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1. Introduction

In this paper we continue our study on the theory of the Euler class group of a poly-
nomial algebra A[T ], where A is a commutative Noetherian ring (containing Q) of di-
mension n. For such a ring A, in [9], we defined the notion of the nth Euler class group
En(A[T ]) of A[T ]. For simplicity let us call it E(A[T ]). In [9] we also studied the relations
between E(A[T ]) and E(A), where E(A) is the nth Euler class group of A. For example,
there is canonical map Φ :E(A) → E(A[T ]) which is an injective group homomorphism
and it is an isomorphism when A is a smooth affine domain [9, Proposition 5.7]. In general,
these two groups are not isomorphic (see discussion preceding [9, Proposition 5.7]). In this
context, the following question is natural.

Question. Does there exist a group homomorphism, say, Ψ :E(A[T ]) → E(A) such that
the composition Ψ Φ is the identity map on E(A)?

In this paper we give an affirmative answer to the above question.
A few words about the proof are in order. Let R denote A or A[T ]. We may recall

that E(R) is a free abelian group modulo some relation (see Section 2 for definition) and
elements of E(R) are classes of pairs (I,ωI ) where I is an ideal of R of height n and
ωI : (R/I)n � I/I 2 is a surjection. One attempt to define a map from E(A[T ]) to E(A)

could be by restriction at T = 0, meaning, given (I,ωI ) ∈ E(A[T ]) we may try to associate
it to something like (I (0),ωI (0)) in E(A) where I (0) = {f (0) | f (T ) ∈ I } and ωI(0) :

E-mail address: mdas@math.ku.edu.
0021-8693/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.06.017

https://core.ac.uk/display/82745448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


M.K. Das / Journal of Algebra 299 (2006) 94–114 95
(A/I (0))n � I (0)/I (0)2 is the surjection induced by ωI . But I (0) may not have height n

and therefore (I (0),ωI (0)) may not be a legitimate element of E(A). On the other hand,
since A contains Q, there exists λ ∈ Q such that I (λ) is an ideal of height � n. In this case
(I (λ),ωI (λ)) is an element of E(A) but since the element λ depends on I and may vary
for different ideals, we may not find a single λ for the whole group E(A[T ]) so that we
can apply the restriction T = λ.

To tackle this problem we note that, however, the ideal I (0)/I (0)2 is generated by n

elements and applying some “moving lemma” (which is an application of Eisenbud–Evans
theorem) we can find an ideal K of A of height � n, residual to I (0), and a surjection
ωK : (A/K)n � K/K2. We define Ψ (I,ωI ) = −(K,ωK) and prove the following

Theorem 1.1. The map Ψ :E(A[T ]) → E(A), described above, is a homomorphism of
groups such that if (I,ωI ) ∈ E(A[T ]) has the property that I (0) is an ideal of A of
height n, then Ψ ((I,ωI )) = (I (0),ωI (0)).

To prove that Ψ is well defined and is a group homomorphism we require the so-called
“addition” and “subtraction” principles in a little more generality which we prove to fit our
needs.

Indeed Ψ is surjective and the composition Ψ Φ :E(A) → E(A[T ]) is the identity map.
Furthermore, Ψ is an isomorphism when A is a smooth affine domain.

Let us recall one important result from [9] which is very much relevant to this context.
In [9], given an ideal I ⊂ A[T ] of height n and a surjection ωI : (A[T ]/I)n � I/I 2, we
associated an element (I,ωI ) ∈ E(A[T ]). One of the prime objectives was to show that
this element (I,ωI ) ∈ E(A[T ]) is the precise obstruction for the surjection ωI to lift to
a surjection θ :A[T ]n � I [9, Theorem 4.7]. For proving this theorem we first showed
that we can assume ht I (0) = n and then argued “since (I,ωI ) = 0 in E(A[T ]), we have
(I (0),ωI (0)) = 0 in E(A)”. This argument essentially assumes the existence of the group
homomorphism Ψ :E(A[T ]) → E(A) with the property mentioned in Theorem 1.1 above.
However, the question of existence of such a group homomorphism has not been addressed
there. In this sense, we now get a complete proof of [9, Theorem 4.7] (in Theorem 3.4 in
this paper).

As discussed above, while working on the group homomorphism Ψ , our prime concern
was the fact that given an ideal I of A[T ] of height n, I (0) may not have height n. But
the form of Theorem 1.1 led us to believe that while working on E(A[T ]), we may restrict
ourselves to the “nice” ideals I of A[T ] for which I (0) has height n or I (0) = A. In this
context, we define a “restricted” Euler class group E′(A[T ]) of A[T ] which concerns only
those “nice” ideals and prove that E(A[T ]) is isomorphic to E′(A[T ]) (Proposition 3.7).

Let A be an affine algebra of dimension n over an algebraically closed field k of
characteristic zero. Then E(A) is isomorphic to E0(A) (can be easily deduced from [4,
Lemma 3.4]). In Section 4 we investigate the Euler class group E(A[T ]) and the weak
Euler class group E0(A[T ]) when A is an affine algebra over an algebraically closed field
and prove that E(A[T ]) and E0(A[T ]) are canonically isomorphic (Corollary 5.4).

In Section 4 we also address the following question.
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Question. Let A be a Noetherian ring (containing Q) of dimension n � 3. Let (I,ωI ) ∈
E(A[T ]) be an arbitrary element. Does there exist a projective module P of rank n (with
trivial determinant) together with an isomorphism χ :A[T ] � ∧n

(P ) such that e(P,χ) =
(I,ωI )?

In general, the answer to this question is negative as one can take A to be the coor-
dinate ring of an even-dimensional real sphere, any real maximal ideal J of A and set
I = J [T ]. We show, using Corollary 5.4 and the following theorem of Bhatwadekar–Raja
Sridharan that the above question has an affirmative answer if A is an affine domain over
an algebraically closed field of characteristic zero.

Theorem 1.2. [7, Theorem 2.7] Let A be an affine domain of dimension n � 3 over an
algebraically closed field k of characteristic zero. Let I ⊂ A[T ] be a local complete in-
tersection ideal of height n such that I/I 2 is generated by n elements. Then there exists a
projective A[T ]-module P of rank n with trivial determinant and a surjection Φ :P � I .

We also give an alternative proof of Theorem 1.2 using Euler class computations. Our
proof appears simpler with the use of Euler class techniques. We may note that when
Bhatwadekar–Raja Sridharan proved this result, the Euler class group of a polynomial
algebra was not defined.

2. Preliminaries

In this section we define some of the terms used in the paper and record some results
which are used in later sections.

All rings considered in this paper are commutative and Noetherian and all modules
considered are assumed to be finitely generated. The projective modules are assumed to
have constant rank.

We start with an easy lemma.

Lemma 2.1. Let B be a Noetherian ring of dimension n and J ⊂ B be an ideal which
is contained in the Jacobson radical of B . Suppose that K ⊂ B[T ] is an ideal such that
K + JB[T ] = B[T ]. Then any maximal ideal of B[T ] containing K has height � n.

Now we state a useful lemma. The proof of this lemma can be found in [3, 3.3].

Lemma 2.2. Let A be a Noetherian ring containing an infinite field k and let I ⊂ A[T ] be
an ideal of height n. Then there exists λ ∈ k such that either I (λ) = A or I (λ) ⊂ A is an
ideal of height n, where I (λ) = {f (λ) | f (T ) ∈ I }.

Definition 2.3. Let A be a commutative Noetherian ring and P be a projective A-module
of rank n � dimA. By a generic surjection of P we mean a surjection α :P � J where
J is an ideal of A of height n. It follows from a theorem of Eisenbud–Evans [11,17] that
generic surjections exist.
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Definition 2.4. Let A be a commutative Noetherian ring, P a projective A[T ]-module. Let
J (A,P ) ⊂ A consist of all those a ∈ A such that Pa is extended from Aa . It follows from
[18, Theorem 1], that J (A,P ) is an ideal and J (A,P ) = √

J (A,P ). This is called the
Quillen ideal of P in A.

