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Introduction

Let T€]0,+oo[ and let (z,y,x) € [0,T] x R x R". In [4] we
have considered the following degenerate parabolic operator, with real
coefficients:

n
L=0,—02—y* a;d,,
i,j=1
and we have constructed a solution for problem:
LU(t,y,x)=F(t,y,x) (t,y,x)€]0,T[x]0,4+oo[xR",
U(t,0,x)=H(t,x) (t,x) €]0, T[x R",
U(0, y,x) = Uo(y, x) (y,x) €10, +oo[x R",

under the following conditions: the quadratic form

> ai&iE;

i,j=1
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has constant coefficients and is definite positive, moreover the data of
problem are infinitely differentiable functions and rapidly decreasing
respect to(y, x). In particular, if F and H are zero everywhere, the
solutions isU = K Uy, whereK is a Poisson operator of the type

(0.1) Uge CF (10, +oo[x R")
+00 .
— @0 [y [ @ ki y ' x.6) F Uoly )
0 Rn

and it can be extended as a linear and continuous operator:

E’(]0, +00[x R") — C*([0, +00[, D'(]0, +00[x R"))
N C*(]0, +o00[x [0, +o0[x R").

If the operatorL has variable coefficients and it has pieces of lower
order, generally it is no possible obtain an exact solution of t[i&.
By pseudodifferential techniques it is possible to construct a Poisson
operator K such that, ifUp is a generalized function with compact
support in]0, +oo[x R", the distributionK Uy solves the problem for
less of infinitely differentiable error, so it is the singular part of the exact
solutions (see [5-10]).

In the present paper we talk over a problem of this type. We consider
the operator

(0.2) L=0,—037—y* > a;(t,x)dy0x, + yb(t, x)d,

ij=1
+ ) ai(t, x)dy, +c(t, x)
i=1

such that the following assumptions hold; (¢, x), a;(t, x), b(t, x),
c(t, x) are real valued and infinitely differentiable functions[@) 7] x
R"; the quadratic form:

Z a;;(t,x)&§&;, a;j(t,x)=aj(t,x),

ij=1
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is semi-definite positive, while

(0.3) @*(x, &) =Y a;;(0,x)&E;

i,j=1
is definite positive. We have studied the boundary problems:
(0.4) LU=0, U(0,x)=0, U@©,y,x)=G(y, x);
(050 LU=0, 3U(t,0,x)=0, U@y, x)=G(y,x),

with the following purpose: for every opea with compact closure in
10, +o0[x R", A €]0, +oo[x R", to construct two Poisson operators,
K andk'?, such that if

G(y,x) € E'(]0,400[xR"),
then, fori =1, 2, we have

(0.6) LK{G e C*®([0,T] x [0, 400[x R"),
(0.7) |imo(K§;')G —G) € C®([0, +00[xR") if suppG C 4,
t—

(0.8) KLGt,0,x)=0, 3,K?G(,0,x)=0, r€]0,Tl.

We use the formal series method (see papers mentioned above).
For each of problems (0.4) and (0.5), we search a series of pseudo-
homogeneous symbols (see [2,9]) with degree negatively diverging:

+o0
(0.9) Sk vy x,8), i=12,
=0

such that, by (0.1), the series (0.9) gives a formal solution of respective
problem. Then using classical techniques we construct desired operator.
We obtain the functiong(i’} by recurrence solving a sequence of
differential problems, called transport problems.
Since L is degenerate we use two different processes of homog-
enization. These processes lead to two different formal series, that
act on the distributionsG(y, x) such that the support ofi(n, &) =
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Fy—n Froe(G(y, x)) is included in a region of the type? < al£|, or
of the typen? > a|£|, a > 0, respectively. The final result is contained in
Theorem 7.2.

In Sections from 1 to 6 we construct the first series that leads to partial
differential equations solved in Section 2. In Sections 3 and 4 we establish
estimates for the transport problems solutions. These solutions fit in
suitable spaces of symbols of non standard pseudodifferential operators
(see Section 5). Section 6 is devoted to the construction of a Poisson
operator relative to the formal series found. In Section 7 we construct
the second series by classical techniques that lead to transport systems of
ordinary differential equations (see [7]). Finally we attain our aim by a
suitable connection between the series.

1. Pseudo-homogeneous symbols and transport systems

Put2 = R"!' =R, x R" and 27 =10, T[x£2 for any T > 0, we
denote by2* and2; subsets of2 and$2; such thaty > 0.

Now, letk(t,y,y’, x,&) € C*(£2r x Ry x (R, — {0})) be a slowly
increasing function respect tp. By (,) we denote the duality pairing
betweenCg®(§2) and D’'(£2). We say thak is a symbol ing27 if for any
Y € Co°(Ry):

L1) (k. y.y 3. 8),9()) = / kGt v,y %, )Y () dy
R/

can be extended as a function of cl&s$(£2; x (R, — {0})). In similar
way we define a symbol ;.

