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SUMMARY

Mouse and human stem cells with features similar to
those of embryonic stem cells have been derived
from testicular cells. Although pluripotent stem cells
have been obtained from defined germline stem cells
(GSCs) of mouse neonatal testis, only multipotent
stem cells have been obtained so far from defined
cells of mouse adult testis. In this study we describe
a robust and reproducible protocol for obtaining
germline-derived pluripotent stem (gPS) cells from
adult unipotent GSCs. Pluripotency of gPS cells
was confirmed by in vitro and in vivo differentiation,
including germ cell contribution and transmission.
As determined by clonal analyses, gPS cells indeed
originate from unipotent GSCs. We propose that
the conversion process requires a GSC culture
microenvironment that depends on the initial number
of plated GSCs and the length of culture time.

INTRODUCTION

Germline stem cells (GSCs) are unipotent precursor cells for

sperm generation in the testis. Although GSCs represent an

extremely low proportion (0.02%–0.03%) of the cells of the testis

(Tegelenbosch and de Rooij, 1993), they can be isolated and

propagated in vitro (Kanatsu-Shinohara et al., 2003; Kubota

et al., 2004). Survival of GSCs and maintenance of their stem-

ness property requires expression of Oct4, which is a pluripo-

tency- and germ-cell-specific marker (Kehler et al., 2004). The

role of Oct4 in germ cell development was elucidated by the

demonstration that knockout of the Oct4 gene led to apoptosis

(Kehler et al., 2004). Apart from expression in the inner cell

mass and the epiblast in pre- and early postimplantation

embryos, Oct4 expression is otherwise restricted to the germ

cell lineage, including primordial germ cells (PGCs), GSCs, and

oocytes. To date, GSCs are the only adult stem cells shown to

exhibit significant Oct4 expression. Disruption of Oct4 activity

in GSCs cultured in vitro caused the loss of self-renewal and

spermatogenetic activity (Dann et al., 2008). It has been sug-

gested that Oct4 contributes to abnormal conversion of germ
cells into tumorigenic cells in the testis (Looijenga et al., 2003,

2007). Recent evidence has shown that Oct4 is essential for

reprogramming somatic cells into induced pluripotent stem

cells (iPSCs) (Kim et al., 2008, 2009; Takahashi and Yamanaka,

2006).

In 1992, it was first reported that mouse unipotent PGCs,

which are fetal germ cells, can be converted into embryonic

stem cell (ESC)-like cells, so-called embryonic germ (EG) cells

(Matsui et al., 1992; Resnick et al., 1992). Subsequent research

also demonstrated that EG cells can be established from human

PGCs (Shamblott et al., 1998). Mouse EG cells share the feature

of pluripotency with ESCs, as evidenced by in vitro differentiation

and in vivo developmental potential, including germline contribu-

tion and transmission. The derivation of ESC-like cells is not

limited to fetal germ cells in both mouse and human models

(Conrad et al., 2008; Guan et al., 2006; Kanatsu-Shinohara

et al., 2004, 2008; Kossack et al., 2009; Seandel et al., 2007).

In 2004, it was demonstrated that ESC-like pluripotent cells

could be obtained from testicular cells during derivation of

GSCs (Kanatsu-Shinohara et al., 2004). However, generation of

ESC-like pluripotent cells was only possible from postnatal day

(PND) 0–2 testicular cells, but not from adult testis (Kanatsu-Shi-

nohara et al., 2004). A subsequent report showed that retinoic

acid 8 (Stra8)-GFP-positive cells from adult testis could become

multipotent GSCs (mGSCs) (Guan et al., 2006), but their cellular

source and their germline competency were not evaluated.

Three independent groups reported that mGSCs could be ob-

tained from established GSC lines derived from testes samples

taken from mice of different ages (Izadyar et al., 2008;

Kanatsu-Shinohara et al., 2008; Seandel et al., 2007). However,

these cells were not fully pluripotent, as evidenced by their

inability to form teratomas, contribute to the germline, or demon-

strate germline transmission. Two recent studies demonstrated

that cell clusters formed from either isolated human spermato-

gonial cells (Conrad et al., 2008) or testicular cells (Kossack

et al., 2009) have certain ESC properties. All these cited studies

support the notion that, in contrast to somatic cells, germ

cells have the distinct potential to be converted into ESC-like

stages without the introduction of exogenous reprogramming

factors.

In this study, we introduce a robust protocol for the generation

of pluripotent cells from adult unipotent GSCs. Unlike previous

reports that demonstrated—using a mouse model—that the
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corresponding ESC-like cells were multipotent, we demonstrate

that adult GSCs can be converted into pluripotent cells,

designated as germline-derived pluripotent stem (gPS) cells.

Pluripotency of gPS cells was confirmed by in vitro and in vivo

differentiation, germline contribution in chimeras, and germline

transmission to the next generation. The DNA methylation status

of the imprinted genes H19 and Igf2r was the same in gPS cells as

in GSCs, even after 20 passages, suggesting that conversion of

GSCs into gPS cells does not alter the imprinting status. Thus,

imprinting marks can be used to provide evidence of the origin

of gPS cells: adult GSCs. Furthermore, we described the critical

time frame in which subpopulations of GSCs were converted into

gPS cells. Our results indicate that the conversion process

requires a specific microenvironment of GSC culture that

depends on the initial number of plated GSCs. The mouse model

developed in this study can be used to enhance our under-

standing of the mechanisms underlying the reprogramming of

unipotent cells into pluripotent cells as well as germline-related

tumor formation.