Remark 2.5. Let A, P , J (A,P ) be as in the above definition. Then it is easy to deduce
from Quillen–Suslin theorem [18,22] that height of J (A,P ) is at least one. If determinant
of P is extended from A, then by [17, Corollary 2], htJ (A,P ) � 2.

Definition 2.6. Let A be a ring and A[T ] be its polynomial extension. We denote by A(T ),
the ring obtained from A[T ] by inverting all the monic polynomials in A[T ]. It can be
proved easily that dimension of A(T ) is same as dimension of A.

The proof of the following lemma can be found in [3, Remark 3.9].

Lemma 2.7. Let A be a ring, I ⊂ A[T ] be an ideal such that I = (f1, . . . , fn)+I 2. Assume
further that either I (0) = A or I (0) = (a1, . . . , an) such that fi(0) ≡ ai mod I (0)2. Then
we can find g1, . . . , gn ∈ I such that I = (g1, . . . , gn)+ (I 2T ) with the properties: (1) gi ≡
fi mod I 2, (2) gi(0) = ai .

We now quote a theorem of Mandal. The following version is implicit in [12, Theo-
rem 1.2].

Theorem 2.8. Let A be a Noetherian ring and I ⊂ A[T ] be an ideal containing a monic
polynomial. Suppose that I = (f1, . . . , fr ) + I 2, where r � dim(A[T ]/I) + 2. Then, there
exist g1, . . . , gr ∈ I such that I = (g1, . . . , gr ) and fi ≡ gi mod I 2.

The following theorem is also due to Mandal [13, Theorem 2.1].

Theorem 2.9. Let A be a Noetherian ring and I ⊂ A[T ] be an ideal containing a monic
polynomial. Suppose that I = (f1, . . . , fr ) + (I 2T ), where r � dim(A[T ]/I) + 2. Then,
there exist g1, . . . , gr ∈ I such that I = (g1, . . . , gr) and fi ≡ gi mod(I 2T ).

The following result is a special case of [14, Theorem 2.3].

Theorem 2.10. Let A be a Noetherian ring. Suppose K3 = K1 ∩ K2 be the intersection of
two comaximal ideals K1, K2 of A[T ] such that:

(1) K1 contains a monic polynomial in T .
(2) K2 is an extended ideal.
(3) K1 = (f1(T ), . . . , fn(T )) with n � dimA[T ]/K1 + 2.
(4) K3(0) = (c1 . . . , cn) with ci − fi(0) ∈ K1(0)2.

Then K3 = (h1(T ), . . . , hn(T )) with hi(0) = ci .



98 M.K. Das / Journal of Algebra 299 (2006) 94–114
We will refer to the following lemma as “moving lemma”. This lemma can easily be
proved adapting the proof of [5, Corollary 2.14].

Lemma 2.11. Let A be a Noetherian ring of dimension n � 2. Let J be an ideal of A of
height � 1 such that J = (a1, . . . , an) + J 2. Let K be any ideal of A of height at least one.
Then there exists an ideal J ′ ⊂ A such that:

(1) J ′ is comaximal with J ∩ K and htJ ′ � n.
(2) J ∩ J ′ = (c1, . . . , cn) where ci ≡ ai modJ 2.

In the rest of this section we briefly sketch the definitions of the Euler class groups
E(A[T ]) and the weak Euler class groups E0(A[T ]) (where A is a commutative
Noetherian ring containing Q of dimension n � 2) and quote some results that are rel-
evant to this paper. The notions of E(A[T ]) and E0(A[T ]) have been defined and studied
in [9]. We refer the reader to [9] for a detailed account of these topics.

Definitions of E(A[T ]) and E0(A[T ])

Let A be a Noetherian ring of dimension n � 2 containing Q. Let I ⊂ A[T ] be an
ideal of height n such that I/I 2 is generated by n elements. Two surjections α and β

from (A[T ]/I)n � I/I 2 are said to be related if there exists σ ∈ SLn(A[T ]/I) such that
ασ = β . This is an equivalence relation on the set of surjections from (A[T ]/I)n to I/I 2.
Let [α] denote the equivalence class of α. We call such an equivalence class [α] a local
orientation of I .

It was shown in [9, Proposition 4.4], that if α : (A[T ]/I)n � I/I 2 can be lifted to a
surjection θ :A[T ]n � I then so can any β equivalent to α. We call a local orientation [α]
of I a global orientation of I if the surjection α : (A[T ]/I)n � I/I 2 can be lifted to a
surjection θ :A[T ]n � I .

Let G be the free abelian group on the set of pairs (I,ωI ) where I ⊂ A[T ] is an ideal
of height n such that Spec(A[T ]/I) is connected, I/I 2 is generated by n elements and
ωI : (A[T ]/I)n � I/I 2 is a local orientation of I .

Let I ⊂ A[T ] be an ideal of height n and ωI a local orientation of I . Now I can be
decomposed uniquely as I = I1 ∩ · · · ∩ Ir , where the Ik’s are ideals of A[T ] of height n,
pairwise comaximal and Spec(A[T ]/Ik) is connected for each k. Clearly ωI induces local
orientations ωIk

of Ik for 1 � k � r . By (I,ωI ) we mean the element Σ(Ik,ωIk
) of G.

Let H be the subgroup of G generated by set of pairs (I,ωI ), where I is an ideal of
A[T ] of height n generated by n elements and ωI is a global orientation of I given by the
set of generators of I . We define the Euler class group of A[T ], denoted by E(A[T ]), to be
G/H .

The weak Euler class group E0(A[T ]) is defined in a similar way, just dropping the
orientations, as follows.

Let F be the free abelian group on the set of ideals I where ht I = n, I/I2 is generated
by n elements and Spec(A[T ]/I) is connected. For an ideal I of A[T ] of height n such
that I/I 2 is generated by n elements, we take its decomposition into connected components
(as above), say, I = I1 ∩ · · · ∩ Ir , and associate to I the element (I ) := ΣIk of F . Let K
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be the subgroup of F generated by elements of the type (I ), where I ⊂ A[T ] is an ideal of
height n and I is generated by n elements. We define E0(A[T ]) to be F/K .

Let P be a projective A[T ]-module of rank n with trivial determinant. Fix a trivial-
ization χ :A[T ] � ∧n

(P ). Let α :P � I be a generic surjection (i.e., I is an ideal of
height n). Note that, since P has trivial determinant and dimA[T ]/I � 1, P/IP is a free
A[T ]/I -module. Composing α ⊗ A[T ]/I with an isomorphism γ : (A[T ]/I)n � P/IP

with the property
∧n

(γ ) = χ ⊗ A[T ]/I we get a local orientation, say ωI , of I . Let
e(P,χ) be the image in E(A[T ]) of the element (I,ωI ) of G. (We say that (I,ωI ) is ob-
tained from the pair (α,χ).) It can be proved that the assignment sending the pair (P,χ)

to e(P,χ) is well defined (see [9]). We define the Euler class of P to be e(P,χ).

3. Main results

We begin this section with the following addition and subtraction principles. Here we
have only relaxed the condition on height of the ideals concerned. The methods of proof are
similar to the usual addition and subtraction principles (one can look at [8, Propositions 3.1,
3.2]). However we include the proofs for the sake of completeness.

Proposition 3.1 (Addition Principle). Let A be a Noetherian ring of dimension n � 3
and I, J be two comaximal ideals of A, each of height � n − 1. Assume further that I =
(a1, . . . , an) and J = (b1, . . . , bn). Then, I ∩J = (c1, . . . , cn) such that ci ≡ ai mod I 2 and
ci ≡ bi modJ 2.