If k is a symbol in2; (respectively in2;"), infinitely differentiable in
27 x Ry x R, (respectively2; x R}, x R,), we consider the following
operator:

(1.2)  KG@. y,x)= /ei""§<k(t, ¥ x.6). G §))dk,
Ry

dg = (27) 7" &,
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whereG (y, x) € C(£2) (respectivelyCg®(£21)), and
Gu.6= [ ndr= £ (GO ).
Rll

Now let k = k(z, y,y', x,&) be a symbol inf2; or in £2;, and let
m € R. We say thak is pseudo-homogeneous of degred:

(1.3) k@a™t ya Y2 ya7YV2 x aE) = A"k(t,y, ¥, x,E) VaeRT.

It is easy to prove that ik is a pseudo-homogeneous symbol of degree
m, then the symbol:

ty"3!97 8Lk p,he RS, r,l € No, a, B € N}

is pseudo-homogeneous of degige- p — h/2+ 1+ r/2 — |B]. This
motivates the following definition: if: € R and O is an operator which
does not change the pseudo-homogeneous symbol class, we say that
has pseudo-order if it sends pseudo-homogeneous symbols of degree
m in pseudo-homogeneous symbols of deghee h.

Now we research a symbblin £27 such that:
(1.4) LKG(t,y,x)=0 V(t,y,x) € 27, VG € C5°(£2);
using (1.2), one can prove that (1.4) is equivalent to
(1.5) Mk(t,y,y,x,6)=0,
where

(16) M=M(ta y’xaga at’ay’ ax)zL(ta y’xa a[’ay’ ax +l§)

By Mac Laurin series expansion of the coefficients of the operator
with respect ta, we have the following decomposition:

+00
(1.7) M= M,
h=-1
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where#h is an integer, and/_, is an operator of pseudo-ordeth, for
everyh > —1; from the definitions

(1.8)  My1=0,—02+y*> a;(0.x)&E +lZa, (0, X)&;,

iJ

(1.8)  Mo=y*> t3,a;(0,x)&&; — 2iy*>_ a;;(0, x)&d;,
i,j i,J
+yb(0, )3y +it > 3,a;(0, x)&

+ Zai (O’ x)axi + C(Os x)

and, forh > 0,

" " g+l
(18) M_h = m ¢ |: Zaz /(t X)gl‘i:/
+i S, % |0.2)

h‘ah [ 2iy?> " a; j(t, x)&;0y, + yb(1, x)0y
ij

+ Zai (t, x)0y, +c(t, x)} (0, x)

h—1
— 2
(l’l 1), t { Zal /(t x)ax,ax]](o x).
We wantk as a formal series of pseudo homogeneous symbols
(19) Zk,s(l‘, yay/a-x’g)’
s=0

wherek_; is pseudo-homogeneous of degmee- s, heres is integer and
m is a real number to establish. In (1.5) we replachy (1.9) and we
obtain

(1.10) > M_yk_(t,y,y x.£)=0 Vr>-1.

h+s=r
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If we consider (1.10) with the initial conditions
(1.11) ko(0,y,y',x,6) =8(y" —y);
k*S(an’y/’an)zoa VSEN’

itis easy to prove that & is of the type (1.9) and (1.10), (1.11) hold, then
the operatoiX verifies

(1.12) LKG(t,y,x)=0 V(t,y,x) € 27, VG € C3°(£2),

(1.13) KG(0,y,x)=G(y,x), VG eCF ().

Now we suppose tha¥,s € Ny, k_,; keeps the test functions parity. Fixed
G € Cg(£21), we denote byG, and G, respectively the odd and the
even extension of; with respect toy. Putting

(1.14) KPG=KG,, K?G=KG,

we obtain thatk WG and K@ G satisfy (1.12) and (1.13) fop > 0.
Moreover the functions in (1.14) are solutions of (0.4) and (0.5)
respectively, by their symmetry property.

That being stated, we determine the series (1.9) such that (1.10), (1.11)
and the condition

(1.15)  k_y(t, =y, =y, x, &) =k_s(t,y, ¥, x,§) Vse Ny

are satisfied.
Fixedy € C5°(R,/), we put:

(1.16) U_(t,y,x,8) = (ks(t,y, Y, x,6),0(y)), s€No.

