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operator for classical boundary problems concerning a class of degenerate parabolic
equations. 2001 Éditions scientifiques et médicales Elsevier SAS

Introduction

Let T ∈]0,+∞[ and let (t, y, x) ∈ [0, T ] × R × Rn. In [4] we
have considered the following degenerate parabolic operator, with real
coefficients:

L= ∂t − ∂2
y − y2

n∑
i,j=1

aij ∂xi ∂xj

and we have constructed a solution for problem:
LU(t, y, x)= F(t, y, x) (t, y, x) ∈]0, T [×]0,+∞[×Rn,
U(t,0, x)=H(t, x) (t, x) ∈]0, T [×Rn,
U(0, y, x)=U0(y, x) (y, x) ∈]0,+∞[×Rn,

under the following conditions: the quadratic form

n∑
i,j=1

aij ξiξj
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has constant coefficients and is definite positive, moreover the data of
problem are infinitely differentiable functions and rapidly decreasing
respect to(y, x). In particular, if F andH are zero everywhere, the
solutions isU =KU0, whereK is a Poisson operator of the type

U0 ∈ C∞0
(]0,+∞[×Rn)(0.1)

→ (2π)−n
+∞∫
0

dy′
∫
Rn

eix·ξ k(t, y, y′, x, ξ) F
x→ξ U0(y

′, ξ )dξ

and it can be extended as a linear and continuous operator:

E′
(]0,+∞[×Rn)→C∞

([0,+∞[,D′(]0,+∞[×Rn))
∩C∞(]0,+∞[×[0,+∞[×Rn).

If the operatorL has variable coefficients and it has pieces of lower
order, generally it is no possible obtain an exact solution of typeKU0.
By pseudodifferential techniques it is possible to construct a Poisson
operatorK such that, ifU0 is a generalized function with compact
support in]0,+∞[×Rn, the distributionKU0 solves the problem for
less of infinitely differentiable error, so it is the singular part of the exact
solutions (see [5–10]).

In the present paper we talk over a problem of this type. We consider
the operator

L= ∂t − ∂2
y − y2

n∑
i,j=1

aij (t, x)∂xi ∂xj + yb(t, x)∂y(0.2)

+
n∑
i=1

ai(t, x)∂xi + c(t, x)

such that the following assumptions hold:aij (t, x), ai(t, x), b(t, x),
c(t, x) are real valued and infinitely differentiable functions in[0, T ] ×
Rn; the quadratic form:

n∑
i,j=1

aij (t, x)ξiξj , aij (t, x)= aji(t, x),
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is semi-definite positive, while

ω2(x, ξ)=
n∑

i,j=1

aij (0, x)ξiξj(0.3)

is definite positive. We have studied the boundary problems:

LU = 0, U(t,0, x)= 0, U(0, y, x)=G(y, x);(0.4)

LU = 0, ∂yU(t,0, x)= 0, U(0, y, x)=G(y, x),(0.5)

with the following purpose: for every openA with compact closure in
]0,+∞[×Rn, A � ]0,+∞[×Rn, to construct two Poisson operators,
K
(1)
A andK(2)A , such that if

G(y, x) ∈E′(]0,+∞[×Rn),
then, fori = 1,2, we have

LK
(i)
A G ∈ C∞

([0, T ] × [0,+∞[×Rn),(0.6)

lim
t→0

(
K
(i)
A G−G

) ∈C∞([0,+∞[×Rn) if suppG⊂A,(0.7)

K
(1)
A G(t,0, x)= 0, ∂yK

(2)
A G(t,0, x)= 0, t ∈]0, T ].(0.8)

We use the formal series method (see papers mentioned above).
For each of problems (0.4) and (0.5), we search a series of pseudo-
homogeneous symbols (see [2,9]) with degree negatively diverging:

+∞∑
j=0

k
(i)
−j (t, y, y

′, x, ξ), i = 1,2,(0.9)

such that, by (0.1), the series (0.9) gives a formal solution of respective
problem. Then using classical techniques we construct desired operator.

We obtain the functionsK(i)−j by recurrence solving a sequence of
differential problems, called transport problems.

Since L is degenerate we use two different processes of homog-
enization. These processes lead to two different formal series, that
act on the distributionsG(y, x) such that the support of̃G(η, ξ) =
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Fy→ηFx→ξ (G(y, x)) is included in a region of the typeη2 < a|ξ |, or
of the typeη2> a|ξ |, a > 0, respectively. The final result is contained in
Theorem 7.2.

In Sections from 1 to 6 we construct the first series that leads to partial
differential equations solved in Section 2. In Sections 3 and 4 we establish
estimates for the transport problems solutions. These solutions fit in
suitable spaces of symbols of non standard pseudodifferential operators
(see Section 5). Section 6 is devoted to the construction of a Poisson
operator relative to the formal series found. In Section 7 we construct
the second series by classical techniques that lead to transport systems of
ordinary differential equations (see [7]). Finally we attain our aim by a
suitable connection between the series.

1. Pseudo-homogeneous symbols and transport systems

PutΩ = Rn+1 = Ry × Rnx andΩT =]0, T [×Ω for any T > 0, we
denote byΩ+ andΩ+

T subsets ofΩ andΩT such thaty > 0.
Now, let k(t, y, y′, x, ξ) ∈ C∞(ΩT × Ry ′ × (Rn − {0})) be a slowly

increasing function respect toξ . By 〈, 〉 we denote the duality pairing
betweenC∞0 (Ω) andD′(Ω). We say thatk is a symbol inΩT if for any
ψ ∈ C∞0 (Ry ′):

〈
k(t, y, y′, x, ξ),ψ(y′)

〉= ∫
Ry′

k(t, y, y′, x, ξ)ψ(y′)dy′(1.1)

can be extended as a function of classC∞(Ω̄T × (Rn − {0})). In similar
way we define a symbol inΩ+

T .
If k is a symbol inΩT (respectively inΩ+

T ), infinitely differentiable in
ΩT ×Ry ′ ×Rn (respectivelyΩ+

T ×R+y ′ ×Rn), we consider the following
operator:

KG(t, y, x)=
∫
Rn

eix·ξ
〈
k(t, y, y′, x, ξ), Ĝ(y′, ξ )

〉
d̄ξ,(1.2)

d̄ξ = (2π)−n dξ,
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whereG(y, x) ∈ C∞0 (Ω) (respectivelyC∞0 (Ω+)), and

Ĝ(y′, ξ )=
∫
Rn

e−ix·ξG(y′, x)dx = F
x→ξ

(
G(y′, x)

)
.

