
Discrete Applied Mathematics 158 (2010) 467–478

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Parallel cleaning of a network with brushesI

Serge Gaspers a,1, Margaret-Ellen Messinger b, Richard J. Nowakowski b, Paweł Prałat c,∗
a LIRMM – University of Montpellier 2, CNRS, 34392 Montpellier, France
b Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, B3H 3J5, Canada
c Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

a r t i c l e i n f o

Article history:
Received 17 July 2008
Received in revised form 17 August 2009
Accepted 4 November 2009
Available online 25 November 2009

Keywords:
Brush number
Edge searching
Chip firing game

a b s t r a c t

We consider the process of cleaning a network where at each time step, all vertices that
have at least as many brushes as incident, contaminated edges, send brushes down these
edges and remove them from the network. An added condition is that, because of the
contamination model used, the final configuration must be the initial configuration of
another cleaning of the network. We find the minimum number of brushes required for
trees, cycles, complete bipartite networks; and for all networks when all edges must be
cleaned on each step. Finally, we give bounds on the number of brushes required for
complete networks.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Imagine a network of pipes with a biological contaminant that is: (1) relatively mobile so that contamination can
spread from one area to another; and (2) that regenerates. For example, water pipes that have algae or zebra mussel
contamination [6,7]. To prevent the network from clogging, the pipes must be cleaned on a regular basis and steps must
be taken to prevent recently cleaned pipes from being recontaminated. Because of the regeneration of the contaminant,
the final configuration is the basis for the start of the next round of network cleaning. There is much work on models of
contamination of networks where condition (1) is paramount, see [1,9] for examples. Condition (2), regeneration, is new in
this context. See [14,15] for a situation where the contaminant regenerates but is immobile.
The (sequential) brush cleaning model was introduced in [8,11]. Initially, every edge and every vertex of a network is

dirty and a fixed number of brushes start on a set of vertices. A vertex may be ‘cleaned’ if it contains as many brushes as
dirty incident edges. At each step, one vertex v is cleaned and each incident, dirty edge is traversed by a brush from v.
Once a brush has traversed a dirty edge, that edge has been cleaned and for this round of cleaning, may be regarded as
being deleted from the network. Thus, a network has been cleaned once every edge has been cleaned. The brush number of
network G, is the minimum number of brushes needed to clean G and is denoted b(G). The model requires that the cleaning
process be continual: once the network has been cleaned, the network is regarded as contaminated again and the brushes
re-clean the network. If the vertices are cleaned sequentially, it was shown in [11] that the process is always continual, or
more specifically ‘reversible’. That is, let ω0 be an initial configuration of brushes that will clean a network G, which leaves
a final configuration ωn of brushes. Using the initial configuration τ0 = ωn of brushes, G can be cleaned leaving the final
configuration τn = ω0. However, this is not to say that sequential cleaning is easy. On the contrary in general, it is difficult

I Partially supported by grants from the ACEnet, NFR, NSERC, MITACS, and SHARCNET.
∗ Corresponding author. Tel.: +1 304 293 2011; fax: +1 304 293 3982.
E-mail addresses: sgaspers@dim.uchile.cl (S. Gaspers), messnger@mathstat.dal.ca (M.-E. Messinger), rjn@mathstat.dal.ca (R.J. Nowakowski),

pralat@math.wvu.edu (P. Prałat).
1 Current address: Centro de Modelamiento Matemático, Universidad de Chile, 8370459 Santiago de Chile, Chile.

0166-218X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2009.11.003

http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:sgaspers@dim.uchile.cl
mailto:messnger@mathstat.dal.ca
mailto:rjn@mathstat.dal.ca
mailto:pralat@math.wvu.edu
http://dx.doi.org/10.1016/j.dam.2009.11.003

468 S. Gaspers et al. / Discrete Applied Mathematics 158 (2010) 467–478

Fig. 1. The parallel cleaning process for a network Gwith one brush initially at each of v1, v6 .

Fig. 2. The parallel cleaning process for a network G′ with one brush initially at each of v1, v7 .

to find b(G). In [5], it was shown that determining the value of b(G) is NP-complete and the problem remains NP-complete
for bipartite graphs of maximum degree 6, planar graphs of maximum degree 4, and 5-regular graphs.
The sequential brush number has also been studied on random regular networks [2,13] and on random networks [17],

showing that the brush number is almost surely close to dn/4 for networks of (large average) degree d. It is also important to
investigate the worst case scenario, the Broom number, B(G), which is the maximum number of brushes that can be used to
clean the graphwhere every brush has to clean at least one edge. (Note that the restriction is necessary; otherwise ‘infinitely’
many brushes can be used.) The Broom number was recently studied in [12,16].
In this paper, we consider a variant of the cleaning model, introduced in [8] where at each step, every vertex which may

be cleaned, is cleaned simultaneously. In this variant, the parallel cleaningmodel, theminimumnumber of brushes needed
to clean a network G, with parallel firing of vertices, is called the parallel brush number and is denoted pb(G). See Fig. 1 for
an example. It is also clear that the parallel cleaning process for the network in Fig. 1 is always reversible. This is not the case
for the network G′ in Fig. 2, with one brush initially at each of v1, v7. It can only be cleaned once. The final configuration of
brushes (one at each of v4, v5) is not a viable initial configuration of brushes if the edges of the network were to become
dirty again. This provides motivation for the results of this paper. We wish to determine the minimum number of brushes
needed to ensure a network can be parallel cleaned continually. Note that, although the practical situation being modelled
only requires every edge to be cleaned for the network to be deemed clean, the assumption taken in [11] and taken here, is
that a network has been cleaned once every vertex (and hence every edge) has been cleaned. Although this viewpoint may
seem unnatural, it simplified much of the analysis in [11]. Therefore, in Fig. 1, at time t = 3, vertex v4 is cleaned (although
it has no dirty incident edges).
Section 2 formally defines the parallel cleaning process and the notion of continually parallel cleaning a network. In

Section 3, we determine the exact number of brushes required to continually one-step clean a network (in each cleaning,
all edges of the network are cleaned in the first step). Section 4 focuses on the minimum number of brushes to continually
parallel clean various networks, finding exact results for cycles, trees and complete bipartite networks. Finally, Section 4.4
bounds the number of brushes needed to continually parallel clean a complete network Kn between 5

16n
2
+ O(n) and

4
9n
2
+ O(n), a table of exact values is also given.

