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Abstract

Let S = (aj )∞
j=1 be a strictly increasing sequence of real numbers satisfying

aj+1 − aj � σ > 0. (0.1)

For an open box I in [0,1)d , we write

E
(d)
I

(S) = {
x ∈ R

d : ajx /∈ I (mod 1) for j � 1
}
.

It is shown that the Hausdorff dimension of E
(d)
I

(S) is d − 1 whenever

lim
j→∞

aj+1

aj
= 1.

The case d = 1 is due to Boshernitzan. The proof builds on his approach.
Now let S1, . . . , Sd be strictly increasing in N. Define E′

1 = E′
I
(S1, . . . , Sd ) to be the set of x in [0, 1)

for which

x(n1, . . . , nr ) /∈ I (mod 1) for nj ∈ Sj , n1 < · · · < nd.

A sequence S is said to fulfill condition D(C) if it contains

Br = [ur , vr ] ∩ S
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for which vr − ur → ∞ and

1 + vr − ur � C#(Br ).

Kaufman has shown that E′
I

is countable whenever S1, . . . , Sd fulfill condition D(C). Here it is shown that
E′

I
is finite under this hypothesis. An upper bound for #(E′

I
) is provided.

© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Let S = (aj )
∞
j=1 be a strictly increasing sequence of real numbers satisfying

aj+1 − aj � σ > 0 (j = 1,2, . . .). (1.1)

For an open interval I in [0,1) of length |I |, we write

EI (S) = {
x ∈ R: ajx /∈ I (mod1) for j � 1

}
.

If S is a sequence in the natural numbers N, then EI (S) is periodic, and we write

E′
I (S) = EI (S) ∩ [0,1).

It is a weak consequence of Weyl’s work [17] on uniform distribution (mod 1) that EI (S)

has zero Lebesgue measure. It is natural to ask for conditions on S that will force EI (S) to be
‘smaller’ than this, in some sense. The strongest conclusion is obtained when S ⊆ N and

aj � Cj (1.2)

for infinitely many j , for some constant C. Both Kahane [9] and Amice [1] found that E′
I (S) is

finite in this case. An explicit estimate is given by Baker, Coatney and Harman [2]:

#E′
I (S) � min

(
288C

|I |3 ,
144(C log(2e/|I |))2

|I |2
)

.

Here #S denotes the number of elements in a finite set S. This is close to a sharp bound for |I |
tending to 0, as explained in [2].

If we make the hypothesis

aj = O
(
jp

)
(1.3)

for some p > 1, then the Hausdorff dimension of EI (S) satisfies

dimEI (S) � 1 − 1
,

p
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where ‘dim’ denotes Hausdorff dimension. Salem [16] has shown that (aj x)∞j=1 is uniformly
distributed (mod 1) except for a set of x having dimension � 1 − 1/p; see [2] for further results
of this kind. I conjecture that dimEI (S) = 0 when (1.3) holds, and that there are sequences S
in N for every p > 1 that satisfy (1.3), for which EI (S) is uncountable for some I .

One reason for believing the first part of the conjecture is that Boshernitzan [5] has proved
such a result for real sequences that may grow much more rapidly. He shows that

dimEI (S) = 0

whenever

lim
j→∞

aj+1

aj

= 1. (1.4)

This contrasts neatly with results from de Mathan [6,7] and Pollington [15]: if

lim inf
j→∞

aj+1

aj

> 1,

then dimEI (S) = 1 for a suitably chosen interval I .
How are we to extend the Kahane–Amice and Boshernitzan results to higher dimensions?

Take I = I1 × · · · × Id to be an open box in [0,1)d . We write

E
(d)
I (S) = {

x ∈ R
d : ajx /∈ I (mod1) for j = 1,2, . . .

}
.

We extend Boshernitzan’s result as follows.

Theorem 1. Under the hypothesis (1.4), we have

dimE
(d)
I (S) = d − 1.

