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In this note, we present a general convergence/stability (continuous depen- 
dence on observations) framework for methods to treat parameter identification 
problems (see [BCK]) involving distributed parameter systems. This new param- 
eter estimation convergence framework combines a weak version of the system 
(in terms of sesquilinear forms [BK]) with the resolvent convergence form of the 
Trotter-Kato approximation theorem [PI. Th e very general results depend on three 
properties of the parameter dependent sesquilinear form describing the system: 
(A) continuity (with respect to the parameter); (B) uniform (in the parameter) 
coercivity; and (C) uniform (in the parameter) boundedness. The approach per- 

mits one to give convergence and stability arguments in inverse problems under 
extremely weak compactness assumptions on the admissible parameter spaces Q 
(equivalent to those in typical variational or weak approaches-see [B], [BCR]) 
without requiring knowledge of smoothness of solutions usually a part of the vari- 
ational and general finite element type arguments. Thus this approach combines 
in a single framework the best features of a semigroup approximation approach 

I 

e.e., the Trotter-Kato theorem) with the best features of a variational approach 
weak assumptions on Q) . 

While the approach does involve coercivity of certain sesquilinear forms as- 
sociated with the system dynamics, its applicability is not restricted to parabolic 
systems which generate analytic semigroups. As we shall point out below, it can 
be used to treat problems in which the underlying semigroup is not analytic (i.e., 
those involving Euler-Bernoulli equations for beams with various types of damping- 
viscous, Kelvin-Voigt, spatial hysteresis), improving substantially on some of the 
currently known results for thse problems. With appropriate modifications, we 
believe this theoretical framework can be generalized to allow an elegant treat- 
ment of problems involving functional partial differential equations, i.g., beams 
with Boltzman damping (i.e., time hysteresis). 

The weakening of the compactness criteria on Q is of great computational 
importance since the constraints associated with these criteria should be imple- 
mented in computational procedures to guarantee stability and convergence in 
inverse problems (see [BI] for further discussion and examples). 

We consider first order systems dependent on parameters qcQ described by an 
abstract equation 

44 = N&44 + J’(t, n) 
40) = uo(4) (1) 

in a Hilbert space H. The admissible parameter space Q is a metric space with 
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metric d and for qcQ, we assume that A(q) is the infinitesimal generator of UC, 
semigroup T(t;q) on H. We assume that we are given observations ii;& for the 
mild solution values zl(t;, q) of (1); i.e., we solve (1) in the sense 

t 

“(6 q) = T(t; duo(q) + 
/ 

T(t - 8; q)J’(s, q)ds 
0 

in H. We then consider the least squares identification (ID) problem of minimizing 
over qEQ the function al 

J(q) = c Iu(t;; 4) - G12. 
i 

(3) 

Such problems are, in general infinite dimensional in both the state 21 and the 
parameter q and thus one must consider a sequence of computationally tractable 
approximating problems. These can be, for our purposes, best described in terms 
of parameter dependent sesquilinear forms a(q)(o,o) associated with (1) or (2) (i.e., 
forms which define the operators A(q) in (1)). F or d t ‘1 e al s in the parabolic case, we 
refer the reader to [BK]. Briefly, let V and H be Hilbert spaces with V continuously 
and densely imbedded in H. Denote a family of parameter dependent sesquilinear 
forms by a(q): V x V -+ $‘, qEQ. We assume that c possesses the following properties: 

(A) Continuity: For q, +Q, we have for all 4, $.zV 

b(qM, ti)- ~W#J, $41 i d(n, f)l4lv Flv. 

(B) Coercivity: There exist cl > o and some X such that for qEQ, &V we have 

(C) Boundedness: There exist c2 > o such that for qEQ, 4, GEL’ we have 

l~(~)(w)l I c2l~lvl~lv. 

Under these assumptions, u defines in the usual manner (e.g, see [K], [S]) op- 
erators A(q) such that o(q)(#, $) =< -A(q)4,$ >H for & dom(A(q)), +EV with dom(A(q)) 
dense in V. Furthermore, A(q) is the generator of an analytic semigroup ~(t;q) on 
H (indeed A(q) is sectorial with (XI- A(q) dom(A(q)) = H). Property (B) guarantees 
that the resolvent operator Rx(A(q)) E (XI- A(q))-l exists as a bounded operator on 
H and, moreover, using (B) and (A), one can argue that q + Rx(A(q)) is continuous 
on Q. It is these ideas that can be modified to give resolvent convergence in the 
approximation schemes. 

