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Abstract

LetS=(a j)?.;l be a strictly increasing sequence of real numbers satisfying
ajy1—ajzo>0. 0.1)
For an open box [ in [0, l)d, we write
E;d)(S) = {x eRY: ajx ¢ I (mod 1) for j > 1}.
It is shown that the Hausdorff dimension of E }d) (S) is d — 1 whenever

lim 2+ _
j—oo aj

1.

The case d = 1 is due to Boshernitzan. The proof builds on his approach.
Now let Si, ..., Sy be strictly increasing in N. Define Ei = E/I (S1,...,8y) to be the set of x in [0, 1)
for which

x(my,...,ny) g1 (mod1) forn;eS;, ny<---<ny.
A sequence S is said to fulfill condition D(C) if it contains
By =[ur, v ]NS
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for which v, — u, — oo and
1+ v —up < CH(By).

Kaufman has shown that £ } is countable whenever Sy, ..., Sy fulfill condition D(C). Here it is shown that
E ; is finite under this hypothesis. An upper bound for #(E }) is provided.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction
LetS=(a j);;o: | be a strictly increasing sequence of real numbers satisfying
ajy1—ajz2o>0 (j=1,2,..)). (1.1)
For an open interval [ in [0, 1) of length |I|, we write
Ei(S)={x€R: ajx ¢ I (modl) for j >1}.
If S is a sequence in the natural numbers N, then E;(S) is periodic, and we write
EL(S)=E[(S)N[0,1).

It is a weak consequence of Weyl’s work [17] on uniform distribution (mod 1) that E;(S)
has zero Lebesgue measure. It is natural to ask for conditions on S that will force E;(S) to be
‘smaller’ than this, in some sense. The strongest conclusion is obtained when S € N and

a; < Cj (1.2)

for infinitely many j, for some constant C. Both Kahane [9] and Amice [1] found that E ? (S) is
finite in this case. An explicit estimate is given by Baker, Coatney and Harman [2]:

2
#E}(S)gmin<288C 144(C log(2¢/|11)) )

P ME
Here #S denotes the number of elements in a finite set S. This is close to a sharp bound for |/|

tending to 0, as explained in [2].
If we make the hypothesis

aj=0(j") (1.3)

for some p > 1, then the Hausdorff dimension of E;(S) satisfies

1
dmE;(S) <1 ——,
p
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where ‘dim’ denotes Hausdorff dimension. Salem [16] has shown that (a jx);?‘;l is uniformly

distributed (mod 1) except for a set of x having dimension < 1 — 1/p; see [2] for further results
of this kind. I conjecture that dim E;(S) = 0 when (1.3) holds, and that there are sequences S
in N for every p > 1 that satisfy (1.3), for which E;(S) is uncountable for some /.

One reason for believing the first part of the conjecture is that Boshernitzan [5] has proved
such a result for real sequences that may grow much more rapidly. He shows that

dimE;(S)=0

whenever
lim = (1.4)
j—00 aj

This contrasts neatly with results from de Mathan [6,7] and Pollington [15]: if

.. aji]
liminf —*L & 1,
j—o00 (lj

then dim E;(S) = 1 for a suitably chosen interval 1.
How are we to extend the Kahane—Amice and Boshernitzan results to higher dimensions?
Take I = I} x --- x Iz to be an open box in [0, 1)4. We write

E\Y(S)={x eR% ajx ¢ I (mod1) for j=1,2,...}.

We extend Boshernitzan’s result as follows.
Theorem 1. Under the hypothesis (1.4), we have

dimEP(S)=d - 1.

Of course the lower bound

dimE(S) >d -1

is immediate, since
0,x2,...,x4) € EXV(S)

for every x», ..., x4. The corresponding upper bound will be proved in Section 3.

Kaufman [11] gave an alternative way to obtain a result in higher dimensions as follows. Let
Sl1. ..., S, be sequences in N satisfying (1.1) and again let I be an open box in [0, 1)¢. We define
E}(S1,...,Sq) to be the set of x in [0, 1) for which

x(ny,...,ng) ¢ 1 (mod1) forn;eS;, ny<---<ny.

Kaufman proves an analog of the Kahane—Amice result. A sequence S in N is said to fulfill
condition D(C) if it contains a sequence of blocks

B, =[ur,v,INS, 1<u, <v (1.5)
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for which v, — u, — oo and
1+v, —u, <CH#H(B,).

