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Abstract

Roe [J. Roe, Lectures on Coarse Geometry, University Lecture Series, vol. 31, Amer. Math. Soc., Providence, RI, 2003] intro-
duced coarse structures for arbitrary sets X by considering subsets of X ×X. In this paper we introduce large scale structures on X

via the notion of uniformly bounded families and we show their equivalence to coarse structures on X. That way all basic concepts
of large scale geometry (asymptotic dimension, slowly oscillating functions, Higson compactification) have natural definitions and
basic results from metric geometry carry over to coarse geometry.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Recall that the star St(B,U) of a subset B of X with respect to a family U of subsets of X is the union of those
elements of U that intersect B . Given two families B and U of subsets of X, St(B,U) is the family {St(B,U)}, B ∈ B,
of all stars of elements of B with respect to U .

Definition 1.1. A large scale structure LSSX on a set X is a non-empty set of families B of subsets of X (called
uniformly bounded or uniformly LSSX-bounded once LSSX is fixed) satisfying the following conditions:

(1) B1 ∈ LSSX implies B2 ∈ LSSX if each element of B2 consisting of more than one point is contained in some
element of B1.

(2) B1,B2 ∈ LSSX implies St(B1,B2) ∈ LSSX .

We think of (2) above as a generalization of the triangle inequality.
The trivial extension e(B) of a family B is defined as B ∪ {{x}}x∈X . Recall that B is a refinement of B′ if every

element of B is contained in some element of B′. Thus, the meaning of (1) of Definition 1.1 is that if B ∈ LSSX , then
all refinements of e(B) also belong to LSSX .
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Proposition 1.2. Any large scale structure LSSX on X has the following properties:

(1) B ∈ LSSX if each element of B consists of at most one point.
(2) B1,B2 ∈ LSSX implies B1 ∪B2 ∈ LSSX .

Proof. (1) Pick any B1 ∈ LSSX and notice B2 := B satisfies (1) of Definition 1.1.
(2) Let B′

i := e(Bi ) for i = 1,2. Observe B′
i ∈ LSSX . Therefore B3 = St(B′

1,B′
2) ∈ LSSX and notice any element

of B1 ∪B2 is contained in an element of B3. �
We have two basic examples of large scale structures induced by other structures on X. The first one deals with

metric spaces, so let us point out there is no need to restrict ourselves to metrics assuming only finite values. To
emphasize that, let us call d : X ×X → R+ ∪∞ an ∞-metric if it satisfies all the regular axioms of a metric (with the
understanding that x+∞ = ∞). Notice that ∞-metrics have the advantage over regular metrics in the fact that one can
easily define the disjoint union

⊕
s∈S(Xs, ds) of any family of ∞-metric spaces (Xs, ds). Namely, put d(x, y) = ∞

if x and y belong to different spaces Xs and Xt (those are assumed to be disjoint). Conversely, any ∞-metric space
(X,d) is the disjoint union of its finite components (C,d|C) (two elements belong to the same finite component if
d(x, y) < ∞).

Proposition 1.3. Any ∞-metric space (X,d) has a natural large scale structure LSS(X,d) defined as follows:

B ∈ LSS(X,d) if and only if there is M > 0 such that all elements of B are of diameter at most M .

Proof. If B1 ∈ LSS(X,d) and for each Bβ ∈ B2 consisting of more than one point there is a Bα ∈ B1 containing
Bβ , then diam(Bβ) � diam(Bα) � M for each Bβ ∈ B2, whence B2 ∈ LSS(X,d). If B1,B2 ∈ LSS(X,d) then there
are M1,M2 > 0 such that diam(Bα) � M1 and diam(Bβ) � M2 for all Bα ∈ B1,Bβ ∈ B2. Thus for any Bα ∈ B1,
diam(St(Bα,B2)) � 2M2 + M1, whence St(B1,B2) ∈ LSS(X,d). It follows that LSS(X,d) is a large scale struc-
ture. �

One can generalize Proposition 1.3 as follows: Given certain families F of positive functions from an ∞-metric
space X to reals one can define LSS(X,F) by declaring B ∈ LSS(X,F) if and only if there is f ∈ F such that B
refines the family of balls {B(x,f (x))}x∈X .