RESULTS

Establishment and Characterization of Adult GSCs
GSC lines were established from the testes of PND 35 Oct4-GFP

transgenic mice. Expression of a GFP transgene under the

control of the Oct4 promoter is indicative of Oct4 expression in

GSCs, as Oct4 is a GSC-specific marker gene (Kehler et al.,

2004). For derivation of GSCs, the testes were enzymatically

dissociated and plated onto gelatin-coated plates in our GSC

culture medium. Colonies of GSCs formed within 7 days of

culture. GSCs were collected by pipetting and were replated

onto mouse embryonic fibroblasts (MEFs). For expansion of

GSCs, cells were split every 4 to 7 days on MEFs using a 1:2

to 1:3 dilution. Established GSCs have a typical grape-like
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Figure 1. Establishment of a GSC Line from the Testis of PND 35

Oct4-GFP Mice

(A) Typical GSC colonies formed in culture.

(B) GSCs express the GFP gene under control of the Oct4 promoter (details

as in A).

(C) Three months after transplantation of GSCs into the W/W recipient mice,

the testes were larger than those of controls.

(D and E) Photomicrographs of the testicular tubules of a recipient mouse.

Note that transplanted Oct4-GFP-positive GSCs (E) colonized the seminif-

erous tubules.

(F) The testes of recipient mice produced spermatozoa. Spermatogenesis in

the testes of W/W mice was restored by the transplantation of GSCs. Scale

bars, 100 mm (A and D), 2 mm (C), 25 mm (F).
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morphology and express Oct4-GFP (Figures 1A and 1B). Germ-

cell-specific genes, including Oct4, were detected by reverse

transcriptase polymerase chain reaction (RT-PCR) (see Fig-

ure S1A available online). The presence of GSC-specific proteins

in the established cell line was confirmed by immunocytochem-

istry (Figure S1B). To further determine the functionality of the

cultured GSCs, we transplanted GSCs into the seminiferous

tubules of germ-cell-depleted W/W mutant mice (Figure S1C) or

busulfan-treated mice. Three months after injection, we observed

colonization of the transplanted GSCs and restoration of sper-

matogenesis in the host mice without teratoma formation (Figures

1C–1F), confirming the functionality and unipotency of the estab-

lished GSCs. Furthermore, after 37 passages in culture, GSCs

were still capable of restoring spermatogenesis in the germ-

cell-depleted males. Although restoration of spermatogenesis

was observed in busulfan-treated males after GSC transplanta-

tion, the number of offspring generated was smaller than in

normal males. Overall, the established adult GSC cell lines have

retained the same properties of previously described GSCs

(Kanatsu-Shinoharaetal., 2003;Kubotaetal., 2004).Wewereable to

derive GSC lines from mice testis of different ages (10 days up to 7

months, the oldest in our study) with different genetic back-

grounds (129Sv and FVB) using our GSC establishment protocol.

Conversion of GSCs into ESC-like Cells
To obtain ESC-like cells, approximately 1000 GSCs were plated

per well in 24-well plates containing MEFs and maintained in

GSC culture medium without splitting. Within 3 to 4 weeks, colo-

nies with high GFP intensity and a morphology distinct from

typical GSC colonies appeared (Figures 2A and 2B); the GFP-

positive colonies were of round shape, while GSC colonies had

an irregular appearance. To expand the ESC-like cells, the colo-

nies were isolated mechanically, dissociated by trypsinization,

and plated onto MEFs in ESC medium (Figures 2C and 2D).

The oldest male used for derivation of GSCs and further ESC-

like cell conversion was 7 months old.

It is unlikely that the established GSCs contained a pluripotent

subpopulation capable of forming ESC-like cell colonies. Even

after 16 passages under GSC expansion culture conditions

(splitting every 4–7 days), we could not detect ESC-like cell colo-

nies. Furthermore, if pluripotent cells had existed within the GSC

population, ESC-like cell colonies would have formed within 2–3

days in culture, as established ESC-like cells can be maintained

in GSC culture medium (Figure S2). ESC-like cell colonies were

only observed when GSCs were cultured under conversion

culture conditions (for 3–4 weeks without splitting). A schematic

diagram of the conversion protocol is shown in Figure S3. Further

experiments that excluded the existence of a pluripotent

subpopulation are described below.

We called these ESC-like cells ‘‘germline-derived pluripotent

stem (gPS) cells.’’ The morphology of gPS cell colonies was

comparable to that of ESCs (Figure S4A). gPS cells expressed

high levels of Oct4-GFP (Figure 2D) and stained positive for alka-

line phosphatase (Figure 2E) and SSEA-1 (Figure 2F). We exam-

ined the expression of genes specific to ESCs by RT-PCR

(Figure S4B). The gene expression pattern of gPS cells derived

from GSCs was similar to that of ESCs. Hierarchical cluster anal-

ysis revealed that global gene expression of gPS cells is more

similar to that of ESCs than to other reprogrammed iPSCs
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(Figure 2G). Scatter plots of microarray analyses highlight the

differences between GSCs and gPS cells and demonstrate the

similarity between gPS cells and ESCs (Figures 2H and S10).