2. Definitions

Following the terminology used for the (sequential) cleaningmodel in [11], at each time step t ,ωt(v) denotes the number
of brushes at vertex v and Dt denotes the set of dirty vertices. An edge uv ∈ E is dirty if and only if both u and v are dirty:
{u, v} ⊆ Dt . Finally, let Dt(v) denote the number of dirty edges incident to v at step t:

Dt(v) =
{
|N(v) ∩ Dt | if v ∈ Dt
0 otherwise.

Definition 2.1. The parallel cleaning process C = {(ωt ,Dt)}Kt=0 of an undirected network G = (V , E) with an initial
configuration of brushes ω0 is as follows:

(0) Initially, all vertices are dirty: D0 = V ; set t := 0.

S. Gaspers et al. / Discrete Applied Mathematics 158 (2010) 467–478 469

(1) Let ρt+1 ⊆ Dt be the set of vertices such that ωt(v) ≥ Dt(v) for v ∈ ρt+1. If ρt+1 = ∅, then stop the process
(K = t), return the parallel cleaning sequence ρ = (ρ1, ρ2, . . . , ρK), the final set of dirty vertices DK , and the final
configuration of brushes ωK .

(2) Clean each vertex v ∈ ρt+1 and all incident, dirty edges by traversing a brush from v to each dirty neighbour. More
precisely, Dt+1 = Dt \ ρt+1; for every v ∈ ρt+1, ωt+1(v) = ωt(v) − Dt(v)+ | N(v) ∩ ρt+1 |; for every u ∈ Dt+1,
ωt+1(u) = ωt(u)+ | N(u) ∩ ρt+1 |; and ωt+1(v) = ωt(v) for all other vertices.

(3) t := t + 1 and go back to (1).

One condition the cleaningmodel has, like the chip-firing game, but not the edge-searching problem, is that the cleaning
process is to be automatic, continuing on for the lifetime of the network. That is, a final configuration of brushes (after a
network has been cleaned) is to be a viable initial configuration of brushes (to clean the network again).

Definition 2.2. The parallel brush number, pb(G), is the minimum number of brushes needed to clean G using a parallel
cleaning process.

It was shown in [11] that b(G) = pb(G) for any network G. However, as shown in Fig. 2, a final configuration of brushes
using the parallel cleaning processmay not be a viable initial configuration. Consequently, an obvious question and the focus
of this paper, is ‘‘how many extra brushes are required to continually clean a network?’’
Let δA denote the Kronecker delta where

δA =

{
1 if A is true
0 otherwise.

Definition 2.3. Let G be a network with initial configuration ω00 = ω0. Then G can be continually cleaned using the
parallel cleaning process beginning from configuration ω0 if for each s ∈ N ∪ {0}, G can be cleaned in parallel using initial
configuration ωs0, yielding the final configuration ω

s
Ks where ω

s+1
0 = ω

s
Ks .

Given initial configuration ωs0, let D
s
t denote the set of dirty vertices at step t; let D

s
t(v) =| N(v) ∩ D

s
t | δv∈Dst denote the

number of dirty edges incident to v at step t; and let ρst+1 = {v ∈ D
s
t : ω

s
t(v) ≥ D

s
t(v)} denote the set of vertices that may

be cleaned at step t .

Definition 2.4. The continual parallel brush number, cpb(G), of a network G is the minimum number of brushes needed
to continually clean G using a parallel cleaning process.

3. Continual one-step cleaning

In this section, we address the problem of continually cleaning all the edges of a network in one step.

Definition 3.1. Let ω0 be an initial configuration that will continually clean network G. For each s ∈ N ∪ {0}, if Ds1(v) = 0
for each v ∈ V (G), then we say that G can be continually one-step cleaned.

Note that the condition ‘‘Ds1(v) = 0 for each v ∈ V (G)’’ in the previous definition requires only that each edge be cleaned
in one step, not each vertex (which would require the condition ‘‘Ds1 = ∅’’).
Given configuration ω0, suppose network G can be continually one-step cleaned. As each edge must be cleaned after the

first step in each cleaning, the set of vertices ρs1 for s ∈ N ∪ {0}must be a vertex cover.

Theorem 3.2. Given initial configuration ω0, G can be continually one-step cleaned if and only if ρs1 is a vertex cover for every
s ∈ N ∪ {0}.

For every network G = (V , E) there is an initial configuration ω0 such that the network can be continually one-step
cleaned. Simply set ω0(v) = deg(v) for every v ∈ V . Then at t = 0, every vertex is cleaned (using a total of 2|E| brushes).
Thus, the following definition is natural.

Definition 3.3. The continual one-step brush number of network G, denoted by cpb1(G), is the minimum number of
brushes needed to continually one-step clean G.

