

Available online at www.sciencedirect.com

ADVANCES IN Mathematics

Advances in Mathematics 227 (2011) 1757-1771

www.elsevier.com/locate/aim

Sequences that omit a box (modulo 1)

Roger C. Baker

Department of Mathematics, Brigham Young University, Provo, UT 84602, USA

Received 1 March 2010; accepted 31 March 2011

Available online 13 April 2011

Communicated by Kenneth Falconer

Abstract

Let $S = (a_j)_{j=1}^{\infty}$ be a strictly increasing sequence of real numbers satisfying

$$a_{i+1} - a_i \geqslant \sigma > 0. \tag{0.1}$$

For an open box I in $[0, 1)^d$, we write

 $E_I^{(d)}(\mathcal{S}) = \big\{ \boldsymbol{x} \in \mathbb{R}^d \colon a_j \boldsymbol{x} \notin I \pmod{1} \text{ for } j \ge 1 \big\}.$

It is shown that the Hausdorff dimension of $E_I^{(d)}(S)$ is d-1 whenever

$$\lim_{j \to \infty} \frac{a_{j+1}}{a_j} = 1.$$

The case d = 1 is due to Boshernitzan. The proof builds on his approach.

Now let S_1, \ldots, S_d be strictly increasing in \mathbb{N} . Define $E'_1 = E'_1(S_1, \ldots, S_d)$ to be the set of x in [0, 1) for which

 $x(n_1, \ldots, n_r) \notin I \pmod{1}$ for $n_j \in \mathcal{S}_j, n_1 < \cdots < n_d$.

A sequence S is said to fulfill condition D(C) if it contains

$$B_r = [u_r, v_r] \cap \mathcal{S}$$

E-mail address: baker@math.byu.edu.

0001-8708/\$ – see front matter @ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.aim.2011.03.020

for which $v_r - u_r \rightarrow \infty$ and

$$1 + v_r - u_r \leqslant C \#(B_r).$$

Kaufman has shown that E'_I is countable whenever S_1, \ldots, S_d fulfill condition D(C). Here it is shown that E'_I is finite under this hypothesis. An upper bound for $\#(E'_I)$ is provided. © 2011 Elsevier Inc. All rights reserved.

Keywords: Distribution modulo one; Hausdorff dimension; Hausdorff metric; Granular set; Exponential sums

1. Introduction

Let $S = (a_j)_{i=1}^{\infty}$ be a strictly increasing sequence of real numbers satisfying

$$a_{j+1} - a_j \ge \sigma > 0 \quad (j = 1, 2, ...).$$
 (1.1)

For an open interval I in [0, 1) of length |I|, we write

$$E_I(\mathcal{S}) = \{ x \in \mathbb{R} : a_j x \notin I \pmod{1} \text{ for } j \ge 1 \}.$$

If S is a sequence in the natural numbers N, then $E_I(S)$ is periodic, and we write

$$E'_I(\mathcal{S}) = E_I(\mathcal{S}) \cap [0, 1)$$

It is a weak consequence of Weyl's work [17] on uniform distribution (mod 1) that $E_I(S)$ has zero Lebesgue measure. It is natural to ask for conditions on S that will force $E_I(S)$ to be 'smaller' than this, in some sense. The strongest conclusion is obtained when $S \subseteq \mathbb{N}$ and

$$a_j \leqslant Cj \tag{1.2}$$

for infinitely many j, for some constant C. Both Kahane [9] and Amice [1] found that $E'_I(S)$ is finite in this case. An explicit estimate is given by Baker, Coatney and Harman [2]:

$$#E'_{I}(S) \leq \min\left(\frac{288C}{|I|^{3}}, \frac{144(C\log(2e/|I|))^{2}}{|I|^{2}}\right).$$

Here #S denotes the number of elements in a finite set S. This is close to a sharp bound for |I| tending to 0, as explained in [2].

If we make the hypothesis

$$a_j = O\left(j^p\right) \tag{1.3}$$

for some p > 1, then the Hausdorff dimension of $E_I(S)$ satisfies

$$\dim E_I(\mathcal{S}) \leqslant 1 - \frac{1}{p},$$

where 'dim' denotes Hausdorff dimension. Salem [16] has shown that $(a_j x)_{j=1}^{\infty}$ is uniformly distributed (mod 1) except for a set of x having dimension $\leq 1 - 1/p$; see [2] for further results of this kind. I conjecture that dim $E_I(S) = 0$ when (1.3) holds, and that there are sequences S in \mathbb{N} for every p > 1 that satisfy (1.3), for which $E_I(S)$ is uncountable for some I.