Proof. Note that we can always perform elementary transformations on (a1, . . . , an) and
(b1, . . . , bn) and no generality is lost doing so. To see this, let us assume that (a1, . . . , an)

is elementarliy transformed to (ã1, . . . , ãn) and (b1, . . . , bn) is elementarily transformed
to (b̃1, . . . , b̃n). Suppose we can find a set of generators c̃1, . . . , c̃n of I ∩ J satisfying
c̃i ≡ ãi mod I 2 and c̃i ≡ b̃i modJ 2. Then we can use the surjectivity of the canonical map
En(A/I ∩ J ) → En(A/I) × En(A/J ) to transform (c̃1, . . . , c̃n) to (c1, . . . , cn), so that
I ∩ J = (c1, . . . , cn) with ci ≡ ai mod I 2 and ci ≡ bi modJ 2.

Let B = A/(b1, . . . , bn) and bar denote reduction mod (b1, . . . , bn). Since I + J = A,
(a1, . . . , an) ∈ Umn(B). Now dimB � 1 and n � 3. Therefore, we can elementary trans-
form (a1, . . . , an) to (1, . . . ,0). Applying [20, Lemma 2] we can apply an elementary
transformation and assume that ht(a1, . . . , an−1) = n − 1. Note that this transformation
preserves the fact that a1 ≡ 1 modulo J . Therefore, (a1, . . . , an−1) + J = A.

Now let C = A/(a1, . . . , an−1) and bar denote reduction mod (a1, . . . , an−1). Consider
the unimodular row (b1, . . . , bn) ∈ Umn(C). Using similar arguments as in the above para-
graph we finally obtain:

(1) (a1, . . . , an−1) + (b1, . . . , bn−1) = A.
(2) ht(a1, . . . , an−1) = ht(b1, . . . , bn−1) = n − 1.
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In A[T ] we consider the ideals

I1 = (a1, . . . , an−1, T + an), I2 = (b1, . . . , bn−1, T + bn)

and let K = I1 ∩ I2. Note that I1 + I2 = A[T ]. Therefore, using the Chinese remainder
theorem we can choose g1(T ), . . . , gn(T ) ∈ K such that

K = (
g1(T ), . . . , gn(T )

) + K2

satisfying gi(T ) ≡ ai mod I 2
1 , gi(T ) ≡ bi mod I 2

2 , 1 � i � n − 1; gn(T ) ≡ T + an mod I 2
1 ,

gn(T ) ≡ T + bn mod I 2
2 .

Now ht(a1, . . . , an−1) = ht(b1, . . . , bn−1) = n − 1. Also note that dimA[T ]/I1 =
dimA/(a1, . . . , an−1) and dimA[T ]/I2 = dimA/(b1, . . . , bn−1). Therefore, it follows that
dimA[T ]/K � 1. Since n � 3, the conditions of Theorem 2.8 are satisfied for K . Apply-
ing Theorem 2.8 we obtain K = (h1(T ), . . . , hn(T )) such that hi(T ) ≡ gi(T )modK2. Let
hi(0) = ci . Then I ∩ J = (c1, . . . , cn) with ci ≡ ai mod I 2 and ci ≡ bi modJ 2. �
Proposition 3.2 (Subtraction Principle). Let A be a Noetherian ring of dimension n � 3
and I, J be two comaximal ideals of A, each of height � n − 1. Assume further that I =
(a1, . . . , an) and I ∩J = (c1, . . . , cn) such that ci ≡ ai mod I 2. Then J = (b1, . . . , bn) such
that ci ≡ bi modJ 2.

Proof. First note that we can perform elementary transformations on (a1, . . . , an) because
we can apply the same elementary transformations on (c1, . . . , cn) to retain the relation that
ci ≡ ai mod I 2. Let B = A/J 2 and bar denote reduction modulo J 2. Since ht(J ) = n − 1,
dimB � 1. Therefore, performing elementary transformations as in the proof of the above
proposition we may assume that: (1) ht(a1, . . . , an−1) = n − 1, (2) an ≡ 1 modJ 2.

Consider the following ideals in A[T ]:

I1 = (a1, . . . , an−1, T + an), I2 = JA[T ], K = I1 ∩ I2.

Applying Theorem 2.10 we obtain a set of generators (h1(T ), . . . , hn(T )) of K such that
hi(0) = ci . Let bi = hi(1 − an). Then J = (b1, . . . , bn). Since an ≡ 1 modJ 2, bi − ci =
hi(1 − an) − hi(0) ≡ 0 modJ 2. This proves the proposition. �

We are now ready to show that there is a group homomorphism from E(A[T ]) to E(A)

such that if (I,ωI ) ∈ E(A[T ]) has the property that I (0) is an ideal of A of height n, then
this group homomorphism takes (I,ωI ) to (I (0),ωI (0)) in E(A), where ωI(0) is the local
orientation of I (0) induced by ωI . This is done in Theorem 3.3 below. To prove this theo-
rem we mainly need addition and subtraction principles proved above and Lemma 2.11.

Theorem 3.3. Let A be a Noetherian ring containing Q of dimension n � 3. There is a
group homomorphism Ψ :E(A[T ]) → E(A) such that if (I,ωI ) ∈ E(A[T ]) has the prop-
erty that I (0) is an ideal of A of height n, then Ψ ((I,ωI )) = (I (0),ωI (0)) in E(A), where
ωI(0) is the local orientation of I (0) induced by ωI . If I (0) = A, Ψ ((I,ωI )) = 0.
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Proof. We give the proof in steps.

Step 1. Recall that E(A[T ]) is defined as G/H , where G is the free abelian group on
the set of pairs (I,ωI ), where I ⊂ A[T ] is an ideal of height n having the property that
Spec(A[T ]/I) is connected and I/I 2 is generated by n elements, and ωI : (A[T ]/I)n �
I/I 2 is a local orientation of I . Let us pick one such element (I,ωI ). Let the local orien-
tation ωI be given by I = (f1, . . . , fn) + I 2. Now I (0) is an ideal of A (not necessarily
proper) with ht(I (0)) � n − 1 and I (0) = (f1(0), . . . , fn(0)) + I (0)2. Let J = I ∩ A.

Now applying Lemma 2.11 we can find an ideal K ⊂ A of height � n such that K is
comaximal with J and K ∩ I (0) = (a1, . . . , an), where ai ≡ fi(0)mod I (0)2. First assume
that both I (0) and K are proper ideals of A. Let us call the local orientation of K , induced
by a1, . . . , an, to be ωK . To the element (I,ωI ) of G we associate the element −(K,ωK)

of E(A). In the case when I (0) = A or K = A, (I,ωI ) is associated to the zero element
of E(A).

We need to show that this association does not depend on the choice of K . To prove this,
let K ′ be another ideal of A of height n such that K ′ is comaximal with J and K ′ ∩ I (0) =
(b1, . . . , bn), where bi ≡ fi(0)mod I (0)2. Let ωK ′ be the local orientation of K ′ induced
by b1, . . . , bn. We claim that (K,ωK) = (K ′,ωK ′) in E(A). In the next paragraph we prove
this claim.

First note that, by repeated use of addition and subtraction principles and moving lemma
(Lemma 2.11), we may assume that K ′ is comaximal with K . Now we can find an ideal
L ⊂ A of height n and a local orientation ωL of L such that L is comaximal with each of
J , K and K ′ and (L,ωL) + (K,ωK) = 0 in E(A). Therefore, it is enough to prove that
(L,ωL)+ (K ′,ωK ′) = 0 in E(A). In order to do so, we first apply the addition principle to
the two comaximal ideals L ∩ K and K ′ ∩ I (0) to see that L ∩ K ∩ K ′ ∩ I (0) is generated
by n elements (with appropriate set of generators). Next we apply the subtraction principle
to the comaximal ideals K ∩ I (0) and L ∩ K ′ to conclude that L ∩ K ′ is generated by n

elements (with appropriate set of generators), i.e., (L,ωL) + (K ′,ωK ′) = 0 in E(A). Thus
the claim is proved.