Of course the lower bound

dimE
(d)
I (S) � d − 1

is immediate, since

(0, x2, . . . , xd) ∈ E
(d)
I (S)

for every x2, . . . , xd . The corresponding upper bound will be proved in Section 3.
Kaufman [11] gave an alternative way to obtain a result in higher dimensions as follows. Let

S1, . . . , Sd be sequences in N satisfying (1.1) and again let I be an open box in [0,1)d . We define
E′

I (S1, . . . , Sd) to be the set of x in [0,1) for which

x(n1, . . . , nd) /∈ I (mod 1) for nj ∈ Sj , n1 < · · · < nd.

Kaufman proves an analog of the Kahane–Amice result. A sequence S in N is said to fulfill
condition D(C) if it contains a sequence of blocks

Br = [ur, vr ] ∩ S, 1 � ur < vr (1.5)
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for which vr − ur → ∞ and

1 + vr − ur � C#(Br).

His result is that whenever S1, . . . , Sd all satisfy condition D(C), E′
I (S1, . . . , Sd) is countable.

We strengthen this as follows:

Theorem 2. Suppose that Sj is a sequence in N that satisfies condition D(Cj ) (j = 1, . . . , d)

Then E′
I (S1, . . . , Sd) is finite. In fact,

#E′
I (S1, . . . , Sd) � 18d(5d)2d

(|I1| . . . |Id |)2
max

j

Cj

|Ij | ,

where I = I1 × · · · × Ir .

2. Some lemmas

We write Bp(K1, . . . ,Kp) for the set of lattice points � in Z
p with |�i | � Ki (1 � i � p). Let

Bp(K) = Bp(K, . . . ,K), B∗
p(K) = Bp(K)\{0},

x · y = x1y1 + · · · + xdyd, |x| = (x · x)1/2,

e(θ) = e2πiθ , ‖θ‖ = min
n∈Z

|θ − n|.

Lemma 1. Let ξ1, . . . , ξM ∈ R
p , ξm = (ξm1, . . . , ξmd). Let εi > 0 (i = 1, . . . , p). Suppose that

max
1�i�p

‖ξmi‖
εi

� 1 (m = 1, . . . ,M).

Then

M � 3
∑

�∈Bp(pε−1
1 ,...,pε−1

p )

�
=0

∣∣∣∣∣
M∑

m=1

e(� · ξm)

∣∣∣∣∣.

Proof. This is Corollary 2 in Barton, Montgomery and Vaaler [3]. �
Lemma 2. Let x1, . . . , xu be distinct points of [0,1). Then

lim
N→∞

1

2N + 1

2N+k∑
v=k

∣∣∣∣∣
u∑

s=1

bs e(vxs)

∣∣∣∣∣
2

=
u∑

s=1

|bs |2

uniformly in k.
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Proof. By a variant of a theorem of Wiener given by Katznelson [10, p. 47], we have

lim
N→∞

1

2N + 1

2N+k∑
v=k

∣∣μ̂(v)
∣∣2 =

∑
τ

∣∣μ{τ }∣∣2

uniformly in k, for any complex measure μ on [0,1). Here

μ̂(v) =
∫

[0,1)

e−ivt dμ(t).

We obtain the lemma by taking μ to be the measure

μ(E) =
∑
xs∈E

b̄s . �

For the next two lemmas, we recall some notations from the theory of Hausdorff measures.
More details can be found in Falconer [8].

The diameter of a nonempty set W in R
d is

|W | = sup
{|x − y|: x,y ∈ W

}
.