Now let k = k(t, y, y′, x, ξ) be a symbol inΩT or in Ω+
T , and let

m ∈ R. We say thatk is pseudo-homogeneous of degreem if:

k(tλ−1, yλ−1/2, y′λ−1/2, x, λξ)= λmk(t, y, y′, x, ξ) ∀λ ∈R+.(1.3)

It is easy to prove that ifk is a pseudo-homogeneous symbol of degree
m, then the symbol:

tpyh∂lt ∂
r
y∂
α
x ∂

β
ξ k p,h ∈R+0 , r, l ∈N0, α,β ∈Nn0

is pseudo-homogeneous of degreem − p − h/2+ l + r/2− |β|. This
motivates the following definition: ifh ∈ R andO is an operator which
does not change the pseudo-homogeneous symbol class, we say thatO

has pseudo-orderh if it sends pseudo-homogeneous symbols of degree
m in pseudo-homogeneous symbols of degreem+ h.

Now we research a symbolk in ΩT such that:

LKG(t, y, x)= 0 ∀(t, y, x) ∈ΩT , ∀G ∈C∞0 (Ω);(1.4)

using (1.2), one can prove that (1.4) is equivalent to

Mk(t, y, y′, x, ξ)= 0,(1.5)

where

M =M(t, y, x, ξ, ∂t , ∂y, ∂x)= L(t, y, x, ∂t , ∂y, ∂x + iξ ).(1.6)

By Mac Laurin series expansion of the coefficients of the operatorL,
with respect tot , we have the following decomposition:

M =
+∞∑
h=−1

M−h,(1.7)
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whereh is an integer, andM−h is an operator of pseudo-order−h, for
everyh�−1; from the definitions

M1 = ∂t − ∂2
y + y2

∑
i,j

aij (0, x)ξiξj + i
∑
j

aj (0, x)ξj ,(1.8)

M0= y2
∑
i,j

t∂taij (0, x)ξiξj − 2iy2
∑
i,j

aij (0, x)ξi∂xj(1.8)′

+ yb(0, x)∂y + it
∑
i

∂tai(0, x)ξi

+∑
i

ai(0, x)∂xi + c(0, x)
and, forh > 0,

M−h= th+1

(h+ 1)!∂
h+1
t

[
y2

∑
i,j

ai,j (t, x)ξiξj(1.8)′′

+ i∑
i

ai(t, x)ξi

]
(0, x)

+ t
h

h!∂
h
t

[
−2iy2

∑
i,j

ai,j (t, x)ξj ∂xi + yb(t, x)∂y

+∑
i

ai(t, x)∂xi + c(t, x)
]
(0, x)

+ th−1

(h− 1)!∂
h−1
t

[
−y2

∑
i,j

ai,j (t, x)∂xi ∂xj

]
(0, x).

We wantk as a formal series of pseudo-homogeneous symbols

∞∑
s=0

k−s(t, y, y′, x, ξ),(1.9)

wherek−s is pseudo-homogeneous of degreem− s, heres is integer and
m is a real number to establish. In (1.5) we replacek by (1.9) and we
obtain ∑

h+s=r
M−hk−s(t, y, y′, x, ξ)= 0 ∀r �−1.(1.10)
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If we consider (1.10) with the initial conditions

k0(0, y, y
′, x, ξ)= δ(y′ − y);(1.11)

k−s(0, y, y′, x, ξ)= 0, ∀s ∈N,
it is easy to prove that ifk is of the type (1.9) and (1.10), (1.11) hold, then
the operatorK verifies

LKG(t, y, x)= 0 ∀(t, y, x) ∈ΩT , ∀G ∈C∞0 (Ω),(1.12)

KG(0, y, x)=G(y, x), ∀G ∈C∞0 (Ω).(1.13)

Now we suppose that,∀s ∈N0, k−s keeps the test functions parity. Fixed
G ∈ C∞0 (Ω+), we denote byGd andGp respectively the odd and the
even extension ofG with respect toy. Putting

K(1)G=KGd, K(2)G=KGp(1.14)

we obtain thatK(1)G andK(2)G satisfy (1.12) and (1.13) fory > 0.
Moreover the functions in (1.14) are solutions of (0.4) and (0.5)
respectively, by their symmetry property.

That being stated, we determine the series (1.9) such that (1.10), (1.11)
and the condition

k−s(t,−y,−y′, x, ξ)= k−s(t, y, y′, x, ξ) ∀s ∈N0(1.15)

are satisfied.
Fixedϕ ∈ C∞0 (Ry ′), we put:

U−s(t, y, x, ξ)= 〈
k−s(t, y, y′, x, ξ), ϕ(y′)

〉
, s ∈N0.(1.16)

So (1.10) and (1.11) entail that we can find the sequence{U−s}s∈N0
, by

recurrence, solving the following transport problems:
(
∂t − ∂2

y + ω2y2+ i∑i ai(0, x)ξi
)
U0= 0

(t, y, x, ξ) ∈ΩT ×Rn,
U0(0, y, x, ξ)= ϕ(y) (y, x, ξ) ∈Ω ×Rn,

(1.17)

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
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M1U−s =−(M0U−s +M1U−s+2+ · · ·

+M−s+1U0) (t, y, x, ξ) ∈ΩT ×Rn, s > 1,
U−s(0, y, x, ξ)= 0 (y, x, ξ) ∈Ω ×Rn,

(1.18)

whereω= ω(x, ξ)� 0 is the function in (0.3).

2. Resolution of the transport systems

For everyξ ∈Rn − {0} we set:

τ = tω; z= yω1/2; ξ̇ = ξ/ω;(2.1)

g(z,ω)= ϕ(z/ω1/2);(2.2)

ei
∑

j
aj (0,x)ξ̇j τ u−s(τ, z, x, ξ̇ ,ω)= ωsU−s(τ/ω, z/ω1/2, x, ξ̇ω

)
,(2.3)

s � 0.