One reason for believing the first part of the conjecture is that Boshernitzan [5] has proved such a result for real sequences that may grow much more rapidly. He shows that

$$\dim E_I(\mathcal{S}) = 0$$

whenever

$$\lim_{j \to \infty} \frac{a_{j+1}}{a_j} = 1. \tag{1.4}$$

This contrasts neatly with results from de Mathan [6,7] and Pollington [15]: if

$$\liminf_{j \to \infty} \frac{a_{j+1}}{a_j} > 1,$$

then dim $E_I(S) = 1$ for a suitably chosen interval *I*.

How are we to extend the Kahane–Amice and Boshernitzan results to higher dimensions? Take $I = I_1 \times \cdots \times I_d$ to be an open box in $[0, 1)^d$. We write

$$E_I^{(d)}(\mathcal{S}) = \left\{ \boldsymbol{x} \in \mathbb{R}^d \colon a_j \boldsymbol{x} \notin I \pmod{1} \text{ for } j = 1, 2, \ldots \right\}.$$

We extend Boshernitzan's result as follows.

Theorem 1. Under the hypothesis (1.4), we have

$$\dim E_I^{(d)}(\mathcal{S}) = d - 1.$$

Of course the lower bound

$$\dim E_I^{(d)}(\mathcal{S}) \ge d-1$$

is immediate, since

$$(0, x_2, \dots, x_d) \in E_I^{(d)}(\mathcal{S})$$

for every x_2, \ldots, x_d . The corresponding upper bound will be proved in Section 3.

Kaufman [11] gave an alternative way to obtain a result in higher dimensions as follows. Let S_1, \ldots, S_d be sequences in \mathbb{N} satisfying (1.1) and again let *I* be an open box in $[0, 1)^d$. We define $E'_I(S_1, \ldots, S_d)$ to be the set of *x* in [0, 1) for which

$$x(n_1, \ldots, n_d) \notin I \pmod{1}$$
 for $n_j \in S_j, n_1 < \cdots < n_d$.

Kaufman proves an analog of the Kahane–Amice result. A sequence S in \mathbb{N} is said to **fulfill** condition D(C) if it contains a sequence of blocks

$$B_r = [u_r, v_r] \cap \mathcal{S}, \quad 1 \le u_r < v_r \tag{1.5}$$

for which $v_r - u_r \rightarrow \infty$ and

$$1 + v_r - u_r \leq C \#(B_r).$$

His result is that whenever S_1, \ldots, S_d all satisfy condition D(C), $E'_I(S_1, \ldots, S_d)$ is countable. We strengthen this as follows:

Theorem 2. Suppose that S_j is a sequence in \mathbb{N} that satisfies condition $D(C_j)$ (j = 1, ..., d)Then $E'_I(S_1, ..., S_d)$ is finite. In fact,

$$#E'_{I}(S_{1},\ldots,S_{d}) \leq \frac{18d(5d)^{2d}}{(|I_{1}|\ldots|I_{d}|)^{2}} \max_{j} \frac{C_{j}}{|I_{j}|},$$

where $I = I_1 \times \cdots \times I_r$.

2. Some lemmas

We write $\mathcal{B}_p(K_1, \ldots, K_p)$ for the set of lattice points ℓ in \mathbb{Z}^p with $|\ell_i| \leq K_i$ $(1 \leq i \leq p)$. Let

$$\mathcal{B}_p(K) = \mathcal{B}_p(K, \dots, K), \qquad \mathcal{B}_p^*(K) = \mathcal{B}_p(K) \setminus \{\mathbf{0}\},$$
$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \dots + x_d y_d, \quad |\mathbf{x}| = (\mathbf{x} \cdot \mathbf{x})^{1/2},$$
$$e(\theta) = e^{2\pi i \theta}, \quad \|\theta\| = \min_{n \in \mathbb{Z}} |\theta - n|.$$

Lemma 1. Let $\xi_1, ..., \xi_M \in \mathbb{R}^p$, $\xi_m = (\xi_{m1}, ..., \xi_{md})$. Let $\epsilon_i > 0$ (i = 1, ..., p). Suppose that

$$\max_{1\leqslant i\leqslant p} \frac{\|\xi_{mi}\|}{\epsilon_i} \ge 1 \quad (m=1,\ldots,M).$$

Then

$$M \leq 3 \sum_{\substack{\boldsymbol{\ell} \in \mathcal{B}_p(p\boldsymbol{\epsilon}_1^{-1},\ldots,p\boldsymbol{\epsilon}_p^{-1})\\ \boldsymbol{\ell} \neq \boldsymbol{0}}} \left| \sum_{m=1}^M e(\boldsymbol{\ell} \cdot \boldsymbol{\xi}_m) \right|.$$

Proof. This is Corollary 2 in Barton, Montgomery and Vaaler [3].