DNA methylation analysis showed that the Oct4 and Nanog

promoter regions were completely unmethylated in gPS cells,

as in ESCs (Figure S4C). Taken together, these results demon-

strate that the cellular and molecular characteristics of the gPS

cells are very similar to those of ESCs.

DNA Methylation Patterns in DMR Regions of H19

and Igf2r Are Not Altered in gPS Cells
To determine the DNA methylation pattern of the imprinted

genes H19 and Igf2r in three different cell types (GSCs, gPS

cells, and ESCs), we performed bisulfite sequencing analyses

(Figure 3). Our data show that differentially methylated regions

(DMRs) of H19 in ESCs displayed a somatic imprinting pattern,

while those in GSCs showed an androgenetic pattern. The

androgenetic imprinting pattern of the DMRs of H19 in gPS cells

is a particularly interesting result, as it suggests that the DNA

methylation pattern of H19 is maintained (to the level of GSCs)

even after conversion of GSCs into gPS cells. We also investi-

gated the imprinting control region (ICR) of the maternally im-

printed gene Igf2r. gPS cells were completely unmethylated,

like GSCs, whereas ESCs exhibited a somatic methylation

pattern. The imprinted pattern in gPS cells is maintained even

after 20 passages. Therefore, the DNA methylation status in

DMRs and ICRs of major imprinted genes in gPS cells provides

evidence that gPS cells did originate from adult GSCs.

A B

C D

E F

H

G Figure 2. Establishment of gPS Cells and

Cellular and Molecular Characterization of

gPS Cells

(A and B) Conversion of GSCs into ESC-like cells

(gPS cells) after 4 weeks in culture. Distinct Oct4-

GFP-expressing colonies were observed in the

induction culture.

(C and D) Established ESC-like cells from Oct4-

GFP-expressing colonies. The colonies displayed

morphology similar to that of ESC colonies and

were positive for Oct4-GFP.

(E) ESC-like cells (gPS cells) stained positive for

alkaline phosphatase.

(F) Immunofluorescence staining revealed SSEA1

expression in the ESC-like cells (gPS cells).

(G) Hierarchical analysis of different cell types:

ESCs, GSCs, neural stem cells (NSCs), MEFs, gPS

cells, 2FNSC-iPSCs (Kim et al., 2008), 1FNSC-

iPSCs (Kim et al., 2009), and ESC-like cells from

PND 0-2 testis (Kanatsu-Shinohara et al., 2004).

(H) Comparison of global gene expression

between ESCs and GSCs (left), and between

ESCs and gPS cells (right). Scale bars, 200 mm

(A), 100 mm (C and E).

Analysis of In Vitro and In Vivo
Pluripotency of gPS Cells
To determine the ability of gPS cells to

undergo in vitro differentiation into deriv-

atives of all three embryonic germ layers,

embryoid bodies (EBs) were generated

from gPS cells and plated onto gelatin-
coated 24-well plates. The EBs attached and differentiated into

a variety of cell types. We observed cells that stained positive

for Flk1, a mesodermal cell lineage marker, and Tuj1, a neuronal

marker. We used anti-a1-fetoprotein to detect endodermal

derivatives. Taken together, our data suggest that gPS cells

can differentiate in vitro into cells of the three germ layers

(Figures S5A–S5F).

To assess the differentiation capability of gPS cells in vivo, a

teratoma assay was performed injecting subcutaneously gPS

cells into athymic mice. Within 4 weeks of transplantation, tera-

tomas had formed in all recipients (3/3). Histological assessment

of the teratomas revealed the presence of derivatives of the three

embryonic germ layers: mesoderm (muscle and blood cells),

endoderm (pancreas and respiratory epithelium), and ectoderm

(sebaceous gland, skin, and brain) (Figures S5G–S5L). Tera-

tomas were not observed after transplantation of GSCs, confirm-

ing their lack of pluripotency. Of note, testicular transplantation

of ESCs and gPS cells into W/W mice led to teratoma formation

in the transplanted testis, while GSCs cells restored spermato-

genesis in the absence of teratoma formation—proof of their

unipotency (data not shown).

To further confirm the pluripotency of gPS cells, a chimera

assay was performed to investigate their capability to contribute

to all three germ layers and to germ cells using an aggregation

protocol. Aggregation was performed with 8-cell-stage C57BL6/

C3H/CD1 or CD1 embryos and a clump of gPS cells (Figure 4A).

We detected the GFP gene in all three germ layers of embryonic

day (E)14.5 embryos by genotyping (Table S1), and we observed
Cell Stem Cell 5, 87–96, July 2, 2009 ª2009 Elsevier Inc. 89
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Oct4-GFP expression in fetal gonads (Figures 4B and 4C).