His result is that whenever S, ..., Sy all satisfy condition D(C), E; (S, ..., Sy) is countable.
We strengthen this as follows:

Theorem 2. Suppose that S; is a sequence in N that satisfies condition D(C;) (j =1,...,d)
Then E}(Sy, ..., Sy) is finite. In fact,

#E;(S1,...,8q) < Mmax &,
(0Ll HaD? 5
where [ = 1) X -+ X I,.
2. Some lemmas
We write B, (K1, ..., Kp) for the set of lattice points £ in Z” with |¢;| < K; (1 <i < p). Let

By(K)=Bp(K,....K).  Bi(K)=B,(K)\{0},

X y=xiy1 -+ xaya, |xl=(x-x)"%

e =e* 6]l =min|0 — n|.
nez

Lemmal.Let&,..., &, €RP &, = (Enit, ..., Ema). Lete; >0 (i =1,..., p). Suppose that

mae il S 1,
Ii<p €
Then
M
M<3 > D e&)
_ m=1

Proof. This is Corollary 2 in Barton, Montgomery and Vaaler [3]. O

Lemma 2. Let x1, ..., x, be distinct points of [0, 1). Then

2N+k

i
N 2N + 1 ;

u

Z by e(vxy)

s=1

2 u
2
s=1

uniformly in k.
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Proof. By a variant of a theorem of Wiener given by Katznelson [10, p. 47], we have

1 2N+k 5 5
N ; A )| :XT:‘“{T”

uniformly in k, for any complex measure p on [0, 1). Here
aw) = / e du(n).
[0,1)

We obtain the lemma by taking u to be the measure

WE)=) b. D

xs€E
For the next two lemmas, we recall some notations from the theory of Hausdorff measures.
More details can be found in Falconer [8].
The diameter of a nonempty set W in R is

|W|=sup{lx — y|: x,y € W}.

(This is consistent with our use of |/| as the length of an interval 7.)
Let E be a subset of R and s > 0. For § > 0, define

H3(E) =inf Y [W;|°

where the infimum is over all sequences of sets (W;) of diameter < § that cover E. Now

H(E) = lim H5(E)

§—00
is the Hausdorff s-dimensional outer measure of E. The restriction of H* to a certain o -field
containing the Borel sets is a positive measure on RY, Hausdorff s-dimensional measure. For
any E, there is a unique value, dim E, called the Hausdorff dimension of E, such that
HY(E)=00 if0<s<dimE, HY(E)=0 if dimE <s < oo.
For any subset W of R? and x € R?, we write W, for the translate
Wey={w+x: weW}.

For a subspace V of R?, we write V- for the orthogonal complement of V.

Lemma 3. Let E be a closed subset of R? with H* (E) = oc. For every ¢ > 0, there is a compact
subset F of E such that H*(F) = c.
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Proof. See [8, Theorem 5.4]. O

For the next lemma, we need to specify a measure y; , on the space G(d,m) of all
m-dimensional linear subspaces of R?. For more details, see Mattila [13]. Let O(d) be the or-
thogonal group of R¥ and let 6, be the unique Haar measure on O (d) such that

Gd(O(d)) =1.
Fix V € G(d, m); we define the measure y,; ,, on G(d, m) as follows.
Vd.m(B) =04({g € O(d): g(V) € B}).
This measure is independent of the choice of V.
Lemma 4. Let f be a natural number and s a real number such that f <s <d. Let A be a
Borel set in R? with 0 < H*(A) < oo. Then for almost all (d — f)-dimensional subspaces V
with respect to yq 4 f,
H/ ({a eVt dim(ANV,) =dimA - f}) > 0.

This was proved by Marstrand [12] in the planar case. The general case of Lemma 4 is due to

Mattila [13].

Let Z be a compact metric space and dz(-,-) the associated metric. For nonempty A C Z, we
write

dz(x,A) =inf{dz(x, a): ace A},
V(A e)={x€Z: dz(x,A) <€}

Let KC(Z) denote the family of closed subsets of Z and for A, B € K(Z), let
D(A, B) =inf{e >0: ACV(B,e)and BC V(A, e)}.
This function on K(Z) x K(Z) is known as the Hausdorff metric.
Lemma 5. D(A, B) is a metric on K(Z), and with this metric, K(Z) is compact.
Proof. See Munkres [14, pp. 280-281]. O
For a, u in R with |u| = 1, we define the line
L(a,u)={a+1tu:teR}
and the line segment

U)={tu: 0<t <1}
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A closed interval J of L(a, u) is a set of the form
J=a+[b,clu.
Given a closed subset X of L(a, u), the image of X N J under the mapping

y—a—bu

—
Y c—b

is a subset of U (1), which we denote by A(X, J). The family of limit sets of X, which we write
FLS(X), is the family of sets Y of the form

Y = lim A(X, J),

i—00

where the diameter |J;| tends to zero. Here and subsequently we intend the Hausdorff metric on
K(U (u)) when referring to the limit of a sequence of sets.

