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A qualitative spectral analysis for a class of second order difference equations
is given. Central to the analysis of equations in this class is the observation that
real-valued solutions exhibit a type of stable asymptotic behavior for certain real
values of the spectral parameter. This asymptotic behavior leads to the characteriza-
tion of the limit point and limit circle nature of these equations, and is used to
show that a strong nonsubordinacy criterion is satisfied on subintervals of R for
equations of limit point type. These subintervals are part of the absolutely continuous
spectrum of the self-adjoint realization of these equations. By other means, the
nature of the discrete spectrum for these self-adjoint realizations is also dis-
cussed.  1996 Academic Press, Inc.

1. GENERAL SETTING AND PRINCIPAL RESULTS

Consider the difference equation

2an yn11 1 bn yn 2 an21 yn21 5 zwn yn , (1.1)

where z 5 l 1 is is complex-valued, and where, for n 5 1, 2, ..., wn . 0,
an21 . 0, and bn is real-valued.

We shall be interested in this equation when the coefficient sequences
have limiting values. In particular, we are interested in sequences which
satisfy:

(i) hwnj, hbnj, h1/anj, and han21/anj are of bounded variation;
(H)

(ii) lim
nRy

an21/an . 0.
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A sequence, hxnj, is of bounded variation when oy
n51 uDxnu , y and

Dxn 5 xn11 2 xn . Such a sequence converges and its limit will be denoted
by x. If a positive term sequence, h1/xnj, is of bounded variation, hxnj will
either converge to a nonzero limit, or diverge to infinity. Either of these
eventualities will be denoted by x; that is, 0 , x # y. Thus, when the
coefficient sequences satisfy part (i) of (H), 0 # w , y, 0 # ubu , y, and
0 , a # y.

Requiring that h1/anj be of bounded variation with a , y is equivalent
to requiring that hanj be of bounded variation with a ? 0. When hanj is of
bounded variation, a may be zero. And though we are interested in those
cases when the coefficient sequences satisfy (H), we shall also consider
(1.1) when all the coefficients are of bounded variation and a 5 0.

We shall also be interested in the intervals Sn consisting of those numbers
l which satisfy

bn 2 2an

wn
, l ,

bn 1 2an

wn
. (1.2)

Of particular interest are those cases where the coefficient sequences satisfy

2y # lim
nRy

bn 2 2an

wn
5 c # j 5 lim

nRy

bn 1 2an

wn
# y. (1.3)

When c , j, let S 5 (c, j), and let S denote the closure of S.
If we let rn 5 an and qn 5 bn 2 an 2 an21 , (1.1) can be written in

Sturm–Liouville form:

2D(rn21Dyn21) 1 qn yn 5 zwn yn .

Let y[1]
n 5 rn21Dyn21 . Then for any a [ [0, 2f], take hun(z, a)j and

hvn(z, a)j to be the real-valued solutions of (1.1) which satisfy the initial
conditions given by

u1(z, a) 5 2sin(a), u[1]
1 (z, a) 5 cos(a),

(1.4)
v1(z, a) 5 cos(a), v[1]

1 (z, a) 5 sin(a).

These sequences form a basis for the linear space of solutions of (1.1).
Note that u satisfies the boundary condition given by

cos(a)y1(z, a) 1 sin(a)y[1]
1 (z, a) 5 0. (1.5)
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In Section 3 we examine the behavior of the quadratic form

Qn 5 Qn(l, a) 5 u2
n11(l, a) 1 u2

n(l, a), (1.6)

where hunj is defined in (1.4). In this section the following results are proven:

THEOREM 1.1. Suppose that the coefficient sequences of (1.1) satisfy (H)
and (1.3); and suppose that c , j. Let I represent a closed, bounded subinter-
val of S and let L 5 I 3 [0, 2f]. There are constants A(L) . 0, and
B(L) . 0 such that A(L)/an , Qn , B(L)/an for all (l, a) [ L.

COROLLARY 1.2. With Qn 5 y2
n11(l) 1 y2

n(l), where h yn(l)j is a nontrivial
real-valued solution of (1.1), there are constants A . 0 and B . 0 such that
A/an , Qn , B/an for all l [ I.

Many of the succeeding results follow from this stability property of the solu-
tions.

The standard Titchmarsh–Weyl theory, long used in the study of Hamilto-
nian systems of differential equations, is applicable to (1.1) because it is a
discrete analog of the differential equation 2(ry9)9 1 qy 5 zwy (see [1,
2]). Equation (1.1) can, in fact, be viewed as part of the larger theory of
Volterra–Stieltjes integral equations and generalized differential expres-
sions as seen in [5, 21].