Step 2. Extending to whole of G, we get a group homomorphism ψ :G → E(A). Note that
in the above definition we nowhere used the fact that Spec(A[T ]/I) is connected. So, given
any (I,ωI ) ∈ E(A[T ]) (where Spec(A[T ]/I) is not necessarily connected), following the
above procedure, we can also associate an element, say −(K,ωK) of E(A). We claim that
the image of (I,ωI ) under ψ is actually −(K,ωK).

Proof of the claim. Consider a decomposition of I into its connected components, say,
I = I1 ∩ · · · ∩ Ir . Now since Ii ’s are pairwise comaximal, ωI induces local orientation
ωIi

of Ii , i = 1, . . . , r and we have, (I,ωI ) = ∑r
i=1(Ii,ωIi

). Suppose that ψ((Ii,ωIi
)) =

−(Ki,ωKi
) (∈ E(A)). In view of Lemma 2.11, we can clearly assume that Ki ’s are pair-

wise comaximal. For simplicity we work out the case when r = 2.
By definition of ψ , we have ψ((I,ωI )) = −(K1,ωK1) − (K2,ωK2) in E(A). Since K1

and K2 are comaximal, we can write ψ((I,ωI )) = −(K1 ∩ K2,ωK1∩K2), where ωK1∩K2

is induced by ωK and ωK .
1 2
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Now by the definition of ψ we have K1 ∩ I1(0) is n-generated with appropriate set of
generators. Same is true for K2 ∩ I2(0). Since the ideals K1 ∩ I1(0) and K2 ∩ I2(0) are
comaximal and each has height � n− 1, applying addition principle we have K1 ∩ I1(0)∩
K2 ∩I2(0) n-generated with appropriate set of generators. In other words, I (0)∩(K1 ∩K2)

is n-generated. Now keeping track of the generators and proceeding as in last paragraph
of Step 1, we can easily conclude that (K,ωK) = (K1 ∩ K2,ωK1∩K2). This proves the
claim.

Step 3. Recall that E(A[T ]) = G/H , where H is the subgroup of G generated by pairs
(I,ωI ) ∈ G such that ωI is a global orientation. We now show that H is in the kernel of ψ .

First let (L,ωL) ∈ G be such that ωL is a global orientation. This means that there
exist f1, . . . , fn ∈ L such that L = (f1, . . . , fn) and ωL is induced by this set of generators
of L. But then L(0) = (f1(0), . . . , fn(0)) and hence from the definition of ψ it follows that
ψ((L,ωL)) = 0 in E(A). Now an element of H is of the form

(I,ωI ) =
r∑

i=1

(Ii,ωIi
) −

s∑
j=r+1

(Ii,ωIi
),

where ωIi
,ωIj

are global orientations. It is now clear that ψ((I,ωI )) = 0 in E(A) as each
of the elements on the right hand side is mapped to zero.

Therefore, we have a group homomorphism Ψ :E(A[T ]) → E(A).

Step 4. Let (I,ωI ) ∈ E(A[T ]) be such that ht(I (0)) = n. In this case ωI induces a local
orientation ωI(0) of I (0) and (I (0),ωI (0)) ∈ E(A). The way we picked up K and ωK in
Step 1 actually means in this case that (I (0),ωI (0)) + (K,ωK) = 0 in E(A). Therefore,
Ψ ((I,ωI )) = −(K,ωK) = (I (0),ωI (0)). This completes the proof of the theorem. �

We now use the above result to give a complete proof of the following theorem from [9,
Theorem 4.7]. As mentioned in the introduction, the question of existence of such a group
homomorphism as in Theorem 3.3 has not been addressed in [9] whereas some crucial
arguments in the proof of [9, Theorem 4.7] implicitly uses this group homomorphism.

Theorem 3.4. Let A be a ring of dimension n � 3, I ⊂ A[T ] be an ideal of height n such
that I/I 2 is generated by n elements and let ωI : (A[T ]/I)n � I/I 2 be a local orientation
of I . Suppose that the image of (I,ωI ) is zero in the Euler class group E(A[T ]) of A[T ].
Then, I is generated by n elements and ωI can be lifted to a surjection θ :A[T ]n � I .

Proof. Let Ψ :E(A[T ]) → E(A) be the group homomorphism, as defined in the theo-
rem above. Suppose ωI is given by I = (f1, . . . , fn) + I 2. We first assume that I (0) is a
proper ideal of A. We have, I (0) = (f1(0), . . . , fn(0))+ I (0)2. Suppose that Ψ ((I,ωI )) =
−(K,ωK), where K ⊂ A is an ideal of height � n such that K ∩ I (0) = (c1, . . . , cn) where
ci ≡ fi(0)mod I (0)2 and ωK is induced by c1, . . . , cn. Since (I,ωI ) = 0 in E(A[T ]),
Ψ ((I,ωI )) = 0 in E(A) and therefore, (K,ωK) = 0 in E(A). This implies, by [5, The-
orem 4.2], that K = (a1, . . . , an) such that ai ≡ ci modK2. Now applying subtraction
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principle (Proposition 3.2) we see that I (0) = (b1, . . . , bn) such that bi ≡ ci mod I (0)2.
Consequently, bi ≡ fi(0)mod I (0)2. Therefore, using Lemma 2.7, it follows that ωI can
be lifted to a surjection θ :A[T ]n � I/(I 2T ).

On the other hand, if I (0) = A, then again, applying Lemma 2.7 we can lift ωI to a
surjection θ :A[T ]n � I/(I 2T ).

In E(A(T )) also, the element (IA(T ),ωIA(T )) is zero, which, by [5, Theorem 4.2],
implies that ωIA(T ) (and hence θ ⊗ A(T )) can be lifted to a set of generators of IA(T ).
Applying [9, Theorem 3.10], we conclude that θ can be lifted to a surjection α :A[T ]n � I .
Clearly α lifts ωI . So ωI is a global orientation. �
Remark 3.5. Let us review the group homomorphism Ψ :E(A[T ]) → E(A). Recall that
we already have a canonical group homomorphism Φ :E(A) → E(A[T ]) and it follows
from Theorem 3.4 that Φ is injective. Further, it is easy to see that the composition Ψ Φ

is the identity on E(A). Clearly Ψ is surjective. Of particular interest is the kernel. Let
(I,ωI ) ∈ E(A[T ]) be an element of Ker(Ψ ). Then, as shown in the proof of Theorem 3.4
above, ωI can be lifted to a surjection θ :A[T ]n � I/(I 2T ). Ker(Ψ ) precisely consists
of these elements (i.e., roughly, the ideals I of A[T ] of height n such that I/(I 2T ) is
generated by n elements). We may recall that from [3, Theorem 3.8] it follows that if
A is a smooth affine domain over an infinite perfect field, Ker(Ψ ) is trivial and hence Ψ

becomes an isomorphism. If A is not smooth, there is an example [3, 6.4] of a normal affine
domain A for which Ker(Ψ ) is not trivial. We expect Ker(Ψ ) = 0 when A is a regular
ring containing Q. The “local–global principle” for Euler class groups [9, Theorem 5.4]
suggests that it is enough to prove Ker(Ψ ) = 0 when A is a regular local ring containing Q.

The main point of Theorem 3.4 is that for an ideal I ⊂ A[T ] of height n, I (0) may not
have height n and therefore given (I,ωI ) ∈ E(A[T ]), something like (I (0),ωI (0)) may not
make sense. This makes sense only when I (0) has height n or I (0) = A. Then we started
wondering what happens if we work only with those ideals I for which I (0) has height n

or I (0) = A. This is reflected in the following definition and the proposition after that.

Definition of a group

We define a group E′(A[T ]) which may be regarded as the “restricted” Euler class
group of A[T ]. The definition of E′(A[T ]) is similar to that of E(A[T ]).