So (1.10) and (1.11) entail that we can find the sequgnte},y,, by
recurrence, solving the following transport problems:

(8 — 82+ w?y* +i3;4;(0,x)&)Ug=0
(117) (tay’xag)e‘QTXRn’

UO(O,ysx,f)Zﬁﬂ()’) (ysX,f)GQXRm
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+M7S+1UO) (tay’xag)e‘QT XRn’ S>1’
U0, y,x,6)=0 (y,x,&) e 2 xR,
wherew = w(x, &) > 0 is the function in (0.3).

MU_s = —(MoU_s + M1U_s 2+ ---
(1.18)

2. Resolution of thetransport systems

For every¢ € R, — {0} we set:

(2.1) T =tw; 7= yw'/? E=¢/w;

2.2) g(z, ) = ¢(z/0"?);

23) €210y (7,2, 5,8, 0) = 0 U_,(t/o, 2/0"? x, o),

s > 0.
Then letm—; (z, z, x, £, w,0,,0., ), s, h > 0 be the operators defined
by:

(2.4) a)h“M,hU,S(t/w, 7/ x, Sa)) =-—-m_ju_y(1,2,x, £, w).

So the foregoing positions turn the transport systems into the following
differential problems iR} x R,, with paramete(x, §, w) € R"” x (R, —
{OH) x R™:

(2.5) { (8 — 32+ 22)up = 0,
uo(0, z) = g(z, w),
(81— - 872 + Zz>u—v
(2.6) =my tu_ g+ +m° _qug, seN,

u_s(0,z)=0.
By imposing to the functions_,, s € No, the additional condition of
rapidly decreasing oR; x R, we have that the solutions of the systems

(2.5)—(2.6) are unique. So we can obtain their expression using the results
in [4].
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Let {¢x(2)}ren, b€ the Hermite functions (see [1]). We introduce (see
[4]) the fundamental solution of the problem (2.5)

+o0
2.7) Bo(1,2.2) =Y e @0 ()i (),
k=0

it is infinitely differentiable inR} x R, x R, and belongs t@ > (R} x
R;, D'(Ry)).
We have proved (see [4, 83]) that the operators

+oo
(2.8) TigeCF(R) > [ Bolrz. gk
T +C?O
(2.9) Z:feCP (R xR,) — /dr’ / Do(t —1,2,7) f(r', ) d;
0 —00

have values irﬁ(Rj x R;) and the functiont = Tg + Zf is the unique
solution belonging t& (R x R;) of the following auxiliary problem

(2.10) { (0, — 02+ %) u = f(z,2),

u(0,2) =g(2).
So we deduce that the sequence defined by recurrence
(2.11) up=Tg; u_,= Z(ma‘”lufﬁl + 1t m(lHluo), sEN

solves (2.5) and (2.6).
Now setting
(2.12) B=-9,+7z, B=29,+z,
we consider the following operator
(2.13) D = B pkighapke  phi gk
wherel, hy, ..., h;, k1, ..., k; are non negative integers.
Put

(2.14) v=C(kit--+k) = (hat-+h);
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we call v index associate td. In [3] it has been proved (see Proposi-
tion 1.2) that

(2.15) DTg=e%"TDg Vge C(R,).

That being stated it is immediate to prove the following composition
lemma:

LEMMA 1l.—Leta € R and p,q € Np. Then, if D is an operator of
the type(2.13) with index associate, it results

(2.16) Z(tPe€"31DTg) = (t7&'" x€”7)d"DTg Vg e CF(R,),

where
(2.17) (f % g)(0) = / f(z— g dr.
0

The following result holds:

THEOREM 2. —For everys € N, there is a distributiond_(z, z, z’;
x,§,w) in C®°(RY x R, x Ry x R" x (R, —{0}))) N C®(R} x R,
D’(R,)) definable by recurrence frodg(z, z, z’), such that

(2.18) u_s(r,z,x,é,w)

+o0
=/bes(f,z,Z/;X,é,w)g(z/,w)dz’, 7>0.
—0o0

Proof. —By the structure of the operators_j,, from Lemma 2.1 and
(2.11) it follows that the functiom_, (t, z, x, £, w), Vs € N, is finite sum
of product of the type-(x, é)rl’e‘”agDTg, with D of the type (2.13),
p,q € No anda integer. This fact suggests to introduce a fanfilyof

operators:
(2.19) P=P(t,€,€7, B, B;x,&)

where P(gl,...,gs;x.,é) is a polynomial in¢, with C* coefficients
depending onx and&. By using the composition lemma we have that
for every P e P there is a unique operatd™ e P such that

(2.20) ZPTg=P%Tg VgeCF(R,).
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Becausen_) € P, Vs, h € Ny, put
(2.21) D= (mg*™MPD_ g+ 4+ (m® )P Do

from (2.6) we obtain (2.18). O

Now we observe that, thanks to composition lemma, the application
P — P™ keeps the parity respect toOn the other hand the structure of
L implies that the operatora_j are even respect tg then, from (2.7)
and (2.21) we have

(2.22) &_y(1,z,7,x,E,0)=P_,(v,—z, -7, x,E,w) Vs e Np.

