of (anti)branes, are supersymmetric, and the (anti)branes do not interact. The interactions
between branes and antibranes depend on

eI · eJ

which is minus the intersection number—in the ALE space—of the 2-cycle classes wrapped by
the branes. The branes and antibranes attract if the 2-cycles they wrap have negative intersection,
while they repel if the intersection number is positive, and do not interact at all if the 2-cycles do
not intersect.

For example, consider the Ak quiver case, and a set of branes and antibranes wrapping the
2-cycles obtained by blowing up the singularities at

zi(t) = zj (t), zm(t) = zn(t)

where i < j and m < n. The branes do not interact unless i or j coincide with either m or n. The
branes attract if i = m or j = n, in which case the intersection is either −1 or −2, depending
on whether one or both of the above conditions are satisfied. This is precisely the case when
the branes and antibranes can at least partially annihilate. If j = m or i = n, then the 2-cycles
have intersection +1, and the branes repel. In this case, the presence of branes and antibranes



M. Aganagic et al. / Nuclear Physics B 795 (2008) 291–333 315
should break supersymmetry, but there is a topological obstruction to the branes annihilating,
even partially. In fact, in the Ak type ALE spaces, this result is known from the direct, open
string computation [27,28]. The fact that the direct computation agrees with the results presented
here is a nice test of the conjecture of [1].

5. A non-supersymmetric Seiberg duality

In the supersymmetric case, with all MI positive, the engineered quiver gauge theories have
Seiberg-like dualities. In string theory, as explained in [25], the duality comes from an intrinsic
ambiguity in how we resolve the ADE singularities to formulate the brane theory.15 The different
resolutions are related by flops of the S2’s under which the charges of the branes, and hence the
ranks of the gauge groups, transform in nontrivial ways. The RG flows, which are manifest
in the large N dual description, force some of the S2’s to shrink and others to grow, making
one description preferred over the others at a given energy scale. In this section, we argue that
Seiberg dualities of this sort persist even when some of the branes are changed to antibranes and
supersymmetry is broken.

5.1. Flops as Seiberg dualities

For a fixed set of brane charges, one can associate different Calabi–Yau geometries. There is
not a unique way to blow up the singularity where an S2 shrinks, and the different blowups are
related by flops that shrink some 2-cycles and grow others. Instead of giving a 2-cycle class S2

i a
positive Kähler volume

ri =
∫
S2

i

BNS

we can give it a negative volume, instead. This can be thought of as replacing the 2-cycle class
by one of the opposite orientation

S2
i → S̃2

i = −S2
i .

The flop of a simple root S2
i acts as on the other roots as a Weyl reflection which permutes the

positive roots

(5.1)S2
j → S̃2

j = S2
j − (ej · ei)S

2
i .

The net brane charges change in the process, but in a way consistent with charge conservation

(5.2)
∑

i

NiS
2
i =

∑
i

Ñi S̃
2
i .

We can follow how the number of branes wrapping the minimal 2-cycles change in this process.
If i is the simple root that gets flopped,16 then Mi,p goes to M̃i,p = −Mi,p and for other roots

15 The idea that Seiberg dualities have a geometric interpretation in string theory goes back a long while, see for example
[40–44]. The fact that these dualities arise dynamically in string theory has for the first time been manifested in [25,45].
16 Flopping non-simple roots can be thought of in terms of a sequence of simple node flops, as this generates the full
Weyl group.
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labeled by J �= i

(5.3)MJ,p = M̃w(J ),p

where w(J ) is the image of J under the Weyl group action.
The size of the wrapped S2 is proportional to the inverse gauge coupling for the theory on the

wrapping branes,

(5.4)g−2
i (t) ∝ 1

gs

∫
S2

i,t

BNS,

so the flop (5.1) transforms the gauge couplings according to

(5.5)g−2
j → g̃−2

j = g−2
j − (ej · ei)g

−2
i .

Generally, there is one preferred description for which the gauge couplings are all positive. In the
geometry, we have the freedom to choose the sizes of the 2-cycles S2

i,t at some fixed high scale,
but the rest of their profile is determined by the one-loop running of the couplings (3.5) through-
out the geometry and by the brane charges. The most invariant way of doing this is to specify
the scales Λi at which the couplings (5.4) become strong. We can then follow, using holography,
the way the B-fields vary over the geometry as one goes from near where the S3’s are minimal,
which corresponds to low energies in the brane theory, to longer distances, far from where the
branes were located, which corresponds to going to higher energies. The S2’s have finite size and
shrink or grow depending on whether the gauge coupling is increasing or decreasing. We will see
that as we vary the strong coupling scales of the theory, we can smoothly interpolate between the
two dual descriptions. Here it is crucial that the gauge coupling going through zero is a smooth
process in the geometry: while the Kähler volume of the 2-cycle vanishes as one goes through
a flop, the physical volume, given by (2.5), remains finite. Moreover, we can read off from the
geometry which description is the more appropriate one at a given scale.

5.2. The A2 example

For illustration, we return to the example of the A2 quiver studied in Section 3. To begin with,
for a given set of charges Mi , we take the couplings g−2

i of the theory to be weak at the scale
Δ set by the “superpotential”. This is the characteristic scale of the open-string ALE geometry.
Then Si/Δ

3 is small in the vacuum, and the weak coupling expansion is valid. From (3.5), we
can deduce the one-loop running of the couplings with energy scale μ = t

μ
d

dμ
g−2

1 (μ) = (
2|M1| + |M3| − |M2|

)
,

(5.6)μ
d

dμ
g−2

2 (μ) = (
2|M2| + |M3| − |M1|

)
.