Furthermore, we found skin chimerism in adult male mice

(C57BL6/C3H/CD1) (1/7) (Figure 4D) and in CD1 background

chimeric male (1/18) (Figure S5M). Germline transmission was

confirmed by genotyping of the GFP gene in F1 pups from the

C57BL6/C3H/CD1 chimeric male mouse (3/73) (Figure 4E), and

the identity of PCR bands was confirmed by sequencing, while

the CD1 chimeric male has not shown F1 germline transmission

so far. Therefore, gPS cells, which originated from an established

unipotent adult GSC line, are fully pluripotent and show germline

transmission, though at a lower level than ESCs.

Functional Analysis of In Vitro Differentiated Cells from
gPS Cells
We examined the functionality of gPS cell-derived cardiomyo-

cytes and neural cells. gPS cells were differentiated into a-acti-

Figure 3. Methylation Status of Differen-

tially Methylated Region of H19 and Im-

printing Control Region of Igf2r in ESCs,

GSCs, Passage 5 gPS Cells, and p20 gPS

Cells

DNA methylation was analyzed by bisulfite

genomic sequencing. Open and filled circles indi-

cate unmethylated and methylated CpGs, respec-

tively. DMR, differentially methylated region; P,

passage.

nin-positive cross-striated cardiomyo-

cytes (Figure 5A), which contracted

spontaneously (Movie S1) with 1.45 ±

0.13 Hz (n = 8). The cardiomyocytes dis-

played action potentials, as revealed by

intracellular recordings (n = 5, Figure 5B).

Ca2+ transients of different cardiomyo-

cytes in a beating cluster were synchro-

nized, indicating electrical coupling (Fig-

ure 5C); this was supported by positive

connexin 43 staining (Figure 5D). The

chronotropy of gPS cell-derived cardio-

myocytes was modulated by hormones

of the autonomic nervous system: The

muscarinergic agonist CCh reduced the

frequency to 22% ± 6% (n = 4), while

the adrenoceptor agonist ISO increased

the frequency to 155% ± 8% (n = 7,

Figure 5E).

gPS cells were also capable of differen-

tiating into neural and glial cells express-

ing O4 (oligodendrocytes: 33% ± 6%)

and GFAP (astrocytes: 55% ± 10%),

respectively (Figures 5F–5H). To assess

whether gPS cell-derived glial precursors

are capable of forming myelin in vivo, we

transplanted these cells into the brains

of 2- to 3-day-old myelin-deficient (md)

rats. Md rats develop severe central

nervous system hypomyelination due to

a point mutation in the X-linked proteolipid

protein (PLP) gene and serve as an animal model for the

study of Pelizaeus-Merzbacher disease (Boison and Stoffel,

1989; Koeppen et al., 1988). Due to the lack of endogenous

myelin formation and the absence of PLP expression in md

rats, donor-derived internodes can be easily detected by

PLP immunolabeling (Duncan et al., 1997). Following injection

into the cerebral hemispheres, gPS cell-derived donor cells

were found in several fiber tracts, including corpus callosum,

fimbria, and axon bundles in the septum, where they gener-

ated parallel PLP-positive profiles characteristic of myelinating

oligodendrocytes (Figures 5I and 5K). Regions with PLP-

positive cells also contained donor-derived astrocytes,

which were identified using the mouse-specific M2 antibody

(Figure 5I and 5K). Overall, these results prove that gPS

cells are capable of giving rise to functional somatic cells

in vitro.
90 Cell Stem Cell 5, 87–96, July 2, 2009 ª2009 Elsevier Inc.
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Figure 4. Analysis of Chimera Formation

(A) Blastocyst stage of an embryo created by the aggregation

of an 8-cell-stage embryo with gPS cells. Note that Oct4-GFP-

positive gPS cells contributed to the development of the inner

cell mass.

(B and C) Male (B) and female (C) fetal gonads from E14.5

embryos. Oct4-GFP-positive germ cells were detected in

both male and female gonads.

(D) Arrowhead indicates black coat color chimerism by donor

gPS cells (C57BL6 background).

(E) Genotyping of GFP gene in F1 offspring using IL2 gene as

endogenous control. M, male; F, female; PC, positive control;

NC, negative control; MW, molecular weight marker.
The Origin of gPS Cells Is Unipotent GSCs
To exclude the possibility that any pre-existing pluripotent cells