That being stated, using Theorem 2.2 and (2.3) we have that the functions

(2.23) W U_(t,y, x, &) = w2d! 2201005

+00

X / P_(tw, yol'?, y o2, x &, o)y (y)dy', s€ Ny

“o0
are solutions of the transport problems. So, we have proved the following
THEOREM 3. —For everys € Ny, put
(2.24) ks, v,y x,6)
— Y2sgt a0 (tw, yol, yo'? x, &, w),

then (1.10), (1.11) and (1.14) are satisfied. Therefore the seri¢k9),
formed by symbol&.24), gives a formal solution of Eq1.5).

3. Estimatesfor the auxiliary problem

Let g € S(R,) and let f € S(R} x R,). Let u € S(R} x R,) the
solution of the problem (2.10) with dagaand f.

If p, g are seminorms iIS(R;L x R;) and ifr is a seminorm ir§(R,),
the position:

pu) <r(g)+g(f)

denotes the continuity of the operatof, g) — u with respect to the
seminorms;, g, p.
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Now we put:
3.1) [f1= sup|f(r.2)| YfeSRS xR),
R xR,
(3.2) [¢]= Slgldg(z)! Vg € S(R.),
(3.3) 9(2) = (1+ 20"

and we prove the following

LEMMA 4.—For everyh € R it results

(3.4) [6"u] < [0"g] + [9"2f].
Proof. —We put

(3.5) u=(2+cosz)/ (2 +z2)"*w,

wherec is a positive number large enough to determine. The function
w € S(R x R,) is solution of the problem

d:w = 02w + b(2)d,w — a(z)w
(3.6) +f(T. )+, >0,

w(0,2) = (¢® +z9)"?/(2+ cosz)g (2),
where
(3.7) a(z) =z%+cosz/(2+ cosz) + h(2zsinz + 1)/ (c? + z7)

+h(h —2)2%/ (2 + ).
Being:
724 cosz/(2+4cosz) >n?/9—1 VzeR,

fixed i, it is possible to take so large that
(3.8) a(z) = C(1+z%) VzeR,

whereC > 0. Then, by classical procedure, one proves that

[w] < [w(0,2)] + [f(x, z)(l—l—zz)h/z_l]
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so the thesis follows by (3.5) and (3.6)0

Now we introduce the seminorms with two indexes

k
(B.9) [flwx=>_[0" 707 f], feS®RS xR, heR, ke Ny,
i=0
k . .
(3.10) [glhx=> [0" "0 "g], geS(R), heR, keNo.
i=0

It is easy to prove that:

(3.11)  [flnk <[flnsrk+rs  [8lnk <I[8lntritr, Yr>0.

Reasoning by induction oh from Lemma 3.1 we have:

PROPOSITION 5. —For everyh € R andk € Ny it results

(3.12) (i < [8lnx + [fln—2.k-

Using the seminorms with three indexes

p

(3.13) [Flikp = [Tp/f]h72(pfp’),k

p'=0

one can prove the following:

PROPOSITION 6. —For everyh € R, k, p € Ny it results

(3.14) (lni,p < [&lh—2pk + [fIn—2k,p-

In order to be able to estimate the generic seminprmgz?haﬁu] we
must define at first the seminorms with four indexes:

3.15) [fihk.pgl= > [0 flyp,y YfESRS xR,

.k p'.q

(3.16) [gihk.p.gl= > [8lwv-2pw+2g Vg ESR),

n.K.p'q'

where
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(3.17) 0<q¢'<q; 0<p' <p;
hW—2p' +k'+2¢g<h—-2p+k+2q.
So (3.14) becomes:
(3.18) [u;h,k, p,0) < [g;h,k, p,O1+[f;h—2,k, p,Q].

Now we prove

PROPOSITION 7. —For everyh € R, k, p € Ny it results
(3.19) [u;h k. p, U< Ilg; h k, p,U+[f;h—2k+2p,0l
while,Vg € N, we have
(3.20) [u;h,k,p,ql<Ig h.k,p,ql+[fih—2k+2 p,qg—1]

Proof. —We remark that if (3.17) holds it results

Lfsh K p,q1<1f:hk, p,ql, lg;h' k', p'.q'1<1g h,k, p,ql.