One family of interest is all f such that limx→∞ f (x)
d(x,x0)

= 0, where x0 is a fixed point in a metric space X (if X

is an ∞-metric space, one needs to look at each finite component separately). That leads to the sublinear large scale
structure on X introduced by Dranishnikov and Smith [5] (see also [4]).

Proposition 1.4. Any group (X, ·) has a natural large scale structure LSS l (X, ·) defined as follows:

B ∈ LSS l (X, ·) if and only if there is a finite subset F of X such that B refines the shifts {x · F }x∈X of F .

Proof. Notice that if B �= ∅ refines {x · F }x∈X for some finite subset F of X, then e(B) also refines {x · F }x∈X .
Suppose Bi refines {x ·Fi}x∈X for i = 1,2, where F1 and F2 are finite subsets of X. We may enlarge F2 and assume

it is symmetric (y ∈ F2 implies y−1 ∈ F2).
Let F be the set of all products x · y · z, where x ∈ F1 and y, z ∈ F2. Given B ∈ B1 pick a ∈ X such that B ⊂ a ·F1.

If B ′ ∈ B2 and u ∈ B ∩ B ′, choose y ∈ X so that B ′ ⊂ y · F2. Thus u = a · f1 = y · f2, where f1 ∈ F1 and f2 ∈ F2.
Therefore y = a · f1 · f −1

2 and B ′ ⊂ a · F proving that St(B,B2) ⊂ a · F . �
Remark 1.5. Notice that any group (X, ·) has another natural large scale structure LSSr (X, ·) defined as follows:

B ∈ LSSr (X, ·) if and only if there is a finite subset F of X such that B refines the shifts {F · x}x∈X of F .

Clearly, the two structures coincide if X is Abelian. However, they may differ even for finitely presented virtually
Abelian groups.
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Consider X = 〈a, t | t2 = 1 and tat = a2〉. Notice every element of X has unique representation as tuav , where
u = 0,1. If LSS l(X, ·) = LSSr (X, ·), then for E = {1, t} there is a finite subset F of X such that for each x ∈ X

there is y ∈ X satisfying x · E ⊂ F · y. Pick k � 1 such that all elements of F can be represented as tuav so that
u = 0,1 and |v| � k. Put x = ta6k and choose y ∈ X satisfying x · E ⊂ F · y. There is c = 0,1 and i so that x = tcaiy

and |i| � k. Also, there is d = 0,1 and j so that x · t = tdaj y and |j | � k.

Case 1 (c = 1). Now y = a6k−i and d = 0, so y = a−j ta6kt = a12k−j . That means 6k − i = 12k − j and 6k = j − i

contradicting |i|, |j | � k.

Case 2 (c = 0). Now y = a−i ta6k = ta6k−2i and d = 1, so y = a−j ta6kt = ta12k−2j . Thus 12k − 2j = 6k − 2i and
6k = 2j − 2i contradicting |i|, |j | � k.

To create a large scale structure on a set X all one needs is a family LSS ′
X satisfying conditions resembling finite

additivity and (2) of Definition 1.1.

Proposition 1.6. If LSS ′
X is a set of families in X such that B1,B2 ∈ LSS ′

X implies existence of B3 ∈ LSS ′
X such

that B1 ∪ B2 ∪ St(B1,B2) refines B3, then the family LSSX of all refinements of trivial extensions of elements of
LSS ′

X forms a large scale structure on X.