Then letm−s
−h(τ, z, x, ξ̇ ,ω, ∂τ , ∂z, ∂ξi ), s, h � 0 be the operators defined

by:

ωh+sM−hU−s
(
τ/ω, z/ω1/2, x, ξ̇ω

)=−m−s
−hu−s(τ, z, x, ξ̇ ,ω).(2.4)

So the foregoing positions turn the transport systems into the following
differential problems inR̄+τ ×Rz, with parameter(x, ξ̇ ,ω) ∈Rn× (Rn−
{0})×R+: {(

∂τ − ∂2
z + z2

)
u0 = 0,

u0(0, z)= g(z,ω),
(2.5)

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
(
∂τ − ∂2

z + z2
)
u−s

=m−s+1
0 u−s+1+ · · · +m0−s+1u0, s ∈N,

u−s(0, z)= 0.

(2.6)

By imposing to the functionsu−s , s ∈ N0, the additional condition of
rapidly decreasing on̄R+τ ×Rz, we have that the solutions of the systems
(2.5)–(2.6) are unique. So we can obtain their expression using the results
in [4].
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Let {ϕk(z)}k∈N0 be the Hermite functions (see [1]). We introduce (see
[4]) the fundamental solution of the problem (2.5)

Φ0(τ, z, z
′)= π−1/2

+∞∑
k=0

e−(2k+1)τϕk(z)ϕk(z
′),(2.7)

it is infinitely differentiable inR+τ ×Rz ×Rz′ and belongs toC∞(R̄+τ ×
Rz,D

′(Rz′)).
We have proved (see [4, §3]) that the operators

T :g ∈ C∞0 (Rz)→
+∞∫
−∞

Φ0(τ, z, z
′)g(z′)dz′,(2.8)

Z :f ∈ C∞0 (R+τ ×Rz)→
τ∫

0

dτ ′
+∞∫
−∞

Φ0(τ − τ ′, z, z′)f (τ ′, z′)dz′;(2.9)

have values inS(R̄+τ ×Rz) and the functionu= T g + Zf is the unique
solution belonging toS(R̄+τ ×Rz) of the following auxiliary problem{(

∂τ − ∂2
z + z2

)
u= f (τ, z),

u(0, z)= g(z).(2.10)

So we deduce that the sequence defined by recurrence

u0 = T g; u−s = Z(m−s+1
0 u−s+1+ · · · +m0

−s+1u0
)
, s ∈N(2.11)

solves (2.5) and (2.6).
Now setting

B =−∂z + z, B̄ = ∂z + z,(2.12)

we consider the following operator

D = Bh1B̄k1Bh2B̄k2 . . .Bhl B̄kl(2.13)

wherel, h1, . . . , hl, k1, . . . , kl are non negative integers.
Put

ν = (k1+ · · · + kl)− (h1+ · · · + hl);(2.14)
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we call v index associate toD. In [3] it has been proved (see Proposi-
tion 1.2) that

DTg= e−2ντ T Dg ∀g ∈C∞0 (Rz).(2.15)

That being stated it is immediate to prove the following composition
lemma:

LEMMA 1. –Let a ∈ R andp,q ∈ N0. Then, ifD is an operator of
the type(2.13) with index associateν, it results:

Z
(
τpeaτ ∂qτ DT g

)= (
τpeaτ ∗ e2ντ )∂qτ DT g ∀g ∈C∞0 (Rz),(2.16)

where

(f ∗ g)(τ)=
τ∫

0

f (τ − τ ′)g(τ ′)dτ ′.(2.17)

The following result holds:

THEOREM 2. –For everys ∈ N , there is a distributionΦ−s(τ, z, z′;
x, ξ̇ ,ω) in C∞(R+τ × Rz × Rz′ × Rnx × (Rn − {0})) ∩ C∞(R̄+τ × Rz,
D′(Rz′)) definable by recurrence fromΦ0(τ, z, z

′), such that

u−s(τ, z, x, ξ̇ ,ω)(2.18)

=
+∞∫
−∞

Φ−s(τ, z, z′;x, ξ̇ ,ω)g(z′,ω)dz′, τ > 0.

Proof. –By the structure of the operatorsm−s
−h, from Lemma 2.1 and

(2.11) it follows that the functionu−s(τ, z, x, ξ̇ ,ω), ∀s ∈N , is finite sum
of product of the typec(x, ξ̇ )τpeaτ ∂qτ DT g, with D of the type (2.13),
p,q ∈ N0 anda integer. This fact suggests to introduce a familyP of
operators:

P = P (
τ,eτ ,e−τ ,B, B̄;x, ξ̇)(2.19)

whereP(ζ1, . . . , ζs;x, ξ̇ ) is a polynomial inζ , with C∞ coefficients
depending onx and ξ̇ . By using the composition lemma we have that
for everyP ∈P there is a unique operatorP (∗) ∈P such that

ZPTg = P (∗)T g ∀g ∈ C∞0 (Rz).(2.20)
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Becausem−s
−h ∈ P , ∀s, h ∈N0, put

Φ−s = (
m−s+1

0

)
(∗)Φ−s+1+ · · · + (

m0
−s+1

)
(∗)Φ0(2.21)

from (2.6) we obtain (2.18). ✷
Now we observe that, thanks to composition lemma, the application

P → P (∗) keeps the parity respect toz. On the other hand the structure of
L implies that the operatorsm−s

−h are even respect toz; then, from (2.7)
and (2.21) we have

Φ−s(τ, z, z′, x, ξ̇ ,ω)≡Φ−s(τ,−z,−z′, x, ξ̇ ,ω) ∀s ∈N0.(2.22)

That being stated, using Theorem 2.2 and (2.3) we have that the functions

ωsU−s(t, y, x, ξ)= ω1/2eit
∑
aj (0,x)ξj(2.23)

×
+∞∫
−∞

Φ−s
(
tω, yω1/2, y′ω1/2, x, ξ,ω

)
ψ(y′)dy′, s ∈N0

are solutions of the transport problems. So, we have proved the following

THEOREM 3. –For everys ∈N0, put:

k−s(t, y, y′, x, ξ)(2.24)

= ω1/2−seit
∑
aj (0,x)ξjΦ−s

(
tω, yω1/2, y′ω1/2, x, ξ,ω

)
,

then (1.10), (1.11) and (1.14) are satisfied. Therefore the series(1.9),
formed by symbols(2.24), gives a formal solution of Eq.(1.5).