That being stated, from equation in (2.10) we obtain

[0culn i p < [Wlnkt2p + [Wlht2k,p + [ f ik p

from which, by initial remark:
[0:ulpi,p <8 h,k+2,p,0l+[f;h—2,k+2 p,0]
+[fih.k, p,0Q]
<lg:h,k,p, L]+ [f;h—2k+2, p,0]
and so (3.19). Now, differentiating the equation in (2.10)
[02u] 4, <3 hk+2, p, 1+ [us h + 2k, p,1]
+[fih.k, p,1]
<[u;h,k+2, p, 1 +[f; h,k, p, 1],
and using (3.19), we have
(02u] )4, <& k+2,p, 1+ 1f;h—2,k+4,p,0]
+[fsh.k, p, 1]
<lgih.k,p,21+[f;h, k, p,q—1]
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and then (3.20) fog = 2. Reasoning by induction the thesis follows:
Let f = f(z,z: 9, x, &, w) € C*(R}, S(R.)), infinitely differentiable
with respect to the parameters:
xeR"; (7,E)eRx(R,—{0}); weR".

Fixedm € R we denote by, the space of the functions(z, z; 1, x, é, )
such that:

(3.21) [277"390% f] < "M HR/ZHa Y p bk € No,

Z

uniformly with respect tax, 17, £) on the compact subsets Bf x R x
(R, — {0}, and tow on the sets of the type > a with a > 0.
The Proposition 3.4 gives

PROPOSITION 8. —If

1972 ‘[_2 2 s;.’.’ Im,

u(0,z; 7, x,& w)=0,

then we have
(3.23) uel,.

4. Estimatesfor transport problems

Let I be the space of the functions
(4.1) Ft,y,n,x,&) = f(to, yo'? no'? x, & Jo,»), f€l,,
and letl =J,,cx I"™. Itis necessary to point out:
(4.2) Fel"=tFel™, yFel™, §Fel™™

Now we introduce the seminorms:

@4.3) [t"y"aratorala) F)

y X

= sup sup |t”yh8{18f8§8§38,’7’F(t,y,n,x,$)|
[0, TIxRyxX |p|<alw|¥/2
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wherea is a positive number an#l is a compact subset .
If p(F)is aseminorm of the type (4.3), with

(4.4) p(F)SIE%, a€R,
we denote that there is a consta@htindependent of, such that
(4.5) p(F) < Clg|".
It is easy to prove that if’ € I we have:
(4.6) 1Py 005 F] < |&|mmrraath,
The following lemma holds
LEMMA 9.-LetU(t,y,n,x,6)el.If
(1+y20) MU €I™, U@,y n.x,£)=0

we havex € I also.

That being stated, lef(y) € C3°(R,) and letUp(t, y, n, x, &) be the
solution of the first transport problem with dat&’e/ (v). We have

PrROPOSITION 10. —The functionUy(t, y, n, x, £) belongs tal°.
Proof. —By construction we have:
(4.7) Uo(t,y.m.x.§) =& 20T (€9 (z/0?)) (10, yo'?)
— e”zj“f(o’x)g"uo(tw, yol?n, o).

Putg(z, ») = €™y (z/w"?) we get

h+k
(4.8) [g; bk, p,q) SIEI'F Hey,

where ¢, denotes the seminorm ofig°(R,). By Proposition 3.4 the
thesis follows. O

From (4.7) we have:

(4.9) 07929/ Uge I Va,B.y,
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and by Lemma 4.1, with inductive procedure, we obtain that:
(4.10) 07929l Uge I Vo, B, y.

From (4.2) and (1.8), as well as Proposition 4.2, we get that
(4.11) (14 y2w) *M_,Upe I Vse N,

Reasoning by induction on transport problems starting by Lemma 4.1,
we get

PropPOSITION 11. —Let {U_,(t, y, n, x, §)}sen, b€ the sequence of
solutions of the transport systems, with detd(y), such thaty/_, € I,
Vs € No. Then we have

(4.12) 97929l U_y e I~ Vs e No.

5. A class of symbols

Letk(t,y,y',x,£) e C*®(]0, T]1x Ry x Ry x R" x R,) and letm € R.
We say thak € U™ if there is a functionyo € C5°(R,), with value 1in a
neighbourhood of manifolgt = 0, such that puttinyr € No:

v (y) =¥o(y/(r + 1)),

U,y n,x, &) = (k(t, y, ¥, x,6), €y, (),
the functionsU ) extend toC*(£2; x R,;1) and the estimates hold:

(5.1)

(52) [[Pyhatqal;a;zagarjl/l](r)] S (1+ |§|>—P+Zq+k—|ﬂ|+m’

Vr e No, Y(p,h,q,k,a,B,y) € N§”+5.

Now we putu* =J,, U™ U~* =, U".