Suppose now, for example

(5.7)2|M1| + |M3| � |M2|,
so then at high enough energies, g−2

1 (μ) will become negative, meaning that the size of S2
i,t

has become negative. To keep the size of all the S2’s positive, at large enough t , the geometry
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undergoes a flop of S2
1 that sends

S2
1 → S̃2

1 = −S2
1 ,

(5.8)S2
2 → S̃2

2 = S2
2 + S2

1 ,

and correspondingly,

(5.9)Ñ1 = N2 − N1, Ñ2 = N2,

while

(5.10)M̃1 = −M1, M̃2 = M3, M̃3 = M2.

Recall the supersymmetric case first. The supersymmetric case with M1 = 0 was studied in de-
tail in [25]. It corresponds to a vacuum of a low energy U(N1) × U(N2), N = 2 theory where
the superpotential breaks the gauge group to U(M2) × U(M3). The formulas (5.6) are in fact
the same as in the supersymmetric case, when all the Mi are positive—the beta functions sim-
ply depend on the absolute values of the charges. If (5.7) is satisfied, the U(N1) factor is not
asymptotically free, and the coupling grows strong at high energies. There, the theory is better
described in terms of its Seiberg dual, the asymptotically free U(Ñ1) × U(Ñ2) theory, broken to
U(M̃2) × U(M̃3) by the superpotential.17 The vacua at hand, which are visible semi-classically
in the U(N1) × U(N2) theory, are harder to observe in the U(Ñ1) × U(Ñ2) theory, which is
strongly coupled at the scale of the superpotential. But, the duality predicts that they are there.
In particular, we can smoothly vary the strong coupling scale ΛN1 of the original theory from (i)
ΛN1 < Δ < μ, where the description at scale μ is better in terms of the original U(N1)×U(N2)

theory, to (ii) Δ < μ < ΛN1 , where the description is better in terms of the dual U(Ñ1) × U(Ñ2)

theory.
For the dual description of a theory to exist, it is necessary, but not sufficient (as emphasized

in [18]), that the brane charges at infinity of the Calabi–Yau be the same in both descriptions. In
addition, the gauge couplings must run in a consistent way. In this supersymmetric A2 quiver,
this is essentially true automatically, but let us review it anyway with the non-supersymmetric
case in mind. On the one hand, (5.5) implies that the under the flop, the couplings transform as

g−2
1 (μ) → g̃−2

1 (μ) = −g−2
1 (μ),

(5.11)g−2
2 (μ) → g̃−2

2 (μ) = g−2
1 (μ) + g−2

2 (μ).

On the other hand, from (3.5) we know how the couplings g̃−2
i corresponding to charges M̃i run

with scale μ. The nontrivial fact is that the these two are consistent—the flop simply exchanges
M̃2 = M3 and M̃3 = M2, and this is consistent with (5.11).

Now consider the non-supersymmetric case. Let us still take M1 = 0, but now with M2 > 0 >

M3, such that (5.7) is satisfied. It is still the case that if we go to high enough energies, i.e. large
enough μ, the gauge coupling g−2

1 will become negative, and the corresponding S2
1 will undergo

a flop. We can change the basis of 2-cycles as in (5.5) and (3.8) that the couplings are all positive,
and then the charges transform according to (5.10). Moreover, just as in the supersymmetric
theory, after the flop the gauge couplings run exactly as they should given the new charges M̃i ,

17 The superpotential of the dual theory is not the same as in the original. As explained in [25], we can think of the flop as
permuting the z′

i
(t), in this case exchanging z′

1(t) with z′
2(t), which affects the superpotential as W1(Φ1) → −W1(Φ1),

and W2(Φ2) → W1(Φ2) + W2(Φ2).
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which are again obtained by exchanging node two and three. Moreover, by varying the scale ΛN1

where g−2
1 becomes strong, we can smoothly go over from one description to the other, just as

in the supersymmetric case. For example, in the A2 case we have a non-supersymmetric duality
relating a U(|N1|) × U(N2) theory, where the rank N1 = M3 is negative and N2 = M2 + M3
positive, which is a better description at low energies, to a U(Ñ1) × U(Ñ2) theory with positive
ranks Ñ1 = N2 − N1 = M2 and Ñ2 = N2 = M2 + M3, which is a better description at high
energies.

More generally, one can see that this will be the case in any of the ADE examples of the
previous section. This is true regardless of whether all MI,p are positive and supersymmetry is
unbroken, or they have different signs and supersymmetry is broken. In the case where super-
symmetry is broken, we have no gauge theory predictions to guide us, but it is still natural to
conjecture the corresponding non-supersymmetric dualities based on holography. Whenever the
charges are such that in going from low to high energies a root ends up being dualized

S2
i,p → −S2

i,p,

there should be a non-supersymmetric duality relating a brane/antibrane system which is a better
description at low energies to the one that is a better description at high energies, with charges
transforming as in (5.2) and (5.3). The theories are dual in the sense that they flow to the same
theory in the IR, and moreover, there is no sharp phase transition in going from one description to
the other. This can be seen from the fact that by varying the strong coupling scales of the theory,
one can smoothly interpolate between one description and the other being preferred at a given
energy scale μ. We do not expect these to correspond to gauge theory dualities (in the sense of
theories with a finite number of degrees of freedom and a separation of scales), but we do expect
them to be string theory dualities.