(This is consistent with our use of |I | as the length of an interval I .)
Let E be a subset of R

d and s > 0. For δ > 0, define

Hs
δ(E) = inf

∑
i

|Wi |s

where the infimum is over all sequences of sets (Wi) of diameter � δ that cover E. Now

Hs(E) = lim
δ→∞ Hs

δ(E)

is the Hausdorff s-dimensional outer measure of E. The restriction of Hs to a certain σ -field
containing the Borel sets is a positive measure on R

d , Hausdorff s-dimensional measure. For
any E, there is a unique value, dimE, called the Hausdorff dimension of E, such that

Hs(E) = ∞ if 0 � s < dimE, Hs(E) = 0 if dimE < s < ∞.

For any subset W of R
d and x ∈ R

d , we write Wx for the translate

Wx = {w + x: w ∈ W }.

For a subspace V of R
d , we write V ⊥ for the orthogonal complement of V .

Lemma 3. Let E be a closed subset of R
d with Hs(E) = ∞. For every c > 0, there is a compact

subset F of E such that Hs(F ) = c.



1762 R.C. Baker / Advances in Mathematics 227 (2011) 1757–1771
Proof. See [8, Theorem 5.4]. �
For the next lemma, we need to specify a measure γd,m on the space G(d,m) of all

m-dimensional linear subspaces of R
d . For more details, see Mattila [13]. Let O(d) be the or-

thogonal group of R
d and let θd be the unique Haar measure on O(d) such that

θd

(
O(d)

) = 1.

Fix V ∈ G(d,m); we define the measure γd,m on G(d,m) as follows.

γd,m(B) = θd

({
g ∈ O(d): g(V ) ∈ B

})
.

This measure is independent of the choice of V .

Lemma 4. Let f be a natural number and s a real number such that f < s < d . Let A be a
Borel set in R

d with 0 < Hs(A) < ∞. Then for almost all (d − f )-dimensional subspaces V

with respect to γd,d−f ,

Hf
({

a ∈ V ⊥: dim(A ∩ Va) = dimA − f
})

> 0.

This was proved by Marstrand [12] in the planar case. The general case of Lemma 4 is due to
Mattila [13].

Let Z be a compact metric space and dZ(·,·) the associated metric. For nonempty A ⊆ Z, we
write

dZ(x,A) = inf
{
dZ(x, a): a ∈ A

}
,

V (A, ε) = {
x ∈ Z: dZ(x,A) < ε

}
.

Let K(Z) denote the family of closed subsets of Z and for A, B ∈ K(Z), let

D(A,B) = inf
{
ε > 0: A ⊆ V (B, ε) and B ⊆ V (A, ε)

}
.

This function on K(Z) × K(Z) is known as the Hausdorff metric.

Lemma 5. D(A,B) is a metric on K(Z), and with this metric, K(Z) is compact.

Proof. See Munkres [14, pp. 280–281]. �
For a, u in R

d with |u| = 1, we define the line

L(a,u) = {a + tu: t ∈ R}

and the line segment

U(u) = {tu: 0 � t � 1}.
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A closed interval J of L(a,u) is a set of the form

J = a + [b, c]u.

Given a closed subset X of L(a,u), the image of X ∩ J under the mapping

y → y − a − bu

c − b

is a subset of U(u), which we denote by Λ(X,J ). The family of limit sets of X, which we write
FLS(X), is the family of sets Y of the form

Y = lim
i→∞Λ(X,Ji),

where the diameter |Ji | tends to zero. Here and subsequently we intend the Hausdorff metric on
K(U(u)) when referring to the limit of a sequence of sets.

A closed subset X of L(a,u) is said to be k-granular if every set in FLS(X) has
cardinality � k.

Lemma 6. Let X be k-granular. Then dimX = 0.

Proof. In the case d = 1, L(a,u) = R, U(u) = [0,1], this is due to Boshernitzan [5]. It is simple
to extend the result to the general case, but we give the proof for completeness.

Define f : L(a,u) → R,

f (a + tu) = t.

Since this is an isometry, we need only to show that dimf (X) = 0, and appealing to Bosher-
nitzan’s result, it suffices to show that f (X) is k-granular.