If k e U* and (5.2) hold%/vo € C3°(Ry), k is a symbol onf2;. So we
can associate tbthe operatoik defined in (1.2). For every € C*(R,)
such thaty =0for || <pandy =1 for|x| > p’ with0 < p < p’/, we
have that the functiong (§)k_;, k_; has been constructed in Section 2,
are symbols belonging 2%, as one can deduce from the results of
Section 4. However we can associate some local operators to the generic
elementk € U*.
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Let A € £2, A open, and leiy4 € {y,} be a function with value 1 on
the y-projection of A. We fix a function € C§°(R), with value 1 in a
neighbourhood of zero and put:

(5.3) t, &) =¢(n*/A+EP).

If k e U, we will saylocal operatorassociated t&, next
= [ @k y 2.6 € YD) 0. G (0, ) e

Ry+1
WhereG(na S) = fyﬁn fx%E(G(ya X))

It is easy to prove that, by (5.2) and by structure of functigrwe
haveK ,G € C®(27),VG € C3°(£2). If k is also a symbol, we have that
KAsG=KG VG € C3°(A), this is true also if in (5.4) one puts= 1.

Now we prove the following

THEOREM 12. —If k € U™, then the local operatoK 4, associated to
k extends as a linear continuous operator

(82) — CI**([0, T x Ry, HZ 27+~ UD(Rr)

comp

VYo € R andVg, k € No.

Proof. —Fixedo, ¢, k, we puto’ = o — 29 —k —m — (1/4). The thesis
is equivalent to

< ClGllae @)

(5.5) sup 879} (@K AG)|| o' oy <

[0.7]xRy
Yo,G e Cy°(£2),

whereC is a positive constant independent®f
In order to prove (5.5), we put

UA(t’ y,n, X, é}_) - <k(t’ Y, yl’x’ 5)’einyl1/’A()’/)>
and

(56) V(ts y.n, X, S) = (P(}”x)f(’?’ é}_)UA(t’ y.n, X, é}_)
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such that

9KAG = / &V (1, y, 0. x. )G (. &) dn d&.

Rpy1

From (5.6), by structure df(n, £) we have that the functiol satisfies
(5.2). BeingV € C§°(£2,C>*([0, T] x R,41)), by a famous theorem
about direct product (see [11]), we have

+o0
(57) V(t’yana-x’g:)=Z)‘j¢j(-x)vj(t’yanag)a
j=0

where}”; [A;| < +00, {¢;(x)}cn, IS @ bounded sequence Gf°(R"),
the functionsV;(z, y, n, &) satisfy (5.2) uniformly respect tg and the
y-projections of their supports are in the same compad, 050, we can
supposéeV independent of. In that case we have:

7 (2100KAG) = [ 10}V ¢y, 0. )G (0. )Ty,
R

x—§&

Being the support o¥/ included in a region of the typg| < a|£|%/?,
a > 0, from (5.2) we deduce:

(1+150)7 7 310 0K AG|

1/2

<(1+ |§|>0'+211+k+m+(1/4) </|§(77’§)’2|G(77, §)|za77>
R

Since on the support @f(n, &) results(1+ [£)) = (1 + |€] + |n]), from
the last inequality the (5.5) follows. O

From this theorem we have

THEOREM 13. —If k € U*, then the operatork, are linear and
continuous

E'(£2) - C®([0, T]1 x Ry, D'(R")).

If k € U~°, then the operatork’, are regularizing, that is they are linear
and continuous fronk’(£2) to C*(£27).
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Using (5.2) for the functionV, by well-known procedure, one can
prove the next

THEOREM 14. —If k € U, then the operator«K, are pseudolocal.
This means that itz € E'(£2) N C*®(B) thenK,G € C*([0, T] x B),
whereB is an open subset .

6. Construction of a Poisson operator

We consider the formal series (1.7), built by symbals of Section 3.
For everys, r € Np, we put

(61) Uirs)(l‘, y,n, X, »‘:') = <k—s(t, Y, yls X, 5)’ eiy/nWr(y/)>'

Let {X,};en, be a sequence of compact coveriRgy However said about
k_g, from (5.2) we have tha¥s € Ny, there is a positive constaat, such

that
(6.2)  supt”y"879ka29f 97 U )| < €, | PRtk IpIm+ (/D

t Yy x

respectto
6.3) te€[0,T]; y=0, xeX; [|n<IEY?/G+1D),

and to:
(6.4) r<s; p4+h+qg+k+|a|+|8l+y <s.

On the other hand, by structure of symbaéls, it is easy to prove that is
possible to choose the constantsuch that

(6.5)  sue”y"y" 9899 00l k (1. v, ¥, x, )| < CylE|
respect to:
(6.6) te[l/(s+1),T]; y=0, y >0, xe€X,.