A closed subset X of L(a,u) is said to be k-granular if every set in FLS(X) has
cardinality < k.

Lemma 6. Let X be k-granular. Then dim X = 0.

Proof. Inthecased =1, L(a,u) =R, U(u) =[O0, 1], this is due to Boshernitzan [5]. It is simple
to extend the result to the general case, but we give the proof for completeness.
Define f : L(a,u) — R,

fla+tu)=t.
Since this is an isometry, we need only to show that dim f(X) = 0, and appealing to Bosher-

nitzan’s result, it suffices to show that f(X) is k-granular.
LetY € FLS(f (X)), then

Y = tim A0, 1) = tim L0000

1—00 1—>00 Ci —b,‘

for a sequence of intervals I; = [b;, ¢;] in R with ¢; —b; — 0.
‘We observe that

iUy =a+1bicilu
is an interval of L(a, u) of diameter ¢; — b;, and that

XN Y —a—biu
Ci —bi ’

AX, f7Nan) =
It is easy to see that

wA(f(X), L) = A(X, £~ ().
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If #Y > k, then there is a set uY = lim; oo A(X, f_l (1;)) in FLS(X) with more than k points,
which is absurd. This completes the proof of the lemma. O

Lemma 7. Let b € Z¢, u € R? and suppose that b - u # 0. The relation
a+b-y=0 (mod1) 2.1)
holds for at most |b - u| + 1 vectors y in U (u).
Proof. Let y =tu,0 <t < 1. Then (2.1) yields the equation
a+th-u=n

for an integer n, which lies in the closed interval with endpoints a, a + b - u. There are at most
|b - u| 4+ 1 possible n, and each n gives rise to one value of . O

3. Proof of Theorem 1
A subset S of [0, 1)¢ is said to be e-dense (mod 1) if for every cube C in R? of side e,
s€eC (modl) forsomeseS.
A theorem of Berend and Peres [4] for the case d = 1 states that for every € > 0, there is a k =
k(e) with the following property: Let Y C [0, 1), #(Y) > k. Some dilation mY (m € N) is e-dense
(mod 1). Our first task is to produce a workable substitute for this theorem in dimension d, using
Lemma 7 as our jumping off point.

Lemma 8. Let K, L be natural numbers. Let u € RY, lu| = 1. Suppose that

u-b+0 foreachbe Bj(K).

Let Y C U (u),
#Y > 2K + DL dK +1).
Then there is a sequence of distinct elements yV, ..., y ) of Y such that
by 4o 4br -y P £0 (mod 1) 3.1
whenever by, ..., by are elements of B;(K), not all zero.

Proof. We may write Y =uS where S C [0, 1]. We select y(j ) =¢ ju recursively so that
b -yV 4. 4b-y®£0 (mod 1)

whenever by, ..., by are in By(K) with by # 0. Notice that this condition implies y(k) ¢
{yD, ..., y®=D}. Evidently this gives a sequence yV, ..., y&) with the desired properties.
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We apply Lemma 7 repeatedly. The choice of y() is possible because the relation
by -tiu#0 (mod 1) (b1 € BZ(K))
holds for any choice of #; in § apart from at most (d K + 1)#B;§(K ) values, and
#S=#Y > (dK + )2K + 1)? > (dK + D#B(K).
Once y(l), e y(k’l) are chosen, where 2 < k < L, the relation
bi-y D+ by 4 b #0  (mod 1)

holds for by,...,by € By(K), by # 0, for any choice of # in § apart from at most
(dK + 1)(#B4(K))*~! #B%(K) values, and

HS =#Y > (dK + DK + D) > (@K + 1) (#B4(K))* #B5(K). O

Lemma 9. Let £ € RP. Let I be a cube in [0,1)? of side 1/N and suppose that mé ¢
I (mod 1) (m=1,..., M). Suppose further that £ - & # 0 (mod 1) (£ € B;‘,(ZpN)). Then