It is also not difficult to see that cpb1(G) ≥ |E| as every edge of G must be traversed by at least one brush in one step.
It will be shown in Theorem 3.4 that for a connected network G = (V , E), |E| and 2|E| are the only two possible values for
cpb1(G).
The chip firing game (see [4] for example), begins after each vertex is assigned a (finite) number of chips. At each step,

one vertex, with at least as many chips as its degree, is fired (whereupon it sends one chip to each neighbour). In the parallel
chip firing game, introduced in [3], at each step, every vertex with at least as many chips as its degree is fired. Note that
the process of one-step cleaning a network is simply a case of the parallel chip-firing game. It was observed in [3] that for
the parallel chip-firing game, any chip configuration converges in a finite time T to a limit cycle of period p. As the one-step
cleaning process is an instance of the parallel chip-firing game, the observation can be applied here also and in the proof of
Theorem 3.4, the focus is on the steps from T to T + p− 1.

470 S. Gaspers et al. / Discrete Applied Mathematics 158 (2010) 467–478

Theorem 3.4. For any connected network G = (V , E),

cpb1(G) =
{
|E| if G is bipartite
2|E| otherwise.

Proof. Suppose first that G is bipartite with partite sets: V0 and V1. For every v ∈ V , let

ω00(v) = deg(v)δv∈V0 .

Then for every v ∈ V ,

ω01(v) = deg(v)δv∈V1

andω02(v) = ω
0
1(v)with K0 = 2. It is easy to see thatω

s
t = ω

s mod 2
t for all t ∈ {0, 1, 2} and all s ∈ N∪{0}. Thus cpb1(G) ≤ |E|

and, since cpb1(G) ≥ |E| for every network G, the assertion follows.
Suppose now that G is not bipartite. Let ω00 = ω0 be an initial configuration that will continually one-step clean G.
Recall that as the continual one-step cleaning of a network G is an instance of the parallel chip-firing game, it must

eventually become cyclic with period p (since there are finitelymany possible configurations of brushes); that is,ωT0 = ω
T+p
0

for some T , p ∈ N. Thus, ωT+t0 = ω
T+(t mod p)
0 for t ≥ 0 where p is the length of the period.

During a period of length p, suppose a vertex v is cleaned kv times in the first step. Then in one period, kv deg(v) brushes
traverse from v to its neighbours and

∑
u∈N(v) ku brushes traverse from neighbours of v to v. So

kv deg(v) =
∑
u∈N(v)

ku (1)

for every v ∈ V . It will be shown that all vertices are cleaned in the first step the same number of times during the period
of length p.
For a contradiction, suppose that there is a vertex v such that kv ≥ ku for u ∈ N(v) and there is a vertex w ∈ N(v) such

that kv > kw . But, using (1), we get the contradiction

deg(v) =
∑
u∈N(v)

ku
kv
< deg(v).

Thus, all vertices must be cleaned in the first step exactly k times during each period.
It is clear that k ≤ p. Note also that if a vertex is not cleaned at the first step of the ith cleaning process, it will be cleaned

at the first step of the i + 1th cleaning process. So p/2 ≤ k ≤ p. In fact, k is greater than p/2. For a contradiction, suppose
that k = p/2: every vertex is cleaned in the first step during the ith process for i = 2, 4, 6, . . . (or for i = 1, 3, 5, . . .) only
and the vertex set can be decomposed into two sets ρ i0 and ρ

i
1. Note that no two neighbours are cleaned in the first step of

the ith process (for any i); if they are, then they both are not cleaned in the first step of the i + 1th process and the edge
joining them is not cleaned in the first step of the i + 1th process. However, this implies there is no edge between sets ρ i0
and ρ i1. This is a contradiction because G is not bipartite.
Now, let us fix an edge uv ∈ E. Since both u and v are cleaned more than p/2 times during the period of length p, there

must be some step Tu,v at which both vertices are cleaned. Then a brush bu is sent from u to v and a brush bv is sent from v
to u. We will show that we can force these two brushes to stay in vertices u or v from that step of the process on.
Let A(t) denote the event that exactly one of bu, bv is at each of u, v; A(Tu,v) trivially holds. If both u and v are cleaned at

step t and A(t) holds, then brushes exchange each other and A(t + 1) holds as well. If only one vertex, say u, is cleaned at
step t and A(t) holds, then v contains at least deg(v)+ 1 brushes at time t + 1, including brushes bu and bv; v is cleaned at
time t + 1, and since we have enough brushes we can leave bu at v and move bv to u, thus A(t + 2) holds as well. So brushes
bu, bv stay at u or v at every time t ≥ Tu,v and every edge is associated with two brushes for t ≥ max{Tu,v : uv ∈ E}. Finally,
the total number of brushes is at least 2|E|, and since cpb1(G) ≤ 2|E| for every network G, the proof is complete. �

The concept can easily be extended to continual k-step cleaning of a network G where cpbk(G) is the minimum number
of brushes needed to continually k-step clean a network G.

4. Continual parallel cleaning

In this section, the focus shifts from examining the number of brushes needed to continually clean a network in one
step, to the more general problem of determining the minimum number of brushes, cpb(G), needed to continually clean a
network G (regardless of the number of steps). Section 4.1 determines the continual brush number for cycles and Section 4.2
determines the continual brush number for trees. Although the continual brush number for complete bipartite networks
is determined in Section 4.3, only upper and lower bounds will be determined for complete networks. Theorem 4.7 and
Corollary 4.11 bound the continual brush number for a complete network Kn between 5/16n2 + O(n) and 4/9n2 + O(n).

S. Gaspers et al. / Discrete Applied Mathematics 158 (2010) 467–478 471

(a) ω00 . (b) ω70 = ω
1
0 . (c) ω51 = ω

2
0 .

Fig. 3. A network Gwith several initial configurations.