5.3. Dualizing an occupied root

When an occupied node gets dualized, negative ranks M < 0 will appear. This is true even
in the supersymmetric case. It is natural to wonder whether this is related to the appearance of
non-supersymmetric vacua in a supersymmetric gauge theory. Conversely, starting with a non-
supersymmetric vacuum at high energies, one may find that the good description at low energies
involves all the charges being positive. We propose that when an occupied node gets dualized,
there is essentially only one description which is ever really weakly coupled. In particular, “neg-
ative rank” gauge groups can appear formally but never at weak coupling. Moreover, while the
supersymmetric gauge theories can have non-supersymmetric vacua, the phenomenon at hand is
unrelated to that. This is in tune with the interpretation given in [25].

Consider the A2 theory in the supersymmetric case, M̃1,2,3 > 0, with both gauge groups
U(Ñ1,2) being asymptotically free. The U(Ñ1) × U(Ñ2) theory gives a good description at low
energies, for

Λ
Ñ1

	 Δ

where Δ is the characteristic scale of the ALE space, and ΛÑ1
is the strong coupling scale of the

U(Ñ1) theory. Now consider adiabatically increasing the strong coupling scale until

ΛÑ1
� Δ.

Then the U(N1) × U(N2) description appears to be better at low energies, with N ’s related as
in (5.9). Namely, from (5.11) we can read off the that the strong coupling scales match up as
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ΛN1 = Λ
Ñ1

, so at least formally this corresponds to a more weakly coupled, IR free U(N1)

theory. However, after dualizing node 1, its charge becomes negative

M̃1 = −M1.

How is the negative rank M1 < 0 consistent with the theory having a supersymmetric vacuum?
The dual theory clearly cannot be a weakly coupled theory. A weakly coupled theory of branes

and antibranes breaks supersymmetry, whereas the solution at hand is supersymmetric. Instead,
as we increase ΛN1 and follow what happens to the supersymmetric solution, the scale ΛM1

associated with gaugino condensation on node 1 increases as well, Δ < ΛM1 ∼ ΛN1 , and we find
that at all energy scales below ΛM1 we have a strongly coupled theory, without a simple gauge
theoretic description. The holographic dual theory of course does have a weakly coupled vacuum
with charges M1 < 0, M2,3 > 0, which breaks supersymmetry. However, the gauge couplings in
this vacuum run at high energies in a different way than in the supersymmetric U(N1) × U(N2)

gauge theory. As emphasized in [18], this means we cannot interpret this non-supersymmetric
vacuum as a metastable state of the supersymmetric gauge theory.

We could alternatively start with a weakly coupled, non-supersymmetric A2 theory with
M1 < 0, M2,3 > 0. If (5.7) is not satisfied, the theory is asymptotically free. Increasing the strong
coupling scale ΛN1 of this theory until ΛN1 ∼ Δ, the theory becomes strongly coupled, and one
is tempted to dualize it to a theory with M̃i > 0 at lower energies. However, from the vacuum
solutions in Section 3, we can read off that, just as in the supersymmetric case, this implies that
the scale ΛM1 of the gaugino condensate of node 1 becomes larger than the scale Δ, and no
weakly coupled description exists. What is new in the non-supersymmetric case is that, as we
have seen in Section 3, increasing the strong coupling scale ΛM1 to near Δ causes the system to
lose stability.

Nevertheless, we can formally extend the conjectured Seiberg dualities to all the supersym-
metric and non-supersymmetric vacua even when the node that gets dualized is occupied, except
that the dual description is, in one way or another, always strongly coupled.

6. A very simple case

Let us now go back to the A2 case studied in Section 3 and suppose that two of the masses are
equal and opposite m1 = −m2 = −m, so18

(6.1)z1(t) = 0, z2(t) = −mt, z3(t) = −m(t − a).

It is easy to see from (2.4) that there are now only two critical points at t = 0 and t = a, which get
replaced by S2

1 and S2
3 . The third intersection point, which corresponds to the simple root S2

2 , is
absent here, and so is the minimal area 2-cycle corresponding to it. We study this as a special case
since now the prepotential F0 can be given in closed form, so the theory can be solved exactly.
This follows easily either by direct computation from the geometry, or from the corresponding
matrix model (see Appendix A). The large N dual geometry corresponds to the two S2’s being
replaced by two S3’s:

x2 + y2 + z(z + mt)
(
z + m(t − a)

) = s1(z + ma) + s3
(
z + m(t − a)

)
.

18 More precisely, relative to the notation of that section, we have performed a flop here that exchanges z1 and z2.
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Fig. 4. There are only two minimal S2’s in the A2 geometry with m1 = −m2. The figure on the left corresponds to the
first blowup discussed in the text, with two minimal S2’s of intersection number +1 in the ALE space wrapped by M1
anti-D5 branes and M3 D5 branes. The figure on the right is the flop of this.

The exact prepotential is given by

2πiF0(S) = 1

2
S2

1

(
log

(
S1

mΛ2
0

)
− 3

2

)
+ 1

2
S2

3

(
log

(
S3

mΛ2
0

)
− 3

2

)

(6.2)+ S1S3 log

(
a

Λ0

)
.

We can now consider wrapping, say, M1 antibranes on S2
1 and M3 branes on S2

3 . We get an
exact vacuum solution at

S̄
|M1|
1 = (

Λ2
0m

)|M1|
(

a

Λ0

)−|M3|
exp(−2πiα1),

S3
|M3| = (

Λ2
0m

)|M3|
(

a

Λ0

)−|M1|
exp(−2πiα3),

where the potential between the branes is given by

V∗ = |M1|
g2

1

+ |M3|
g2

3

+ 1

2π
|M1||M3| log

(∣∣∣∣ a

Λ0

∣∣∣∣
)

.