3. Estimates for the auxiliary problem

Let g ∈ S(Rz) and let f ∈ S(R̄+τ × Rz). Let u ∈ S(R̄+τ × Rz) the
solution of the problem (2.10) with datag andf .

If p, q are seminorms inS(R̄+τ ×Rz) and if r is a seminorm inS(Rz),
the position:

p(u)≺ r(g)+ g(f )
denotes the continuity of the operator(f, g)→ u with respect to the
seminormsr, q,p.
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Now we put:

[f ] = sup
R̄+τ ×Rz

∣∣f (τ, z)∣∣ ∀f ∈ S(R̄+τ ×Rz),(3.1)

[g] = sup
Rz

∣∣g(z)∣∣ ∀g ∈ S(Rz),(3.2)

ϑ(z)= (
1+ z2)1/2

,(3.3)

and we prove the following

LEMMA 4. –For everyh ∈ R it results:[
θhu

]≺ [
ϑhg

]+ [
ϑh−2f

]
.(3.4)

Proof. –We put

u= (2+ cosz)/
(
c2+ z2)h/2w,(3.5)

wherec is a positive number large enough to determine. The function
w ∈ S(R̄+τ ×Rz) is solution of the problem

∂τw = ∂2
z w+ b(z)∂zw− a(z)w
+f (τ, z)(c2+ z2)h/2, τ > 0,

w(0, z)= (c2+ z2)h/2/(2+ cosz)g(z),

(3.6)

where

a(z)= z2+ cosz/(2+ cosz)+ h(2zsinz+ 1)/
(
c2+ z2)(3.7)

+ h(h− 2)z2/
(
c2+ z2)2

.

Being:

z2+ cosz/(2+ cosz)� π2/9− 1 ∀z ∈Rz
fixedh, it is possible to takec so large that

a(z)�C
(
1+ z2) ∀z ∈Rz,(3.8)

whereC > 0. Then, by classical procedure, one proves that

[w] ≺ [
w(0, z)

]+ [
f (τ, z)

(
1+ z2)h/2−1]
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so the thesis follows by (3.5) and (3.6).✷
Now we introduce the seminorms with two indexes

[f ]h,k =
k∑
i=0

[
ϑh−i∂k−iz f

]
, f ∈ S(R̄+τ ×Rz), h ∈R, k ∈N0,(3.9)

[g]h,k =
k∑
i=0

[
ϑh−i∂k−iz g

]
, g ∈ S(Rz), h ∈R, k ∈N0.(3.10)

It is easy to prove that:

[f ]h,k � [f ]h+r,k+r , [g]h,k � [g]h+r,k+r , ∀r > 0.(3.11)

Reasoning by induction onk, from Lemma 3.1 we have:

PROPOSITION 5. –For everyh ∈ R andk ∈N0 it results:

[u]h,k ≺ [g]h,k + [f ]h−2,k.(3.12)

Using the seminorms with three indexes

[f ]h,k,p =
p∑

p′=0

[
τp

′
f
]
h−2(p−p′),k(3.13)

one can prove the following:

PROPOSITION 6. –For everyh ∈ R, k,p ∈N0 it results:

[u]h,k,p ≺ [g]h−2p,k + [f ]h−2,k,p.(3.14)

In order to be able to estimate the generic seminorm[τp∂qτ ϑh∂kz u] we
must define at first the seminorms with four indexes:

[f ;h, k,p, q] = ∑
h′,k′,p′,q ′

[
∂q

′
τ f

]
h′,k′,p′ ∀f ∈ S(R̄+τ ×Rz),(3.15)

[g;h, k,p, q] = ∑
h′,k′,p′,q ′

[g]h′−2p′,k′+2q ∀g ∈ S(Rz),(3.16)

where
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0� q ′ � q; 0 � p′ � p;(3.17)

h′ − 2p′ + k′ + 2q � h− 2p+ k + 2q.

So (3.14) becomes:

[u;h, k,p,0] ≺ [g;h, k,p,0] + [f ;h− 2, k,p,0].(3.18)

Now we prove

PROPOSITION 7. –For everyh ∈ R, k,p ∈N0 it results:

[u;h, k,p,1] ≺ [g;h, k,p,1] + [f ;h− 2, k + 2,p,0],(3.19)

while,∀q ∈N , we have:

[u;h, k,p, q] ≺ [g;h, k,p, q] + [f ;h− 2, k + 2,p, q − 1].(3.20)

Proof. –We remark that if (3.17) holds it results

[f ;h′, k′,p′, q ′] ≺ [f ;h, k,p, q], [g;h′, k′,p′, q ′] ≺ [g;h, k,p, q].
That being stated, from equation in (2.10) we obtain

[∂τu]h,k,p ≺ [u]h,k+2,p + [u]h+2,k,p + [f ]h,k,p
from which, by initial remark:

[∂τu]h,k,p ≺ [g;h, k+ 2,p,0] + [f ;h− 2, k + 2,p,0]
+ [f ;h, k,p,0]

≺ [g;h, k,p,1] + [f ;h− 2, k + 2,p,0]
and so (3.19). Now, differentiating the equation in (2.10)[

∂2
τ u

]
h,k,p

≺ [u;h, k+ 2,p,1] + [u;h+ 2, k,p,1]
+ [f ;h, k,p,1]

≺ [u;h, k+ 2,p,1] + [f ;h, k,p,1],
and using (3.19), we have[

∂2
τ u

]
h,k,p

≺ [g;h, k+ 2,p,1] + [f ;h− 2, k + 4,p,0]
+ [f ;h, k,p,1]

≺ [g;h, k,p,2] + [f ;h, k,p, q − 1]



N.A. D’AURIA, O. FIODO / Bull. Sci. math. 125 (2001) 169–195 183

and then (3.20) forq = 2. Reasoning by induction the thesis follows.✷
Let f = f (τ, z; η̇, x, ξ̇ ,ω) ∈ C∞(R̄+τ , S(Rz)), infinitely differentiable

with respect to the parameters:

x ∈Rn; (η̇, ξ̇ ) ∈R × (
Rn− {0}); ω ∈R+.

Fixedm ∈R we denote byIm the space of the functionsf (τ, z; η̇, x, ξ̇ ,ω)
such that: [

τpzh∂qτ ∂
k
z f

]≺ ωn+(h+k)/2+q ∀p,h, k ∈N0,(3.21)

uniformly with respect to(x, η̇, ξ̇ ) on the compact subsets ofRnx × R ×
(Rn− {0}), and toω on the sets of the typeω� a with a > 0.