Central to this theory is the ability to classify (1.1) as being either of
limit point, or of limit circle type. For the sequence hwnj, with wn . 0, let
l2
w denote the complex Hilbert space of sequences satisfying i yi2

w 5 oy
n51

wnu ynu2 , y. Equation (1.1) is said to be limit point if, for some value of
z, there is a solution h yn(z)j [ l2

w; otherwise, the sequence is said to be
limit circle. In [2], Atkinson shows, when an . 0, that (1.1) is limit circle
precisely when, for any complex number z, every solution of (1.1) is in
l2
w . Furthermore, (1.1) is shown to be limit point precisely when, for Im

z ? 0, there is exactly one independent solution that is in l2
w . Thus, when

(1.1) is limit point and z 5 l [ R, at most one independent solution can
be in l2

w . For a particular value of l [ R, it is possible that no solution is
in l2

w .
As a consequence of Theorem 1.1 and its corollary we are able, in Section

4, to show

THEOREM 1.3. If the coefficient sequences of (1.1) Satisfy (H) and (1.3),
and if c , j, then (1.1) is limit point if and only if oy

n50 wn/an 5 y.

COROLLARY 1.4. If (1.1) is limit point and the coefficient sequences are
all of bounded variation with a ? 0, then lim inf uDan21u/wn 5 0.

A linear operator L defined on l2
w by (Ly)n 5 w21

n h2an yn11 1 bn yn 2
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an21 yn21j is associated with (1.1). Given the definition of y[1]
n , y0 is defined

by (1.5), and the domain of L is given by D(L) 5 h y [ l2
w : Ly [ l2

wj. When
(1.1) is limit point, associated with each a [ [0, 2f] is a self-adjoint operator
La , defined by

(La y)n 5 (Ly)n , (1.7)

whose domain is given by

D(La) 5 h y [ D(L) : y satisfies (1.5)j. (1.8)

By imposing a boundary condition at infinity when (1.1) is limit circle, one
can, in a similar manner, associate with each a [ [0, 2f] a self-adjoint
operator. We are concerned here with the spectrum of the self-adjoint
operators in these two cases. However, when (1.1) is limit circle, the associ-
ated self-adjoint operator has a spectrum which is entirely discrete. For
this reason we are most interested in those cases when (1.1) is limit point.

Our principal goal is to obtain a qualitative spectral analysis of the self-
adjoint realizations of Eq. (1.1). To this end, the next two results are shown.
The first, proven in Section 3, is a direct consequence of the fact that
when S is open, Theorem 1.1 implies that Strong nonsubordinacy holds on
compact subintervals of S—the concept of nonsubordinacy is discussed in
Section 2. The second, shown in Section 4, follows as a consequence of a
result due to Hinton and Lewis [17].

THEOREM 1.5. If (1.1) is limit point and the coefficient sequences satisfy
(H) and (1.3), and if c , j, then S 5 (c, j) is contained in the absolutely
continuous spectrum of the self-adjoint operator La defined in (1.7) and (1.8).

LEMMA 1.6. If (1.3) is satisfied then the following hold:

(i) If 2y , c # y and lim inf Dan21/wn . 2y, then for all self-
adjoint realizations of (1.1), the spectrum which lies in the interval (2y, e)
is finite for all e , c 1 lim inf Dan11/wn .

(ii) If 2y # j , y and lim inf Dan21/wn . 2y, then for all self-
adjoint realizations of (1.1), the spectrum which lies in the interval (e, y)
is finite for all e . j 2 lim inf Dan21/wn .

Except for the indeterminate case when w 5 b 5 a 5 0, the next four
theorems give a general description of the spectrum for self-adjoint realiza-
tions of (1.1) when (1.3) holds and (H) is assumed. The first three theorems
concern the case when a , y.

THEOREM 1.7. If the coefficient sequences of (1.1) are of bounded varia-
tion, and if w ? 0, then the following hold:
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(i) Equation (1.1) is limit point.

(ii) If a ? 0, then the finite interval S is in the absolutely continuous
spectrum of the self-adjoint realization of (1.1). In R \S, the spectrum of the
self-adjoint realization is bounded and discrete, and the boundary of S con-
tains the only possible limit points of the spectrum.

(iii) If a 5 0, then the spectrum of the self-adjoint realization of (1.1)
is discrete and bounded with b/w as the only possible limit point of the
discrete spectrum.

The next two results consider the case a , y and w 5 0.

THEOREM 1.8. If the coefficient sequences of (1.1) are of bounded varia-
tion, if w 5 0, and if (1.1) is limit point, then the following hold:

(i) If 0 # ubu , 2a, then R is the absolutely continuous spectrum of
the self-adjoint realization of (1.1).

(ii) If ubu 5 2a ? 0, if (1.3) is satisfied, and if c , j, then the half-line,
S, is contained in the absolutely continuous spectrum of the self-adjoint
realization of (1.1). And if lim inf Dan21/wn 5 0, then S is in the absolutely
continuous spectrum, and the spectrum in R \S is discrete and bounded. The
boundary of S has the only possible limit point of the discrete spectrum.