Let Y ∈ FLS(f (X)), then

Y = lim
i→∞Λ

(
f (X), Ii

) = lim
i→∞

f (X) ∩ Ii − bi

ci − bi

for a sequence of intervals Ii = [bi, ci] in R with ci − bi → 0.
We observe that

f −1(Ii) = a + [bi, ci]u

is an interval of L(a,u) of diameter ci − bi , and that

Λ
(
X,f −1(Ii)

) = X ∩ f −1(Ii) − a − biu

ci − bi

.

It is easy to see that

uΛ
(
f (X), Ii

) = Λ
(
X,f −1(Ii)

)
.
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If #Y > k, then there is a set uY = limi→∞ Λ(X,f −1(Ii)) in FLS(X) with more than k points,
which is absurd. This completes the proof of the lemma. �
Lemma 7. Let b ∈ Z

d , u ∈ R
d and suppose that b · u 
= 0. The relation

a + b · y ≡ 0 (mod 1) (2.1)

holds for at most |b · u| + 1 vectors y in U(u).

Proof. Let y = tu, 0 � t � 1. Then (2.1) yields the equation

a + tb · u = n

for an integer n, which lies in the closed interval with endpoints a, a + b · u. There are at most
|b · u| + 1 possible n, and each n gives rise to one value of t . �
3. Proof of Theorem 1

A subset S of [0,1)d is said to be ε-dense (mod 1) if for every cube C in R
d of side ε,

s ∈ C (mod 1) for some s ∈ S.

A theorem of Berend and Peres [4] for the case d = 1 states that for every ε > 0, there is a k =
k(ε) with the following property: Let Y ⊆ [0,1), #(Y ) > k. Some dilation mY (m ∈ N) is ε-dense
(mod 1). Our first task is to produce a workable substitute for this theorem in dimension d , using
Lemma 7 as our jumping off point.

Lemma 8. Let K , L be natural numbers. Let u ∈ R
d , |u| = 1. Suppose that

u · b 
= 0 for each b ∈ B∗
d(K).

Let Y ⊆ U(u),

#Y � (2K + 1)dL(dK + 1).

Then there is a sequence of distinct elements y(1), . . . ,y(L) of Y such that

b1 · y(1) + · · · + bL · y(L) 
≡ 0 (mod 1) (3.1)

whenever b1, . . . ,bL are elements of Bd(K), not all zero.

Proof. We may write Y = uS where S ⊆ [0,1]. We select y(j) = tju recursively so that

b1 · y(1) + · · · + bk · y(k) 
≡ 0 (mod 1)

whenever b1, . . . ,bk are in Bd(K) with bk 
= 0. Notice that this condition implies y(k) /∈
{y(1), . . . ,y(k−1)}. Evidently this gives a sequence y(1), . . . ,y(L) with the desired properties.
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We apply Lemma 7 repeatedly. The choice of y(1) is possible because the relation

b1 · t1u 
≡ 0 (mod 1)
(
b1 ∈ B∗

d(K)
)

holds for any choice of t1 in S apart from at most (dK + 1)#B∗
d(K) values, and

#S = #Y � (dK + 1)(2K + 1)d > (dK + 1)#B∗
d(K).

Once y(1), . . . ,y(k−1) are chosen, where 2 � k � L, the relation

b1 · y(1) + · · · + bk−1 · y(k−1) + bk · tku 
≡ 0 (mod 1)

holds for b1, . . . ,bk ∈ Bd(K), bk 
= 0, for any choice of tk in S apart from at most
(dK + 1)(#Bd(K))k−1 #B∗

d(K) values, and

#S = #Y � (dK + 1)(2K + 1)dL > (dK + 1)
(
#Bd(K)

)k−1#B∗
d(K). �

Lemma 9. Let ξ ∈ R
p . Let I be a cube in [0,1)d of side 1/N and suppose that mξ /∈