The Proposition 3.4 gives

PROPOSITION 8. – If{
ϑ−2(∂τ − ∂2

z + z2)u(τ, z; η̇, ξ̇ ,ω)∈ Im,
u(0, z; η̇, x, ξ̇ ,ω)= 0,

(3.22)

then we have

u ∈ Im.(3.23)

4. Estimates for transport problems

Let Im be the space of the functions

F(t, y, η, x, ξ)= f (tω, yω1/2, ηω1/2, x, ξ/ω,ω
)
, f ∈ Im,(4.1)

and letI =⋃
m∈R Im. It is necessary to point out:

F ∈ Im⇒ tF ∈ Im−1, yF ∈ Im, ∂yF ∈ Im+1.(4.2)

Now we introduce the seminorms:[
tpyh∂qt ∂

k
y ∂
α
x ∂

β
ξ ∂

γ
η F

]
(4.3)

= sup
[0,T ]×Ry×X

sup
|η|�a|ω|1/2

∣∣tpyh∂qt ∂ky ∂αx ∂βξ ∂γη F (t, y, η, x, ξ)∣∣



184 N.A. D’AURIA, O. FIODO / Bull. Sci. math. 125 (2001) 169–195

wherea is a positive number andX is a compact subset ofRnx .
If p(F) is a seminorm of the type (4.3), with

p(F)� |ξ |α, α ∈R,(4.4)

we denote that there is a constantC, independent ofξ , such that

p(F)� C|ξ |a.(4.5)

It is easy to prove that ifF ∈ Im we have:[
tpyh∂qt ∂

k
yF

]
� |ξ |m−p+2q+k.(4.6)

The following lemma holds

LEMMA 9. –LetU(t, y, η, x, ξ) ∈ I . If

(
1+ y2ω

)−1
M1U ∈ Im, U(0, y, η, x, ξ)= 0

we haveu ∈ Im−1 also.

That being stated, letψ(y) ∈ C∞0 (Ry) and letU0(t, y, η, x, ξ) be the
solution of the first transport problem with data eiyηψ(y). We have

PROPOSITION 10. –The functionU0(t, y, η, x, ξ) belongs toI 0.

Proof. –By construction we have:

U0(t, y, η, x, ξ)= eit
∑

j
aj (0,x)ξj T

(
eiη̇zψ

(
z/ω1/2))(tω, yω1/2)(4.7)

= eit
∑

j
aj (0,x)ξj u0

(
tω, yω1/2η,ω

)
.

Putg(z,ω)= eiη̇zψ(z/ω1/2) we get

[g;h, k,p, q]� |ξ | h+k2 +qcψ ,(4.8)

where cψ denotes the seminorm onC∞0 (Ry). By Proposition 3.4 the
thesis follows. ✷

From (4.7) we have:

∂γη ∂
α
x ∂

β
ξ U0 ∈ I ∀α,β, γ,(4.9)
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and by Lemma 4.1, with inductive procedure, we obtain that:

∂γη ∂
α
x ∂

β
ξ U0 ∈ I−|β| ∀α,β, γ .(4.10)

From (4.2) and (1.8), as well as Proposition 4.2, we get that

(
1+ y2ω

)−1
M−sU0 ∈ I−s ∀s ∈N0.(4.11)

Reasoning by induction on transport problems starting by Lemma 4.1,
we get

PROPOSITION 11. –Let {U−s(t, y, η, x, ξ)}s∈N0 be the sequence of
solutions of the transport systems, with dataeiyηψ(y), such thatU−s ∈ I ,
∀s ∈N0. Then we have:

∂γη ∂
α
x ∂

β
ξ U−s ∈ I−|β|−s ∀s ∈N0.(4.12)

5. A class of symbols

Let k(t, y, y′, x, ξ) ∈ C∞(]0, T ]×Ry×Ry ′ ×Rn×Rn) and letm ∈R.
We say thatk ∈ Um if there is a functionψ0 ∈C∞0 (Ry), with value 1 in a
neighbourhood of manifoldy = 0, such that putting∀r ∈N0:

ψr(y)=ψ0
(
y/(r + 1)

)
,

(5.1)
U(r)(t, y, η, x, ξ)= 〈

k(t, y, y′, x, ξ),eiηy
′
ψr(y

′)
〉
,

the functionsU(r) extend toC∞(Ω̄T ×Rn+1) and the estimates hold:[
tpyh∂qt ∂

k
y ∂
α
x ∂

β
ξ ∂

γ
η U

(r)
]
�

(
1+ |ξ |)−p+2q+k−|β|+m

,(5.2)

∀r ∈N0, ∀(p,h, q, k,α,β, γ )∈N2n+5
0 .

Now we putU∞ =⋃
mU

m;U−∞ =⋂
mU

m.
If k ∈U∞ and (5.2) holds∀ψ0 ∈C∞0 (Ry), k is a symbol onΩT . So we

can associate tok the operatorK defined in (1.2). For everyχ ∈C∞(Rn)
such thatχ = 0 for |ξ |< ρ andχ = 1 for |χ |> ρ ′ with 0< ρ < ρ ′, we
have that the functionsχ(ξ)k−s , k−s has been constructed in Section 2,
are symbols belonging toU

1
2−s , as one can deduce from the results of

Section 4. However we can associate some local operators to the generic
elementk ∈U∞.



186 N.A. D’AURIA, O. FIODO / Bull. Sci. math. 125 (2001) 169–195

Let A �Ω,A open, and letψA ∈ {ψr} be a function with value 1 on
the y-projection ofA. We fix a functionζ ∈ C∞0 (R), with value 1 in a
neighbourhood of zero and put:

ζ(η, ξ)= ζ (η4/(1+ |ξ |2)).(5.3)

If k ∈ U∞, we will saylocal operatorassociated toK , next

KA :G ∈ C∞0 (Ω)→KAG(5.4)

=
∫
Rn+1

eix·ξ
〈
k(t, y, y′, x, ξ),eiηy

′
ψA(y

′)
〉
ζ(η, ξ)G̃(η, ξ) d̄η d̄ξ

whereG̃(η, ξ)=Fy→ηFx→ξ (G(y, x)).
It is easy to prove that, by (5.2) and by structure of functionζ , we

haveKAG ∈ C∞(Ω̄T ), ∀G ∈C∞0 (Ω). If k is also a symbol, we have that
KAG=KG ∀G ∈ C∞0 (A), this is true also if in (5.4) one putsζ = 1.