or GSCs were likely to develop into gPS cells within the estab-

lished GSCs, we clonally established GSC lines from single

GSCs and further converted the clonal GSCs into gPS cells

(Figure S6). Single GSCs were plated and expanded on 96-well

plates containing MEFs. After 7 days of single-cell culture,

GSC clusters had formed in 15 of 192 wells. The GSC colonies

were expanded to obtain approximately 0.5 3 106 cells

(Figure 6A). Using two clonal GSC lines (Plate#1Clone#1:P1C1

and P2C3), we analyzed the expression of GSC-specific genes

by RT-PCR and FACS to confirm their GSC property (Figures

S7A and S7B). The established GSCs were mostly c-kit negative,

which is consistent with the previous report (Kanatsu-Shinohara

et al., 2003). Oct4-GFP expression in the GSCs varies from 50%

to 90% depending on the density of GSCs, the size of colonies,

and the length of culture during expansion culture (data not

shown). However, we found that 95% of Oct4-GFP-positive cells

are c-kit negative, suggesting that Oct4-GFP-positive cells are

mostly undifferentiated cells in the established GSCs. We further

performed a GSC cluster-forming assay (Yeh et al., 2007), which

is an alternative method to assess the functionality of the cloned

GSCs (Figure 6B). We did not observe any teratoma formation

after transplantation of the GSCs into athymic mice. When

P1C1 and P2C3 GSCs were applied to the gPS cell conversion

culture, we obtained gPS cells (Figures 6C and 6D). RT-PCR

analysis confirmed pluripotent gene expression in the gPS cells

(Figure S7D). Microarray analyses were performed on the gPS

cells converted from the GSCs (Figure S7E). The chimera assay

showed that gPS cells contributed to germ cells in E14.5 fetal

gonads (2/19) (Figures 6E and 6F). Differentiation ability of the

gPS cells was also proven by in vitro differentiation assay

(Figures S7F–S7I and Movie S2) and teratoma assay (Figures

S7J and S7K). Overall, these results suggest that the pluripotent

cells did indeed originate from unipotent GSCs.

Since our GSC lines were established after culturing the whole

testis, we needed to exclude the possibility that they originated

from circulating somatic stem cells in the adult testis, rather

than from GSCs. We sorted GSCs directly from the adult testis

on the basis of Oct4-GFP and c-kit expression (Figure S8A). A

previous study has shown that c-kit is expressed in differentiated

germ cells but not in undifferentiated GSCs (Shinohara et al.,
2000). Oct4-GFP+ and c-kit� cells (0.023% of total testicular

cells) that represent the GSC population in the testis were plated

as single cells into 96-well plates containing MEFs to establish

clonal GSC lines (Figures S8A and S8B). We found that GSC

colonies formed from Oct4-GFP+/c-kit� cells (12 out of 192

wells), whereas no GSC colonies were observed to originate

from c-kit+ cells, even if Oct4-GFP was expressed (0/192).

When Oct4-GFP+/c-kit� cells isolated from the testis or clonally

established GSCs from Oct4-GFP+/c-kit� cells were directly

cultured under ESC culture conditions, we could not observe

the formation of either mGSCs or gPS cells. However, we could

obtain gPS cells upon applying the gPS cell conversion protocol

to the Oct-GFP+/c-kit� established GSCs (Figure S8C). Microar-

ray analyses show that the global gene expression of gPS cells is

similar to ESCs (Figure S8D). The gPS cells can be differentiated

into three germ layers in vitro and in vivo (Figures S8E–S8J and

Movie S3). These data exclude the possibility that gPS cells orig-

inate from circulating adult stem cells and provide additional

proof that the origin of gPS cells is the unipotent GSCs.

Microniche for the Generation of gPS Cells Based on the
Initial Number of Plated GSCs and Length of Culture
In the initial attempt to generate gPS cells, we found distinct gPS

cell colonies after about 3 weeks of culture (Figure 2B). It was first

unclear whether the gPS colonies had developed from GSC-only

colonies or whether they had originated from a subpopulation of

cells residing within a GSC colony. To address this question, we

began to closely examine the growth of each culture. After about

2 weeks of culture, a subpopulation of cells with high Oct4-GFP

expression was detected inside a GSC colony (Figure 7A), which

had just started to form a gPS cell colony (Figure 7A). The cells

grew so rapidly that a gPS cell colony had formed within

5 days. Positive immunostaining with Nanog confirmed that the

colony actually consisted of gPS cells (Figure 7A). We also found

that converted cells kept appearing continuously even after

2 weeks of culture (Figure 7B).

We hypothesized that the initial number of plated GSCs was

critical for gPS cell conversion. To test this, GSCs were plated

at a range of 1,000 to 20,000 cells per well in 24-well plates

and cultured for 4 weeks to observe gPS cell conversion. We

could not detect gPS cell colonies in the wells plated with

more than 10,000 cells, while we found colonies in the wells
Cell Stem Cell 5, 87–96, July 2, 2009 ª2009 Elsevier Inc. 91
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plated with fewer than 8,000 cells (Figure 7C). We estimated that

about 0.01% of the plated GSCs (4,000 per well) had been con-

verted into gPS cells within 4 weeks of culture. For GSC expan-

sion, the density of GSCs is approximately 5- to 20-fold higher

than that for the gPS cell conversion culture. Thus, in the ordinary

A B

C D

E

F
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Figure 5. Differentiation and Function of gPS Cell-Derived Cardio-

myocytes and Neural Cells

(A and D) a-actinin-positive (green) cross-striated cardiomyocytes. (B) Action

potentials recorded with a sharp electrode from a beating area (d5 + 7 EB);

right panel: enlarged single action potential. (C) Spontaneous and synchro-

nous Ca2+ transients (left panel) recorded from three different (cells are marked

in the right panel, �200–300 mm apart) Fura-2-loaded cardiomyocytes. (D)

Connexin 43 staining in adjacent cardiomyocytes (red). (E) Extracellular field

potentials recorded with multielectrode arrays from beating areas of differen-

tiated (d4 + 14) EBs. Negative (top traces, charbachol [CCh]) and positive

(lower traces, isoprenaline [ISO]) chronotropic modulation is observed.