Lemma 2. Let x_1, \ldots, x_u be distinct points of [0, 1). Then

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{v=k}^{2N+k} \left| \sum_{s=1}^{u} b_s e(vx_s) \right|^2 = \sum_{s=1}^{u} |b_s|^2$$

uniformly in k.

Proof. By a variant of a theorem of Wiener given by Katznelson [10, p. 47], we have

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{v=k}^{2N+k} |\hat{\mu}(v)|^2 = \sum_{\tau} |\mu\{\tau\}|^2$$

uniformly in k, for any complex measure μ on [0, 1). Here

$$\hat{\mu}(v) = \int_{[0,1)} e^{-ivt} d\mu(t).$$

We obtain the lemma by taking μ to be the measure

$$\mu(E) = \sum_{x_s \in E} \bar{b}_s. \qquad \Box$$

For the next two lemmas, we recall some notations from the theory of Hausdorff measures. More details can be found in Falconer [8].

The **diameter** of a nonempty set *W* in \mathbb{R}^d is

$$|W| = \sup\{|x - y|: x, y \in W\}.$$

(This is consistent with our use of |I| as the length of an interval I.)

Let *E* be a subset of \mathbb{R}^d and s > 0. For $\delta > 0$, define

$$\mathcal{H}^s_\delta(E) = \inf \sum_i |W_i|^s$$

where the infimum is over all sequences of sets (W_i) of diameter $\leq \delta$ that cover *E*. Now

$$\mathcal{H}^{s}(E) = \lim_{\delta \to \infty} \mathcal{H}^{s}_{\delta}(E)$$

is the **Hausdorff** *s*-dimensional outer measure of *E*. The restriction of \mathcal{H}^s to a certain σ -field containing the Borel sets is a positive measure on \mathbb{R}^d , **Hausdorff** *s*-dimensional measure. For any *E*, there is a unique value, dim *E*, called the **Hausdorff dimension** of *E*, such that

 $\mathcal{H}^{s}(E) = \infty$ if $0 \leq s < \dim E$, $\mathcal{H}^{s}(E) = 0$ if $\dim E < s < \infty$.

For any subset *W* of \mathbb{R}^d and $x \in \mathbb{R}^d$, we write W_x for the translate

$$W_{\boldsymbol{x}} = \{ \boldsymbol{w} + \boldsymbol{x} \colon \boldsymbol{w} \in W \}.$$

For a subspace V of \mathbb{R}^d , we write V^{\perp} for the orthogonal complement of V.

Lemma 3. Let *E* be a closed subset of \mathbb{R}^d with $\mathcal{H}^s(E) = \infty$. For every c > 0, there is a compact subset *F* of *E* such that $\mathcal{H}^s(F) = c$.

Proof. See [8, Theorem 5.4]. \Box

For the next lemma, we need to specify a measure $\gamma_{d,m}$ on the space G(d,m) of all *m*-dimensional linear subspaces of \mathbb{R}^d . For more details, see Mattila [13]. Let O(d) be the orthogonal group of \mathbb{R}^d and let θ_d be the unique Haar measure on O(d) such that

$$\theta_d \big(O(d) \big) = 1.$$

Fix $V \in G(d, m)$; we define the measure $\gamma_{d,m}$ on G(d, m) as follows.

$$\gamma_{d,m}(B) = \theta_d \big(\big\{ g \in O(d) \colon g(V) \in B \big\} \big).$$

This measure is independent of the choice of V.

Lemma 4. Let f be a natural number and s a real number such that f < s < d. Let A be a Borel set in \mathbb{R}^d with $0 < \mathcal{H}^s(A) < \infty$. Then for almost all (d - f)-dimensional subspaces V with respect to $\gamma_{d,d-f}$,

$$\mathcal{H}^f(\{\boldsymbol{a}\in V^{\perp}: \dim(A\cap V_{\boldsymbol{a}})=\dim A-f\})>0.$$

This was proved by Marstrand [12] in the planar case. The general case of Lemma 4 is due to Mattila [13].