Given initial configurationω0 = ω00 , suppose that a network G can be continually cleaned. As G is finite, there are finitely
many possible configurations of brushes. Thus, the cleaningsmust eventually become cyclic with period p, that is, settle into
some periodic sequence of initial conditions. That is, ωT0 = ω

T+p
0 for some T , p ∈ N. Thus, ωT+t0 = ω

T+(t mod p)
0 for t ≥ 0

where p is the length of the period.
Let ω0 be an initial configuration for a network G. The problem of determining cpb(G) is also made difficult by the fact

that G may be cleaned k times (for some value of k), but not k + 1 times. For example, given the network G with initial
configuration ω00 shown in Fig. 3(a), thenetwork can be cleaned, leaving final configuration ω

0
7 . Using ω

0
7 = ω

1
0 as the initial

configuration for the second cleaning as in Fig. 3(b), G is cleaned leaving final configuration ω15 . Using ω
1
5 = ω

2
0 as the initial

configuration for the third cleaning as in Fig. 3(c), G cannot be cleaned a third time.

4.1. Continual parallel cleaning: Cycles

Given a cycle C3 with vertices a, b, c , it is easy to see that b(C3) = 2 and cpb(C3) = 3. Suppose two brushes are initially
placed at vertex a. Then in the first step, a is cleaned, sending one brush to each of b, c. In the second step, both b and c
are cleaned, each sending a brush to the other. In the final configuration, each of b, c has one brush. Certainly, this is not a
viable initial configuration to clean C3 again. Thus, at least 3 brushes are needed to clean C3 and it is easy to see this is an
exact value.

Theorem 4.1. For any cycle Cn with n ≥ 2,

cpb(Cn) =

{2 if n is even
3 if n = 3
4 otherwise.

Proof. Let Cn = (V , E) be a cycle on n vertices and label the vertices of Cn such that vivi+1 ∈ E for all i ∈ {0, 1, . . . , n−2} and
v0vn−1 ∈ E. It is clear that at least two brushes are needed to clean a cycle. If n = 3, then by the argument above, cpb(C3) = 3.
Suppose n is even. If two brushes are placed at v0 in the initial configuration, then after the network has been cleaned (in
parallel), the two brushes must be located at vn/2. As the network is symmetric, the final configuration is equivalent to the
initial configuration. Thus, cpb(Cn) = 2 if n is even.
Suppose n is odd and n > 3. Two brushes are placed at v0 in the initial configuration. Then in the final configuration,

there is one brush located at v(n−1)/2 and one at v(n+1)/2. As Cn cannot be cleaned a second time, cpb(Cn) > 2.
Nowwe try to clean Cn using 3 brushes. Initially place two brushes at v0. The third brushmust be located at either v(n−1)/2

or v(n+1)/2 in order to be able to clean the network again. By symmetry, suppose it is located at v(n−1)/2. Once Cn has been
cleaned, there are two brushes at v(n−1)/2 and one brush at v(n+1)/2. The network can be cleaned a second time, but note that
the brush located at v(n+1)/2 has no impact on the second cleaning process. That is, the final configuration (of the second
cleaning) yields one brush at each of v(n+1)/2, v0 and vn−1. As Cn cannot be cleaned a third time, cpb(Cn) > 3.
It is easy to see that cpb(Cn) ≤ 4 by initially placing two brushes at each of v0, v1. After the first cleaning there are two

brushes at v(n+1)/2 and one at each of v0, v1. After the second cleaning, there are two brushes at each of v0, v1, which is
where they began originally. �

4.2. Continual parallel cleaning: Trees

Theorem 4.2. Let G = (V , E) be a network that contains a bridge ab ∈ E. Suppose G is cleaned by a parallel cleaning process
using b(G) = pb(G) brushes. Then the vertices a and b are not cleaned at the same time step.

472 S. Gaspers et al. / Discrete Applied Mathematics 158 (2010) 467–478

Proof. LetP = {(ρt ,Dt)}Kt=0 be a parallel cleaning process cleaning Gwith pb(G) brushes and suppose that a and b are both
cleaned at time step k, 1 ≤ k ≤ K . We will show that b(G) < pb(G).
Let (A, B) be a partition of V such that a ∈ A, b ∈ B and ab is the only edge adjacent to a vertex of A and a vertex of B in

G. Let GA = G[A ∪ {b}] and GB = G[B]where G[S] denotes the subnetwork of G induced by the set S ⊆ V . Note that sinceP

is a parallel cleaning sequence, no brush that started from a vertex in A cleans an edge in B and no brush that started from a
vertex in B cleans an edge in A.
A parallel cleaning sequence ρ1, ρ2, . . . , ρk can be turned into a sequential cleaning sequence by cleaning all the vertices

of ρ1 in any order (instead of all at once), then the vertices of ρ2, and so on. In this way, form a sequential cleaning sequence
P∗ for G. Byrestricting to just the vertices of GA we have a sequential cleaning sequence QA for GA except since a and b are
cleaned at the same time inP, we clean a then clean b and since it has no dirty incident edges in GA no brushes move. In the
same way, we obtain a cleaning sequenceQB for GB except the brush that would go to a from b inP is left at b and therefore
at the end ofQB, b has at least one brush.
In [11], it was shown that the reverse of a sequential cleaning sequence is also a cleaning sequence, thus the reverse of

QB, denotedQ∗B is also a sequential cleaning sequence. Let the final configuration of brushes in GB afterQB be denoted by τ
∗

and the initial configuration in G[A] be τ . Now consider the configuration of brushes

σ0(v) =

{
τ(v) if v ∈ A
τ ∗(v)− 1 if v = b
τ ∗(v) otherwise,

and the sequential cleaning sequence for G formed by implementingQA thenQ∗B . First, all the vertices of A are cleaned with
the result that the edge ab is cleaned and there is an extra brush at b, that is, bnowhas τ ∗(b)brushes. ThereforeQ∗B nowcleans
B. Thus all ofG has been cleaned using one brush less than the parallel cleaning sequence required byP = {(ωt ,Dt)}Kt=0. �

As every edge of a tree is a bridge, the next corollary is an easy consequence of the previous result.