Now we prove the following

THEOREM 12. –If k ∈ Um, then the local operatorKA associated to
k extends as a linear continuous operator

Hσ
comp(Ω)→ Cq+k

([0, T ] ×Ry,Hσ−2q−k−m−(1/4)
loc

(
Rn

))
∀σ ∈R and∀q, k ∈N0.

Proof. –Fixedσ, q, k, we putσ ′ = σ −2q− k−m− (1/4). The thesis
is equivalent to

sup
[0,T ]×Ry

∥∥∂qt ∂ky (ϕKAG)∥∥Hσ ′ (Rn) � C‖G‖Hσ (Ω)(5.5)

∀ϕ,G ∈ C∞0 (Ω),
whereC is a positive constant independent ofG.

In order to prove (5.5), we put

UA(t, y, η, x, ξ)= 〈
k(t, y, y′, x, ξ),eiηy

′
ψA(y

′)
〉

and

V (t, y, η, x, ξ)= ϕ(y, x)ζ(η, ξ)UA(t, y, η, x, ξ)(5.6)
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such that

ϕKAG=
∫
Rn+1

eix·ξV (t, y, η, x, ξ)G̃(η, ξ) d̄η d̄ξ.

From (5.6), by structure ofζ(η, ξ)we have that the functionV satisfies
(5.2). BeingV ∈ C∞0 (Ω,C∞([0, T ] × Rn+1)), by a famous theorem
about direct product (see [11]), we have

V (t, y, η, x, ξ)=
+∞∑
j=0

λjΦj (x)Vj (t, y, η, ξ),(5.7)

where
∑
j |λj | < +∞, {φj (x)}j∈N0 is a bounded sequence ofC∞0 (Rn),

the functionsVj(t, y, η, ξ) satisfy (5.2) uniformly respect toj and the
y-projections of their supports are in the same compact ofRy . So, we can
supposeV independent ofx. In that case we have:

F
x→ξ

(
∂qt ∂

k
yϕKAG

)= ∫
R

∂qt ∂
k
yV (t, y, η, ξ)G̃(η, ξ) d̄η.

Being the support ofV included in a region of the type|η| < a|ξ |1/2,
a > 0, from (5.2) we deduce:(

1+ |ξ |)σ ′ ∣∣ F
x→ξ

∂qt ∂
k
yϕKAG

∣∣
�

(
1+ |ξ |)σ ′+2q+k+m+(1/4)

(∫
R

∣∣ζ(η, ξ)∣∣2∣∣G̃(η, ξ)∣∣2 d̄η
)1/2

.

Since on the support ofζ(η, ξ) results(1+ |ξ |)∼= (1+ |ξ | + |η|), from
the last inequality the (5.5) follows.✷

From this theorem we have

THEOREM 13. –If k ∈ U∞, then the operatorsKA are linear and
continuous:

E′(Ω)→ C∞
([0, T ] ×Ry,D′(Rn)).

If k ∈U−∞, then the operatorsKA are regularizing, that is they are linear
and continuous fromE′(Ω) toC∞(Ω̄T ).
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Using (5.2) for the functionV , by well-known procedure, one can
prove the next

THEOREM 14. –If k ∈ U∞, then the operatorsKA are pseudolocal.
This means that ifG ∈ E′(Ω) ∩ C∞(B) thenKAG ∈ C∞([0, T ] × B),
whereB is an open subset ofΩ .

6. Construction of a Poisson operator

We consider the formal series (1.7), built by symbolsk−s of Section 3.
For everys, r ∈N0, we put

U(r)−s (t, y, η, x, ξ)=
〈
k−s(t, y, y′, x, ξ),eiy

′ηψr(y
′)
〉
.(6.1)

Let {Xs}s∈N0 be a sequence of compact coveringRn. However said about
k−s , from (5.2) we have that,∀s ∈N0, there is a positive constantCs such
that

sup
∣∣tpyh∂qt ∂ky∂αx ∂βξ ∂γη U(r)−s ∣∣ � Cs|ξ |−p+2q+k−|β|−s+(1/2)(6.2)

respect to

t ∈ [0, T ]; y � 0; x ∈Xs; |η|� |ξ |1/2/(s + 1),(6.3)

and to:

r � s; p+ h+ q + k + |α| + |β| + γ � s.(6.4)

On the other hand, by structure of symbolsk−s , it is easy to prove that is
possible to choose the constantCs such that

sup
∣∣tpyhy′h′∂qt ∂ky ∂k′y ′∂αx ∂βξ k−s(t, y, y′, x, ξ)∣∣ � Cs|ξ |−s(6.5)

respect to:

t ∈ [1/(s + 1), T ]; y � 0; y′ � 0; x ∈Xs.(6.6)

Now we denote byχ ∈ C∞ a function equal to zero in[−1,1] and equal
to 1 outside of the interval(−2,2). We put:

ρs = 2sCs.(6.7)
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In view of the construction, by (6.2), (6.3) and (6.4), we have∀s ∈N0

sup
∣∣tpyh∂qt ∂ky∂αx ∂βξ ∂γη χ(|ξ |/ρs)U(r)−s ∣∣ �C2−s |ξ |−p+2q+k−|β|+(1/2),(6.8)

whereC is independent ofs; while by (6.5) and (6.6) we have that there
is s̄ ∈N0 such that,∀s � s̄:

sup
∣∣tpyhy′h′∂qt ∂ky∂k′y ′∂αx ∂βξ χ(|ξ |/ρs)k−s∣∣ � C2−s .(6.9)

In view of this fact, with the position:

k′(t, y, y′, x, ξ)=
+∞∑
s=0

χ(|ξ |/ρs)k−s(t, y, y′, x, ξ)(6.10)

we define a function belonging toU1/2.
Using the same functionζ(η, ξ) and the openA � Ω introduced

in Section 5, we denote withK ′
A the local operators associated to

k′(t, y, y′, x, ξ) by (5.4). From Theorem 5.1 follows thatK ′
A is linear

and continuous fromE′(Ω) toC∞([0, T ] ×Ry,D′(Rn)).
We prove

THEOREM 15. –For everyG ∈E′(Ω) we have

LK ′
AG ∈C∞(Ω̄T ).