Let Z be a compact metric space and $d_Z(\cdot, \cdot)$ the associated metric. For nonempty $A \subseteq Z$, we write

$$d_Z(x, A) = \inf \{ d_Z(x, a) \colon a \in A \},\$$
$$V(A, \epsilon) = \{ x \in Z \colon d_Z(x, A) < \epsilon \}.$$

Let $\mathcal{K}(Z)$ denote the family of closed subsets of Z and for $A, B \in \mathcal{K}(Z)$, let

$$D(A, B) = \inf \{ \epsilon > 0 : A \subseteq V(B, \epsilon) \text{ and } B \subseteq V(A, \epsilon) \}$$

This function on $\mathcal{K}(Z) \times \mathcal{K}(Z)$ is known as the **Hausdorff metric**.

Lemma 5. D(A, B) is a metric on $\mathcal{K}(Z)$, and with this metric, $\mathcal{K}(Z)$ is compact.

Proof. See Munkres [14, pp. 280–281]. □

For \boldsymbol{a} , \boldsymbol{u} in \mathbb{R}^d with $|\boldsymbol{u}| = 1$, we define the line

$$L(\boldsymbol{a}, \boldsymbol{u}) = \{\boldsymbol{a} + t\boldsymbol{u}: t \in \mathbb{R}\}$$

and the line segment

$$U(\boldsymbol{u}) = \{t\boldsymbol{u}: \ 0 \leq t \leq 1\}.$$

A closed interval J of L(a, u) is a set of the form

$$J = \boldsymbol{a} + [b, c]\boldsymbol{u}.$$

Given a closed subset X of L(a, u), the image of $X \cap J$ under the mapping

$$y \rightarrow \frac{y-a-bu}{c-b}$$

is a subset of U(u), which we denote by $\Lambda(X, J)$. The **family of limit sets of** X, which we write *FLS*(X), is the family of sets Y of the form

$$Y = \lim_{i \to \infty} \Lambda(X, J_i),$$

where the diameter $|J_i|$ tends to zero. Here and subsequently we intend the Hausdorff metric on $\mathcal{K}(U(u))$ when referring to the limit of a sequence of sets.

A closed subset X of L(a, u) is said to be **k-granular** if every set in FLS(X) has cardinality $\leq k$.

Lemma 6. Let X be k-granular. Then dim X = 0.

Proof. In the case d = 1, $L(a, u) = \mathbb{R}$, U(u) = [0, 1], this is due to Boshernitzan [5]. It is simple to extend the result to the general case, but we give the proof for completeness.

Define $f: L(\boldsymbol{a}, \boldsymbol{u}) \to \mathbb{R}$,

$$f(\boldsymbol{a} + t\boldsymbol{u}) = t.$$

Since this is an isometry, we need only to show that dim f(X) = 0, and appealing to Boshernitzan's result, it suffices to show that f(X) is k-granular.

Let $Y \in FLS(f(X))$, then

$$Y = \lim_{i \to \infty} \Lambda(f(X), I_i) = \lim_{i \to \infty} \frac{f(X) \cap I_i - b_i}{c_i - b_i}$$

for a sequence of intervals $I_i = [b_i, c_i]$ in \mathbb{R} with $c_i - b_i \rightarrow 0$.

We observe that

$$f^{-1}(I_i) = \boldsymbol{a} + [b_i, c_i]\boldsymbol{u}$$

is an interval of L(a, u) of diameter $c_i - b_i$, and that

$$\Lambda(X, f^{-1}(I_i)) = \frac{X \cap f^{-1}(I_i) - \boldsymbol{a} - b_i \boldsymbol{u}}{c_i - b_i}.$$

It is easy to see that

$$\boldsymbol{u}\Lambda\big(f(X),I_i\big)=\Lambda\big(X,f^{-1}(I_i)\big).$$

If #Y > k, then there is a set $uY = \lim_{i \to \infty} \Lambda(X, f^{-1}(I_i))$ in *FLS*(*X*) with more than *k* points, which is absurd. This completes the proof of the lemma. \Box

Lemma 7. Let $\boldsymbol{b} \in \mathbb{Z}^d$, $\boldsymbol{u} \in \mathbb{R}^d$ and suppose that $\boldsymbol{b} \cdot \boldsymbol{u} \neq 0$. The relation

$$a + \mathbf{b} \cdot \mathbf{y} \equiv 0 \pmod{1} \tag{2.1}$$

holds for at most $|\mathbf{b} \cdot \mathbf{u}| + 1$ vectors \mathbf{y} in $U(\mathbf{u})$.