THEOREM 1.9. If (1.3) is satisfied, if w 5 0, and if lim inf Dan21/wn .
2y, then if either 0 # 2a , ubu or ubu 5 2a ? 0 and if c 5 j, it follows that
the spectrum of any self-adjoint realization of (1.1) is discrete with either y
or 2y as the only possible limit point of the spectrum.

And last, we consider the case when a 5 y.

THEOREM 1.10. If (1.1) is limit point with coefficient sequences satisfying
(H), and if a 5 y, then R is the absolutely continuous spectrum of the self-
adjoint realization of (1.1).

To prove Theorem 1.7, we begin by noting that w ? 0; thus, (1.3) is
satisfied. When a ? 0 and the coefficient sequences are all of bounded
variation, (H) is satisfied and (1.1) is limit point by Theorem 1.3. In this
case, S is finite and open and part of the absolutely continuous spectrum
by Theorem 1.5. When w ? 0, the boundedness of variation of hanj implies
that limnRy Dan21/wn 5 0. Consequently, by Lemma 1.6, the spectrum in
R \S is bounded and discrete and has limit points only on the boundary of S.

Now, if a 5 0, S is the point b/w. In this case, (1.1) is limit point by [17,
Theorem 10]. Caution: The notation used in this paper differs from that
used in [17]. By Lemma 1.6 the spectrum in R \S is bounded and discrete,
and the only possible limit point is the point b/w. This completes the proof
of Theorem 1.7.
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Theorems 1.3 and 1.5 together with Lemma 1.6 can be used to prove
Theorems 1.8 and 1.10 in much the same way in which they were used to
prove Theorem 1.7. Note that Theorem 1.3 provides a characterization of
the limit point assumption made in these two theorems because in both
cases we assume that a ? 0, and hence in both cases (H) holds. Thus we
note, by Corollary 1.4, that it is necessary for lim inf Dan21/wn # 0 for (1.1)
to be limit point. However, if in part (ii) of Theorem 1.8, lim inf Dan21/wn

is assumed to be strictly less than zero rather than equal to zero, we note
that S is part of the absolutely continuous spectrum and that a potential
gap exists beyond the finite endpoint of S, which this analysis does not
address.

Finally, we note that no assumption of boundedness of variation is made
for the coefficient sequences in the statement of Theorem 1.9. In this case,
either c and j are both 2y or both are y. Theorem 1.9 follows from
Lemma 1.6 alone and addresses both limit point and limit circle cases.

2. THE METHOD OF SUBORDINACY AND ABSOLUTELY

CONTINUOUS SPECTRUM

For Im z . 0, let m be a complex number such that the sequence y 5
hynj, where

yn 5 un(z, a) 1 mvn(z, a), (2.1)

represents a solution of (1.1) satisfying the boundary condition given by

cos(b)yN 1 sin(b)y[1]
N 5 0 (2.2)

for N . 1 and b [ [0, 2f]. The complex numbers m 5 m(z, N, a, b), for
fixed values of z, N, and a, form a circle in the complex plane that is
parameterized by b. These circles are nested for increasing values of N,
and collapse as N R y to either a circle or a point. For this reason, (1.1)
is classified as being either limit circle or limit point.

When (1.1) is limit point and Im z . 0, we let ma(z) be the limit of the
complex numbers m 5 m(z, n, a, b) defined in (2.1) and (2.2), i.e., ma 5
limnRy m(z, n, a, b). From the Titchmarsh–Weyl theory the solution y 5
hynj of (1.1) defined by

yn 5 yn(z, a) 5 un(z, a) 1 ma(z)vn(z, a)
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is in l2
w , and its norm satisfies

i yi2
w 5

Im ma(z)
Im z

.

Moreover, it is the case that ma(z) has a unique Pick–Nevanlinna represen-
tation given by

ma(z) 5 A 1 Bz 1 Ey

2y

1
(t 2z)

2
t

(t2 1 1)
dra(t),

where A is real, B . 0, ra(t) is a nondecreasing, left continuous Borel
measure satisfying ra(0) 5 0, and ey

2y 1/(1 1 t2) dra(t) , y. An inverse
relation also exists where at points of continuity for ra(t)

ra(d2) 2 ra(d1) 5 lim
«R01

f21 Ed2

d1

Im ma(t 1 i«) dt.

The function ra(t) is said to be the spectral density for the self-adjoint
operator associated with (1.1) and the singular boundary value problem
of limit point type. As the name suggests, ra possesses, in its qualitative
characteristics, information about the spectrum of the related self-adjoint
operator. The support of ra contains the spectrum. Points of increase for
ra correspond to elements of the spectrum; discontinuities correspond to
elements of the discrete spectrum; and points of increase at which ra is
continuous correspond to elements of the continuous spectrum. A subset
of the continuous spectrum on which ra is absolutely continuous with respect
to Lebesgue measure is said to be part of the absolutely continuous
spectrum.