Hormonal modulation statistics of normalized beating frequencies (right panel;

p < 0.05; CCh: n = 4, ISO: n = 7, error bars: SEM). (F–H) Following in vitro

growth factor withdrawal, gPS cell-derived-glial precursors (GP) produced

33% ± 6% O4-positive oligodendrocytes and 55% ± 10% GFAP-positive

astrocytes. (I–K) Upon transplantation of gPS cell-derived-GP cells into the

brain of myelin-deficient (md) rats, myelination of host axons in the corpus cal-

losum was observed. Newly formed internodes are identified using an anti-

body specific to PLP, which is absent in the PLP-deficient md rats. Astrocytes

are labeled with the mouse-specific M2 antibody. (F–H) Conventional fluores-

cence photomicrograph. (I–K) Confocal image. Scale bars: 50 mm (A), 230 mm

(C), 8 mm (D), 50 mm (F–K).
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GSC expansion culture, the seeding density might be too high

and the culture time too short for the development of a micro-

niche that would support gPS cell conversion. Further experi-

ments are required to elucidate the molecular mechanisms

underlying the effect of this microniche environment on gPS

cell conversion.

DISCUSSION

Our study demonstrated that unipotent GSCs established from

adult testis can be converted into pluripotent cells. Recently,

several research groups claimed to have obtained multi- or

pluripotent stem cells from adult or newborn mice (Guan et al.,

2006; Izadyar et al., 2008; Kanatsu-Shinohara et al., 2004,

2008; Seandel et al., 2007). Yet these studies were all limited in

scope, inasmuch as samples were either obtained from neonatal

mice or lacked the full pluripotency potential (i.e., germ cell

contribution and chimera germline transmission) and that

a detailed description of the potency and origin of the initial

GSCs was not provided. A comparison of previous studies is

shown in Table S2.

Using clonally established GSCs, we proved that gPS cells

originated from unipotent adult GSCs. We observed that plurip-

otent cells, such as gPS cells and ESCs, formed teratomas in

the transplanted testis in the absence of spermatogenesis,

A 
B

FE

DC

Figure 6. Characterization of GSCs from Single GSCs and gPS Cells

from the Clonal GSCs

(A) Phase contrast photomicrograph of P1C1 GSCs.

(B) Clonally established formation, which is a functional characteristic. Error

bars indicate standard deviations.

(C and D) Phase contrast photomicrograph (C) and GFP fluorescence (D) of

P1C1 gPS cells.

(E) Blastocyst stage of an embryo created by the aggregation of an 8-cell-

stage embryo with P1C1 gPS cells.

(F) Oct4-GFP-positive germ cells were detected in male fetal gonads from

E14.5 embryos.
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A
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Figure 7. Critical Time Frame and Cell-Number-Dependent Microniche for the Conversion of GSCs into gPS Cells

(A) A subpopulation of GSCs was converted into gPS cells at about 14 days of culture. Time course observation of the growth of gPS cells. Nanog expression was

confirmed by immunofluorescence staining.

(B) The number of gPS cell colonies was counted from day 0 to day 21 of culture. Error bars indicate standard deviations.

(C) The number of converted gPS cell colonies depends on the initial number of GSCs plated per well in 24-well plates. Error bars indicate standard deviations.
while unipotent GSCs restored spermatogenesis but did not

form teratomas or chimeras. This observation is consistent

with those of previous reports (Kanatsu-Shinohara et al.,

2004, 2008; Kubota et al., 2004; Seandel et al., 2007). In

contrast to previous studies and our current data, Guan et al.

reported that GSCs isolated from testis using a Stra8-GFP

marker display both unipotency and pluripotency. The authors

argued that these cells show double characteristics (Guan

et al., 2006), as Stra8-GFP-positive cells both restored sper-

matogenesis without forming teratomas when transplanted

into testis and contributed to the germline in chimeras after

injection into blastocysts. Stra8-GFP-positive cells (unipotent/

pluripotent) could be converted (dedifferentiate/differentiated)

into mGSC under ESC culture conditions. Although Guan

et al. showed that the initial Stra8-GFP-positive GSCs were

pluripotent, but also unipotent, the generated mGSCs were

not tested for chimera contribution and germline compe-

tency—the hallmark of true pluripotency. The inconsistencies

between the study of Guan et al. and those cited above can

perhaps be attributed to different cell sources. Only a clonal

experiment can shed light on the origin of Guan et al. cells.

Despite the fact that a recent study has suggested that Stra8

plays a role in initiation of meiotic differentiation (Anderson

et al., 2008), we analyzed whether Stra8-positive germ cells

could have better competency for ESC-like cell conversion,

as Guan et al. claimed. We found that increasing Stra8 expres-
sion in GSCs by treatment of retinoic acid did not improve the

gPS conversion (data not shown).

gPS cells exhibited characteristics of ESCs with respect to

gene expression, in vitro and in vivo differentiation potential,

and germline chimera contribution—all characteristics of true

pluripotency. gPS cells did not result in born pups after tetraploid

complementation (0/82), which is likely due to the imprinting

status of gPS cells, whose DMRs of H19 and ICRs of Igf2r are

maintained as androgenetic patterns. This result is also sup-

ported by a previous report showing that DNA methylation of

imprinted genes is critical for fetal development (Feil et al., 1994).

