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Summary

Levels of inbreeding are highly variable in natural
populations [1, 2]. Inbreeding can be due to random

factors (like population size), limited dispersal, or ac-
tive mate choice for relatives [3]. Because of inbreed-

ing depression [4], mating with kin is often avoided
[5], although sometimes intermediately related individ-

uals are preferred (optimal outbreeding [6, 7]). How-
ever, theory predicts that the advantages of mating

with close kin can override the effects of inbreeding de-
pression [8–12], but in the animal kingdom, empirical

evidence for this is scarce. Here we show that both
sexes of Pelvicachromis taeniatus, an African cichlid

with biparental brood care, prefer mating with unfamil-
iar close kin over nonkin, suggesting inclusive fitness

advantages for inbreeding individuals. Biparental care

requires synchronous behavior among parents. Since
parental care is costly [13], there is a conflict between

parents over care [12, 14], which can reduce offspring
fitness [15]. Relatedness is expected to enhance co-

operation among individuals [16]. The comparison of
the parental behavior of in- and outbreeding pairs

showed that related parents were more cooperative
and invested more than unrelated parents. Since we

found no evidence for inbreeding depression, our re-
sults suggest that in P. taeniatus, inbreeding is an

advantageous strategy.

Results and Discussion

There are two, not necessarily mutually exclusive, theo-
retical approaches to predict the mating decision of an
individual with respect to the relatedness of a potential
partner. The first one considers the impact of parental
genomic divergence, i.e., the genetic similarity of par-
ents, on the fitness of offspring. Close inbreeding within
species can result in inbreeding depression caused by
an increased homozygosity of recessive, deleterious
alleles and loss of heterosis [4]. However, extreme intra-
specific outbreeding can also be disadvantageous
(outbreeding depression) [17], because beneficial gene
complexes or local genetic adaptations are disrupted
[18]. There is numerous empirical support that animals
avoid close kin as mating partner [5, 19, 20]. Optimal out-
breeding theory [7] is supported by some experimental
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behavioral studies showing mating preferences for
intermediately related individuals [6] and by two genetic
studies reporting stabilizing selection on genomic
divergence in wild populations of animals [21] and plants
[22]. Recent research on optimal diversity in individual
major histocompatibility complex (MHC) of sticklebacks
further confirms optimal outbreeding theory [23–25].

The second approach is based on Hamilton’s inclu-
sive fitness theory, stating that the reproductive success
of relatives has to be considered when estimating
individual fitness [16]. In this context, theoretical models
stress the advantages of close inbreeding since the late
1970s [8–12]. Inbreeding tolerance depends on the one
hand mainly on the strength of inbreeding depression
and on the other hand on the mating system as well as
on mate availability [11].

Here we investigate the mate-choice decision of fe-
male and male Pelvicachromis taeniatus with respect
to relatedness. P. taeniatus is a small, socially monoga-
mous cichlid with biparental brood-care that inhabits
rivers and creeks in Cameroon and Nigeria. Males
occupy caves, while females compete among each other
for access to males. As in many cichlid species, brood
care of both parents is necessary to efficiently protect
the young against predators [26]. This requires highly
synchronous behavior among parents. After spawning,
the female cares for the eggs, while the male defends
the territory against intruders. Free-swimming offspring
are guarded by both parents. Our study fish originated
from the Moliwe river in Cameroon, which is only a few
kilometres long and totally isolated from other river
systems.

In order to produce kin groups, wild-caught, randomly
composed mating pairs were bred under standardized
laboratory conditions. Offspring were separated from
the parents 4 to 6 weeks after hatching. This duration
of brood care complies with the observed natural condi-
tions in cichlids [26]. Each kin group was split into two
groups of 20 individuals and raised in olfactory and visual
isolation from each other for 9–12 months until the start
of the experiment. Since it is very unlikely that adult fish
are able to individually recognize fish with whom they
spent a few weeks as larvae or juveniles, unfamiliar kin
were available. Mating preferences in reproductively
active fish were estimated by measuring the time an indi-
vidual spent with an unfamiliar full sib or an unfamiliar
nonkin of the opposite sex in standard three-compart-
ment aquaria [27]. We controlled for possible differences
in attractiveness among stimulus fish by using a paired
experimental design. One test consisted of two trials
with the same pair of stimulus fish. Between the trials,
only the test fish was changed. Hence, the test fish of
the first trial was related to one of both stimulus fish,
and the test fish of the second trial was related to the
other stimulus fish. In the female- and male-choice ex-
periments, fish of 14 and 8 families, respectively, were
used. Each family was used in two tests but not in the
same combination. Test fish, as well as stimulus fish,

https://core.ac.uk/display/82745319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tthuenken@evolution.uni-bonn.de