I (mod 1) (m = 1, . . . ,M). Suppose further that � · ξ 
≡ 0 (mod 1) (� ∈ B∗
p(2pN)). Then

M � 3

2

∑
�∈B∗

p(2pN)

1

‖� · ξ‖ . (3.2)

Proof. We apply Lemma 1 with ξm = mξ − λ (m = 1, . . . ,M), where λ is the center of I . We
conclude that

M � 3
∑

�∈B∗
p(2pN)

∣∣∣∣∣
M∑

m=1

e(� · ξm)

∣∣∣∣∣. (3.3)

The lemma follows on inserting a standard estimate for the inner sum in (3.3). �
Lemma 10. Let u ∈ R

d , |u| = 1 and suppose that

u · b 
= 0
(
b ∈ B∗

d

(
2dNd+1)). (3.4)

Let ε > 0 and N = [2/ε] + 1. Let Y ⊆ U(u),

#Y �
(
4dNd+1 + 1

)dNd (
2d2Nd+1 + 1

)
. (3.5)

Then there is a natural number m such that mY is ε-dense (mod 1) in [0,1)d .

Proof. Let {C(1), . . . ,C(Nd)} be a partition of [0,1)d into pairwise disjoint cubes of side 1/N ,

C(j) = Ij1 × · · · × Ijd .
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It suffices to show that there is a natural number m such that there is an element of mY in
each C(j).

Let p = dNd , L = Nd . By (3.4), (3.5), we may apply Lemma 8 with

K = 2pN = 2dNd+1

to obtain distinct elements y(j) = (y
(j)

1 , . . . , y
(j)
d ), j = 1, . . . ,Nd , of Y , satisfying (3.1) whenever

b1, . . . ,bL are points of Bd(2pN), not all zero. Writing

ξ = (
y

(1)
1 , . . . , y

(1)
d , . . . , y

(Nd)
1 , . . . , y

(Nd)
d

)
,

this yields

� · ξ 
≡ 0 (mod 1)
(
� ∈ B∗

p(2pN)
)
.

In view of Lemma 9, there is a natural number m with

mξ ∈ I11 × · · · × I1d × · · · × INd1 × · · · × INdd,

that is,

my(j) ∈ C(j)
(
j = 1, . . . ,Nd

)

as required. �
The following lemma and its proof are adapted from material in [5].

Lemma 11. Suppose that S satisfies (1.4). Let ε > 0, N = [2/ε] + 1. Let a, u ∈ R
d , |u| = 1 and

suppose that (3.4) holds. Let I be an open box in [0,1)d , I = I1 × · · · × Id , minj |Ij | = 2ε.
Let X be a compact subset of L(a,u) and suppose that

ajx /∈ I (mod 1) (x ∈ X,j � 1).

Then X is k-granular, where

k = (
4dNd+1 + 1

)dNd (
2d2Nd+1 + 1

)
.

Proof. Suppose the contrary, and let Y be a set in FLS(X) with #(Y ) > k. By Lemma 10, there
is a natural number m such that mY is ε-dense (mod 1).

There exists a sequence of intervals {Ji}i�1 in L(a,u) with |Ji | tending to 0 and

lim
i→∞Λ(X,Ji) = Y.

Put Ji = a + [bi, ci]u, di = ci − bi , Xi = Ji ∩ X, so that

lim di = 0. (3.6)

i→∞
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In view of (3.6) and (1.4), we can choose si in {aj : j � 1} such that

lim
i→∞ si

di

m
= 1.

Now

Λ(X,Ji) = Xi − a − biu

di

→ Y.

This immediately yields

lim
i→∞

mXi − ma − mbiu

di

= mY. (3.7)

We claim that

lim
i→∞D

(
mXi − ma − mbiu

di

, siXi − ma

di

− sibiu

)
= 0. (3.8)

To see this, let x ∈ Xi . Then
∣∣∣∣mx − ma − mbiu

di

−
(

six − ma

di

− sibiu

)∣∣∣∣ =
∣∣∣∣
(

m

di

− si

)
(x − biu)

∣∣∣∣
� (ci − bi)

∣∣∣∣mdi

− si

∣∣∣∣ = |m − sidi | → 0.