Proof. It suffices to show that, given B1,B2 ∈ LSS ′
X , St(e(B1), e(B2)) is a refinement of the trivial extension e(B3)

for some B3 ∈ LSS ′
X . Choose B3 ∈ LSS ′

X so that St(B1 ∪B2,B1 ∪B2) refines it.
Given B ∈ B1 notice St(B, e(B2)) = B ∪ St(B,B2) is contained in St(B,B1 ∪ B2). Also, St(x, e(B2)) is either a

point or there is B ∈ B2 containing x in which case St(x,B2) is contained in St(B,B1 ∪B2). �
Remark 1.7. The family LSSX in Proposition 1.6 is said to be generated by LSS ′

X . A good example is the discrete
large scale structure on any set X generated by all B such that

⋃
B is finite.

In [8, Theorem 2.55, p. 34], Roe shows that a course structure is metrizable if and only if it is countably generated.
Our analog is the following theorem. Notice the simplicity of our proof.

Theorem 1.8. Given a large scale structure LSSX on a set X the following conditions are equivalent:

(a) There is an ∞-metric dX on X such that LSSX = LSS(X,dX).
(b) LSSX is generated by a countable set.

Proof. (a) ⇒ (b) is obvious as any LSS(X,dX) is generated by the family of i-balls, i � 1.
(b) ⇒ (a). Pick a sequence Bi ∈ LSSX generating LSSX . Without loss of generality we may assume St(Bi ,Bi )

refines Bi+1 for all i � 1. Define the ∞-metric dX on X by setting dX(x, y) (if x �= y) equal the smallest i such that
there is B ∈ Bi containing both x and y. If no such i exists, put dX(x, y) = ∞.

To show the triangle inequality notice that 0 < dX(x, y) � dX(y, z) � i implies dX(x, z) � i + 1 as both x and z

belong to St(y,Bi ) which is contained in some B ∈ Bi+1.
Clearly LSSX ⊂ LSS(X,dX) (each Bi refines the family of (i + 1)-balls in (X,dX)). Also, any family of r-balls

in (X,dX) refines Bi for all i > r . Thus LSSX = LSS(X,dX). �
2. Coarse structures and their relation to large scale structures

Recall that a coarse structure C on X is a family of subsets E (called controlled sets) of X × X satisfying the
following properties:

(1) The diagonal Δ = {(x, x)}x∈X belongs to C.
(2) E1 ∈ C implies E2 ∈ C for every E2 ⊂ E1.
(3) E ∈ C implies E−1 ∈ C, where E−1 = {(y, x)}(x,y)∈E .
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(4) E1,E2 ∈ C implies E1 ∪ E2 ∈ C.
(5) E,F ∈ C implies E ◦ F ∈ C, where E ◦ F consists of (x, y) such that there is z ∈ X so that (x, z) ∈ E and

(z, y) ∈ F .

Definition 2.1. Given a family B of subsets of X define Δ(B) as
⋃

B∈B B × B . Given E ⊂ X × X define B(E) as the
family of all B ⊂ X such that B × B ⊂ E.

Lemma 2.2. Suppose B1, B2 are collections in X. If Δ(Bi ) ⊂ Ei for i = 1,2, then Δ(St(B1,B2)) ⊂ (E2 ◦ E1) ◦ E2.

Proof. Let (x, y) ∈ Δ(St(B1,B2)). Then for some B ∈ B1 there are Bx,By ∈ B2, containing x and y respectively,
such that there are zx ∈ B ∩ Bx and zy ∈ B ∩ By . Then

(x, zx) ∈ Bx × Bx ⊂ Δ(B2) ⊂ E2,

(zy, y) ∈ By × By ⊂ Δ(B2) ⊂ E1,

(zx, zy) ∈ B × B ⊂ Δ(B1) ⊂ E1,

so there is a zx ∈ X such that (x, zx) ∈ E2 and (zx, zy) ∈ E1, whence (x, zy) ∈ E2 ◦E1. But then there is also a zy ∈ X

such that (zy, y) ∈ E2, whence (x, y) ∈ (E2 ◦ E1) ◦ E2 as required. �
Lemma 2.3. Suppose B1,B2 are collections in X. If Ei ⊂ Δ(Bi ) for i = 1,2, then E1 ◦ E2 ⊂ Δ(St(B2,B1 ∪B2)).