Current Biology
226
were used in only one test. Both sexes of P. taeniatus
significantly preferred kin over nonkin (females: paired
t test, T13 = 22.822, p = 0.014; males: Wilcoxon
matched-pairs signed-ranks test, n = 8, Z = 22.521,
p = 0.012; Figure 1). The mating decisions of females
did not significantly differ from those of males (t test,
T20 = 20.575, p = 0.572).

Our results indicate that adult P. taeniatus are able to
discriminate unfamiliar kin from unfamiliar nonkin, sug-
gesting phenotype matching [28–31] as recognition
mechanism, and that they prefer to stay with kin. The
time adult fish spent with the opposite sex generally cor-
relates well with spawning probability [27, 32]. However,
social preferences for kin in a nonsexual context are
widespread in animals [33, 34]. To rule out this possibil-
ity, we conducted a further experiment in which fish
were allowed to spawn. We simulated natural breeding
conditions in which males with caves are probably lim-
ited: one male and two size-matched females, one of
them an unfamiliar sister of the male, were placed in an
aquarium (80 3 30 3 30 cm) equipped with a breeding
cave and a hiding place for the rejected female. Females
were individually distinguishable from each other by the
number of spots on their dorsal and caudal fins. The ex-
periment ended when one of the females spawned with
the male. Until then, we noted daily with which female
the male was associated. Males and females of 20 and
26 different families, respectively, were used. Again, all
experimental fish were used only once. In 17 of the 23
experiments, sibs mated (n = 23, c2 = 5.261, p = 0.022;
Figure 2). On average, 93% of the male-female associa-
tions existed between the subsequent mating partners
(binominal test, n = 22, p < 0.001). This indicates that
the time an individual spends with the opposite sex is
a reliable predictor of mating decision in P. taeniatus.
Both sexes in the mating experiments thus actively
favored to mate with close kin.

Fish experienced kin-only social groups in the labora-
tory. In future experiments, offspring will be reared in
mixed kin/nonkin groups until sexual maturity in order
to investigate the impact on early experience on mate
choice and to test whether P. taeniatus use self-referen-
tial cues to recognize kin.

In the present experiments, the test fish were exposed
to olfactory and visual cues of the stimulus fish, so we
are not able to disentangle the relative significance of
each factor in kin recognition. Previous research on
cichlids highlights the importance of both visual and
olfactory cues in species recognition [35–37]. Generally,
in fish olfactory cues seem to play a fundamental role in
kin recognition. MHC-related odors [38] may serve as
a reliable recognition criterion [39] because MHC alleles
are highly variable in cichlids [40] and relatives are likely
to share alleles.

Assuming low inbreeding depression and limited mate
availability, theory predicts benefits from mating with
close kin even in monogamous species with biparental
brood care [11, 41]. Previous work suggests a rather mo-
nogamous mating system in P. taeniatus (T.T., T.C.M.B.,
and H.K., unpublished data). Males with caves are prob-
ably limited and thus competition among females for
mates is strong (H.K. and T.T., unpublished observation).
Therefore, some females might lose their breeding
opportunity. Since full sibs share on average 50% of their
genes, a male mating with his sister assures the trans-
mission of his gene copies that are found in his sister to
the next generation, enhancing his inclusive fitness.

Additionally, close inbreeding may be explained by
relatives being better parents. Biparental care requires
cooperative behavior between parents. Parental care
is costly [13] and therefore, in species with biparental
care, there is a conflict between parents over care [12,
14], which can reduce offspring fitness [15]. Relatedness
is expected to facilitate the evolution of cooperation
among individuals [16]. Thus, an individual has to trade

Figure 1. Preference Indices of the Male and Female Mate-Choice

Experiments

The preference index was calculated by subtracting the relative time

the test fish of the second trial spent with nonkin from the relative

time the test fish of the first trial spent with the same stimulus fish

(kin in this case). Values of the preference index can range from 1

(both stimulus fish spent all the time with their respective kin) to –1

(both stimulus fish totally avoided kin). Values of 0 indicate no pref-

erence. White bars represent the results of female (n = 14); black

bars show male mate-choice experiments (n = 8). The experiments

are ranked according to decreasing preference index.