We consider Galerkin type approximations in the context of sesquilinear forms 
N be a family of finite dimensional subspaces on H 

Lzs/;t; ~z~ifii:sj; z!g Ghere #J is the orthogonal projection of H onto HN. 
We further assume that HN c V and possess certain V-approximation properties 
to be specified below. If we now consider the restriction of a(q)(*,o) to HN x HN, 
we obtain operators AN(q): HN + HN which, because of (B), satisfy a uniform 
dissipative inequality and can be shown to generate semigroups TN(t; q) in HN. 
These are then used to define approximating systems for (2): 
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One thus obtains 
ing over Q. 

t 

uN(t;q) = TN(t;q)pNuo(q) + I TN@-- SX)PNF(S&S* (4 
J 
0 

a sequence of approximating ID problems consisting of minimiz- 

JN(q) = c IuN(t;; q) - iii12. 
i 

(5) 

In problems where Q is infinite dimensional (the usual case in many inverse prob- 
lems of interest), one must also make approximations Q~ for Q (see [BD] for 
details). For sake of brevity, we shall not do that here. 

To obtain convergence and continuous dependence results for the solutions qN 
of minimizing JN 
space (see [B]) t 

in (5), it suffices under the assumption that (Q,d) is a compact 
o argue: for arbitrary {qN} c Q with qN + q we have uN(t;qN) --) 

u(t;q) for each t. Under reasonable assumptions on F and uo, this can be argued 
if one first shows that TN(t;qN)pN -+ T(t; q)z for arbitrary qN -+ q and zcH. To 
do this one can use a version of the Trotter-Kato theorem [P] which yields that 
the convergence to “TN (t; qN)pN z --) T(t; q)z uniformly in t on compact intervals” is 
equivalent to (i) ITN(t; qN)I I MeWt for M, w independent of N, and (ii) there exists 
A with Be(X) > w such that Rx (AN(qN))pN z + Rx(A(q))z for zrH. Finally, one can use 
(A), (B), (C) and the V-approximation condition on HN : 

(Cl) for each XV, there exist ONeHN such that ]z - fNIV + o as N + CO, 

to argue the desired resolvent convergence. We note that one actually obtains all of 
the convergence statements mentioned above in the V norm which has important 
consequences for the ID problem when observations are made in a sense that may 
not be continuous in the H norm (e.g., pointwise in the spatial coordinates as well 
as time coordinates). 

Among the examples that can be treated immediately with the above theory 
are the usual parabolic systems (see [BK] or [L]) where V = H,‘(R) and H = Lz(n). 
This theory also allows an elegant and succinct treatment of domain identification 
problems arising in thermal tomography and moment estimation problems related 
to the Fokker-Planck equation for stochastic transition models (details of these two 
applications will appear elsewhere). In these and many other cases of interest, the 
continuity assumption (A) on 0 is readily verified using a rather weak metric on 
Q (i.e., the C or L, metric). 

The above theory can be modified slightly to treat second order systems of 
the form (e.g., see [S]) 

in a Hilbert space 
61,62 on V x V + 

c(t) + B(qMt) + A(q)u(t) = f(t) (0) 

H where the operators A and B are defined via sesquilinear forms 
@. That is, 4d(A 4) =< A(d4, II, >~,dd(A $1 =< %)4d 'H- 

To rewrite (6) in first order form, we let U = V x V and define a sesquilinear form 
a(q):ux u-@ by 

(7) 
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In the usual manner, this gives rise to an operator 

defined densely in H = V x H. Under assumptions (A), (B), (C) on al(q) and 
assumptions (A), (C) on az(q) along with 

(B’) H semicoercivity: There exists b 2 o such that for qcQ and $EV we have 

one can show that A(q) generates a Co semigroup T(t; q) on H. If b > o in (B’), this 
semigroup is uniformly exponentially stable and if in (B’) we replace l$lH by I+/” 
and have b > 0, the semigroup is analytic. For Euler-Bernoulli beams, the general 
case handles viscous and spatial hysteresis damping (with uniform exp. stability if 

the damping coefficient is strictly positive) while Kelvin-Voigt damping is included 
in the analytic semigroup case. 

Identification problems for these second order systems may be formulated in 
a manner analogous to the first order case outlined above; a convergence/ stability 
theory under weak compactness assumptions (typically Q can be taken as a subset 
of C(s1) with the supremum metric) can be given using the resolvent form of the 
Trotter-Kato theorem. This yields results that are a significant improvement over 
those currently in the research literature. Details will be given in a forthcoming 
manuscript. 
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