Corollary 4.3. Consider a parallel cleaning sequence cleaning a tree T using b(T) = pb(T) brushes. The set of vertices cleaned at
each time step is an independent set.

Theorem 4.4. For any tree T , cpb(T) = b(T) = pb(T).

Proof. Consider a parallel cleaning processP cleaning tree T with b(T) brushes. It is clear that we can also clean T using the
following sequential cleaning C: clean (in any order) the set of vertices cleaned at the first step ofP, then the set of vertices
cleaned at the second step, and so on. Note also that it follows from Corollary 4.3 that the final configuration of C is the same
as inP.
It was shown in [11] that the sequential cleaning process is reversible. Given an initial configurationω0, letωn be the final

configuration of brushes after a networkGhas been sequentially cleaned. Itwas shown in [11] that using initial configuration
τ0 = ωn, G can be sequentially cleaned, yielding final configuration τn = ω0.
Consequently C is reversible which implies thatP is reversible. �

4.3. Continual parallel cleaning: Complete bipartite networks

Theorem 4.5. For any complete bipartite network Km,n, cpb(Km,n) = dmn/2e.

Proof. It was shown in [10] that b(Km,n) ≥ dmn/2e; consequently cpb(Km,n) ≥ pb(Km,n) ≥ b(Km,n) ≥ dmn/2e.
Let M and N be the partite sets of Km,n, where M = {u1, u2, . . . , um} and N = {v1, v2, . . . , vn}. The proof is broken into

two cases: first, assumingm is even and second, assuming bothm, n are odd. Supposem is even and set

ω00(v) =

{
n if v = ui for i = 1, 2, . . . ,m/2
0 otherwise.

In step 1, the firstm/2 of the ui’s are cleaned and at step 2, all vj’s are cleaned asω01(vj) = m/2 for all j. The final configuration
is

ω03(v) = ω
0
2(v) =

{
n if v = ui for i = m/2+ 1,m/2+ 2, . . . ,m
0 otherwise

and as the final configuration is equivalent to the initial one, the process is continual.
Suppose now that bothm, n are odd and set

ω00(v) =

{1 if v = ui for i = 1, 2, . . . , (m+ 1)/2
m if v = vj for j = 1, 2, . . . , (n− 1)/2
0 otherwise.

S. Gaspers et al. / Discrete Applied Mathematics 158 (2010) 467–478 473

(a) ω00 . (b) ω07 = ω
1
0 .

Fig. 4. A network Gwith several initial configurations.

At step 1, the first (n− 1)/2 of the vj’s are cleaned as ω00(vj) = deg(vj).

ω01(v) =

{
(n+ 1)/2 if v = ui for i = 1, 2, . . . , (m+ 1)/2
(n− 1)/2 if v = ui for i = (m+ 1)/2+ 1, . . . ,m
0 otherwise.

At step 2, there are (n+ 1)/2 dirty vertices in N , so all vertices inM with (n+ 1)/2 brushes are cleaned.

ω02(v) =

{
(n− 1)/2 if v = ui for i = (m+ 1)/2+ 1, . . . ,m
(m+ 1)/2 if v = vj for j = (n+ 1)/2, . . . , n
0 otherwise.

At step 3, there are (m − 1)/2 dirty vertices in M , so all vertices in N with (m + 1)/2 brushes are cleaned. Every edge has
now been cleaned and

ω04(v) = ω
0
3(v) =

{n if v = ui for i = (m+ 1)/2+ 1, . . . ,m
1 if v = vj for j = (n+ 1)/2, . . . , n
0 otherwise.

It is easy to see that the network can be cleaned a second time: Let ω10 = ω
0
4 . Then (m− 1)/2 vertices ofM are cleaned

in the first step, each sending a brush to each vertex in N . Then (n+ 1)/2 vertices in N each have (m+ 1)/2 brushes while
the other vertices of N each have (m − 1)/2. In the second step, the (n + 1)/2 vertices of N with (m + 1)/2 brushes are
cleaned. Then the (m+ 1)/2 dirty vertices ofM each have (n+ 1)/2 brushes and the (n− 1)/2 dirty vertices of N each have
(m − 1)/2 brushes. In the third step, each dirty vertex of M is cleaned, leaving a brush at each, and each dirty vertex of N
now hasm brushes. Finally, ω13 = ω

1
4 and as ω

1
4 = ω

0
0 , the process must be continual.

In both cases, the network is cleaned with dmn/2e brushes. �

Let G = (V , E) be a bipartite network with initial configuration ω0 that will parallel clean G using pb(G) = b(G) brushes
(note that we are considering G to be cleaned once). Onemight be tempted to suggest that if the vertices cleaned at each step
form an independent set, then cpb(G) = pb(G) = b(G). This is actually not the case. If the vertices cleaned at each step form
an independent set, then Gmay be cleaned a second time, but it does not guarantee that G can be continually cleaned using
the initial configuration ω0. This is easily demonstrated by the example in Fig. 4. Given the initial configuration in Fig. 4 (a),
network G can be cleaned such that the vertices cleaned at each step in the process form an independent set. The vertices
cleaned at each time step mod 2 are indicated in Fig. 4(b). However, note from the explanation of Fig. 3, that the network
can be cleaned a second time, but not a third time.
It is interesting to note, however, that given the initial configuration shown in Fig. 5 (a), it is easy to see that G can be

continually cleaned using cpb(G) = b(G) brushes.
The final configuration for the first cleaning can be used as an initial configuration for the second cleaning, whose final

configuration is the same as the initial configuration of the first round.
This leads to the following question: does there always exist an initial configuration that yields cpb(G) = b(G) for a

bipartite network G? The answer to this question is a resounding ‘no’ and an example of a bipartite network G for which
cpb(G) > b(G) is given in Fig. 6. One can easily determine that b(G) ≤ 4 (in fact b(G) = 4), by placing three brushes at
x2 and one brush at y2 in the initial configuration. We now try to clean G in parallel using four brushes. There are only five