Using an analysis identical to that in [1], it follows that the solution is always stable, at least
in perturbation theory. Borrowing results from [1], the masses of the four bosons corresponding
to fluctuations of S1,3 are given by

(6.3)
(
m±(c)

)2 = (a2 + b2 + 2abcv) ± √
(a2 + b2 + 2abcv)2 − 4a2b2(1 − v)2

2(1 − v)2

and the masses of the corresponding fermions are

(6.4)|mψ1 | =
a

1 − v
, |mψ2 | =

b

1 − v

where c takes values c = ±1, and

(6.5)a =
∣∣∣∣ M1

2πΛ3
1 Im τ11

∣∣∣∣, b =
∣∣∣∣ M3

2πΛ3
3 Im τ33

∣∣∣∣.
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The parameter controlling the strength of supersymmetry breaking v is defined by

v = (Im τ13)
2

Im τ11Imτ33
.

That v controls the supersymmetry breaking can be seen here from the fact that at v = 0, the
masses of the four real bosons become degenerate in pairs, and match up with the fermion
masses [1]. The masses of bosons are strictly positive since the metric on the moduli space
Im τ is positive definite, which implies

1 > v � 0, ΛN1,2 	 a

where ΛN1,2 is the scale at which the gauge coupling g−2
1,2 becomes strong.19

The fact that the system is stable perturbatively is at first sight surprising, since from the
open string description one would expect that for sufficiently small a an instability develops,
ultimately related to the tachyon that appears when the brane separation is below the string scale.
In particular, we expect the instability to occur when the coupling on the branes becomes strong
enough that the Coulomb attraction overcomes the tension effects from the branes. However, it
is easy to see that there is no stable solution for small a. As we decrease a, the solution reaches
the boundary of the moduli space,

Λ0 exp

(
− 1

g2
1,3|M3,1|

)
< a,

where Im τ is positive definite, before the instability can develop.20 Namely, if we view Λ0 as a
cutoff on how much energy one has available, then for a stable solution to exist at fixed coupling,
the branes have to be separated by more than ∼ Λ0, and said minimum separation increases as
one moves towards stronger coupling. The couplings, however, do run with energy, becoming
weaker at higher Λ0, and because of that the lower bound on a actually decreases with energy.
Alternatively, as we will discuss in the next subsection, there is a lower bound on how small |a|
can get, set by the strong coupling scales ΛN1,2 of the brane theory. When this bound is violated,
the dual gravity solution disappears.

The fact that the system is perturbatively stable should be related to the fact that in this case
there is no compact B cycle. Namely, in Section 3 we have seen that when perturbative stability
is lost, the system rolls down to a new minimum corresponding to shrinking a compact B-cycle
without flux through it. In this case, such a compact B-cycle is absent, so the system has no
vacuum it can roll away to, and correspondingly it remains perturbatively stable.

The theory has another vacuum with the same charges, which can have lower energy. This
vacuum is not a purely closed string vacuum, but it involves branes. Consider, for example,
the case with M1 = −M3 = −M . In this case, the brane/antibrane system should be exactly
stable for large enough separation a. However, when a becomes small enough, it should be
energetically favorable to decay to a system with simply M branes on S2

2 , which is allowed by
charge conservation. This should be the case whenever

A
(
S2

2

)
� A

(
S2

1

) + A
(
S2

3

)
,

19 From the solution, one can read off, e.g., g−2
1 = −(2|M1| + |M3|) log(

ΛN1
Λ0

).
20 Since Im(τ ) is a symmetric real matrix of rank two, a necessary condition for the eigenvalues to be positive is that the
diagonal entries are positive. The equation we are writing corresponds to the positivity of the diagonal entries of Im(τ )

evaluated at the critical point. For weak gauge coupling, this is also the sufficient condition.
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where the areas on the right-hand side refer to those of the minimal S2’s at the critical points of
W ′

1(t) = z1(t) − z2(t) and W ′
3(t) = z1(t) − z3(t),

A
(
S2

1

) = |r1|, A
(
S2

3

) = |r1| + |r2|.
In the class of S2

2 , there is no holomorphic 2-cycle, as W ′
2(t) = z2(t) − z3(t) = −ma never

vanishes, so

(6.6)A
(
S2

2

) =
√

|r2|2 + |ma|2.
Clearly, when a is sufficiently small, the configuration with M branes on S2

2 should correspond
to the ground state of the system. If instead M1,3 are generic, we end up with a vacuum with in-
tersecting branes, studied recently in [21]. Here one has additional massless matter coming from
open strings at intersection of the branes, and correspondingly there is no gaugino condensation
and no closed string dual. As a result, the methods based on holography we use here have nothing
to say about this vacuum.

6.1. A stable non-supersymmetric vacuum

Consider now the flop of the simple A2 singularity of the previous subsection, where z1 and
z2 get exchanged,

z̃1(t) = −mt, z̃2(t) = 0, z̃3(t) = −m(t − a),

and where

S2
1 → S̃2

1 = −S2
1 .