It follows from (3.7) and (3.8) that

lim
i→∞

(
siXi − ma

di

− sibiu

)
= mY.

Since mY in ε-dense (mod 1), we see that

siXi − ma

di

− sibiu

is 2ε-dense (mod 1) for sufficiently large i. This implies that the set siXi is 2ε-dense (mod 1)
for large i, and has a point in common with I . Since si ∈ {aj : j � 1} and Xi ⊆ X, this gives the
desired contradiction. �
Proof of Theorem 1. By combining Lemmas 11 and 6, we see that for any compact subset W

of EI (S), any a ∈ R
d , and any unit vector u satisfying

u · b 
= 0
(
b ∈ B∗

d

(
2dNd+1))

we have

dim
(
W ∩ L(a,u)

) = 0. (3.9)

Here N = [2/ε] + 1; 2ε is defined as in Lemma 11.



1768 R.C. Baker / Advances in Mathematics 227 (2011) 1757–1771
Suppose now that

dimEI (S) > d − 1.

Select s, d − 1 < s < dimEI (S), so that Hs(EI (S)) = ∞. By Lemma 3, there is a compact
subset W of EI (S) such that

0 < Hs(W) < ∞.

We now apply Lemma 4 with A = W , f = d − 1, d − f = 1. For almost all lines V (u) = {tu:
t ∈ R} with respect to the measure γd,1, there exists a ∈ V ⊥ such that

dim
(
W ∩ V (u)a

) = s − (d − 1). (3.10)

We may rewrite V (u)a in the form L(a,u). Now apart from the set of measure 0 already ex-
cluded, say E1, there is a further set E2 of measure 0 consisting of lines V (u) for which

u · b = 0

for some b ∈ B∗
d(2dNd+1). Pick any u such that V (u) /∈ E1 ∪E2. Then (3.10) is in contradiction

to (3.9). We conclude that dimEI (S) � d − 1. �
4. Proof of Theorem 2

Let S1, . . . , Sr be given with the respective properties D(Cj ) (j = 1, . . . , r). Choose C′
j ar-

bitrarily with C′
j > Cj . By replacing Cj by C′

j , we can suppose that the blocks Br in (1.5) (with
S = Sj ) have the additional property

ur → ∞.

To see this, let 0 < ε < 1 and

B ′
r = [

ur + ε(vr − ur), vr

] ∩ Sj = [
u′

r , vr

] ∩ Sj ,

say. Then vr − u′
r → ∞ and u′

r → ∞; moreover,

Cj #
(
B ′

r

)
� Cj #(Br) − Cjε(1 + vr − ur)

� (1 + vr − ur)(1 − Cjε).

Choosing ε so that C′
j = Cj/(1 − Cjε), we establish the assertion

We may suppose that E′
I (S1, . . . , Sd) is nonempty. Let x1, . . . , xu be distinct points of

E′
I (S1, . . . , Sd). Let I = I1 × · · · × Id . By hypothesis,

xs(n1, . . . , nd) /∈ I1 × I2 × · · · × Id (mod 1) (4.1)

for

1 � s � u, nj ∈ Sj , n1 < · · · < nd.
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We select blocks B(1), . . . ,B(d),

B(t) = [
u(t), v(t)

] ∩ St , 1 � u(t) < v(t), (4.2)

1 + v(t) − u(t) � C′
t#

(
Bt

)
(t = 1, . . . , d) (4.3)

and moreover

v(t) < u(t+1) (t = 1, . . . , d − 1). (4.4)

Blocks of this kind exist with each v(t) − u(t) arbitrarily large.
By (4.2),

xs(n1, . . . , nd) /∈ I1 × · · · × Id (mod 1)
(
1 � s � u, nt ∈ B(t)

)
.