474 S. Gaspers et al. / Discrete Applied Mathematics 158 (2010) 467–478

(a) ω00 . (b) ω05 = ω
1
0 . (c) ω16 = ω

2
0 = ω

0
0 .

Fig. 5. A network Gwith an initial configuration such that cpb(G) = b(G).

Fig. 6. A bipartite network G for which cpb(G) > b(G).

initial configurations that can be used to clean network G from Fig. 6 using four brushes:

(1) ω0(v) =

{3 if v = x2
1 if v = y2
0 otherwise;

(2) ω0(v) =

{3 if v = y2
1 if v = x2
0 otherwise;

(3) ω0(v) =


2 if v = x1
1 if v = x2
1 if v = y2
0 otherwise;

(4) ω0(v) =


2 if v = y1
1 if v = y2
1 if v = x2
0 otherwise;

(5) ω0(v) =


1 if v = x4
1 if v = x6
1 if v = y4
1 if v = y6
0 otherwise.

If G is parallel cleaned using initial configuration (1), (2), (3), or (4), the final configuration is (5). However, if G is cleaned
using initial configuration (5), the final configuration, shown in Fig. 7, cannot be used to clean the network a second time.
Consequently cpb(G) > pb(G) = b(G) for the network shown in Figs. 6 and 7. Given the initial configuration with two
brushes at each of u1, v1, one can easily determine that cpb(G) = 5. See Fig. 8 for a configuration of 5 brushes that continually
clean.
This leads us to the following question.

Question 4.6. For a bipartite network G, can the difference between cpb(G) and b(G) be arbitrarily large?

Since there are a lot of non-isomorphic (connected) bipartite networks on n vertices, it is impossible to check all possible
graphswithout computer support.We implemented and ran programswritten in C/C++ to determine that cpb(G) = b(G) for
every bipartite networkG = (V , E)with | V |≤ 11; Fig. 6 illustrates the only network on 12 vertices forwhich cpb(G) 6= b(G)
(the programs can be downloaded from [18]).

S. Gaspers et al. / Discrete Applied Mathematics 158 (2010) 467–478 475

Fig. 7. A bipartite network Gwith initial configuration (5) and final configuration indicated with circles.

Fig. 8. Alternative drawing of the network in Fig. 6 with 5 brushes that continually clean.

4.4. Continual parallel cleaning: Complete networks

In this section, we show that the continual parallel brush number for complete networks Kn is bounded between
5/16n2 + O(n) and 4/9n2 + O(n) by Theorem 4.7 and Corollary 4.11. Initial configurations that will continually parallel
clean Kn using 4/9n2 + O(n) brushes are also given in Theorems 4.8–4.10.
As determined in Section 4.1, cpb(K3) = 3. Similarly, one can easily determine that cpb(K4) = 5. However, determining

cpb(Kn) for larger values of n is not trivial and this section concludes with a table of calculated values of cpb(Kn).

Theorem 4.7. For any complete network Kn, cpb(Kn) ≥ 5
16n

2
+ O(n).

Proof. Label the vertices of Kn as v0, v1, . . . , vn−1 and note that

cpb(Kn) ≥ pb(Kn) = b(Kn) = bn2/4c.

It was determined in [11] that to clean Kn with bn2/4c brushes, we must use the following assignment:

ω00(vi) =

n− 2i− 1 if i ≤
⌊
n− 1
2

⌋
0 otherwise.

Note that up to a relabelling of the vertices, none of the vertices can have fewer brushes than given in the assignment. It is
easy to see that after Kn has been parallel cleaned once, the final configuration is

ω0T (vi) =


0 if i ≤

⌊
n− 1
2

⌋
⌊n
2

⌋
otherwise.

476 S. Gaspers et al. / Discrete Applied Mathematics 158 (2010) 467–478

After the first cleaning, there are dn/2e vertices, each with bn/2c brushes. However, if we wish to continually clean Kn,
then in the final configuration (of the first cleaning), there must be at least one vertex which has at least n − 1 brushes, at
least one additional vertex with at least n− 3 brushes, and so on.
More precisely, if dn/2e is even, then to continually parallel clean Kn, at least an additional

1+ 3+ 5+ · · · + dn/2e − 1 = dn/2e2/4

brushes are required. If dn/2e is odd, then to continually parallel clean Kn, at least an additional

2+ 4+ 6+ · · · + dn/2e − 1 = (dn/2e2 − 1)/4

brushes are required.
Finally, we get

cpb(Kn) ≥



5
16
n2 if n is even and dn/2e is even

5
16
n2 −

1
4

if n is even and dn/2e is odd

5
16
n2 +

1
8
n−

3
16

if n is odd and dn/2e is even

5
16
n2 +

1
8
n−

7
16

if n is odd and dn/2e is odd. �

We now determine upper bounds for the continual parallel brush number of Kn. Note that it is broken into three results:
n = 3k in Theorem 4.9; n = 3k+ 1 in Theorem 4.10; and n = 3k+ 2 in Theorem 4.8. We only give the proof of Theorem 4.8
since all the initial configurations, and hence the proofs, are very similar. To help work through the construction we first
present an overview.
The vertices are cleaned in three phases:

(1) Initially, a set A of approximately k vertices is cleaned by starting with the only primed vertex (the only vertex ready
to be cleaned), then the next two, then the next four, and so on, although the cardinality of the last subset of vertices
cleaned need not be a power of 2.