The theory which underlies the proof of Theorem 1.5 is developed in
[14, 15] by Gilbert and Pearson for their study of the equation

2y0 1 q(x)y 5 zy, (2.3)

for 2y # a , x , b # y. It has become known as the method of subordinacy.
Two lines of thought are pursued in [14], where the one singular endpoint

problem is considered. On one hand the limiting behavior of ma(l 1 i«)
as « R 01 is related to the existence of subordinate solutions: a nontrivial
solution u(x, l) of (2.3) being subordinate at b when, given that iui2 5
eb

a uu(x)u2 dx, iui2
N 5 eN

a uu(x)u2 dx, and z 5 l [ R, it is the case that for
every independent solution v(x, l),
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lim
NRb

iu(?, l, a)iN

iv(?, l, a)iN
5 0; (2.4)

a nontrivial solution being nonsubordinate at b when this is not the case.
On the other hand, this same limiting behavior of ma is related to the
decomposition of ra into, for example, singular and absolutely continuous
parts. Combined, these two lines of thought give a characterization of the
decomposition of ra in terms of the existence of subordinate solutions, or
more to the point, the asymptotic behavior of certain solutions as expressed
in (2.4) (see [14, Theorem 1]). And though developed for (2.3), this theory
has been extended by Behncke [3, 4] to Dirac systems of differential equa-
tions, by Khan and Pearson [18] to three term recurrence relations, and
by Clark and Hinton [9] to Sturm–Liouville systems of sufficient generality
to include difference equations like (1.1). Showing the existence of nonsub-
ordinate solutions for values of l [ R has been particularly useful in
showing that certain intervals are part of the absolutely continuous
spectrum.

In [9], a solution h yn(l, a)j of (1.1) is said to be subordinate when, with
l [ R,

lim
NRy

oN
n51 wn y2

n(l, a)

oN
n51 wnv2

n(l, a)
5 0

for every independent solution v 5 hvn(l, a)j. In addition to an extension
of the method of subordinacy to more general Sturm–Liouville systems,
this method is carried a step further in [9] and a criterion is stated for the
solution hun(l, a)j given in (1.4) which, when satisfied on an interval, implies
that ra is absolutely continuous on that interval, and that r9a is bounded
above and below by a positive constant almost everywhere on that interval.
This additional step appears as Theorem 3.1 in [9]. And when stated in
terms of (1.1), this theorem becomes

THEOREM 2.1. (Clark and Hinton). Let [l1 , l2] be an interval. Suppose
there is a number b 5 b(a) . 0, independent of l, such that for each l [
[l1 , l2],

lim sup
NRy

oN
n51 wnv2

n(l, a)

oN
n51 wnu2

n(l, a)
# b2, (2.5)

where hun(l, a)j and hvn(l, a)j are the real-valued solutions defined by (1.4).
In this case, the spectral density ra satisfies a Lipschitz condition on [l1 , l2]
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with Lipschitz constant #10b/f. Moreover, if b is also independent of a,
then r9a $ 1/10bf almost everywhere on [l1 , l2].

A strong nonsubordinacy criterion is said to be satisfied on [l1 , l2] when
(2.5) holds with b independent of both l [ [l1 , l2] and a [ [0, 2f]. In
Section 3, Theorem 1.1 is proven, and a consequence of this is

THEOREM 2.2. If the coefficient sequences satisfy (H) and (1.3), if (1.1)
is limit point, and if c , j, then the strong nonsubordinacy criterion is
satisfied on each compact subinterval of S 5 (c, j).

Establishing that strong nonsubordinacy holds on compact subsets of S
allows us to conclude, by Theorem 2.1, that the spectral density ra(l), for
the self-adjoint operator La defined in (1.7) and (1.8), is absolutely continu-
ous on S. On each [l1 , l2] , S, ra(l) has a derivative, r9a(l), which is almost
everywhere bounded above and below by positive constants. This provides
the justification for the claim in Theorem 1.5 that S is contained in the
absolutely continuous spectrum of La .

We note in passing that the boundedness conditions on r9a have been
used for differential equations with two singular endpoints (see Mantlik
and Schneider [19], and Castillo [6]) to show that under suitably strong
conditions at one endpoint, the absolutely continuous spectrum for the one
singular endpoint case is contained in the absolutely continuous spectrum
for the two singular endpoint case.