Proof. Suppose (x, y) ∈ E1 ◦ E2. There is z such that (x, z) ∈ E1 and (z, y) ∈ E2. Therefore one has B1 ∈ B1 and
B2 ∈ B2 so that x, z ∈ B1 and z, y ∈ B2. Put B3 = St(B2,B1 ∪B2) and notice B1 ∪ B2 ⊂ B3. Thus x, y ∈ B3. �
Proposition 2.4. Every large scale structure LSSX on X induces a coarse structure C on X as follows:

A subset E of X × X is declared controlled if and only if there is B ∈ LSSX such that E ⊂ ⋃
B∈B B × B .

Proof. By the remarks after Definition 1.1, all refinements of e(B), for B ∈ LSSX , themselves belong to LSSX ,
meaning that {{x}}x∈X is a member of LSSX . Thus

Δ ⊂
⋃

B∈{{x}}
B × B =

⋃
x∈X

{x} × {x}

so Δ ∈ C. Let E1 ∈ C, so there is a B ∈ LSSX such that E1 ⊂ Δ(B). E2 ⊂ E1 then E2 ⊂ Δ(B) also, whence E2 ∈ C.
It is clear that if E ⊂ Δ(B) then E−1 ⊂ Δ(B), so E−1 ∈ C. If E1,E2 ∈ C then there are families B1,B2 ∈ LSSX such
that E1 ⊂ Δ(B1) and E2 ⊂ Δ(B2). But

E1 ∪ E2 ⊂ Δ(B1) ∪ Δ(B2) =
( ⋃

B∈B1

B × B

)
∪

( ⋃
B∈B2

B × B

)

=
⋃

B∈B1∪B2

B × B

= Δ(B1 ∪B2)

and since, by Proposition 1.2 B1 ∪B2 ∈ LSSX , it follows that E1 ∪E2 ∈ C. Finally, let E1,E2 ∈ C and B1,B2 ∈ LSSX

again be as above. Then E1 ◦ E2 ⊂ Δ(St(B2,B1 ∪B2)), which, since both B1 ∪B2 and B2 are members of LSSX , is
itself a member of LSSX , completing the proof. �
Proposition 2.5. Every coarse structure C on X induces a large scale structure LSSX on X as follows:

B is declared uniformly bounded if and only if there is a controlled set E such that
⋃

B∈B B × B ⊂ E.
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Proof. Let B1 ∈ LSSX ; then there is a controlled set E ∈ C such that Δ(B1) ⊂ E. Suppose B2 is a family of subsets
of X such that for each Bβ ∈ B2 consisting of more than one point there is a Bα ∈ B1 containing Bβ . Then Δ(B2) ⊂
Δ(B1) ∪ Δ ⊂ E ∪ Δ ∈ C, whence B2 ∈ LSSX . Now suppose that B1,B2 ∈ LSSX , so there are E1,E2 ∈ C such
that Δ(B1) ⊂ E1 and Δ(B2) ⊂ E2. But (E2 ◦ E1) ◦ E1 is controlled, and Δ(St(B1,B2)) ⊂ (E2 ◦ E1) ◦ E2, whence
St(B1,B2) ∈ LSSX . It follows that LSSX is indeed a large scale structure. �
3. Higson functions and Higson compactification

In this section we discuss relation of large scale structures on a topological space X to compactifications of X. Our
approach is quite different from that of [8, pp. 26–31] for coarse structures and seems simpler.