Figure 2. Spawning Experiment

Number of matings between sibs (n = 17) and nonsibs (n = 6) in

spawning experiments with one male and two females, one related

and the other unrelated to the male.
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off the costs against the benefits of in- or outbreeding,
i.e., the strength of inbreeding depression and the
enhanced cooperation during biparental care.

To test the impact of parental relatedness on cooper-
ation between parents and on offspring performance,
we examined the parental behavior as well as the sur-
vival and growth rates of the offspring of 10 inbreeding
and 8 outbreeding pairs. Inbreeding pairs consisted of
unfamiliar full sibs, whereas outbreeding pairs consisted
of unfamiliar nonkin. We found that males of inbreeding
pairs spent significantly more time guarding the caves
than males of outbreeding pairs (t test, T16 = 24.161,
p = 0.001; Figure 3). When the fry swam free, inbreeding
pairs spent significantly more time with the young than
did outbreeding pairs (t test, T15 = 22.631, p = 0.019; Fig-
ure 4). This difference seemed to be due mainly to male
guarding, which was significantly enhanced in inbreed-
ing pairs (78.19% 6 10.88% in comparison to 61.79% 6
17.46% in outbreeding pairs; t test, T15 = 2.356, p =
0.032). Females did not significantly differ concerning
the time spent guarding the young (Mann-Whitney U
test, m = 8, n = 9, Z = 21.35, p = 0.200). Further, when
the young swam free, outbreeding males conducted
twice as many attacks against their mates as did in-
breeding males (Mann-Whitney U test, m = 8, n = 9,
Z = 21.98, p = 0.046). No significant differences existed
between in- and outbreeding females concerning at-
tacks against their mates (Mann-Whitney U test, m = 8,
n = 9, Z = 0.000, p = 1.000). Thus, inbreeding pairs were
more cooperative and invested more into parental care
than did outbreeding pairs. We did not find any evidence
for strong inbreeding depression. Inbred and outbred
offspring did not differ significantly concerning survival
rate (median 61.76% [quartiles, 48.79 and 80.67] versus
43.75% [42.96 and 50.00]) and growth rate (Mann-
Whitney U test, m = 7, n = 7, Z = 20.958, p = 0.338 and
t test, T12 = 1.040, p = 0.319, respectively). However,
in- and outbreeding may affect traits that were not mea-
sured in this study, e.g., fertility or fecundity of offspring.
Whether the sound performance of inbred offspring is

Figure 3. Cave Guarding of In- and Outbreeding Males

The average proportion of days (in percent 6 SD) in which males of

in- (n =10) and outbreeding (n = 8) pairs guarded the cave where the

female cared for the eggs.
due to a total lack of inbreeding depression or to a com-
pensation of a low level of inbreeding depression by
superior parental care of sib pairs will be the aim of future
experiments. Because fish descended from a small pop-
ulation with probably regular inbreeding, it is possible
that the genetic load is purged [42, 43].

Population-genetic studies suggest that in several
African cichlid species, populations are often highly
structured [44–47] and that within these subpopulations,
mating between kin may occur [45]. A recent study in
birds documents a considerable genetic similarity be-
tween mates [48]. Together with our presented results,
this suggests that active inbreeding may thus be much
more widespread than commonly assumed and has to
be considered as an adaptive strategy.

Experimental Procedures

Experimental Animals

In 2001 and 2003, adult P. taeniatus were collected from Moliwe river

near Limbe, Cameroon (04�04’N/09�16’E) and transferred to the lab-

oratory in Germany. The fish used in the female and male mate-

choice experiments were F1 offspring of the 2001 and 2003 parent

generations, respectively. Spawning experiments were conducted

with offspring of both parental generations. The fish of the parental

care experiment descended from the same families as the fish in the

male choice experiments. All test and stimulus fish were of repro-

ductive age and showed courtship coloration as well as courtship

behavior, i.e., quivering the curved body.