We now wrap M̃1 < 0 antibranes on S̃2
1 and M̃2 > 0 branes on S̃2

2 . In this case, one would expect
the system to have a stable, non-supersymmetric vacuum for any separation between the branes.
This is the case because the system has nowhere to which it can decay. Suppose we wrap one
antibrane on S̃2

1 and one brane on S̃2
2 . If a cycle C exists such that

(6.7)C = −S̃2
1 + S̃2

2

then the brane/antibrane system can decay to a brane on C. In the present case, such a C does not
exist. The reason for that is the following. On the one hand, all the curves in this geometry come
from the ALE space fibration, and moreover all the S2’s in the ALE space have self intersection
number −2. On the other hand, because the intersection number of S̃2

1 and S̃2
2 is +1, Eq. (6.7)

would imply that the self intersection of C is −6. So, the requisite C cannot exist. The vacuum
is, in fact, both perturbatively and non-perturbatively stable; we will see that the holographic
dual theory has no perturbative instabilities for any separation between the branes. Because the
z’s have been exchanged and the geometry is now different; we get a new prepotential F̃0 and
effective superpotential

(6.8)Weff =
∑
i=1,2

α̃i S̃i + M̃i∂S̃i
F̃0(S̃),

where

2πiF0(S̃) = 1

2
S̃2

1

(
log

(
S̃1

(−m)Λ2

)
− 3

2

)
+ 1

2
S̃2

2

(
log

(
S̃2

mΛ2

)
− 3

2

)
− S̃1S̃2 log

(
a

Λ

)
.

0 0 0
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Alternatively, we should be able to work with the old geometry and prepotential (6.2), but adjust
the charges and the couplings consistently with the flop. The charges and the couplings of the
two configurations are related by

(6.9)M̃1 = −M1, M̃2 = M3,

where M1,3 are now both positive, and

(6.10)g̃−2
1 = −g−2

1 , g̃−2
2 = g−2

3 ,

where g−2
1 is now negative. The effective superpotential is

(6.11)Weff =
∑
i=1,3

αiSi + Mi∂Si
F0(S),

in terms of the old prepotential (6.2). Indeed, the two are related by F0(S1, S3) = F̃0(S̃1, S̃2) and
a simple change of variables

S̃1 = −S1, S̃2 = S3,

leaves the superpotential invariant. The critical points of the potential associated to (6.11) with
these charges are

¯̃
S

|M̃1|
1 = (

Λ2
0m

)|M̃1|
(

a

Λ0

)|M̃2|
exp(−2πiα1),

S̃
|M̃2|
2 = (

Λ2
0m

)|M̃2|
(

a

Λ0

)|M̃1|
exp(−2πiα2)

with effective potential at the critical point

V∗ = |M̃1|
g̃2

1

+ |M̃2|
g̃2

2

− 1

2π
|M̃1||M̃2| log

(∣∣∣∣ a

Λ0

∣∣∣∣
)

.

The masses of the bosons in this vacuum are again given by (6.3), (6.5) with the obvious sub-
stitution of variables. Just as in the previous subsection, the masses are positive in any of these
vacua. Moreover, because there are no two-loop corrections to the prepotential, as we have seen
in Section 3, the vacuum is stable as long as the metric remains positive definite. In the previous
section, we expected an instability for small enough a, and found that the perturbatively stable
non-supersymmetric solution escapes to the boundary of the moduli space (defined as the region
where Im τ is positive definite) when this becomes the case. In this case, we do not expect any
instability for any a, as there is nothing for the vacuum to decay to. Indeed, we find that Im τ is
now positive definite for any a �= 0.

The vacuum is stable perturbatively and non-perturbatively—there simply are no lower energy
states with the same charges available to which this can decay. So, this gives an example of
an exactly stable, non-supersymmetric vacuum in string theory, albeit without four-dimensional
gravity.21 Moreover, since in this case there are no tachyons in the brane/antibrane system, this
should have a consistent limit where we decouple gravity and stringy modes, and are left with
a pure, non-supersymmetric, confining gauge theory, with a large N dual description. This is
currently under investigation [46].

21 This fact has been noted in [28].
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Appendix A. Matrix model computation

Using large N duality in the B model topological string [33], the prepotential F0 of the
Calabi–Yau manifolds studied in this paper can be computed using a matrix model describing
branes on the geometry before the transition. The same matrix model [31] captures the dynamics
of the glueball fields S in the N = 1 supersymmetric gauge theory in space–time, dual to the
Calabi–Yau with fluxes in the physical superstring theory. In this appendix, we use these matrix
model/gauge theory techniques to compute the prepotential for Calabi–Yau manifolds which are
A2 fibrations with quadratic superpotentials, as studied in Sections 3 and 6. To our knowledge,
this computation has not previously been carried out.

The matrix model is a U(N1) × U(N2) quiver with Hermitian matrices Φ1 and Φ2 which
transform in the adjoint of the respective gauge groups, and bifundamentals Q and Q̃ which
correspond to the bifundamental hypermultiplets coming from 12 and 21 strings. The relevant
matrix integral is then given by

Z = 1

vol(U(N1) × U(N2))

∫
dΦ1 dΦ2 dQdQ̃ exp

(
1

gs

TrW(Φ1,Φ2,Q, Q̃)

)
where W is the superpotential of the corresponding N = 1 quiver gauge theory, given by

(A.1)W = TrW1(Φ1) + TrW2(Φ2) + Tr(Q̃Φ1Q) − Tr(QΦ2Q̃)

with

TrW1(Φ1) = −m1

2
Tr(Φ1 − a1 idN1)

2,

TrW2(Φ2) = −m2

2
Tr(Φ2 − a2 idN2)

2.

The saddle points of the integral correspond to breaking the gauge group as

(A.2)U(N1) × U(N2) → U(M1) × U(M2) × U(M3)

where

N1 = M1 + M3, N2 = M2 + M3,

by taking as expectation values of the adjoints and bifundamentals to be

Φ1,∗ =
(

a1 idM1 0

0 a3 idM3

)
, Φ2,∗ =

(
a2 idM2 0

0 a3 idM3

)
where a3 = (m1a1 + m2a2)/(m1 + m2), and

(QQ̃)∗ =
(

0 0
′

)
, (Q̃Q)∗ =

(
0 0

′

)
,

0 −W1(a3) idM3 0 W2(a3) idM3
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where −W ′
1(a3) = m1(a1 − a3) = W ′

2(a3).
Now let us consider the Feynman graph expansion about this vacuum. The end result is a

very simple path integral. However, to get there, we need to properly implement the gauge fixing
(A.2), and this is somewhat laborious. It is best done in two steps. First, consider fixing the gauge
that simply reduces U(N1,2) to U(M1,2) × U(M3). This follows [35] directly. Let

Φ1 =
(

Φ1
11 Φ1

13

Φ1
31 Φ1

33

)
.