Given a large scale structure LSSX on X, a subset B of X is bounded if {B} ∈ LSSX .
A bounded continuous function f : X → R is called Higson if for every B ∈ LSSX and for every ε > 0 there is a

bounded subset U of X such that |f (x) − f (y)| < ε for all x, y ∈ B \ U , B ∈ B.
If X is a topological space, then using Higson maps one can construct a compact space h(X,LSSX) and a natural

map i : X → h(X,LSSX). Namely, first we construct i : X → ∏
f [inf(f ), sup(f )] by sending x to {f (x)}f , and then

we declare h(X,LSSX) to be the closure of i(X) in
∏

f [inf(f ), sup(f )].
It is of interest to investigate cases where h(X,LSSX) is a compactification of X (called Higson compactification

of (X,LSSX)), i.e., i : X → i(X) is a homeomorphism. Here is the simplest sufficient condition for h(X,LSSX) to
be a compactification.

Proposition 3.1. Suppose X is a Tychonoff space. If LSSX is a large scale structure such that the family of all open
and bounded subsets of X forms a basis of X, then h(X,LSSX) is a compactification of X.

Proof. It suffices to show that the family of Higson maps f : X → [0,1] separates points from closed sets. Indeed,
given x0 ∈ X \A, where A is closed, we find U open and bounded such that x0 ∈ U ⊂ X \A. Any map f : X → [0,1]
such that f (x0) = 1 and f |(X \ U) ≡ 0 is a Higson map. �

In case of locally compact Tychonoff spaces X we are interested in the Higson corona ν(X,LSSX) :=
h(X,LSSX) \ X of X.

Corollary 3.2. Suppose X is a locally compact Tychonoff space. If LSSX is a large scale structure such that all
compact subsets of X are bounded, then h(X,LSSX) is a compactification of X.

Proof. Notice all open and relatively compact sets in X are bounded and form a basis of X. �
Given a compactification c(X) of a locally compact Tychonoff space X we are interested in constructing a large

scale structure LSS(c(X),X) on X satisfying the following two conditions:

(a) The bounded subsets of X are precisely relatively compact subsets of X.
(b) The Higson maps of LSS(c(X),X) include restrictions f |X of all continuous maps f : c(X) → R.

Notice St(K,B) is bounded for every relatively compact K and every B ∈ LSS(c(X),X). That leads to the fol-
lowing definition.

Definition 3.3. A family B is proper if St(K,B) is relatively compact for all relatively compact K ⊂ X. Notice that
every B ∈ B is relatively compact in that case (consider K consisting of a point in B).

Recall E ⊂ X × X is proper provided both E[K] and E−1[K] are relatively compact for all relatively compact
K ⊂ X (see [8, Definition 2.1, p. 21]).

Lemma 3.4. If B is a family of subsets of X, then Δ(B)[K] = St(K,B).
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Proof. Recall that E[K] is the set of all x′ such that there is x ∈ K satisfying (x′, x) ∈ E. If E = Δ(B) that means
precisely there is B ∈ B such that x′, x ∈ B and x ∈ K , i.e., x′ ∈ St(K,B). �
Corollary 3.5. B is proper if and only if Δ(B) is proper.

Proposition 3.6. If B1 and B2 are two proper families, then St(B1,B2) is a proper family.

Proof. Notice St(K,St(B1,B2)) ⊂ St(St(K,B1),B2) ∪ St(St(K,B2),B1) for every K ⊂ X. If K is relatively com-
pact, so is St(St(K,B1),B2) ∪ St(St(K,B2),B1). �

A Higson family relative to compactification c(X) is a proper family B satisfying the following property: For any
map f : c(X) → R and for any ε > 0 there is a relatively compact set K in X such that |f (x) − f (y)| < ε for all
x, y ∈ B \ K , B ∈ B.

Proposition 3.7. If B1 and B2 are two Higson families, then St(B1,B2) is a Higson family.