Let G′ be the free abelian group on the set of pairs (I,ωI ), where I ⊂ A[T ] is an ideal
of height n having the properties: (i) I (0) ⊂ A is an ideal of height n or I (0) = A (we
point out here that this is the “restriction” and only at this point the definition differs from
that of E(A[T ])), (ii) Spec(A[T ]/I) is connected, (iii) I/I 2 is generated by n elements;
and ωI is a local orientation of I .

Let I ⊂ A[T ] be any ideal of height n such that I/I 2 is generated by n elements. Let
I = I1 ∩ · · · ∩ Ik be the decomposition of I into its connected components. Let ωI be a
local orientation of I . Then ωI induces local orientations ωIi

of Ii for i = 1, . . . , k. By
(I,ωI ) we mean the element Σ(Ii,ωi) of G′.
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Let H ′ be the subgroup of G′ generated by the set of pairs (I,ωI ) where ωI is a global
orientation of I .

We define E′(A[T ]) to be the group G′/H ′.

Remark 3.6. Clearly the obvious map Δ :E′(A[T ]) → E(A[T ]) which sends (I,ωI ) ∈
E′(A[T ]) to (I,ωI ) ∈ E(A[T ]), is a group homomorphism.

Proposition 3.7. The map Δ :E′(A[T ]) → E(A[T ]), as described above, is an isomor-
phism of groups.

Proof. By the very definition of E′(A[T ]) and by Theorem 3.4, it follows that Δ is in-
jective. To prove the surjectivity, let (I,ωI ) ∈ E(A[T ]) be an arbitrary element. So I (0)

may not necessarily be of height n. To prove that Δ is surjective it is enough to find some
(I ′,ωI ′) ∈ E(A[T ]) such that ht(I ′(0)) � n and (I,ωI ) = (I ′,ωI ′) in E(A[T ]).

Suppose that ωI is given by I = (f1, . . . , fn) + I 2. Then, I (0) = (f1(0), . . . , fn(0)) +
I (0)2. Let J = I ∩ A. Since htJ � n − 1 � 2, we can find an element s ∈ J 2 such that
ht(s) = 1. Let bar denote reduction modulo s. Since dimA � n − 1, it follows by a result
of Mohan Kumar [15, Corollary 3], that I (0) = (a1, . . . , an), where ai ≡ fi(0) modulo
I (0)2. By adding suitable multiples of s to a1, . . . , an, we may assume by the Eisenbud–
Evans theorem (see [5, Corollary 2.13]) that (a1, . . . , an) = I (0) ∩ K , where K ⊂ A is an
ideal of height n and K + (s) = A. Note that K = (a1, . . . , an) + K2. Let us call the local
orientation corresponding to this set of generators of K/K2 by ωK .

Let I1 = I ∩ K[T ]. Then I1 is an ideal of A[T ] of height n. Since I and K[T ] are
comaximal ideals, the local orientations ωI and ωK ⊗ A[T ], of I and K[T ] respectively,
induce a local orientation ωI1 of I1, say, given by I1 = (g1, . . . , gn) + I 2

1 . Now

I1(0) = I (0) ∩ K = (a1, . . . , an)

and we have gi(0) ≡ ai mod I1(0)2. Therefore we can lift g1, . . . , gn to a set of n generators
of I1/(I

2
1 T ), which also corresponds to ωI1 . In E(A[T ]) we have the equation:

(I1,ωI1) = (I,ωI ) + (
K[T ],ωK ⊗ A[T ]).

Since ωI1 is given by a set of generators of I1/(I
2
1 T ), we can apply [9, Lemma 3.9] to

find an ideal I2 of A[T ] of height n and a local orientation ωI2 of I2 such that (i) I2(0) = A

and (ii) (I1,ωI1) + (I2,ωI2) = 0 in E(A[T ]).
Therefore, we have the equation

(I,ωI ) + (
K[T ],ωK ⊗ A[T ]) + (I2,ωI2) = 0

in E(A[T ]). Since (K[T ],ωK ⊗ A[T ]) and (I2,ωI2) both belong to E′(A[T ]), the result
follows. �
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4. Some proofs

Let A be a ring (containing Q) of dimension n � 3. Let P be a projective A[T ]-module
of rank n having trivial determinant and χ be a trivialization of

∧n
P . To the pair (P,χ)

we can associate an element e(P,χ) in E(A[T ]), called the Euler class of (P,χ) (see
Section 2 for the definition). In [9, 4.11] we proved that e(P,χ) = 0 in E(A[T ]) if and only
if P has a unimodular element. In that proof we crucially used a theorem of Bhatwadekar–
Raja Sridharan [6, Theorem 3.4]. Again the proof of [6, Theorem 3.4] depends heavily on a
remark from a paper of Bhatwadekar–Lindel–Rao [2, 5.3]. Here we give a straightforward
proof of [9, 4.11] which is more in the spirit of Euler class theory. Further, we derive a
version of [6, Theorem 3.4] using our theorem.

Theorem 4.1. Let A be as above. Let P be a projective A[T ]-module of rank n having
trivial determinant and χ be a trivialization of

∧n
P . Then, e(P,χ) = 0 in E(A[T ]) if

and only if P has a unimodular element.

Proof. Let α :P � I1 be a surjection where I1 is an ideal in A[T ] of height n and ωI1 be
the local orientation of I1 induced by (α,χ). Then, e(P,χ) = (I1,ωI1) in E(A[T ]).

Suppose that P has a unimodular element. We show, under this condition, that
(I1,ωI1) = 0 in E(A[T ]). In view of the isomorphism Δ in Proposition 3.7, we can as-
sume that either I1(0) = A or ht I1(0) = n. Since P has a unimodular element, it follows
that the projective A-module P/T P and the projective A(T )-module P ⊗A(T ) both have
unimodular elements. Consequently, by [5, Corollary 4.4], we have (I1(0),ωI1(0)) = 0 in
E(A) and (I1A(T ),ωI1 ⊗ A(T )) = 0 in E(A(T )). Now following the arguments as in
Theorem 3.4, it is easy to see that (I1,ωI1) = 0 in E(A[T ]).

Let us now assume that e(P,χ) = 0 in E(A[T ]). We prove that then P has a unimodular
element. We give the proof in steps.

Step 1. In this step we show that the projective A-module P/T P has a unimodular ele-
ment.

Recall that we have α :P � I1, a generic surjection of P and ωI1 is the local
orientation of I1 induced by (α,χ). Therefore, e(P,χ) = (I1,ωI1) in E(A[T ]). As
usual, we may assume that either I1(0) = A or I1(0) is a proper ideal of height n. If
I1(0) = A, then clearly the A-module P/T P has a unimodular element. Now suppose
that I1(0) is a proper ideal of height n. Then, following the definition of the Euler class
of a projective module we have, e(P/T P,χ ⊗ A[T ]/(T )) = (I1(0),ωI1(0)) in E(A).
Since (I1,ωI1) = 0, in E(A[T ]), it follows that (I1(0),ωI1(0)) = 0 in E(A). Therefore,
e(P/T P,χ ⊗ A[T ]/(T )) = 0 in E(A) and hence by [5, Corollary 4.4], P/T P has a uni-
modular element.

So in any case P/T P has a unimodular element.

Step 2. Let J (A,P ) denote the Quillen ideal of P in A. Write J = J (A,P ). In this step
we prove, using a theorem of Mandal, that P1+J has a unimodular element.

Since determinant of P is extended (actually free), by Remark 2.5, htJ (A,P ) � 2.
Since dimA/J � n − 2, it follows that the projective (A/J )[T ]-module P/J [T ]P has a
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unimodular element, i.e., there is a surjection P/J [T ]P � (A/J )[T ]. Using this fact and
the Eisenbud–Evans theorem [11,17]) it is easy to see that (since P is projective), there is
a generic surjection β :P � I such that I is comaximal with J [T ].