(2) The remaining approximately 2k vertices partition into two almost equal sized sets, B and C . In phase 2, all of B’s vertices
are cleaned.

(3) Finally all of C ’s vertices are cleaned in phase 3, but being a clique, the number of brushes at each vertex of C remains
the same.

For examplewith k = 5, n = 3·5+1,we give the number of brushes and illustrate the cleaning of the vertices, underlined
vertices are cleaned at the next time step:

C B A
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

Phase 1 0 1 2 3 4 5 5 5 5 5 5 11 12 13 14 15
1 2 3 4 5 6 6 6 6 6 6 12 13 14 15 0
3 4 5 6 7 8 8 8 8 8 8 14 15 1 2 0

Phase 2 5 6 7 8 9 10 10 10 10 10 10 3 4 1 2 0
Phase 3 11 12 13 14 15 5 5 5 5 5 5 3 4 1 2 0
Final config. 11 12 13 14 15 5 5 5 5 5 5 3 4 1 2 0

Theorem 4.8. For any complete network on n = 3k+ 2 vertices,

cpb(K3k+2) ≤ 4k2 + 4k+ 2.

Proof. Let n = 3k+ 2, label the vertices of Kn as v0, v1, . . . , v3k+1, and set

ω0(vi) =

{
k+ 1 if i = k, k+ 1, . . . , 2k+ 1
i otherwise.

Consider the vertices vi, 2k + 2 ≤ i ≤ 3k + 1, that is, those that we claim are cleaned in phase 1. At time 1, only v3k+1
is cleaned. By induction, 2t−1 vertices are cleaned at time t and if vi has not been cleaned, then ωt−1(vi) < Dt−1(vi) where
ωt(vi) = i+ (2t − 1) and Dt(vi) = 3k+ 1− (2t − 1). Vertex vi is cleaned therefore at time t which satisfies

ωt−1(vi) ≥ Dt−1(vi) and ωt−2(vi) < Dt−2(vi),

S. Gaspers et al. / Discrete Applied Mathematics 158 (2010) 467–478 477

Table 1
b(G) and cpb(Kn) for n = 3, 4, . . . , 26.

n b(Kn) cpb(Kn) n b(Kn) cpb(Kn) n b(Kn) cpb(Kn)

3 2 3 11 30 50 19 90 150
4 4 5 12 36 60 20 100 170
5 6 10 13 42 66 21 110 ≤173
6 9 15 14 49 76 22 121 ≤197
7 12 18 15 56 95 23 132 ≤214
8 16 25 16 64 105 24 144 ≤243
9 20 33 17 72 122 25 156 ≤258
10 25 39 18 81 135 26 169 ≤279

Fig. 9. A network of b(Kn)/cpb(Kn) versus n (from 3 to 20).

which implies that

3k+ 3− 2t−1 > i ≥ 3k+ 3− 2t .

It follows that blocks of powers of 2 will be cleaned until the last block which will consist of the remaining vertices. Note
that after cleaning at step t , vi will have

ωt(vi) = ωt−1(vi)− Dt−1(vi)+ 2t−1 − 1 = i+ 3 · 2t−1 − 3k− 4

brushes.
For a vertex vi that is cleaned at step l = dlog2(k + 1)e (the last step of phase 1), since there is a total of k − (2l−1 − 1)

vertices cleaned at step l,

ωl(vi) = ωl−1(vi)− Dl−1(vi)+ k− (2l−1 − 1)− 1 = i+ 2l−1 − 2k− 3.

At step l+ 1 (phase 2), Dl(vi) = 2k+ 2 and ωl(vi) = ω0(vi)+ k for all vi ∈ Dl. Thus, we clean vk, vk+1, . . . , v2k+1 at step
l+ 1 and

ωl+1(vi) = ωl(vi)− Dl(vi)+ k+ 1 = k

for a vertex vi that is cleaned at step l+ 1.
At step l + 2 (phase 3), ωl+1(vi) = i + 2k + 2 for all vi ∈ Dl+1 so the remaining k vertices are cleaned, yielding a final

configuration of

ωl+2(vi) =


i+ 3 · 2ti−1 − 3k− 4 for i = 3k− 2l−1 + 3, . . . , 3k+ 1
i+ 2l−1 − 2k− 3 for i = 2k+ 2, . . . , 3k− 2l−1 + 2
k for i = k, k+ 1, . . . , 2k+ 1
i+ 2k+ 2 for i = 0, 1, . . . , k− 1

where ti = dlog2(3k− i+ 3)e is the step at which vi was cleaned.
By renaming the sets and variables, we have an initial configuration ω10 = ωl+2 equivalent to ω0 = ω

0
0 . �

Theorem 4.9. Let n = 3k and label the vertices of Kn as v0, v1, . . . , v3k−1. If

ω0(vi) =

{
k if i = k− 1, k, . . . , 2k− 1
i otherwise,

478 S. Gaspers et al. / Discrete Applied Mathematics 158 (2010) 467–478

then K3k can be continual parallel cleaned using this initial configuration of 4k2 − k+ 1 brushes.

Theorem 4.10. Let n = 3k+ 1 and label the vertices of Kn as v0, v1, . . . , v3k. If

ω0(vi) =

{
k if i = k, k+ 1, . . . , 2k
i otherwise,

then K3k+1 can be continual parallel cleaned using this initial configuration of 4k2 + k brushes.