Proof. Suppose f : c(X) → R is continuous and ε > 0. Find a relatively compact set K such that |f (x)−f (y)| < ε/4
for all x, y ∈ B \K , B ∈ B1 or B ∈ B2. Put L = St(St(K,B1),B2)∪K . Suppose x, y ∈ St(B,B2)\L for some B ∈ B1
and |f (x) − f (y)| > ε. Clearly, both x and y cannot belong to B . We will discuss the case of x, y ∈ X \ B , the
other cases are similar. Thus x ∈ Bx ∈ B2 and y ∈ By ∈ B2 so that there exist a ∈ B ∩ Bx and b ∈ B ∩ By . Notice
a, b ∈ X \ K (otherwise x, y ∈ L). Therefore |f (a) − f (b)| < ε/4, |f (a) − f (x)| < ε/4, and |f (y) − f (b)| < ε/4
resulting in |f (x) − f (y)| < 3 · ε/4, a contradiction. �

Define LSS(c(X),X) as consisting of all Higson families B. It is a large scale structure as the trivial extension of
a Higson family is a Higson family and refinements of Higson families are Higson as well. Notice every continuous
f : c(X) → R restricts to a Higson map f |X of LSS(c(X),X).

Using Example 2.34 in [8, p. 28] consider the compactification c(Z) of integers (Z is equipped with the dis-
crete topology) obtained by identifying two different points u and v in the Čech–Stone corona β(Z) \ Z. Notice
LSS(c(Z),Z) is the discrete large scale structure on Z (generated by families B such that

⋃
B is finite) whose

Higson functions are all bounded functions f : Z → R, a set larger than restrictions f |Z of all continuous maps
f : c(Z) → R. Thus, the Higson compactification of LSS(c(Z),Z) may be larger than c(X).

4. Asymptotic dimension

Large scale structures offer a very simple definition of asymptotic dimension. Namely, asdim(X,LSSX) � n if
LSSX is generated by families B such that the multiplicity of B is at most n + 1 (that means each point x ∈ X is
contained in at most n + 1 elements of B).

It is well known that for metric spaces the condition asdim(X) � n can be expressed by one of the following
equivalent conditions (see [7]):

(a) For every uniformly bounded family B in X there is a uniformly bounded family B′ on X of which B is a
refinement such that the multiplicity of B′ is at most n + 1.

(b) For every r > 0 there is a decomposition of X as X0 ∪ · · · ∪ Xn such that the family of r-components of each Xi

is uniformly bounded.

Our first observation is that one can generalize it to ∞-metric spaces without changing the proof.

Proposition 4.1. Suppose (X,d) is an ∞-metric space. If n � 0, then the following conditions are equivalent:

(a) For every uniformly bounded family B in X there is a uniformly bounded family B′ on X of which B is a refinement
such that the multiplicity of B′ is at most n + 1.
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(b) For every r > 0 there is a decomposition of X as X0 ∪ · · · ∪ Xn such that the family of r-components of each Xi

is uniformly bounded.

Let us point out another benefit of ∞-metric spaces. Namely, Bell and Dranishnikov [1] define asdim(Xs, ds) � n

uniformly for all s ∈ S if for every r > 0 there is M(r) < ∞ such that each Xs decomposes as Xs
0 ∪ · · · ∪ Xs

n and
r-components of each Xs

i are of diameter at most M(r). In our language we may simply state asdim(
⊕

s∈S Xs) � n.
We would like to generalize Proposition 4.1 to arbitrary large scale structures. For that we need the notion of

B-components. Those are equivalence classes of the relation x ∼B y meaning that there is a finite chain of points
x0 = x, . . . , xk = y such that for every i � 0 (and i � k − 1) there is Bi ∈ B satisfying xi, xi+1 ∈ Bi .

Our generalization of Proposition 4.1 has the advantage that its proof is by reduction to Proposition 4.1 which
shows that the asymptotic dimension of arbitrary large scale structures can be reduced to asymptotic dimension of
∞-metric spaces. Compare our approach to that of [6].