Let ωI be the local orientation of I induced by (β,χ). Then e(P,χ) = (I,ωI ) in
E(A[T ]).

Consider the ring B = A1+J . We want to prove that the projective B[T ]-module P1+J

has a unimodular element. If IB[T ] = B[T ], we are done. Therefore, suppose that IB[T ]
is a proper ideal of B[T ] of height n and note that it is comaximal with JB[T ] and JB is
contained in the Jacobson radical of B .

Let us elaborate how ωI is obtained from (β,χ). Since P has trivial determinant, P/IP

is a free A[T ]/I -module. We choose an isomorphism λ : (A[T ]/I)n � P/IP such that∧n
λ = χ ⊗ A[T ]/I . ωI is the surjection (β ⊗ A[T ]/I)λ from (A[T ]/I)n to I/I 2, say,

given by I = (f1, . . . , fn) + I 2.
Since e(P,χ) = 0, we have (I,ωI ) = 0 in E(A[T ]) and hence by Theorem 3.4, I =

(g1, . . . , gn) such that gi ≡ fi modulo I 2. So we have IB[T ] = (g1, . . . , gn) and IB[T ] +
JB[T ] = B[T ]. Therefore, (g1, . . . , gn) is a unimodular row over (B/JB)[T ] and since
dim(B/JB) � n−2, it is elementarily completable. Using this and the fact that elementary
matrices can be lifted via surjection of rings, it is easy to see that we can alter the above set
of generators of IB[T ] by an elementary matrix σ ∈ En(B[T ]) and assume that

(1) ht(g1, . . . , gn−1) = n − 1,
(2) (g1, . . . , gn−1) + JB[T ] = B[T ], and hence,
(3) dimB[T ]/(g1, . . . , gn−1) � 1.

We set C = B[T ], R = C[Y ], K = (g1, . . . , gn−1, Y + gn). Let us denote P1+J by P ′.
Note that

C[Y ]/K � B[T ]/(g1, . . . , gn−1),

and so we have dimC[Y ]/K � 1. Therefore, it follows that the projective C[Y ]/K-module
P ′[Y ]/KP ′[Y ] is a free module of rank n. We choose an isomorphism

τ(Y ) :
(
C[Y ]/K)n →∼ P ′[Y ]/KP ′[Y ]

such that
∧n

τ (Y ) = χ ⊗ C[Y ]/K . Since
∧n

λ = χ ⊗ B[T ]/IB[T ], it follows that τ(0)

and λ differ by an element of SLn(B[T ]/IB[T ]). Since IB[T ] + JB[T ] = B[T ] and JB

is contained in the Jacobson radical of B , by Lemma 2.1, we have dim(B[T ]/IB[T ]) = 0.
Therefore, SLn(B[T ]/IB[T ]) = En(B[T ]/IB[T ]). Since elementary transformations can
be lifted via surjection of rings, we may alter τ(Y ) by an element of SLn(C[Y ]/K) and
assume that τ(0) = λ. Let γ (Y ) : (C[Y ]/K)n � K/K2 denote the surjection induced by
the set of generators (g1, . . . , gn−1, Y + gn) of K .

Thus, we obtain a surjection

δ(Y ) = γ (Y )τ(Y )−1 :P ′[Y ]/KP ′[Y ] � K/K2.
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Since τ(0) = λ, β ⊗ B[T ]/IB[T ] = ωIλ
−1

and γ (0) = ωI , we have δ(0) = β ⊗
B[T ]/IB[T ].

Therefore, applying Mandal’s theorem [13, Theorem 2.1], we obtain a surjection
η(Y ) :P ′[Y ] � K . Specializing at Y = 1 − gn, we obtain a surjection from P ′ to B[T ].

Step 3. So far we have proved that P/T P has a unimodular element (Step 1) and P1+J

has a unimodular element (Step 2), where J is the Quillen ideal of P in A. In this step we
combine these two facts and appeal to a patching argument of Plumstead to conclude that
P has a unimodular element.

Now P1+J has a unimodular element. Let us call it p1. We have already seen that P/T P

has a unimodular element, say p. We claim that there is an elementary automorphism σ

of P1+J such that σ̄ p̄1 = p̄, where “bar” denotes reduction modulo T . To see this, let
us consider the ring D = B/J (B) where J (B) denotes the Jacobson radical of B . Since
dimD � n − 2 it follows that there is an elementary automorphism τ of P1+J ⊗ D such
that τ p̄1 = p over D. Since elementary automorphisms can be lifted via a surjection of
rings, we have, by repeated use of this argument, a σ ∈ E(P1+J ) such that σ̄ p̄1 = p̄. Let q

denote the unimodular element σp1 of P1+J .
Since P1+J has a unimodular element, we can find s ∈ J such that P1+sA has a uni-

modular element. We still call it q . Since Ps is extended from As , it has a unimodular
element, namely p. Since p and q are equal modulo T , i.e., over As(1+sA), it follows using
a patching argument of Plumstead [17] that P has a unimodular element. �

We can now derive the following version of a theorem of Bhatwadekar–Raja Sridharan
[6, Theorem 3.4].

Theorem 4.2. Let A be a Noetherian ring containing Q of dimension n � 3. Let P be a
projective A[T ]-module of rank n with trivial determinant. Suppose that Pf has a unimod-
ular element for some monic polynomial f ∈ A[T ]. Then P has a unimodular element.

Proof. Since Pf has a unimodular element and f is monic, by [6, Lemma 3.1] it follows
that there is an ideal I of A[T ] of height at least n and a surjection α :P � I such that
I contains a monic polynomial. If ht I > n, it follows that I = A[T ] and there is nothing
to prove. So we assume ht I = n. Fix an isomorphism χ :A[T ] →∼ ∧n

(P ). Now (α,χ)

induces a local orientation ωI of I and hence e(P,χ) = (I,ωI ) in E(A[T ]). Since I

contains a monic polynomial, it follows from a theorem of Mandal (Theorem 2.8) that ωI

is a global orientation, i.e., (I,ωI ) = 0. Consequently, e(P,χ) = 0 in E(A[T ]). By the
above theorem, P has a unimodular element. This proves the theorem. �

We end this section with another nice application of Proposition 3.7, giving an alterna-
tive proof of the main theorem of [10].

Theorem 4.3. Let A be a commutative Noetherian ring containing the field of rationals
with dimA = n (n even) and let P be a projective A[T ]-module of rank n such that its
determinant is free. Suppose there is a surjection α :P � I where I is an ideal of A[T ] of
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height n which is generated by n elements. Assume further that P/T P has a unimodular
element. Then P has a unimodular element.

Proof. Fix a trivialization χ :A[T ] � ∧n
P . Then (α,χ) induces e(P,χ) = (I,ωI ) in

E(A[T ]), where ωI is a local orientation of I (induced by α and χ ). Now I is generated by
n elements, say, f1 . . . , fn. Therefore, applying [9, Proposition 6.7] we see that there exists
a stably free A[T ]-module Q′ of rank n, a generator χ1 of

∧n
(Q′) such that e(Q′, χ1) =

(I,ωI ) in E(A[T ]). Since Q′ is stably free of rank n and A contains Q, by a result of Ravi
Rao [19], Q′ is extended. Therefore, Q′ = Q[T ] for some stably free A-module Q. So we
have e(Q[T ], χ1) = (I,ωI ) in E(A[T ]).

Therefore, in order to prove that P has a unimodular element it is enough to prove that
Q[T ] has a unimodular element. In what follows we prove that the A-module Q has a
unimodular element.

Note that, in view of Proposition 3.7, we may assume that I (0) is an ideal of height n

or I (0) = A. Since Q[T ] maps onto I , it follows that Q maps onto I (0). Therefore, if
I (0) = A, then Q has a unimodular element and we are done in this case. So assume that
ht I (0) = n.