Proof. –At first we observe that the operatorsLK ′
A are local operators

associated toMk′. By Theorem 5.2 it is necessary to prove thatMk′ ∈
U−∞.

Fixedh ∈N we observe that by construction it results

M =
h∑
s=1

M−s + thM∗
h ,(6.11)

whereM∗
h is an operator withC∞ coefficients. So we have

Mk′ −
h∑

s=−1

M−sk′ ∈U−h+1/2.(6.12)

That being stated, putχs(ξ)= χ(|ξ |/ρs), we have:
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h∑
s=−1

M−sk′ =
h+1∑
s=0

M1−sk′ =
h+1∑
s=0

M1−s
h+1−s∑
s ′=0

(
χs ′(ξ)− 1

)
k−s ′

+
h+1∑
s=0

∑
s+s ′�h+1

M1−sk−s ′

+
h+1∑
s=0

M1−s
∞∑

s ′=h−s+2

χs ′(ξ)k−s ′

= h(1)+ h(2) + h(3).
It is clear thath(1) ∈ U−∞, because it is a function equal to zero forξ
large enough. The functionh(2) is equal to zero by (1.10), while it is easy
to prove thath(3) ∈ U−h+1/2. From (6.12) we have thatMk′ ∈ U−h+1/2.
The thesis follows becauseh is arbitrary. ✷

FixedG ∈E′(Ω), and put

G1(y, x)= F−1
η→y F−1

ξ→x ζ
(
η4/(1+ |ξ |2))G̃(η, ξ) ∈ S ′(Rn+1),

we have the next

THEOREM 16. –For every G ∈ E′(Ω) such that suppG ⊂ A, it
results:

K ′
AG(0, y, x)−G1(y, x) ∈ C∞(Ω).(6.13)

Proof. –Using the transport systems one can prove that

K ′
AG(0, y, x)−ψA(y)G1(y, x) ∈C∞(Ω).(6.14)

BeingψA(y) = 1 on they-projection ofA, from (6.14) follows that the
left hand in (6.14) belongs toC∞(A). On the other hand, if suppG ⊂
A′ ⊂A, we have thatG= 0 inΩ −A′; the thesis follows by the pseudo
local theorem. ✷
7. A second process of homogenization

We introduce a new definition of pseudo-homogeneity. Leta(t, y, η,

x, ξ) a function belongs toC∞(Ω̄T × (Rn+1 − {0})) and letm ∈ R. We
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will say thata is apseudo-homogeneous symbol of degreem if, ∀λ > 0,
it results:

a
(
t/λ2, y, ηλ, x, ξλ

)≡ λma(t, y, η, x, ξ).(7.1)

As in Section 1, letO be an operator that leaves unchanged the class
of pseudo-homogeneous symbols. We will say thatO has pseudo-order
h if, ∀m ∈ R, it transforms pseudo-homogeneous symbols of degreem

in orders of degreem + h. In particular the operatorst, ∂t , ∂ξ , ∂η have
pseudo-order respectively equal to−2,2,−1,−1.

We now constructk′′(t, y, η, x, ξ) as a formal series of pseudo-
homogeneous symbols such that put:

K ′′ :G(y, x) ∈C∞0 (Ω)→K ′′G(7.2)

=
∫
Rn+1

ei(x·ξ+yη)k′′(t, y, η, x, ξ)G̃(η, ξ) d̄η d̄ξ

the functionK ′′G is a solution of the problem (1.4),∀G ∈C∞0 (Ω).
Putting

N(t, y, x, ξ, η, ∂t , ∂y, ∂x)= L(t, y, x, ∂t , iη+ ∂y, · · · iξj + ∂xj · · ·)(7.3)

and reasoning as in Section 1, one can prove that this is obtained if and
only if it results

Nk′′(t, y, η, x, ξ)= 0.(7.4)

Using the Mac Laurin series expansion with respect to the variablet

of the coefficients ofL, it is possible to exhibitN as follows:

N =
+∞∑
h=−2

N−h(7.5)

where,∀h�−2, N−h has pseudo-order−h. Developing one obtains

N2= ∂t + η2+ y2
∑
i,j

aij (0, x)ξiξj ,(7.6)

N1=−2iη∂y − 2iy2
∑
i,j

aij (0, x)ξi∂xj + iyb(0, x)η(7.7)

+ i∑
j

aj (0, x)ξj ,
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N0=−∂2
y + y2

∑
i,j

(
t∂taij (0, x)ξiξj − aij (0, x)∂xi ∂xj

)
(7.8)

+ yb(0, x)∂y +
∑
j

aj (0, x)∂xj + c(0, x)

and also, forr ∈N0

N−2r−1= t r+1

(r + 1)!
[
−2iy2

∑
i,j

∂r+1
t aij (0, x)ξi∂xj(7.9)

+ iy∂r+1
t b(0, x)η+ i∑

j

∂r+1
t aj (0, x)ξj

]

N−(2r+2)= t r+2

(r + 2)!y
2
∑
i,j

∂r+2
t aij (0, x)ξiξj + t r+1

(r + 1)!(7.10)

×
(
−y2

n∑
i,j=1

∂r+1
t aij (0, x)∂xi ∂xj + y∂r+1

t b(0, x)∂y

+
n∑
j=1

∂r+1
t aj (0, x)∂xj + ∂r+1

t c(0, x)
)
.

We suppose that the symbolk′′ has the form

+∞∑
h=0

k−h(t, y, η, x, ξ),(7.11)

wherek−h, ∀h ∈N0, is a symbol pseudo-homogeneous of degreem− h,
wherem is a real number to determine. Reasoning as in Section 1 and
using (7.2) we arrive to the following transport systems:{

N2k0= 0 (t, y, η, x, ξ) ∈ΩT × (Rn+1− {0}),
k0(0, y, η, x, ξ)= 1 (y, η, x, ξ) ∈ΩT × (Rn+1− {0}),(7.12)

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .{
N2k−h +N1k−h+1+ · · · +N−h+2k0 = 0,

k−h(0, y, η, x, ξ)= 0.
h > 0(7.13)

By virtue of (7.6) and (7.12) we have

k0(t, y, η, x, ξ)= e−(η
2+ω2y2)t(7.14)
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and sok0 is a pseudo-homogeneous symbol of degree zero. Reasoning by
recurrence one can prove that

k−h(t, y, η, x, ξ)= ph(t, y, η, x, ξ)e−(η2+ω2y2)t , h ∈N,(7.15)

whereph is a polynomial in(t, η, ξ), with coefficientsC∞(Ω), pseudo-
homogeneous of degree−h, null for t = 0.