Corollary 4.2. Suppose LSSX is a large scale structure on a set X. If n � 0, then the following conditions are
equivalent:

(a) For every uniformly bounded family B in X there is a uniformly bounded family B′ on X of which B is a refinement
such that the multiplicity of B′ is at most n + 1.

(b) For every uniformly bounded family B in X there is a decomposition of X as X0 ∪ · · · ∪ Xn such that the family
of B-components of each Xi is uniformly bounded.

Proof. (a) ⇒ (b). Given B ∈ LSSX construct inductively a sequence of elements Bi ∈ LSSX satisfying the following
conditions:

(1) B1 = B,
(2) St(Bi ,Bi ) is a refinement of Bi+1 for each i � 1,
(3) the multiplicity of Bi is at most n + 1 for i > 1.

Given two points x, y ∈ X we define d(x, y) as the smallest integer i such that x, y ∈ B ∈ Bi for some i. If such
integer does not exist, we put d(x, y) = ∞.

Notice asdim(X,d) � n. Therefore one can decompose (X,d) as X0 ∪ · · · ∪ Xn such that the family of 2-
components of each Xi is uniformly bounded by a fixed integer M . That can be translated into B-components of
each Xi being contained in an element of BM+1.

(b) ⇒ (a). Given B1 put B2 = St(e(B1), e(B1)) and find a decomposition of X as X0 ∪ · · · ∪ Xn such that the
family of B2-components of each Xi is uniformly bounded. Consider B3 consisting of stars St(C,B1), where C is
a B2-component of some Xi . Clearly, B1 refines B3, so it remains to show that the multiplicity of B3 is at most
n + 1. That follows from the observation that St(C,B1) ∩ St(C′,B1) = ∅ for every two different B2-components
C and C′ of the same Xi (otherwise St(x,B1) would intersect both C and C′ for any x ∈ St(C,B1) ∩ St(C′,B1),
a contradiction). �

Our final task is to generalize the Hurewicz Theorem for asymptotic dimension of [1] and [2].
First let us point out that large scale uniform functions (or bornologous functions in the terminology of [8]) between

metric spaces have a very simple generalization to large scale structures: f : (X,LSSX) → (Y,LSSY ) is large scale
uniform if f (B) ∈ LSSY for all B ∈ LSSX .

Given a function f : (X,LSSX) → (Y,LSSY ) we need to define the concept of asdim(f ) � n. Since that has to
do with f −1(B) for B ∈ LSSY , let us define a natural large scale structure on the disjoint union

⊕
s∈S As for any

family {As}s∈S of subsets of X. Since we want the natural projection
⊕

s∈S As → X to be large scale uniform, the
natural choice is to call B uniformly bounded in

⊕
s∈S As if and only if there is C ∈ LSSX such that B|As refines C

for all s ∈ S.
Let us adopt the notation of

⊕
B for the disjoint union of any family B. Now, asdim(f ) � n means that

asdim(
⊕

f −1(B)) � n for all B ∈ LSSY .
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Theorem 4.3. If f : (X,LSSX) → (Y,LSSY ) is a large scale uniform function, then

asdim(X,LSSX) � asdim(f ) + asdim(Y,LSSY ).

Proof. Let asdim(f ) = n and asdim(Y,LSSY ) = k.
Suppose B1 ∈ LSSX is a cover. Let us construct by induction a sequence of covers Bi ∈ LSSX and a sequence of

covers Ci ∈ LSSY satisfying the following conditions:

(1) St(Bi ,Bi ) refines Bi+1 for all i � 1.
(2) f (Bi ) refines Ci .
(3) The multiplicity of Ci is at most k + 1.
(4) The cover of

⊕
f −1(Ci ) induced by Bi refines a cover of multiplicity at most n + 1 that is a refinement of the

cover of
⊕

f −1(Ci ) induced by Bi+1.
(5) St(Ci ,Ci ) refines Ci+1 for all i � 1.