It is important to note that paternal imprinting patterns of H19 and

Igf2r in gPS cells are not altered, even after 20 passages. Unlike

pluripotent stem cells from newborn testis (Kanatsu-Shinohara

et al., 2004), gPS cells from adult GSCs still maintain an androge-

netic pattern in DMRs of H19, while the unmethylated status

of ICRs of Igf2r remained unchanged for our gPS cells and also

for pluripotent stem cells established from newborn mice

(Kanatsu-Shinohara et al., 2004) (Figure S9). This divergence is

possibly related to the fact that gPS cells are originated from adult

GSCs, in which de novo paternal DNA methylation of imprinted

genes has been completed, whereas pluripotent cells from

newborn testis possibly originated from early GSCs, which had

not yet acquired a full paternal imprinting status. Interestingly,

mGSCs from the study by Guan et al. showed somatic patterns

in both H19 and Igf2r, similar to ESCs but clearly not to GSCs
Cell Stem Cell 5, 87–96, July 2, 2009 ª2009 Elsevier Inc. 93
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(Figure S9). These results led us to propose two possibilities: (1) in

the derivation protocol of Guan et al., the paternal imprinting

patterns could have changed to somatic patterns even though

mGSCs may have truly originated from adult GSCs; or (2) the cells

possibly originated from circulating somatic stem cells in the

adult testis. In human, it has been reported that adult spermato-

gonial cells acquire a paternal imprinting pattern in H19 (Kerjean

et al., 2000). Interestingly, isolated spermatogonial cells and

human pluripotent GSCs in the studies by Conrad et al. and Kos-

sack et al. did not show clear paternal imprinting patterns in H19

and Igf2r (Conrad et al., 2008; Kossack et al., 2009), which is also

inconsistent with our notion that DNA imprinting methylation

patterns in GSCs are not altered during the gPS cell conversion.

The androgenic imprinted pattern of our gPS cells also explains

the observed low rate of germline transmission (3/73, 4% for the

C57BL6/C3H/CD1 chimeric male mouse and 0% for the CD1

chimeric male mouse), since Surani et al. have reported that

androgenetic ESCs had a germline transmission rate between

0% and 4% (Narasimha et al., 1997).

Two reports cited above (Conrad et al., 2008; Kossack et al.,

2009) claimed the generation of ESC-like cells from human plurip-

otent GSCs of adult human testis, but these ESC-like cells had

not fullyacquiredpluripotency,asdeterminedbypluripotentgene

expression and/or teratoma formation. This may also explain the

high methylation level of the Oct4 and Nanog promoters in these

ESC-like cells. These two key pluripotent promoter genes were

fully demethylated in our gPS cells (Figure S4C). Oct4 promoter

methylation is a very relevant criterion of complete pluripotency.

The first iPSCs described by Yamanaka et al. in 2006 showed

a partially methylated Oct4 promoter, and although they were

capable of forming teratomas, they could not contribute to the

germline (Takahashi and Yamanaka, 2006). In the following

reports (Okita et al., 2007), fully reprogrammed iPSCs were

generated with completely unmethylated Oct4 promoters. These

cells were capable of forming teratomas and showed germline

transmission. Since teratoma formation and microarray analysis

can be used to assess the pluripotency of human cells, we also

compared the microarray data published by Conrad et al. with

our scatter plot data (Figure S10). Whereas our gPS cells were

highly similar to mouse ESCs, the cells derived from human testis

were not similar at all to human ESCs. Thus, we conclude that the

cells published by Conrad et al. (2008) are not pluripotent.

However, it is possible that these cells are multipotent, which still

would be quite adequate for therapeutic purposes.

Our findings suggest that the rate for conversion of GSCs into

gPS cells is about 0.01% of the initially plated GSCs. This

phenomenon consistently occurs within 2 to 4 weeks of GSC

culture under our culture conditions. Modification of the compo-

sition of the medium used in our study from that used in previous

studies describing the generation of mGSCs from adult testis

may account for the reported differences in pluripotency.

However, we do not have clear evidence that this modification

affects the conversion status (multipotency/pluripotency) of

ESC-like cells. Another possible explanation is that our culture

system created a microenvironment, distinct from those of

previous studies, thus supporting a different outcome. Our data

suggest that plating fewer than 8000 GSCs per well in 24-well

plates supports the generation of gPS cells; this number of

GSCs is approximately 5- to 20-fold lower than that in regular
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expansion culture. Overall, the observed differences between

our study and previous others may be due to a combination of

factors, including medium composition, criteria used for identifi-

cation of ESC-like cells, and a different microenvironment

created within our culture system.

Conversion of unipotent PGCs into pluripotent EG cells was

first demonstrated in mouse and human models (Matsui et al.,

1992; Resnick et al., 1992; Shamblott et al., 1998). This is consis-

tent with our finding that unipotent GSCs can be converted into

pluripotent cells under specific in vitro culture conditions.

Notably, abnormal conversion of germ cells into pluripotent cells

can be found in vivo. It has been suggested that germ-cell-

related tumorigenesis and pluripotency of germ cell tumors

(GCTs) are associated with the expression of Oct4 (Looijenga

et al., 2003). Although the pathogenic mechanism underlying

the formation of GCTs remains unknown, it is assumed that

accumulation of genetic and molecular changes mediates the

transformation of Oct4-expressing germ cells to GCTs (Looi-

jenga et al., 2007).