We apply Lemma 1 with ξm = x�(n1, . . . , nd) − λ, where λ is the center of I , and εj = |Ij |/2.
We obtain

u#
(
B(1)

)
. . .#

(
B(d)

)
� 3

∑
�∈B( 2d

|I1| ,...,
2d
|Id | )

�
=0

∣∣∣∣∣
u∑

s=1

∑
n1,...,nd

nt∈B(t)

e
(
xs(�1n1 + · · · + �dnd)

)∣∣∣∣∣.

For brevity, define K by

K−1 = 3

(
4d

|I1| + 1

)
· · ·

(
4d

|Id | + 1

)
.

We select � ∈ B( 2d
|I1| , . . . ,

2d
|Id | ), � 
= 0, with

Ku#
(
B(1)

)
. . .#

(
B(d)

)
�

∣∣∣∣∣
u∑

s=1

∑
n1,...,nd

nt∈B(t)

e
(
xs(�1n1 + · · · + �dnd)

)∣∣∣∣∣.

Let k be the largest integer with �k 
= 0; then

Ku#
(
B(1)

)
. . .#

(
B(k)

)
�

∣∣∣∣∣
u∑

s=1

∑
n1,...,nk

nt∈B(t)

e
(
xs(�1n1 + · · · + �knk)

)∣∣∣∣∣.

Changing the sign of (�1, . . . , �k) if necessary, we may suppose that �k > 0. Now, for some
n1 ∈ B(1), . . . , nk−1 ∈ B(k−1) (if k > 0), we have

Ku#
(
B(k)

)
�

∑
(k)

∣∣∣∣∣
u∑

s=1

e
(
xs(� + �knk)

)∣∣∣∣∣

nk∈B
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with � = �1n1 + · · · + �k−1nk−1. Of course � = 0 if k = 1. By Cauchy’s inequality,

K2u2{#
(
B(k)

)}2 � #(Bk)
∑

nk∈B(k)

∣∣∣∣∣
u∑

s=1

e
(
xs(� + �knk)

)∣∣∣∣∣
2

.

Simplifying,

K2u2#
(
B(k)

)
�

∑
nk∈B(k)

∣∣∣∣∣
u∑

s=1

e
(
xs(� + �knk)

)∣∣∣∣∣
2

. (4.5)

To bound the last expression from above, we write

� + �knk = h + �k

(
nk − u(k) + 1

)
, h = � + �k

(
u(k) − 1

)
.

For nk ∈ B(k), the product v = �k(nk − u(k) + 1) is a natural number between 1 and

H = �k

(
v(k) − u(k) + 1

)
.

Hence

∑
nk∈B(k)

∣∣∣∣∣
u∑

s=1

e
(
xs(� + �knk)

)∣∣∣∣∣
2

�
H∑

v=1

∣∣∣∣∣
u∑

s=1

e
(
xs(h + v)

)∣∣∣∣∣
2

. (4.6)

Let ε > 0. Taking v(k) − u(k) sufficiently large, the last expression in (4.6) is

� u(1 + ε)H

by Lemma 2. Recalling (4.5),

K2u2#
(
B(k)

)
� u(1 + ε)H.

Since

#
(
B(k)

)
� 1

C′
k

(
v(k) − u(k) + 1

) = H

C′
k�k

,

it follows that

K2u

C′
k�k

� 1 + ε.

Since ε is arbitrary, and C′
k can be taken arbitrarily close to Ck , we obtain

u � Ck�k

2
= 9Ck�k

(
4d + 1

)2

· · ·
(

4d + 1

)2

.

K |I1| |Id |
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We complete the proof of Theorem 2 on inserting the bounds

�k � 2d

|Ik| and
4d

|Ij | + 1 � 5d

|Ij | .
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