To set the M1 × M3 block in Φ1 to zero

F1 = Φ1
13 = 0

we insert the identity into the path integral in the form

id =
∫

dΛδ(F1)Det

(
δF1

δΛ

)
,

where the integral is over those gauge transformations not in U(M1) × U(M3). The determinant
can be expressed in terms of two pairs of ghosts, B13, B31 and C31, C13, which are anticommuting
bosons, as

Det

(
δF1

δΛ

)
=

∫
dB13 dC31 dB31 dC13 exp

(
1

gs

Tr
(
B13Φ

1
33C31 − C31Φ

1
11B13

))

× exp

(
1

gs

Tr
(
B31Φ

1
11C13 − C13Φ

1
33B31

))
.

By an identical argument, we can gauge fix the second gauge group factor

U(N2) → U(M1) × U(M3)

to set the M2 × M3 block of Φ2 to zero. We do this by again inserting the identity into the path
integral, but now with the determinant replaced by

Det

(
δF2

δΛ

)
=

∫
dB23 dC32 dB32 dC23 exp

(
1

gs

Tr
(
B23Φ

2
33C32 − C32Φ

2
22B23

))

× exp

(
1

gs

Tr
(
B32Φ

2
22C23 − C23Φ

2
33B32

))
.

Finally, since the vacuum will break the two copies of U(M3) to a single copy, we need to
gauge fix that as well. To do this, will fix a gauge

F3 = Q33 − q id = 0

where Q33 refers to the 33 block of Q, and integrate over q . This is invariant under the diagonal
U(M3) only. To implement this, insert the identity in the path integral, written as

id =
∫

dΛ33

∮
dq

q
δ(Q33 − q id)qM2

3 .

The above is the identity since

Det

(
δF3

δΛ33

)
= qM2

3 ,
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and we have taken the q-integral to be around q = 0. Inserting this, we can integrate out Q33,
and Q̃33. The Q33 integral sets it to equal q . The Q̃33 integral is a delta function setting

(A.3)Φ1
33 = Φ2

33,

but there is a left over factor of q−M2
3 from the Jacobian of δ(q(Φ1

33 − Φ2
33)). Integrating over

q gives simply 1.
The remaining fields include a pair of regular bosons Q13, Q̃31 in the bifundamental repre-

sentation of U(M1) × U(M3) and a pair of ghosts C13, B31, with exactly the same interactions.
Consequently, we can integrate them out exactly and their contribution is simply 1. This also
happens for Q32, Q̃23 and B23, C32, which also cancel out. We are left with the spectrum pre-
sented in Section 3 which very naturally describes branes with open strings stretching between
them.

A.1. A special case

In the special case when m2 = −m1 = m, the matrix integral is one-loop exact. To begin with,
the effective superpotential is given by (A.1) with

TrW1(Φ1) = −m

2
Tr(Φ1)

2, TrW2(Φ2) = m

2
Tr(Φ2 − a idN2×N2)

2.

The theory now has only one vacuum, where Φ1 and Q, Q̃ vanish, and

Φ2 = a idN2×N2 .

Expanding about this vacuum, the superpotential can be re-written as

Weff = −m

2
TrΦ2

1 + m

2
TrΦ2

2 − a TrQQ̃ + Tr(Q̃Φ1Q − QΦ2Q̃).

If we now redefine

Φ̃1 = Φ1 + 1

m
QQ̃, Φ̃2 = Φ2 + 1

m
Q̃Q,

the superpotential becomes quadratic in all variables, and the planar free energy is given by the
exact expression:

F0 = S2
1

2

(
log

S1

mΛ2
0

− 3

2

)
+ S2

2

2

(
log

S2

(−m)Λ2
0

− 3

2

)
− S1S2 log

a

Λ0
.

There are higher genus corrections to this result, but they all come from the volume of the U(N)

gauge groups, and receive no perturbative corrections.

Appendix B. Geometrical calculation of the prepotential

One can derive the same prepotential by direct integration. We only sketch the computation
here. The equation for the geometry (3.2) can be rewritten

x2 + y2 + z
(
z − m1(t − a1)

)(
z + m2(t − a2)

)
(B.1)= −s1m1

(
z + m2(t − a2)

) − s2m2
(
z − m1(t − a1)

) − s3m3z.
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Here si are deformation parameters. This is a convenient rewriting of (3.2) because we will find
that the periods of the compact cycles are given by Si = si + O(S2). As mentioned in the main
text, the holomorphic three-form Ω of the Calabi–Yau descends to a one-form defined on the
Riemann surface obtained by setting x = y = 0 in (B.1). The equation for the Riemann surface
is thus

−1 = m1s1

z(z − m1(t − a1))
+ m2s2

z(z + m2(t − a2))

(B.2)+ m3s3

(z − m1(t − a1))(z + m2(t − a2))
.

The one-form can be taken to be ω = z dt − t dz. The one-form is only defined up to a total deriva-
tive; a total derivative changes only the periods of the non-compact cycles, and our choice avoids
quadratic divergences in the non-compact periods. These divergences would not contribute to
physical quantities in any case. The equation for the Riemann surface is a cubic equation for
z(t), so the Riemann surface has three sheets, which are glued together along branch cuts. The
compact periods are given by integrals around the cuts, while the non-compact periods are given
by integrals from the cuts out to a cutoff, which we take to be t = Λ0.