Here we report that GSCs established from adult testis can be

fully reprogrammed into pluripotent stem cells under relatively

simple culture conditions. Just as somatic cells can only be con-

verted into pluripotent cells upon introduction of a cocktail of

exogenous transcription factors, so can the generation of gPS

cells result from a microenvironment of GSC colonies created

within 2 weeks of culture depending on the initial number of

plated GSCs. Our study provides a robust and reproducible

in vitro model to study the mechanisms underlying the conver-

sion of unipotent germ cells into pluripotent stem cells. Further-

more, our mouse model could help to uncover mechanisms

involved in germ-cell-related testicular teratoma formation and

thus further our understanding of human testicular cancer.

EXPERIMENTAL PROCEDURES

Establishment of GSCs from Adult Testis

GSCs were established from Oct4-GFP transgenic mice as previously

described (Kanatsu-Shinohara et al., 2003) with modifications. Testicular cells

in GSC culture medium were plated onto gelatin-coated culture dishes (2 3

105 cells/3.8 cm2). GSC colonies were observed under the microscope within

7 days in culture. GSC colonies were collected by gentle pipetting. Collected

GSCs were reconstituted with 500 ml of GSC medium and replated on one well

of a 24-well plate containing mitomycin C-inactivated or irradiated MEFs for

expansion. Detailed procedures are provided in the Supplemental Experi-

mental Procedures.

Conversion of gPS Cells from GSCs

GSCs cultured under expansion conditions were dissociated into single cells

by trypsinization. Approximately 1,000 cells were plated per well in 24-well

plates containing fresh MEF feeder cells in GSC culture medium. For analysis

of gPS cell generation efficiency, about 1,000 to 20,000 GSCs were plated per

well in 24-well plates. The medium was changed every 2 to 3 days, but the

culture was maintained without splitting. gPS cell colonies with high Oct4-

GFP expression appeared within 2 to 4 weeks of culture. To expand the gPS

cells, the colonies were enzymatically dissociated into single cells and cultured

under ESC culture conditions at 37�C in an atmosphere of 5% CO2 in air.

Figure S3 shows a schematic representation of the conversion protocol.

RT-PCR and Bisulfite Sequencing Analysis

RT-PCR and bisulfite sequencing analyses were performed as previously

described (Kim et al., 2008). The primer sequences are listed in Table S3.
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Immunocytochemistry and Flow Cytometric Analysis

Immunocytochemistry analysis was performed according to the protocol

previously described (Kim et al., 2008). Flow cytometric analysis was con-

ducted as described elsewhere (Kanatsu-Shinohara et al., 2003; Kubota

et al., 2004). Antibodies used in this study are listed in the Supplemental Exper-

imental Procedures.

Testicular Transplantation

The transplantation experiments were performed as previously described

(Ogawa et al., 1997). Two- to four-week-old germ-cell-depleted male mice

were used as the recipient mice. Approximately 3 3 105 cells were injected

with a micropipette (80 mm diameter tips) into the seminiferous tubules of

the testes of recipient mice through the efferent duct. For further details, see

the Supplemental Experimental Procedures.

In Vitro Differentiation of gPS cells

For the differentiation of gPS cells into cardiomyocytes and neural cells,

embryoid bodies (EBs) from gPS cells were applied to the protocols described

in previous studies (Brustle et al., 1999; Igelmund et al., 1999). For further

details, see the Supplemental Experimental Procedures.

Chimera Formation

Chimera assay was performed using the protocol previously described (Wood

et al., 1993) with modifications. Briefly, 8-cell-stage embryos were flushed from

mice at 2.5 days post coitum (dpc) and placed in M2 medium. Clumps of ESCs

(10 to 20 cells) from short trypsin-treated day 2 cultures were aggregated with

a single embryo. The aggregates were cultured overnight at 37�C in an atmo-

sphere of 5% CO2 in air. After 24 hr of culture, the majority of the aggregates

had formed blastocysts. Approximately 11 to 14 aggregated embryos were

transferred into the uterine horn of each 2.5 dpc pseudopregnant mouse. For

further details, see the Supplemental Experimental Procedures.

GSC Cluster Analysis

GSC cluster analysis was conducted using the previously described methods

with minor modifications (Yeh et al., 2007). For quantification of cluster forma-

tion, GSCs were plated at a range of 100 to 8000 cells per well in 24-well plates

containing MEFs and GSC culture medium. The number of clusters was

counted after 7 days of culture. The experiment was performed in three

different plates.

Microarray Analysis

The microarray study was carried out using either Affymetrix Mouse Genome

430 2.0 GeneChip arrays (Affymetrix, Santa Clara, CA) or Illumina MouseRef-8

v2.0 Expression BeadChips. For further details, see the Supplemental Exper-

imental Procedures.

ACCESSION NUMBERS

The microarray data are available from the Gene Expression Omnibus (GEO)

website (http://www.ncbi.nlm.nih.gov/geo/) under accession numbers

GSE11274 and GSE16178.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, three

tables, ten figures, and three movies and can be found with this article online

at http://www.cell.com/cell-stem-cell/supplemental/S1934-5909(09)00283-5.
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