Now we denote by € C* a function equal to zero if-1, 1] and equal
to 1 outside of the interval-2, 2). We put:

(6.7) ps =2°C;.
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In view of the construction, by (6.2), (6.3) and (6.4), we hive: Ny

(6.8) suplt”y"a80%a%0L 87 x (1&1/p)UY)| < C27*|g| P 2uk-Iptas2),

t Yy~ x
whereC is independent of; while by (6.5) and (6.6) we have that there
iSs§ € Ng such thatys > s:
(6.9) suge?y"y" ookt 02 0L x 1€/ pok—s| < €27

t Ty Ty Yx

In view of this fact, with the position:

+00
(6.10) Ky, y,x,6)=> x(&l/p)k_s(t,y, ¥, x. &)
s=0

we define a function belonging @6%/2.

Using the same functiog(n, £) and the opend € £2 introduced
in Section 5, we denote witlK/, the local operators associated to
K'(t,y,y',x,&) by (5.4). From Theorem 5.1 follows tha&/, is linear
and continuous fronk’($2) to C*([0, T] x Ry, D'(R")).

We prove

THEOREM 15. —For everyG € E’(£2) we have
LK,G € C™(2r).

Proof. —At first we observe that the operatatX’, are local operators
associated ta/k’. By Theorem 5.2 it is necessary to prove thét’ €
U~

Fixedh € N we observe that by construction it results

h
(6.11) M=> M_ +1"M;,
s=1

whereM; is an operator witlC* coefficients. So we have

h
(6.12) MK — > M_k' e U2,
s=—1

That being stated, pyt (§) = x (|1€]/ps), we have:
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h h+1 h+1 h+1—s
DMK =) Mk =) My Y (xe () = Dk
s=—1 s=0 s=0 s'=0
h+1
+ Z Z leskfs’
s=0s+s'<h+1
h+1 oo
+ Z My Z Xs' (S)k—s’
s=0 s'=h—s+2
=h® 4+ h® 41D,

It is clear thath® e U~>°, because it is a function equal to zero for
large enough. The functioi® is equal to zero by (1.10), while it is easy
to prove that:® e U~"+¥/2, From (6.12) we have tha¥/k’ € U ~"+1/2,
The thesis follows becaugeis arbitrary. O

FixedG € E’(£2), and put
Gi(y, )= F - F e (n'/(1+161))G(n,) € ' (Rysa),

we have the next

THEOREM 16. —For every G € E’(£2) such thatsuppG C A, it
results

(6.13) K,G(0,y,x) — Gi(y, x) € CX(£).

Proof. —Using the transport systems one can prove that
(6.14) K,G(0,y,x) — ¥a(y)Gi(y, x) € C7(£2).

Being ¥4 (y) = 1 on they-projection of A, from (6.14) follows that the
left hand in (6.14) belongs t@*°(A). On the other hand, if sugp C
A’ C A, we have thaG =0 in 2 — A’; the thesis follows by the pseudo
local theorem. O

7. A second process of homogenization

We introduce a new definition of pseudo-homogeneity. d(t y, n,
x, &) afunction belongs t@ > (27 x (R,41 — {0})) and letm € R. We



N.A. D'AURIA, O. FIODO / Bull. Sci. math. 125 (2001) 169-195 191

will say thata is apseudo-homogeneous symbol of degtei§ Vi > 0,
it results:

(7.1) a(t/Z2, y, nh,x,E0) =A"a(t, y,n,x, ).

As in Section 1, letO be an operator that leaves unchanged the class
of pseudo-homogeneous symbols. We will say thahas pseudo-order
h if, Vm € R, it transforms pseudo-homogeneous symbols of degree
in orders of degree: + 4. In particular the operators o;, 9;, 9, have
pseudo-order respectively equal+@, 2, —1, —1.

We now constructk”(z, y,n,x,&) as a formal series of pseudo-
homogeneous symbols such that put:

(7.2) K":G(y,x) € C(2) > K'G
_ / GEERIRI ¢y 0, x, €)G (. €) Ay dE
Rn+1

the functionK”G is a solution of the problem (1.4YG € C§°(£2).
Putting

(73) N(t’ Vs X, g’ n, 0, ay’ ax) = L(t, Yy, X, 0, ln+8ys ce l%-/ +8xj . )

and reasoning as in Section 1, one can prove that this is obtained if and
only if it results

(7.4) NK"(t,y,n,x,&)=0.