It is convenient to make the change of variables

(B.3)u = −t + a1 + z/m1

a21
, v = −z

m3

a21m1m2

where a21 = a2 − a1. In the new variables, the equation for the Riemann surface takes the simple
form

(B.4)1 = s1

Δ3

1

uv
− s2

Δ3

1

v(u + v + 1)
+ s3

Δ3

1

u(u + v + 1)

with Δ3 = (a2 − a1)
2m1m2/m3 as in the main text. The change of variables is symplectic up to

an overall factor, so in the new variables the one-form becomes

(B.5)ω = Δ3(udv − v du).

The change of variables makes it clear that we can think of the problem as having one dimen-
sionful scale Δ, and three dimensionless quantities, si/Δ

3, which we will take to be small. There
are many other dimensionless quantities in the problem, such as mi/mj , but they do not appear
in the rescaled equations so they will not appear in the periods, with one small caveat. While the
equation for the Riemann surface and the one-form only depend on Δ and si/Δ

3, the cutoff is
defined in terms of the original variables, t = Λ0, so the cutoff dependent contributions to the
periods can depend on the other parameters.

We sketch how to compute one compact period and one non-compact period. Though it
is not manifest in our equations, the problem has a complete permutation symmetry among
(s1, s2,−s3), so this is actually sufficient. One compact cycle (call it S1) is related to the region
in the geometry where u and v are small, so that to a first approximation

(B.6)1 ≈ s1

Δ3

1

uv
.

We expand (B.4) for small u,v to get

(B.7)uv = s1

Δ3
− s2

Δ3
u(1 − u − v) + s3

Δ3
v(1 − u − v) + · · · .
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This will be sufficient for the order to which we are working, and the equation is quadratic. We
could solve for u(v) or v(u) in this regime; we would find a branch cut and integrate the one-form
around it. Equivalently, we can do a two-dimensional integral

(B.8)S1 = Δ3
∫

du ∧ dv

over the region bounded by the Riemann surface (this is Stokes’ Theorem). One can derive a
general formula for the integral over a region bounded by a quadratic equation by changing
coordinates so that it is the integral over the interior of a circle. In this case, the result is

(B.9)S1 = s1 + 1

Δ3
(s1s2 − s1s3 − s2s3) +O

(
s3

Δ6

)
.

The permutation symmetry of the problem then determines the other compact periods.
Now we compute the integral over the cycle dual to S1. The contour should satisfy uv ≈ s1/Δ

3

and go to infinity. Also, the contour must intersect the compact 1-cycle in a point. A contour
which satisfies these criteria is to take u,v to be real and positive (this choice works as long as
the si are real and positive, but the result will be general). We will need two different perturbative
expansions to do this integral: one for small u and the other for small v. Since we have uv ≈
s1/Δ

3, we will need a “small u” expansion which is valid up to u ∼ √
s1/Δ3, and similarly for

the small v expansion.
To expand for small v, we first multiply (B.4) through by v to get

v = s1

Δ3

1

u
− s2

Δ3

1

1 + u + v
+ s3

Δ3

v

u(1 + u + v)
.

We now solve perturbatively for v(u), using the fact that throughout the regime of interest v 	
1 + u. The largest that v/(1 + u) gets in this regime is

v

1 + u
<

√
s1

Δ3
.

To zeroth order in v/(1 + u),

(B.10)v(0) = s1

Δ3

1

u
− s2

Δ3

1

1 + u
.

To first order,

v(1) = s1

Δ3

1

u
− s2

Δ3

1

1 + u + v(0)
+ s3

Δ3

v(0)

u(1 + u)
,

which upon expanding becomes

(B.11)v(1) = s1

Δ3

1

u
− s2

Δ3

(
1

1 + u
− v(0)

(1 + u)2

)
+ s3

Δ3

v(0)

u(1 + u)
.

We need keep one more order in the perturbative expansion in order to get the prepotential to the
desired order:

v(2) = s1

Δ3

1

u
− s2

Δ3

1

1 + u + v(1)
+ s3

Δ3

v(1)

u(1 + u + v(0))
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which upon expanding becomes

v(2) = s1

Δ3

1

u
− s2

Δ3

[
1

1 + u
− v(1)

(1 + u)2
+ (v(0))2

(1 + u)3

]

(B.12)+ s3

Δ3

[
v(1)

u(1 + u)
− (v(0))2

(1 + u)2

]
.

Note that using (B.10), (B.11), this is an explicit equation for v(u). We could similarly expand to
find u(v) in the regime of small u, but actually we can save ourselves the computation by noting
that the equation for the Riemann surface is invariant under u ↔ v, s2 ↔ −s3. We are now in a
position to perform the integral of the one-form ω over the contour. We use the approximation
(B.12) for the part of the integral where v is small, and the corresponding formula for u(v) for
the part of the integral where u is small. We can choose to go over from one approximation to
another at a point umin = vmin. Such a point will be approximately umin = √

s1/Δ3, but we need
a more precise formula. By setting u = v in the equation for the Riemann surface, and perturbing
around umin = √

s1/Δ3, we find

u2
min = s1

Δ3
− s2 − s3

Δ3

√
s1

Δ3
+ (s2 − s3)

2

2Δ6
+ 2s1(s2 − s3)

Δ6
+ · · · .