3 1
M < - AT 32
2 2 1e-&ll G2

LeB3(2pN)

Proof. We apply Lemma 1 with &§,, =mé — A (m =1, ..., M), where A is the center of /. We
conclude that

M
M <3 Z Ze(e-;:m). (3.3)
lGB;(ZpN) m=1
The lemma follows on inserting a standard estimate for the inner sum in (3.3). O
Lemma 10. Let u € RY, |u| = 1 and suppose that
u-b#0 (beB;(2dNT). (3.4)
Lete >0and N =[2/e]+ 1. Let Y C U (u),
d+1 AN (3 2 rd+1
#Y > (4N + 1) (2a7NTT 1), 3.5)

Then there is a natural number m such that mY is e-dense (mod 1) in [0, 1)4.
Proof. Let {C(l), ..., CW d)} be a partition of [0, 1)d into pairwise disjoint cubes of side 1/N,

CY =1 x--x Ijq.
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It sufﬁcgs to show that there is a natural number m such that there is an element of mY in
each C).
Let p=dN?, L = N9 By (3.4), (3.5), we may apply Lemma 8 with

K =2pN =2dN9*!

to obtain distinct elements y(j) = (yfj), e y;j)),j =1,...,N% ofY, satisfying (3.1) whenever

by, ..., by are points of By;(2pN), not all zero. Writing

_(,D 6 (N (N
E=(y vy oy ey )

this yields
£-£#£0 (mod]l1) (Z € B;(ZpN)).
In view of Lemma 9, there is a natural number m with
mEely X - xIigx - X Iyag X X Iyay,
that is,
myPDecy (j=1,...,N%

as required. O

The following lemma and its proof are adapted from material in [5].
Lemma 11. Suppose that S satisfies (1.4). Lete€ >0, N =[2/e]+ 1. Leta, u R?, |u| =1 and
suppose that (3.4) holds. Let I be an open box in [0, 1), I =1} x -+ x I, min; |/;| = 2e.

Let X be a compact subset of L(a, u) and suppose that

ajx¢l (modl) (xeX,j=1).
Then X is k-granular, where
d
k= (4N 1) 22N 1 1),

Proof. Suppose the contrary, and let Y be a set in FLS(X) with #(Y) > k. By Lemma 10, there
is a natural number m such that mY is e-dense (mod 1).

There exists a sequence of intervals {J;};>1 in L(a, u) with |J;| tending to 0 and

lim AX, J;)) =Y.
1—> 0

Put J; =a+[b;,cilu,di =c; — b;, X; = J; N X, so that

lim d; =0. (3.6)

11— 00
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In view of (3.6) and (1.4), we can choose s; in {a;: j > 1} such that

lim 5;—~ = 1.
I—o0 m
Now
X, —a—biu
AX, J) = ’di’ — Y.
i

This immediately yields

. mX; —ma—mbju
lim =mY. (3.7)
i—00 d;
We claim that
. mX; —ma — mb;u ma
lim D ,S,'X,' - = S,'b,'u =0. (3.8)
i— 00 di di

To see this, let x € X;. Then

mx —ma —mb;u ma m
d,’ = (S,'x—d—j—&‘b,’ll)’:‘(d—i—si)(x—biu)

m
< (e —by) @

—si| =|m —s;d;| = 0.

It follows from (3.7) and (3.8) that

. ma
lim (siX,- - — —sib,-u) =mY.
i—00 d;
Since mY in e-dense (mod 1), we see that

ma
$; Xi — — —s;bju
i

is 2e-dense (mod 1) for sufficiently large i. This implies that the set s; X; is 2e-dense (mod 1)
for large i, and has a point in common with /. Since s; € {a;: j > 1} and X; C X, this gives the
desired contradiction. 0O

Proof of Theorem 1. By combining Lemmas 11 and 6, we see that for any compact subset W
of E;(S), any a € R, and any unit vector u satisfying

u-b#0 (beB;(2dN'T))
we have
dim(W N L(a,u)) =0. (3.9)

Here N =[2/€] + 1; 2¢ is defined as in Lemma 11.
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Suppose now that
dimE;(S) >d — 1.

Select s, d — 1 <s < dim E;(S), so that H*(E;(S)) = oco. By Lemma 3, there is a compact
subset W of E;(S) such that

0 < H (W) < o0.