We have a surjection α ⊗ A[T ]/(T ) :P/T P � I (0). Then (α ⊗ A[T ]/(T ),χ ⊗
A[T ]/(T )) induces the Euler class of P/T P as

e
(
P/T P,χ ⊗ A[T ]/(T )

) = (
I (0),ωI (0)

)
,

where ωI(0) is also the local orientation induced by ωI .
On the other hand we have, e(Q[T ], χ1) = (I,ωI ) in E(A[T ]). Restricting at T = 0 we

obtain

e
(
Q,χ1 ⊗ A[T ]/(T )

) = (
I (0),ωI (0)

) = e
(
P/T P,χ ⊗ A[T ]/(T )

)
.

But P/T P has a unimodular element and it implies that (I (0),ωI (0)) = 0. Consequently,
e(Q,χ1 ⊗ A[T ]/(T )) = 0 and therefore Q has a unimodular element. This proves the
theorem. �

5. Polynomial extension of an affine algebra over an algebraically closed field
and a theorem of Bhatwadekar–Raja Sridharan

Let A be an affine algebra of dimension n over an algebraically closed field of char-
acteristic zero. It is known that in this case, the canonical map from E(A) to E0(A) is
an isomorphism of groups (can be easily deduced from [4, Lemma 3.4]). In this section
we investigate E(A[T ]) and E0(A[T ]) for a ring A as above and prove that E(A[T ]) and
E0(A[T ]) are canonically isomorphic. To prove this we first show that if B is an affine al-
gebra of dimension n over a C1-field of characteristic zero then E(B) →∼ E0(B). Then we
use the injectivity of the canonical map from E(A[T ]) to E(A(T )), proved in [9, Proposi-
tion 5.8].
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Proposition 5.1. Let R be an affine algebra of dimension n � 3 over a C1 field k of char-
acteristic zero. Let J ⊂ R be an ideal of height n such that J is generated by n elements.
Then any set of n generators of J/J 2 can be lifted to a set of n generators of J .

Proof. Suppose J = (a1, . . . , an). Let us take an arbitrary set of generators of J/J 2:

J = (b1, . . . , bn) + J 2.

We want to show that there exists c1, . . . , cn ∈ J such that J = (c1, . . . , cn) and bi ≡
ci modJ 2.

Clearly we may assume that ht(a3, . . . , an) = n − 2. Since any two surjections from
(R/J )n to J/J 2 differ by an element of GLn(R/J ), there exists a matrix δ ∈ GLn(R/J )

such that (a1, . . . , an)δ = (b1, . . . , bn). Let u ∈ R be such that u = det(δ)−1. Then
(u, a1, . . . , an) ∈ Umn+1(R). Let B = R/(a3, . . . , an). Then B is an affine algebra over k

of dimension � 2. Therefore, all stably free modules over B are free by [23, Theorem 2.4].
So the unimodular row (u, a1, a2) ∈ Um3(B) is completable. Applying [21, Lemma 2.4]
we have a set of generators of J , say J = (d1, . . . , dn), and a matrix δ′ ∈ SLn(R/J ) such
that (d1, . . . , dn)δ

′ = (b1, . . . , bn). Since dim(R/J ) = 0, we have SLn(R/J ) = En(R/J )

and therefore we can lift δ′ to a matrix Δ ∈ En(R). Suppose (d1, . . . , dn)Δ = (c1, . . . , cn).
Then J = (c1, . . . , cn) is the desired set of generators. �
Corollary 5.2. Let R be an affine algebra of dimension n � 3 over a C1 field k of charac-
teristic zero. Then E(A) � E0(A).

Proof. We know that the canonical map from E(A) to E0(A) is surjective. To prove in-
jectivity, let (J,ωJ ) be in the kernel. Then, by [4, Lemma 3.3] we have

(J,ωJ ) +
r∑

i=1

(Ji,ωi) =
s∑

k=r+1

(Jk,ωk),

where Ji , Jk are ideals of height n such that each of them is generated by n elements. By the
above proposition, each of the local orientations ω1, . . . ,ωs is a global one. Consequently
(J,ωJ ) = 0 in E(A). This proves the corollary. �
Proposition 5.3. Let A be an affine algebra of dimension n � 3 over an algebraically
closed field k of characteristic zero. Let I ⊂ A[T ] be an ideal of height n. Assume that I

is generated by n elements. Then any set of n generators of I/I 2 can be lifted to a set of n

generators of I . In other words, (I,ωI ) = 0 in E(A[T ]) for any local orientation ωI of I .

Proof. We will use the injectivity of the canonical map from E(A[T ]) to E(A(T )), where
A(T ) is the ring obtained from A[T ] by inverting all monic polynomials. This has been
proved in [9, Proposition 5.8].

Note that A(T ) is an affine algebra over a C1 field. Therefore, if we consider the
image (IA(T ),ωI ⊗ A(T )) of (I,ωI ) in E(A(T )), it follows by Proposition 5.1 that
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(IA(T ),ωI ⊗ A(T )) = 0 as IA(T ) is generated by n elements. Therefore, (I,ωI ) = 0
in E(A[T ]). �

The following corollary is now immediate.

Corollary 5.4. Let A be an affine algebra of dimension n � 3 over an algebraically closed
field k of characteristic zero. Then E(A[T ]) � E0(A[T ]).

A theorem of Bhatwadekar–Raja Sridharan

Let A be any commutative Noetherian ring of dimension n containing Q. Now we may
ask the following questions.

Question 1. Let (J,ωJ ) be any element of E(A). Does there exist a projective A-module
of rank n with trivial determinant together with an isomorphism χ :A →∼ ∧n

(P ) such that
e(P,χ) = (J,ωJ )?

Question 2. Let (I,ωI ) be any element of E(A[T ]). Does there exist a projective A[T ]-
module of rank n with trivial determinant together with an isomorphism χ :A[T ] →∼ ∧n

(P )

such that e(P,χ) = (I,ωI )?

These questions do not have affirmative answers in general. One can take A to be the
coordinate ring of the real three sphere and J be any real maximal ideal. Then it is known
that J is not surjective image of a projective A-module of rank n.

If A is an affine algebra over an algebraically closed field, it follows from a theorem of
Murthy [16, Theorem 3.3] that Question 1 has an affirmative answer.

In this note we discuss a theorem of Bhatwadekar–Raja Sridharan [7, Theorem 2.7]
which essentially says that Question 2 has an affirmative answer when A is an affine al-
gebra over an algebraically closed field of characteristic zero. We may note that when
Bhatwadekar–Raja Sridharan proved this theorem, the Euler class group of a polynomial
algebra was not defined. Below we give a proof of their theorem using Euler class compu-
tations.

The following lemma is an improvement of [6, Lemma 4.1] and is crucial for later
discussions.

Lemma 5.5. Let B be a ring of dimension n � 3 such that height of the Jacobson radical
J (B) is at least one. Let I ⊂ B[T ] be an ideal of height n such that: (1) I + J (B)[T ] =
B[T ] (so I is zero-dimensional), (2) I = (a1, . . . , an−1, f (T )) where a1, . . . , an−1 ∈ B

and ht(a1, . . . , an−2) = n− 2. Then any set of n generators of I/I 2 can be lifted to a set of
n generators of I (i.e., any local orientation of I is a global one).

Proof. Let ωI be a local orientation of I , corresponding to a set of generators of I/I 2. We
show that (I,ωI ) = 0 in E(B[T ]). We do this using [6, Lemma 4.1] and the local–global
principle for Euler class groups [9, Theorem 5.4].
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Let m be any maximal ideal of B of height n. Consider Bm[T ]. Now by [6, Lemma 4.1],
(I,ωI ) = 0 in E(Bm[T ]). Since it happens for every maximal ideal m of B of height n,
we have, by the local–global principle for Euler class groups [9, Theorem 5.4] that (I,ωI )

comes from E(B). But since htJ (B) � 1, it follows from [15, Corollary 3] that E(B) = 0.
Therefore, (I,ωI ) = 0 in E(B[T ]). �

We now quote the following two propositions from [7].