Mate-Choice Experiments

Female and male mate-choice experiments were conducted in di-

chotomous designed test tanks (see Supplemental Data available

online) in spring 2003 and autumn 2005, respectively. During the ex-

periments, olfactory and visual communication between females

and males was possible. The behavior of the test fish was video-

taped. The time individuals spent with sibs and nonsibs in the choice

zones was measured by a naive observer. In order to compare the

choice behavior of the test fish among trials, the time the test fish

spent in each choice zone was calculated relative to the total time

it spent in both choice zones.

Spawning Experiments

The experiments were conducted in the summers 2004 and 2005.

Sisters did not differ significantly from nonsisters with respect to

the number of spots in the fins, body length, body mass, and body

Figure 4. Young Guarding of In- and Outbreeding Parents

The average proportion of parent-offspring associations (in per-

cent 6 SD) of related (n = 9) and unrelated (n = 8) parents.
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condition (Wilcoxon matched-pairs signed-ranks tests, all n = 23:

Z = 20.798, p = 0.42; Z = 20.175, p = 0.86; Z = 20.107, p = 0.92 and

Z = 20.669, p = 0.50, respectively). A male was defined as associ-

ated with a female when the distance between them was 10 cm or

less. In 2004, experiments were stopped when no mating occurred

after 3 months; in 2005, the duration was reduced to 2 months

because in 2004 only one mating happened later than 2 months after

starting the experiment.

Parental-Care Experiment

The parental-care experiment was part of a broader study concern-

ing the reproductive behavior of P. taeniatus, which was conducted

in spring 2006 (T.T., T.C.M.B., S.A.B., and H.K., unpublished data).

15 in- and 15 outbreeding pairs were randomly allocated to 30

aquaria (50 3 30 3 30 cm). 18 pairs spawned (10 inbreeding and 8

outbreeding), of which one pair (inbreeding) ate the wrigglers and

2 pairs cannibalized the free swimming offspring (1 inbreeding and

1 outbreeding pair). Inbreeding pairs did not significantly differ

from outbreeding pairs concerning body length, mass, and condition

as well as within-pair size differences (Mann-Whitney U test, all

m = 10 and n = 8, all p > 0.27). After spawning, the cave was shortly

removed and the number of eggs was counted. Two observers

(S.A.B., T.T.), who were naive concerning the composition of the

test pairs, recorded the behavior of each pair daily for 5 min over a

period of 12 weeks. The observation order was random and deter-

mined daily. The following behavioral patterns were recorded in or-

der to estimate intrapair cooperation and parental effort. During the

egg-care period, it was recorded whether the male guarded the

cave or not. We defined males as guarding when they stayed in front

of the cave with erected fins. When the fry swam free, aggressive

attacks among the mating partners were counted and the time

each parent spent with the offspring was quantified. During the daily

observations, we recorded in 30 s intervals which parent guarded the

young. Behavior was scored as guarding when the distance of a par-

ent to the young was one body length or less. 3 weeks after the young

started to swim free, the parents were removed from the tank, and

again 1 week later sib group size was standardized (30 6 2 fish).

Fry were fed standard with living Artemia larvae, and when they

grew older with a mix of frozen Artemia, chironomid, and mosquito

larvae. Sample sizes of offspring survival- and growth-rate analyses

were reduced by 1, since for one pair, the number of eggs could not

be assessed, and of another pair, only 22 young survived. Total body

length of the offspring was measured 40 6 1 and 80 6 1 day after

group reduction. Growth rate was calculated as absolute increase

in body length between the two measurements in relation to the

length at the first measurement. Because the growth rate was

positively correlated with the former group size (F1,13 = 6.884,

p = 0.021), comparisons between in- and outbred offspring were

done with residual growth rates.

Statistical Analysis

All analyses were performed with SPSS 12.0 for Windows. Paramet-

ric statistics were applied only when data were normally distributed

according to the Kolmogorov-Smirnov test with Lilliefors correction.

Given p values are two-tailed throughout.

Supplemental Data

Supplemental Experimental Procedures can be found with this

article online at http://www.current-biology.com/cgi/content/full/

17/3/225/DC1/.
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