3. STRONG NONSUBORDINACY AND THE LIMIT POINT NATURE OF EQ. (1.1)

Throughout this section we shall assume, in addition to (H), that the
coefficient sequences of (1.1) are such that (1.3) is satisfied and c , j. With
Sn defined in (1.2), let I represent a compact subinterval of S 5 (c, j). Let
L 5 I 3 [0, 2f]. Let hun(l, a)j be the nontrivial real-valued solution of
(1.1) defined in (1.4) for (l, a) [ L. In addition to Qn defined in (1.6), we
define Q̃n by

Q̃n 5 Q̃n(l, a) 5 anu2
n11 1 (lwn 2 bn)un11un 1 an21u2

n . (3.1)

In the lemmas which follow, explicit representation of the dependence on
l and a will be suppressed. The next three lemmas provide a proof of
Theorem 1.1.
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LEMMA 3.1. For all (l, a) [ L, and for n sufficiently large, there are
constants C(L) . 0 and D(L) . 0 such that

C(L)an , Q̃n/Qn , D(L)an . (3.2)

Proof. First, note that

Q̃n

Qn
5 an Hanu2

n11 1 an21u2
n

anQn
1

lwn 2 bn

2an
?
2un11un

Qn
J,

and that

anu2
n11 1 an21u2

n

anQn
5 1 2 Su2

n

Qn
D Dan21

an
.

Part (ii) of (H) is equivalent to requiring that limnRy (Dan21/an) , 1.
Thus when a 5 y, the conclusion follows because (lwn 2 bn)/2an tends to
zero uniformly for (l, a) [ L. However, when 0 , a , y, hanj is of bounded
variation and limnRy (Dan21/an) 5 0. In this case the conclusion follows,
given the definition of Sn , because there is a constant k(L), for n sufficiently
large, such that

Ulwn 2 bn

2an
U, k(L) , 1

for all (l, a) [ L.

LEMMA 3.2. There is an N . 0 such that, for n $ N, the sequence
hDQ̃n/Q̃nj is absolutely summable for all (l, a) [ L.

Proof. Using (1.1) to solve for un12 in terms of un11 and un , we see that

DQ̃n 5 HlDwn 2 Dbn 1
bn11 2 lwn11

an11
DanJ un11un 1 HDan21 2

an

an11
DanJ u2

n .

Now, let pn and qn be defined by

pn 5 lDwn 2 Dbn 1
bn11 2 lwn11

an11
Dan ,

qn 5 Dan11 2
an

an11
Dan .
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By Lemma 3.1 there is an N . 0 such that, for n $ N, (3.2) holds. Thus
for l [ I , S

Upnun11un

Q̃n
U# Hulu uDwnu

1 uDbnu 1 Ubn11 2 lwn11

an11
U uDanuJ U2un11un

Qn
U Qn

2Q̃n

(3.3)

#
1

2C(L) Hulu
uDwnu

an
1

uDbn

an
1 ubn11 2 lwn11u

uDanu
an11qn

J.

Note that Dan/an11an 5 D(1/an). Similarly, we see that

Uqnu2
n

Q̃n
U# UDan21

an
2

Dan

an11
U 1

C(L)
5 UD San21

an
DU 1

C(L)
. (3.4)

Since a . 0, by (3.3) and (3.4) there are constants, Ci(L) $ 0, such that
for n $ N and all (l, a) [ L,

uDQ̃n/Qnu # C1(L)uDwnu 1 C2(L)uDbnu
1 C3(L)uD(1/an)u 1 C4(L)uD(an21/an)u. (3.5)

The absolute summability of hDQ̃n/Qnj follows from (3.5) and assump-
tion (H).

LEMMA 3.3. Q̃n converges uniformly for all (l, a) [ L to a positive
continuous function.

Proof. If Fn 5 DQ̃n/Q̃n then Q̃n11/Q̃n 5 1 1 Fn . As noted earlier, Q̃n

is a continuous function in l and a for (l, a) [ L. By Lemma 3.1 we may
choose N so large that Q̃n . 0 for all (l, a) [ L when n $ N. As a result,
Fn is continuous on L. Furthermore,

p
n

k5N

(1 1 Fk) 5
Q̃n11

Q̃N

. (3.6)

And when n . m . N,
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Upn

k5N

(1 1 Fk) 2 p
m

k5N

(1 1 Fk)U# p
m

k5N

(1 1 uFku) Fp
n

k5m

(1 1 uFku) 2 1G
# exp SOn

k5N
uFkuD2 exp SOm

k5N
uFkuD (3.7)

# ed On
k5m

uFku,

where om
k5N uFku , d , on

k5N uFku.
For each (l, a) [ L, oy

k5N uFku , y by Lemma 3.2. By (3.5), as n R y,
on

k5N uFku converges uniformly for (l, a) [ L to a continuous function.
Thus, on

k5m uFku can be made uniformly small over L, and as a result, ed is
uniformly bounded. By (3.6), Pn

k5N (1 1 Fk) is positive and continuous on
L; and by (3.7), as n R y, this sequence of functions converges uniformly
on L. The result follows from (3.6).