Define the ∞-metric dX on X by setting dX(x, y) equal the smallest i such that there is B ∈ Bi containing both x

and y. If no such i exists, put dX(x, y) = ∞. Create a ∞-metric dY on Y the same way using the sequence Ci . Notice
the following properties of f : (X,dX) → (Y, dY ):

(a) asdim(Y, dY ) � n.
(b) asdim(f ) � n.
(c) f : (X,dX) → (Y, dY ) is large scale uniform.

Indeed, LSS(X,dX) is generated by Bi ’s and LSS(Y, dY ) is generated by Ci ’s (see the proof of Theorem 1.8), so (a)
and (c) follow. Similarly, (b) holds.

Since the proof of Hurewicz Theorem in [2] is valid for ∞-metric spaces, one concludes asdim(X,dX) � n + k.
In particular there is a uniformly bounded family U in (X,dX) such that B1 refines U and the multiplicity of U is at
most k + n + 1. Notice U refines BM for some large M . Thus, U ∈ LSSX which completes the proof. �
5. Švarc–Milnor lemma

Ref. [3] gives a simple proof of Švarc–Milnor lemma. It gives sufficient conditions for an action by isometries of
a group G on a metric space X to induce a quasi-isometry between G (equipped with a word metric) and X via the
map g → g · x0:

Theorem 5.1 (Švarc–Milnor). A group G acting properly and cocompactly via isometries on a length space X is
finitely generated and induces a quasi-isometry equivalence g → g · x0 for any x0 ∈ X.

Let us use the approach of this paper to offer an explanation of assumptions in the Švarc–Milnor lemma.
Given a function f : X → Y and given a large scale structure LSSY on Y let us define the induced large scale

structure f ∗(LSSY ) on X as that generated by f −1(B), B ∈ LSSY .

Lemma 5.2. If a group (G, ·) acts on the left by isometries on a metric space (X,d), then LSS l (G, ·) ⊂
f ∗(LSS(X,d)) for any x0 ∈ X, where f (g) := g · x0 for g ∈ G.

Proof. Suppose F ⊂ G is finite. Put r = max{d(x0, h · x0) | h ∈ F }. Given g ∈ G let U = B(g · x0, r). It suffices to
show f (g · F) ⊂ U . That is obvious as d(g · h · x0, g · x0) = d(h · x0, x0) < r if h ∈ F . �
Lemma 5.3. Suppose a group (G, ·) acts on the left by isometries on a metric space (X,d), x0 ∈ X and f (g) := g · x0
for g ∈ G.

LSS l (G, ·) = f ∗(LSS(X,d)
)

if and only if for any bounded subset U of G · x0 containing x0 the set {g ∈ G | (g · U) ∩ U �= ∅} is finite.
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Proof. In view of Lemma 5.2, we need to analyze f ∗(LSS(X,d)) ⊂ LSS l(G, ·). It holds if and only if, for any
r > 0, there is a finite subset Fr of G such that for any x ∈ G · x0 there is gx ∈ X so that f −1(B(x, r)) ⊂ gx · Fr .

Put U = B(x0, r) and assume Fr = {g ∈ G | (g ·U)∩U �= ∅} is finite. If x = gx · x0, then f −1(B(x, r)) = {g ∈ G |
d(g · x0, gx · x0) < r} = {g ∈ G | g−1

x g · x0 ∈ B(x0, r)} ⊂ gx · Fr .
Assume that, for any r > 0, there is a finite subset Fr of G and g0 ∈ X so that f −1(B(x0, r)) ⊂ g0 · Fr . Consider

U = B(x0, r) (any bounded subset of G · x0 is contained in such ball). If h · x0 ∈ (g ·U)∩U , then h ∈ f −1(B(x0, r)),
so h ∈ g0 · Fr . Also, g−1 · h ∈ g0 · Fr which means the set {g ∈ G | (g · U) ∩ U �= ∅} is finite. �
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