Using the Mac Laurin series expansion with respect to the variable
of the coefficients of, it is possible to exhibitv as follows:

+00
(7.5) N=>Y N,
h=-2

where,Vh > —2, N_, has pseudo-orderhi. Developing one obtains

(7.6) N2=9, +772+yzzaij(0s x)&:&;,
i,J
(7.7)  Ni=-2ind, — 2iy*>  a;;(0, )&y, +iyb(0, x)n
iJ

+iY a;(0,x)E;,
J
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(7.8)  No=—02+y*> (10,a;(0, x)&&; — a;;(0, )y, s, )
ij
+ yb(o’ X)B) + Zaj(o’ x)axj + C(Oa 'x)
j
and also, for € Ny
r+1

(79) N_p1= Ty

[—Ziyz S 070,08 By,

i,J

+iyd (0, x)n+i Y 3 a;(0, x)f./]
J
tr+2 ) o r+1
7.10) N_gpy2y=——7— 0, "a;;j (0, x)&&; + ———
( ) (2r+2) (r+2)‘y ; t a/( x)f $/+ (r_,’_l)'

n
x (—y2 > 87 a;;(0, x)0,, 0, + 3, T'b(0, )9,

i j=1
n
+3°07a;(0,x)d,, + e (0, x)) .

j=1
We suppose that the symbdl has the form

+o00
(7.11) > kot y.n.x, ),
h=0

wherek_;,, Vh € Ny, is a symbol pseudo-homogeneous of degiee &,
wherem is a real number to determine. Reasoning as in Section 1 and
using (7.2) we arrive to the following transport systems:
@ 12){N2k0=0 (t,y,n,x,8) € 27 x (Ryy1 —{0}),

. kO(an’n’xag)zl (yaU,X,g)EQTX(Rn+l—{O})1

Nok_j, + N1k_ + -+ N_j10kg =0,
(7.13){ 2K} 1K—h+1 h+2K0

k-n(0,y,n,x,8)=0.
By virtue of (7.6) and (7.12) we have

h>0

(7.14) ko(t,y. 1, x, &) = e (4™
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and sakg is a pseudo-homogeneous symbol of degree zero. Reasoning by
recurrence one can prove that

(7.15) k_p(t,y. 0. %, &) = py(t, y, 0. x, £)& T+ pe N,

wherep;, is a polynomial in(z, n, &), with coefficientsC*(£2), pseudo-
homogeneous of degreer, null for ¢ = 0.
Let X be a compact subset &, by (7.14) and (7.15) we have

1B

(7.16) [OsTL]JpX|tPaﬁa_’;agaga§k_h| S P+ IRy TR TET R g
T x

LetY be a compact subset &, we put

(7.17) la(t, y,n,x,6)[ =sufa(t, y,n, x,§)|
respect to
(7.18) re[0,T], xeX, yeV¥, |EY2<cnl, c¢>0.

By (7.16) we have
(7.19) 1799059207 0Lk _j, [ < n 2Bl Hh-hida

t Yy xn

Y(p.k,a, B, y)e N

We assume (7.19) as definition of space”, the meaning oV > and
VvV~ is clear.
Letk € V™, let¢(n, &) be the function introduced in Section 5. We put

Go(y, )= F = F (1= ¢(1,6)G(.8)
=G(y,x) — Gy, x),
VG € E’(£2) and we consider the operator
(7.20) G eCP(2) — KG,
= [ €Tk y o3 £ (1- £0.6) G, 6) S,

Rpy1

By virtue of (7.19) we have that this operator has valueCHi(£27).
Then, reasoning as in Section 5, one can prove that this operator extends
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as a linear and continuous operator fr&($2) to C*°([0, T'], D'(£2)).

If k € V=, this operator is regularizing. By the same technique of
Section 6, one proves that there is a diverging sequépgh.cy, Of
positive number such that the series

+00

> x(Inl/o)kn(t, y. 0, x, &)

h=0

converges to a symbal’ € V°, for which we have

THEOREM 17. —For everyG € E’(£2) results

(7.21) LK"G, e C™(2r),

(7.22) K"G»(0,y,x) — Ga(y,x) € C®(£2).

Now we are able to construct the Poisson operators for the problems
(0.4) and (0.5). LetA be an open of2*, A € 2%, and letK/, be the
operator built in Section 6. For (1.14) we define the operators

KL :GeCP ") » K{PG=K) ,_,(Ga1+K"(Gy),
KP:GeCT(2Y) = KPG =K} _s(Gp1+ K"(G))2,

where—A = {(y, x): (—y,x) € A}. .
Itis clear thatk "’ G, i = 1, 2, belong toC>(£27). So, however said
we have the following

THEOREM 18. —For every opend, A € 2%, the operatorsk ',
i =1, 2, extend as linear and contnuous operators

E'(27)— C*(0,T],D'(2")NnC>® (10, T x [0, +-o00[ x R")

and
LKYGeC®(2f), i=12
KYG(0,y,x) — G(y,x) e C®(2%), V¥G withsuppG C A,
K{'G@t,0,0=0, 9,K{?G(t,0,x)=0, Viel0,T].
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