We now apply Lemma 4 with A=W, f =d —1,d — f = 1. For almost all lines V (u) = {ru:
t € R} with respect to the measure y, 1, there exists a € V<L such that

dim(WNV@)g)=s—(d—1). (3.10)

We may rewrite V(u), in the form L(a,u). Now apart from the set of measure O already ex-
cluded, say E1, there is a further set E5 of measure O consisting of lines V (u) for which

u-b=0

for some b € B (2dN d+1y Ppick any u such that V(u) ¢ E1 U E>. Then (3.10) is in contradiction
to (3.9). We conclude that dim E;(S) <d —1. O

4. Proof of Theorem 2

Let S1, ..., S, be given with the respective properties D(C;) (j =1, ..., r). Choose C} ar-
bitrarily with C} > C;. By replacing C; by C}, we can suppose that the blocks B, in (1.5) (with
S = &) have the additional property

Uy — 00.
To see this, let 0 <€ < 1 and
Bl =[ur+ e —up), v | NS =[u, v, NS;,
say. Then v, — u. — oo and u]. — 0c0; moreover,
Ci#(B)) > Cj#(B,) — Cje(1 + v, —uy)
> (1 +v —u)(1—Cje).

Choosing € so that C;. = C;/(1 — Cje), we establish the assertion

We may suppose that E;(Sy,...,Sy) is nonempty. Let xi,...,x, be distinct points of
E}(S1,...,8q). Let  =1I; x --- x I;. By hypothesis,

xs(ny,...,ng)¢ L1 x b x---x Iz (mod 1) “.1)
for

1<s<u, n;eSj, np<---<nq.
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We select blocks BV .. ., B(d),

BY =[u® v"]nS, 1<u® <v®, (4.2)
1+0® —u <CH#(B") (t=1,...,d) 4.3)

and moreover
v <y g =1,...,d—1). (4.4)

Blocks of this kind exist with each v") — u® arbitrarily large.

By (4.2),
Xs(i,...,ng) L x---x Iy (mod1) (1<s<u, n, €B?Y).
We apply Lemma 1 with &, = x¢(ny, ..., nq) — A, where X is the center of I, and €; = |/;]/2.
‘We obtain

wh(BV) .. #(BD)<3 )

LeB(2L ..., 2L

Z Z xs(€1n1+~--+€dnd))‘-

s=1 11,.

”(I;‘é() 4l neB“)
For brevity, define K by
k1 =3( ) ().
1] 1al
WeselectleB(‘”,.. \Idl) £ # 0, with

Ku#(BW).. . #(BY) <

Z Z xe(51n1+--~+ﬁdnd))‘~

s=1 11,.
n,EB(t)

Let k be the largest integer with £ # 0; then

Z Z e(xs(iny +~--+€knk))‘-

Ku#(BV) .. #(BW) <

s=1 115
n eB(’)
Changing the sign of (¢1,..., ¢;) if necessary, we may suppose that £; > 0. Now, for some
ni€ BW, ... nk_q € B&D (if k > 0), we have
u
Ku#(BO) < Y Ze(xs(ewknk))‘
nkeg(k) s=1
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with £ =£€iny + -+ £x—1ng—1. Of course £ = 0 if k = 1. By Cauchy’s inequality,

2
K2 (#(BO) <#(Bo Y Z (g (€ + &enp) | -
neB® | s=1
Simplifying,
u 2
K2uM#(BP) < Y7 D e(xo @+ teny)) 4.5)
meB® 1 s=1
To bound the last expression from above, we write
C+bne=h+b(me—u® +1), h=0+6®-1).
For nj; € B®  the product v = £y (ng — u® 4 1) is a natural number between 1 and
H =Ek(v(k) —u® 4 1).
Hence
u 2 u 2
DD lelxtt+tnn)| <D e(xh+) (4.6)
ngeB® 1 s=1 v=1ls=1

Let € > 0. Taking v® — u® sufficiently large, the last expression in (4.6) is
<u(l+e)H
by Lemma 2. Recalling (4.5),
K2u*#(B®) <u(l+e)H.

Since

1
#(BD) > — (y® _,® 4 1) = ’
it follows that

KZu

——<l+te
Cltx

Since € is arbitrary, and C; can be taken arbitrarily close to Cy, we obtain

Cily <4d )2 <4d )2
UL ——=9Cily\ —+1) ---|—+1) .
K?2 |11] [14]
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We complete the proof of Theorem 2 on inserting the bounds

2d 4d 5d
by <— and — 41 —.
[Ii| 1] 1]
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