From Theorems 4.8–4.10:

Corollary 4.11.

cpb(Kn) ≤

4/9n
2
− 1/3n+ 1 if n = 3k

4/9n2 − 5/9n+ 1/9 if n = 3k+ 1
4/9n2 − 4/9n+ 10/9 if n = 3k+ 2.

So in general, cpb(Kn) ≤ 4/9n2 + O(n).

We implemented and ran programswritten in C/C++ to determine the values of cpb(Kn) for n = 3, 4, . . . , 20— see Table 1
(the programs and results can be downloaded from [18]). It seems that there should be at least one initial configurationwith
the maximum number of n − 1 brushes on any vertex that can be used to start the process of cleaning Kn that continues
forever, but no proof of this fact is known. However, by checking all such configurationswewere able to find an upper bound
for cpb(Kn) for n = 21, 22, . . . , 26. We also conjecture that those are, in fact, the exact values.
Fig. 9 plots b(Kn)/cpb(Kn) for n = 3, 4, . . . , 20 and it remains an open question to determine the value of

limn→∞ b(Kn)/cpb(Kn) if it exists. FromTable 1, the upper bound of Theorems 4.10, 4.8 and 4.9 sometimes give theminimum
number of brushes. Thus, we conjecture that:

lim
n→∞

b(Kn)/cpb(Kn) = (1/4)/(4/9) = 9/16.

Acknowledgement

This work was made possible by the facilities of

• the Shared Hierarchical Academic Research Computing Network SHARCNET, Ontario, Canada (www.sharcnet.ca): 8082
CPUs,
• the Atlantic Computational Excellence Network ACEnet, Memorial University of Newfoundland, St. John’s, NL, Canada
(www.ace-net.ca): 412 CPUs.

References

[1] B. Alspach, Searching and Sweeping Graphs: A Brief Survey, Le Matematiche 59 (2004) 5–37.
[2] N. Alon, P. Prałat, N. Wormald, Cleaning d-regular graphs with brushes, SIAM Journal on Discrete Mathematics 23 (2008) 233–250.
[3] J. Bitar, E. Goles, Parallel chip firing games on graphs, Theoretical Computer Science 92 (1992) 291–300.
[4] A. Björner, L. Lovász, W. Shor, Chip-firing games on graphs, Eurpoean Journal of Combinatorics 12 (1991) 283–291.
[5] S. Gaspers, M.E. Messinger, R. Nowakowski, P. Prałat, Clean the graph before you draw it!, Information Processing Letters 109 (2009) 463–467.
[6] B. Hobbs, J. Kahabka, Underwater Cleaning Technique Used for Removal of Zebra Mussels at the Fitzpatrick Nuclear Power Plant, in: Proceedings of
The Fifth International Zebra Mussel and Other Aquatic Nuisance Organisms Conference, Toronto, Canada, February, 1995.

[7] S.R. Kotler, E.C. Mallen, K.M. Tamms, Robotic Removal of Zebra Mussel Accumulations in a Nuclear Power Plant Screenhouse, in: Proceedings of The
Fifth International Zebra Mussel and Other Aquatic Nuisance Organisms Conference, Toronto, Canada, February, 1995.

[8] S. McKeil, Chip Firing Cleaning Processes, M.Sc. Thesis, Dalhousie University, 2007.
[9] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, C.H. Papadimitriou, The complexity of searching a graph, Journal of the Association for Computing
Machinery 35 (1988) 18–44.

[10] M.E. Messinger, Methods of Decontaminating a Network, Ph.D. Thesis, Dalhousie University, 2008.
[11] M.E. Messinger, R.J. Nowakowski, P. Prałat, Cleaning a Network with Brushes, Theoretical Computer Science 399 (2008) 191–205.
[12] M.E. Messinger, R.J. Nowakowski, P. Prałat, Cleaning with Brooms, Graphs and Combinatorics, 14pp. (submitted for publication).
[13] M.E. Messinger, R.J. Nowakowski, P. Prałat, N. Wormald, Cleaning random d-regular graphs with brushes using a degree-greedy algorithm,

in: Proceedings of the 4th Workshop on Combinatorial and Algorithmic Aspects of Networking, CAAN2007, in: Lecture Notes in Computer Science,
Springer, 2007, pp. 13–26.

[14] M.E. Messinger, R.J. Nowakowski, The robot cleans up, in: Proceedings of the 2nd Annual International Conference on Combinatorial Optimization
and Applications, COCOA’08, in: Lecture Notes in Computer Science, Springer, 2008, pp. 309–318.

[15] M.E. Messinger, R.J. Nowakowski, The robot cleans up, Journal of Combinatorial Optimization 18 (2009) 350–361.
[16] P. Prałat, Cleaning random d-regular graphs with Brooms, Graphs and Combinatorics, 22pp. (submitted for publication).
[17] P. Prałat, Cleaning random graphs with brushes, Australasian Journal of Combinatorics 43 (2009) 237–251.
[18] P. Prałat, Programs written in C/C++, http://www.math.wvu.ca/~pralat/index.php?page=publications.

http://www.sharcnet.ca
http://www.ace-net.ca
http://www.math.wvu.ca/~pralat/index.php%3Fpage%3Dpublications

	Parallel cleaning of a network with brushes
	Introduction
	Definitions
	Continual one-step cleaning
	Continual parallel cleaning
	Continual parallel cleaning: Cycles
	Continual parallel cleaning: Trees
	Continual parallel cleaning: Complete bipartite networks
	Continual parallel cleaning: Complete networks

	Acknowledgement
	References