By Lemmas 3.2 and 3.3 we have

COROLLARY 3.4. The sequence hQ̃nj is of bounded variation.

Theorem 1.1 is a consequence of Lemma 3.3 and inequality (3.2) since
the uniform convergence of Q̃n to a positive continuous function on L
implies that Q̃n is uniformly bounded and bounded away from zero for n
sufficiently large.

We now show that the asymptotic behavior, described in Theorem 1.1
for the solution hun(l, a)j defined in (1.4), is sufficient to guarantee not
only that the limit point nature of Eq. (1.1) can be characterized, but also
that the strong nonsubordinacy criterion is satisfied on I.

To prove Theorem 1.3, begin by noting that

2 On
k51

wku2
k 5 w1u2

1 1 On21

k51
(wk11u2

k11 1 wku2
k) 1 wnu2

n

(3.8)

5 w1u2
1 1 On21

k51
wk(u2

k11 1 u2
k) 1 On21

k51
Dwku2

k11 1 wnu2
n .

As a consequence of Theorem 1.1, there are constants A(L) . 0 and
B(L) . 0 such that

2 On
k51

wku2
k $ A(L) On21

k51
wk/ak 2 B(L) On21

k51
uDwku/ak . (3.9)
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By Theorem 1.1 it is also true that

On
k51

wku2
k # B(L) On

k51
wk/ak . (3.10)

By (H) we see that oy
k51 uDwku/ak , y. If it is also true that oy

k51 wk/ak 5
y, then by (3.9), hunj Ó l2

w . As a consequence, (1.1) is limit point. On the
other hand, if (1.1) is limit point, then there is a real-valued solution, h ynj,
of (1.1) such that h ynj Ó l2

w . By Corollary 1.2, there is an inequality for
h ynj like (3.10). By this inequality, we see that oy

k51 wk/ak 5 y. Theorem
1.1 is thus proven.

To prove Theorem 2.2 we note, given hunj and hvnj as defined in (1.4),
that u1(l, a 2 f/2) 5 v1(l, a) and that u[1]

1 (l, a 2 f/2) 5 v[1]
1 (l, a). As a

result, both hunj and hvnj satisfy (3.9) and (3.10); hence

on
k51 wkv2

k

on
k51 wku2

k

# 2
B1(L) on21

k51 wk/ak 1 B1(L)wn/an

B0(L) on21
k51 wk/ak 2 B1(l) on21

k51 uDwku/ak

.

By (H) we see that w/a , y and that oy
k51 uDwku/ak , y. By Theorem 1.1,

Eq. (1.1) is limit point precisely when oy
k51 wk/ak 5 y. It follows that

lim sup
nRy

on
k51 wkv2

k

on
k51 wku2

k

#
2B1(L)
B0(L)

.

Thus the strong nonsubordinacy criterion holds on each compact interval
contained in S and Theorem 2.2 is complete. And as discussed in Section
2, this verifies the claim made in Theorem 1.5 concerning the absolutely
continuous spectrum of the self-adjoint operator La associated with (1.1)
and defined by (1.7) and (1.8).

4. DISCRETE SPECTRUM

The proof of Lemma 1.6 follows from a discrete version, due to Hinton
and Lewis [17], of an oscillation theorem for second order differential
equations due to Glazman [16, p. 34]. This lemma applies to those cases
when (1.1) is limit circle as well as to those cases when (1.1) is limit point.
Caution: The notation used in [17] differs from that used here.

To prove part (i), we begin by letting DN be the set of sequences, x 5
hxnj, such that xn 5 0 for n , N and only finitely many xn are nonzero.
Define q(x) on DN by
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q(x) 5 Oy
n5N21

h(bn 2 an 2 an21)uxnu2 1 anuDxnu2j.

By [17, Theorem 1], if for some N $ 1, q(x) $ e oy
n5N21 wnuxnu2 for all

x [ DN , then the spectrum of La in (2y, e) is finite. To see that this is
the case given the hypotheses of part (i), note that

q(x) 2 e Oy
n5N21

wnuxnu2

5 Oy
n5N21

h(bn 2 an 2 an21 2 ewn)uxnu2 1 anuDxnu2j

5 Oy
n5N21

Hwn Sbn 2 2an

wn
1

Dan21

wn
2 eD uxnu2 1 anuDxnu2J.