We spare the reader the details of the integration. The result is cutoff dependent, and we assume
that the cutoff is sufficiently large so that we can drop contributions which depend inversely on
the cutoff. After doing the integral, we rewrite the result in terms of the compact periods Si using
(B.9). The result is:

∂S1F0 = (S1 − S2) logumax + (S1 + S3) logvmax −
(

S1 log
S1

Δ3
− S1

)

− 1

Δ3

(
1

2
S2

2 + 1

2
S2

3 + S1S2 − S1S3 − 3S2S3

)
+O

(
S3

Δ6

)
.

Here umax and vmax are cutoffs at large u,v. Since our cutoff is t = Λ0, we can solve for
umax, vmax. When u is large, v is small, since uv ≈ S1/Δ

3. Looking back at the change of vari-
ables (B.3), we find

umax = Λ0

a21
, vmax = Λ0m3

a21m2
= Λ0

a31
.

Again, the other non-compact periods are determined by symmetry. It is now a simple matter to
find F0:

2πiF0 = 1

2
S2

1 log
Λ2

0

a21a31
+ 1

2
S2

2 log
Λ2

0

a21a23
+ 1

2
S2

3 log
Λ2

0

a31a23

− S1S2 log
Λ0

a21
+ S1S3 log

Λ0

a31
+ S2S3 log

Λ0

a23

− 1

2
S2

1

(
log

S1

Δ3
− 3

2

)
− 1

2
S2

2

(
log

S2

Δ3
− 3

2

)
− 1

2
S2

3

(
log

S3

Δ3
− 3

2

)

− 1

2Δ3

(
S1S

2
2 + S2

1S2 + S1S
2
3 − S2

1S3 + S2S
2
3 − S2

2S3 − 6S1S2S3
) +O

(
S4

Δ6

)
.



330 M. Aganagic et al. / Nuclear Physics B 795 (2008) 291–333
This result agrees with the matrix model computation of Appendix A. Recall that we dropped
terms which depend inversely on the cutoff. More precisely, we dropped contributions to the
non-compact period of the form Si |a12|/Λ0. This is necessary in order to match the result of the
matrix model computation. In particular, in order to justify keeping the corrections we do keep,
we require

(B.13)
Si

Δ3
� |a12|

Λ0
.

Appendix C. The Hessian at two loops

The equations required to analyze stability simplify if we introduce the notation

ua ≡ iGabαb.

Since we are taking the αi to be pure imaginary, ua will be real and positive. Furthermore, since
we are taking τab to be pure imaginary, we can replace it with the metric, τab = iGab . Then the
equation of motion (3.6) takes the simple form

(C.1)
1

2
iFkab

(
uaub − MaMb

) = 0.

At one-loop, the third derivative of the prepotential is nonzero only if all of the derivatives are
with respect to the same variable, so at one-loop the solutions are ua = ±Ma . As discussed
earlier, the physically relevant solutions are

(C.2)ua = ∣∣Ma
∣∣.

This is just a rewriting of the one-loop solutions (3.8) in terms of the new notation.
At two loops, we can find the solution by perturbing around the one-loop result. Let ua =

|Ma| + δa . We find that

(C.3)δk = 1

2|Mk|Fkkk

Fkab

(−∣∣Ma
∣∣∣∣Mb

∣∣ + MaMb
)
.

Having solved the equations of motion at two loops, we proceed to the Hessian, providing less
detail. Assuming the same reality conditions, the matrices of second derivatives are given by

(C.4)∂k∂lV = ∂k̄∂l̄V = 1

2

(
iFabkl + iFcakiFdblG

cd
)(

uaub − MaMb
)
,

(C.5)∂k∂l̄V = ∂k̄∂lV = 1

2
iFcakiFdblG

cd
(
uaub + MaMb

)
.

The relations between the different mixed partial derivatives arise because we are perturbing
about a real solution.

At two loops, taking four derivatives of the prepotential gives zero unless all of the derivatives
are with respect to the same variable, so the first term in (C.4) can be simplified as

(C.6)iFabkl

(
uaub − MaMb

) = δkliFkkkk

(
ukuk − MkMk

) = 2δkliFkkkk

∣∣Mk
∣∣δk.

Though it is not obvious at this stage, the other terms on the right-hand side can be approximated
by their one-loop value in the regime of interest. This is very useful because, as mentioned
previously, at one-loop the third derivatives of the prepotential vanish unless all indices are the
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same. With these simplifications, the nonzero second derivatives become

(∂a + ∂ā)(∂b + ∂b̄)V

(C.7)=
∑

c

2iFaaaiFcccG
ac

∣∣Ma
∣∣∣∣Mc

∣∣(δcb + Gcb

iFbbbbδ
b

iFbbbiFccc|Mc|
)

,

(∂a − ∂ā)(−∂b + ∂b̄)V

(C.8)=
∑

c

2iFaaaiFcccG
ac

∣∣Ma
∣∣∣∣Mc

∣∣(δcb − Gcb

iFbbbbδ
b

iFbbbiFccc|Mc|
)

.

In these equations, no indices are implicitly summed over.
In order to analyze the loss of perturbative stability, we compute the determinant of the

Hessian. Since the eigenvalues remain real, in order to go from a stable solution to an unsta-
ble one, an eigenvalue should pass through zero. We therefore analyze where the determinant is
equal to zero. Up to possible constant factors, the determinant is given by

(
Det Gab

)2
(∏

c

|Mc|
iFccc

)4

Det

(
δcb + Gcb

Fbbbbδ
b

iFbbbFccc|Mc|
)

(C.9)× Det

(
δcb − Gcb

Fbbbbδ
b

iFbbbFccc|Mc|
)

and so in order to vanish, one of the last two determinants must go to zero.
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