LetX be a compact subset ofRn, by (7.14) and (7.15) we have

sup
[0,T ]×X

∣∣tp∂qt ∂ky ∂αx ∂γη ∂βξ k−h∣∣ � (
η2+ |ξ |2y2)−p+q− |β|

2 − γ2− k2− h2 |ξ |k.(7.16)

Let Y be a compact subset ofRy , we put]
a(t, y, η, x, ξ)

[= sup
∣∣a(t, y, η, x, ξ)∣∣(7.17)

respect to

t ∈ [0, T ], x ∈X, y ∈ Y, |ξ |1/2< c|η|, c > 0.(7.18)

By (7.16) we have]
tp∂qt ∂

k
y ∂
α
x ∂

γ
η ∂

β
ξ k−h

[
� η−2p−|β|−γ+k−h+4q(7.19)

∀(p, k,α,β, γ )∈N3+2n
0 .

We assume (7.19) as definition of spaceV −h, the meaning ofV∞ and
V −∞ is clear.

Let k ∈ V∞, let ζ(η, ξ) be the function introduced in Section 5. We put

G2(y, x)= F−1
η→y F−1

ξ→x
((

1− ζ(η, ξ))G̃(η, ξ))
=G(y, x)−G1(y, x),

∀G ∈E′(Ω) and we consider the operator

G ∈ C∞0 (Ω)→KG2(7.20)

=
∫
Rn+1

ei(x·ξ+yη)k(t, y, η, x, ξ)
(
1− ζ(η, ξ))G̃(η, ξ) d̄η d̄ξ.

By virtue of (7.19) we have that this operator has value inC∞(Ω̄T ).
Then, reasoning as in Section 5, one can prove that this operator extends
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as a linear and continuous operator fromE′(Ω) to C∞([0, T ],D′(Ω)).
If k ∈ V −∞, this operator is regularizing. By the same technique of
Section 6, one proves that there is a diverging sequence{ρh}h∈N0 of
positive number such that the series

+∞∑
h=0

χ
(|η|/ρh)k−h(t, y, η, x, ξ)

converges to a symbolk′′ ∈ V 0, for which we have

THEOREM 17. –For everyG ∈E′(Ω) results

LK ′′G2 ∈C∞(Ω̄T ),(7.21)

K ′′G2(0, y, x)−G2(y, x) ∈C∞(Ω).(7.22)

Now we are able to construct the Poisson operators for the problems
(0.4) and (0.5). LetA be an open ofΩ+, A � Ω+, and letK ′

A be the
operator built in Section 6. For (1.14) we define the operators

K
(1)
A :G ∈ C∞0 (Ω+)→K

(1)
A G=K ′

A∪(−A)(Gd)1+K ′′(Gs)2,

K
(2)
A :G ∈ C∞0 (Ω+)→K

(2)
A G=K ′

A∪(−A)(Gp)1+K ′′(Gp)2,

where−A= {(y, x): (−y, x) ∈A}.
It is clear thatK(i)A G, i = 1,2, belong toC∞(Ω̄+

T ). So, however said
we have the following

THEOREM 18. –For every openA, A � Ω+, the operatorsK(i)A ,
i = 1,2, extend as linear and contnuous operators:

E′(Ω+)→ C∞([0, T ],D′(Ω+))∩C∞(]0, T ] × [0,+∞[×R
n
)

and

LK
(i)
A G ∈ C∞(Ω̄+

T ), i = 1,2,

K
(i)
A G(0, y, x)−G(y, x) ∈C∞(Ω̄+), ∀G with suppG⊂A,

K
(i)
A G(t,0, x)= 0, ∂yK

(2)
A G(t,0, x)= 0, ∀t ∈]0, T ].



N.A. D’AURIA, O. FIODO / Bull. Sci. math. 125 (2001) 169–195 195

REFERENCES

[1] Avantaggiati A., Sviluppi in serie di Hermite – Fourier e condizione di analiticità
e quasi analiticità, in: Methods of Functional Analysis and Theory of Elliptic
Equations, Proceedings of the International Meeting, 1982, pp. 282–331.

[2] Boutet de Monvel L., Hypoelliptic operators with double characteristics and related
pseudodifferential operators, Comm. Pure Appl. Math. 27 (1974) 585–639.

[3] D’Auria N.A, Poisson operator for a degenerate parabolic problem, Rendiconto
dell’Acc. delle Scienze Fisiche e Matematiche (Soc. Naz. Sci. Lettere ed Arti in
Napoli), IV LXIII (1996).

[4] D’Auria N.A, Fiodo O., Boundary problems for degenerate parabolic operators of
second order, Rendiconto dell’Acc. delle Scienze Fisiche e Matematiche (Soc.
Naz. Sci. Lettere ed Arti in Napoli), IV LXV (1998) 67–92.

[5] Esposito V., Miserendino D., Poisson operators for Grüschin differential operators
with double characteristics and related continuity theorems, Ricerche di Matemat-
ica XLVI (1) (1997) 101–126.

[6] Igari K., Degenerate parabolic differential equations, Proc. Japan. Acad. 49 (1973)
229–232.

[7] Iwasaki C., The asymptotic expansion of the fundamental solution for parabolic
initial-boundary value problems and its application, Osaka J. Math. 31 (1994) 663–
728.

[8] Matsuzawa T., On some degenerate parabolic equations, II, Nagoya Math. J. 52
(1973) 61–84.

[9] Treves F., Introduction to Pseudodifferential and Fourier Integral Operators, Plenum
Press, New York, 1980.

[10] Tsutsumi C., The fundamental solution for a parabolic pseudodifferential operator
and paramatrices for degenerate operators, Proc. Japan. Acad. 51 (1975) 103–108.

[11] Yosida K., Functional Analysis, 4th edn., Springer-Verlag, Berlin, 1974.