Proposition 5.6. Let A be a Noetherian ring with dimR = d � 1. Let I ⊂ R[T ] be an ideal
with ht(I ) � 2. Suppose that I/I 2 is generated by n elements where n � d + 1. Then I is
generated by n elements.

Proposition 5.7. Let A be an affine domain of dimension n over an algebraically closed
field of characteristic zero. Let I ⊂ A[T ] be an ideal and let b ∈ I ∩A be a nonzero element
such that Ab is regular. Suppose there exists a projective A1+bA[T ]-module P ′ of rank n

with trivial determinant and a surjection β :P ′ � I1+bA. Assume further that P ′
b is free.

Then there exists a projective A[T ]-module P of rank n with trivial determinant and a
surjection from P to I .

We are now ready to prove the following theorem of Bhatwadekar–Raja Sridharan [7,
Theorem 2.7].

Theorem 5.8. Let A be an affine domain of dimension n � 3 over an algebraically closed
field k of characteristic zero. Let I ⊂ A[T ] be a local complete intersection ideal of height
n such that I/I 2 is generated by n elements. Then there exists a projective A[T ]-module
P of rank n with trivial determinant and a surjection Φ :P � I .

Proof. We will replace Steps 1 and 2 of the proof of [7, Theorem 2.7] by some Euler class
computations. We briefly outline the part preceding these steps from their proof.

Let ωI be a local orientation of I given by I = (g1, . . . , gn) + I 2. Let J = I ∩ A. Let b

be a nonzero element of J 2 which also belongs to the singular locus of A. Let R = A/(b).
Then dimR � n − 1. Therefore applying Proposition 5.6, we have I = (f1, . . . , fn, b)

where fi ≡ gi modulo I 2. Applying Swan’s Bertini theorem [4, Theorem 2.11], and adding
suitable multiples of b to f1, . . . , fn they obtain an element (I ′,ωI ′) ∈ E(A[T ]) such that:

(1) (I,ωI ) + (I ′,ωI ′) = 0 in E(A[T ]).
(2) I ′ + (b) = A[T ] and hence I ′ + I = A[T ].
(3) I ′ is a prime ideal of height n.

Let B = A1+bA. If I ′B[T ] = B[T ], IB[T ] is image of a free module and the theorem is
proved in this case using Proposition 5.7. Therefore assume that I ′B[T ] is proper. Since it
is prime and is comaximal with the Jacobson radical of B , it is a maximal ideal of height n.
To be consistent with their notation, let I ′B[T ] = M .

Using techniques from [1] it follows that there is an ideal L1 ⊂ B[T ] of height n such
that



112 M.K. Das / Journal of Algebra 299 (2006) 94–114
(1) M ∩ L1 = (b1, . . . , bn−1, f (T )) where bi ∈ B and f (T ) ∈ B[T ].
(2) L1 + M = B[T ] and L1 + bB[T ] = B[T ].

Using a theorem of Murthy they show that there is a projective B[T ]-module P ′ with
trivial determinant and a surjection α :P ′ � L1. Some additional arguments imply that P ′

b

is free.
We now use Euler class computations to show that this P ′ maps onto IB[T ].
We fix an isomorphism χ :B[T ] � ∧n

(P ′). Then (α,χ) induces a local orientation ωL1

of L1 and we have e(P ′, χ) = (L1,ωL1) in E(B[T ]). We also have (I,ωI )+ (M,ωM) = 0
in E(B[T ]). Since M and L1 are comaximal, ωM and ωL1 together induce a local
orientation of M ∩ L1, say ωM∩L1 . Note that by Lemma 5.5, the ideal M ∩ L1 =
(b1, . . . , bn−1, f (T )) has the property that any local orientation of M ∩ L1 is a global
one. Therefore, ωM∩L1 is a global orientation and hence, (M,ωM) + (L1,ωL1) = 0 in
E(B[T ]). Consequently, e(P ′, χ) = (I,ωI ) in E(B[T ]). Now using [9, Corollary 4.10] it
follows that there is a surjection β :P ′ � IB[T ]. Applying Proposition 5.7, the theorem
follows. �
Remark 5.9. As remarked earlier, we have replaced Steps 1 and 2 of the proof given in
[7] by Euler class computations. One interesting point of our proof is that in this part we
have not used the fact that A is an affine domain over an algebraically closed field k of
characteristic zero.

In terms of Euler classes the above theorem can be rephrased as:

Theorem 5.10. Let A, I be as above. Let ωI be a local orientation of I (so (I,ωI ) ∈
E(A[T ])). Then there exists a projective A[T ]-module P of rank n with trivial determinant
and an isomorphism χ :A[T ] � ∧n

(P ) such that e(P,χ) = (I,ωI ) in E(A[T ]).

Proof. It follows from Theorem 5.8 that there exists a projective A[T ]-module of rank n

with trivial determinant and a surjection α :P � I . Fix an isomorphism χ :A[T ] →∼ ∧n
(P ).

Now (α,χ) induces a local orientation, say ω̃I of I . Therefore, e(P,χ) = (I, ω̃I ) in
E(A[T ]). Since k is an algebraically closed field of characteristic zero, it follows from
Corollary 5.4 that (I,ωI ) = (I, ω̃I ) in E(A[T ]). Therefore, e(P,χ) = (I,ωI ). �

6. The weak Euler class of a projective A[T ]-module

In [9] we defined the nth weak Euler class group, E0(A[T ]), of A[T ] and proved results
analogous to those on E0(A) [5]. We further investigated this group in [10]. In [5], there
is a notion of the weak Euler class of a projective A-module of top rank. In [9] we did not
define the weak Euler class of a projective A[T ]-module of rank = dimA. The aim of this
small section is to give such a definition.

Let A be a Noetherian ring containing Q of dimension n � 2. Let P be a projective
A[T ]-module of rank n with trivial determinant. Let α :P � I be a generic surjection. We
define the weak Euler class of P , denoted e(P ), as e(P ) = (I ) in E0(A[T ]).
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Proposition 6.1. The weak Euler class of P , as defined above, is well defined.

Proof. We prove this using the definition of the Euler class of P . Let us fix an isomorphism
χ :A[T ] →∼ ∧n

(P ). Now (χ,α) induces a local orientation ωI of I and by the definition
of the Euler class of a projective module, e(P,χ) = (I,ωI ) in E(A[T ]).

Next suppose β :P � J be another generic surjection. We want to prove that (I ) = (J )

in E0(A[T ]). Now (χ,β) induces a local orientation ωJ of J . Since the Euler class of
P is well defined, we have e(P,χ) = (I,ωI ) = (J,ωJ ) in E(A[T ]). Recall that there is
a canonical surjective group homomorphism from E(A[T ]) to E0(A[T ]) which sends an
element (K,ωK) of E(A[T ]) to (K) in E0(A[T ]). Therefore, (I ) = (J ) in E0(A[T ]). �

We can now rephrase [9, Proposition 6.6], as:

Proposition 6.2. Let A be a Noetherian ring of even dimension n. Let P be a projective
A[T ]-module of rank n with trivial determinant. Then e(P ) = 0 in E0(A[T ]) if and only if
[P ] = [Q ⊕ A[T ]] in K0(A[T ]) for some projective A[T ]-module Q of rank n − 1.

We can also prove the following analogue of [5, 6.4]. Method of proof of this proposition
is similar to [5, 6.4] and hence omitted.

Proposition 6.3. Let A be a Noetherian ring of even dimension n. Let P be a projective
A[T ]-module of rank n with trivial determinant. Suppose that e(P ) = (I ) in E0(A[T ]),
where I is an ideal of A[T ] of height n. Then, there exists a projective A[T ]-module Q of
rank n, such that [P ] = [Q] in K0(A[T ]) and I is a surjective image of Q.
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