For N sufficiently large, q(x) 2 e oy
n5N21 wnuxnu2 $ 0 for all x [ DN if

e , c 1 lim inf Dan21/wn .
One can reduce the proof of part (ii) to an argument similar to that of

part (i) by means of a simple device introduced to the author by Professor
Don Hinton of the University of Tennessee. With x [ l2

w , let U: l2
w R l2

w

be defined by (Ux)n 5 (21)n11xn . U is a unitary transformation. If the
linear operator L: l2

w R l2
w is defined by

(Ly)n 5 w21
n h2an yn11 1 bn yn 2 an21yn21j,

then the linear operator T 5 ULU is unitarily equivalent to L. T is given by

(Tx)n 5 w21
n hanxn11 1 bnxn 1 an21xn21j.

Consider next the equation 2anxn11 2 bnxn 2 an21xn21 5 ewnxn . With DN

defined above, and q(x) now defined on DN by

q(x) 5 Oy
n5N21

h(2bn 2 an 2 an21)uxnu2 1 anuDxnu2j,
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we note that

q(x) 2 e Oy
n5N21

wnuxnu2

5 Oy
n5N21

h(2bn 2 an 2 an21 2 ewn)uxnu2 1 anuDxnu2j

5 Oy
n5N21

Hwn S2bn 2 2an

wn
1

Dan21

wn
2 eD uxnu2 1 anuDxnu2J.

Thus q(x) 2 e oy
n5N21 wnuxnu2 $ 0 for all x [ DN when e , 2j 1 lim inf

Dan21/wn and N is chosen sufficiently large. By [17, Theorem 1] we again
see that any self-adjoint realization of 2T has finite spectrum in (2y, e)
when e , 2j 1 lim inf Dan21/wn; thus, it follows that any self-adjoint
realization of T, and hence of L, has finite spectrum in (e, y) when e .
j 2 lim inf Dan21/wn .

5. RELATED WORK AND FINAL OBSERVATIONS

This paper presents a qualitative spectral analysis for self-adjoint realiza-
tions of Eq. (1.1). The method of subordinacy and a general result concern-
ing the discrete spectrum for self-adjoint realizations of (1.1) are used to
locate the absolutely continuous spectrum. Both limit circle and limit point
cases are considered.

The results on the absolute continuity of the spectral measure are a direct
consequence of the asymptotic behavior observed in Lemma 3.3 for the
quadratic form (3.1). This form was derived from a consideration of discrete
versions of quadratic forms used by the author while studying linear Hamil-
tonian systems of ordinary differential equations [7–9]. It was subsequently
noticed that a similar quadratic form was used by Professor Nevai and his
coauthors in [20, 13] for their studies of orthogonality measures. In this
sense, the results presented here are similar to those in the latter two
papers mentioned.

General spectral properties of (1.1) were considered in papers by Maté
and Nevai [20], Dombrowski [10–12], and more recently in papers by Smith
[22] and Stolz [23]. In all of these papers it is assumed that wn 5 1. The
results presented here represent an extension of the work of Maté and
Nevai and that of Dombrowski.

Smith obtains general results relating oscillatory properties of solutions to
the essential spectrum of the associated self-adjoint operator. The essential
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spectrum is observed to be preserved under relatively compact perturba-
tions.

Stolz assumes, additionally, that an 5 1. However, hbnj is a sequence
exhibiting a slow oscillatory behavior. Using the method of subordinacy,
intervals containing absolutely continuous spectrum are located.

Maté and Nevai view Eq. (1.1) in the context of orthogonal polynomial
theory. In their paper the spectral measure is the measure with respect to
which the polynomials in z defined by the three term recurrence relation
(1.1) are orthogonal. Using standard orthogonal polynomial techniques,
they obtain continuous differentiability and positivity of the spectral mea-
sure on (21, 1) when the coefficient sequences satisfy conditions equivalent
to that of bounded variation and when in addition to wn 5 1, it is assumed
that limnRy an 5 As and that limnRy bn 5 0.

In [10], Dombrowski considers the spectrum of bounded, cyclic, self-
adjoint operators defined on a separable Hilbert space H. In [11, 12] the
spectra of unbounded, cyclic, self-adjoint operators defined on dense subsets
of H are considered. In each case, these operators are identified with infinite
dimensional tridiagonal matrices. These matrices, which define operators on
l2, are identified with (1.1). Using techniques from orthogonal polynomial
theory as well as operator theory, behavior of the coefficient sequences of
(1.1) is related to the presence of an absolutely continuous part of the
spectral measure for these operators.

In [10], Dombrowski extends the result of Maté and Nevai. The coefficient
sequences hbnj and hanj satisfy conditions equivalent to that of bounded
variation and the interval (b 2 2a, b 1 2a) is shown to be contained in the
absolutely continuous spectrum of the bounded self-adjoint realization of
(1.1) when a ? 0. Theorem 1.7 of this paper completes this analysis by
discussing the discrete spectrum of the operator, by allowing the weight
sequence, hwnj, to be nonconstant when w ? 0, and by characterizing limit
pointness in this case.

In [11], wn 5 1 and bn 5 0. It is also assumed that hanj monotonically
increases to infinity, and that oy

n51 1/an 5 y. Monotonicity implies that
h1/anj is of bounded variation. Divergence of the sum is sufficient for limit
pointness by Theorem 1.3 of this paper. With the additional assumption
that hDanj is of bounded variation, Dombrowski concludes in Theorem 1
that there are no eigenvalues in the spectrum of the self-adjoint realization
of (1.1). Two theorems follow in which additional restrictions on hDanj are
imposed which guarantee that, on R, the spectral measure is absolutely
continuous. However, it is not shown that R is the spectrum.

In [12], it is again assumed that wn 5 1, and bn 5 0, that an R y, and
that oy

n51 1/an 5 y. However, instead of assuming the monotonicity of hanj
and the bounded variation of hDanj, the two principal results assume the
bounded variation of huDanuj. With the additional assumption that oy

n51



SECOND ORDER DIFFERENCE EQUATIONS 283

[Dan]2 , y, the author proves in Theorem 1 that there are no eigenvalues
in the spectrum. If instead, the additional assumption is that oy

n51 [a2
n11 2

a2
n]2 , y, then it is shown in Theorem 2 that the spectral measure has an

absolutely continuous part. The measure is not shown to be absolutely
continuous. The author poses the question whether the latter assumption
is sufficient to guarantee the absolute continuity of the measure.

Consider the fact that

UDan

an11
2

Dan21

an
U# D1 1 D2 1 D3 1 D4 ,

where D1 , D2 , D3 , and D4 are defined by

D1 5
1

an11
uDan 2 uDanu u 5

2
an11

[Dan]2 5
2[a2

n11 2 a2
n]2

an11(an11 2 an)

D2 5
1
an

uDan21 2 uDan21u u 5
2
an

[Dan21]2 5
2[a2

n 2 a2
n21]2

an(an 1 an21)

D3 5
1

an11
u uDanu 2 uDan21u u

D4 5 uDan21u uD(1/an)u.

Observe that the bounded variation of huDanuj implies that huDanuj has a limit
and hence that limnRy (an/an21) 5 1. If, in addition to either oy

n51 [Dan]2 ,
y or oy

n51 [a2
n11 2 a2

n]2 , y, we assume that h1/anj is of bounded variation,
it follows that hDan/an11j 5 h1 2 an/an11j, is of bounded variation and that
the hypotheses of (H) are satisfied.

Theorem 1.10 of this paper provides a conditional affirmative in response
to the question posed by Dombrowski in [12]: If, in addition to the hypothe-
ses of either theorem in [12], it is assumed that h1/anj is of bounded variation,
then not only is the spectral measure absolutely continuous, but its support
is R. If hanj is monotone increasing to infinity, as is the case in [11], then
h1/anj is of bounded variation, and the conditions posed in Theorem 1 of
[12] reduce to those of Theorem 1 of [11]. Thus Thoerem 1.10 informs us
that the conditions assumed in Theorem 1 of [11] are sufficient, alone, to
guarantee that R is the absolutely continuous spectrum of the self-adjoint
realization of (1.1). It should be noted that Theorem 1.10 allows for the
possibility of a nonzero sequence, hbnj, and a nonconstant weight sequence,
hwnj, both of which are of bounded variation; in particular for which w
could be zero. Thus the spectrum remains unchanged when considering
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this operator with respect to weighted l2 spaces with a weight sequence
that is of bounded variation.

In both [11] and [12], known examples and new constructions of coeffi-
cient sequences for (1.1) are presented that produce, as solutions of the
three term recursion, systems of orthogonal polynomials for which the
measure of orthogonality is some unbounded subset of the real line. One
well-known case is that for which wn 5 1, bn 5 0, and an 5 Ïn/2. This
produces Hermite polynomials which can be normalized on R with respect
to the measure de 5 exp(2x2) dx. The samples and constructions presented
in [11, 12] are such that hanj is eventually monotonically increasing to
infinity, and hDanj is of bounded variation. Thus in each case presented,
(H) is satisfied and we see now that the support of the measure of orthogo-
nality is R.

And finally, Theorems 1.8 and 1.9 consider the case when the coefficient
sequences are of bounded variation and w 5 0. The resulting operator can
be unbounded. In Theorem 1.8, conditions are given such that the spectral
measure is absolutely continuous on all of R or on half-lines. The latter
situation is typically for self-adjoint operators associated with singular
boundary value problems posed on the half-line for the second order differ-
ential equation (2.3) (see [14]). The similar occurrence of absolutely contin-
uous spectrum on a half-line appears to have been unnoticed for (1.1).
Theorem 1.9 completes the discussion of the case when w 5 0 by providing
minimal conditions which guarantee that the spectrum is discrete in both
the limit circle and the limit point case.
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