Proof. Let y = tu, $0 \le t \le 1$. Then (2.1) yields the equation

$$a + t \boldsymbol{b} \cdot \boldsymbol{u} = n$$

for an integer *n*, which lies in the closed interval with endpoints $a, a + b \cdot u$. There are at most $|b \cdot u| + 1$ possible *n*, and each *n* gives rise to one value of *t*. \Box

3. Proof of Theorem 1

A subset S of $[0, 1)^d$ is said to be ϵ -**dense** (mod 1) if for every cube C in \mathbb{R}^d of side ϵ ,

 $s \in C \pmod{1}$ for some $s \in S$.

A theorem of Berend and Peres [4] for the case d = 1 states that for every $\epsilon > 0$, there is a $k = k(\epsilon)$ with the following property: Let $Y \subseteq [0, 1), \#(Y) > k$. Some dilation $mY \ (m \in \mathbb{N})$ is ϵ -dense (mod 1). Our first task is to produce a workable substitute for this theorem in dimension d, using Lemma 7 as our jumping off point.

Lemma 8. Let K, L be natural numbers. Let $\mathbf{u} \in \mathbb{R}^d$, $|\mathbf{u}| = 1$. Suppose that

 $\boldsymbol{u} \cdot \boldsymbol{b} \neq 0$ for each $\boldsymbol{b} \in \mathcal{B}_d^*(K)$.

Let $Y \subseteq U(\boldsymbol{u})$,

$$\#Y \ge (2K+1)^{dL}(dK+1).$$

Then there is a sequence of distinct elements $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(L)}$ of Y such that

$$\boldsymbol{b}_1 \cdot \boldsymbol{y}^{(1)} + \dots + \boldsymbol{b}_L \cdot \boldsymbol{y}^{(L)} \neq 0 \pmod{1} \tag{3.1}$$

whenever $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_L$ are elements of $\mathcal{B}_d(K)$, not all zero.

Proof. We may write Y = uS where $S \subseteq [0, 1]$. We select $y^{(j)} = t_j u$ recursively so that

$$\boldsymbol{b}_1 \cdot \boldsymbol{y}^{(1)} + \dots + \boldsymbol{b}_k \cdot \boldsymbol{y}^{(k)} \not\equiv 0 \pmod{1}$$

whenever b_1, \ldots, b_k are in $\mathcal{B}_d(K)$ with $b_k \neq 0$. Notice that this condition implies $y^{(k)} \notin \{y^{(1)}, \ldots, y^{(k-1)}\}$. Evidently this gives a sequence $y^{(1)}, \ldots, y^{(L)}$ with the desired properties.

We apply Lemma 7 repeatedly. The choice of $y^{(1)}$ is possible because the relation

$$\boldsymbol{b}_1 \cdot t_1 \boldsymbol{u} \neq 0 \pmod{1} \quad (\boldsymbol{b}_1 \in \mathcal{B}^*_d(K))$$

holds for any choice of t_1 in S apart from at most $(dK + 1)#\mathcal{B}_d^*(K)$ values, and

$$#S = #Y \ge (dK + 1)(2K + 1)^d > (dK + 1)#\mathcal{B}_d^*(K).$$

Once $\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(k-1)}$ are chosen, where $2 \leq k \leq L$, the relation

$$\boldsymbol{b}_1 \cdot \boldsymbol{y}^{(1)} + \dots + \boldsymbol{b}_{k-1} \cdot \boldsymbol{y}^{(k-1)} + \boldsymbol{b}_k \cdot t_k \boldsymbol{u} \neq 0 \pmod{1}$$

holds for $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_k \in \mathcal{B}_d(K)$, $\boldsymbol{b}_k \neq \boldsymbol{0}$, for any choice of t_k in S apart from at most $(dK+1)(\#\mathcal{B}_d(K))^{k-1} \#\mathcal{B}_d^*(K)$ values, and

$$\#S = \#Y \ge (dK+1)(2K+1)^{dL} > (dK+1)(\#\mathcal{B}_d(K))^{k-1} \#\mathcal{B}_d^*(K). \quad \Box$$

Lemma 9. Let $\boldsymbol{\xi} \in \mathbb{R}^p$. Let I be a cube in $[0,1)^d$ of side 1/N and suppose that $m\boldsymbol{\xi} \notin I \pmod{1}$ (m = 1, ..., M). Suppose further that $\boldsymbol{\ell} \cdot \boldsymbol{\xi} \neq 0 \pmod{1}$ ($\boldsymbol{\ell} \in \mathcal{B}_p^*(2pN)$). Then

$$M \leqslant \frac{3}{2} \sum_{\boldsymbol{\ell} \in \mathcal{B}_p^*(2pN)} \frac{1}{\|\boldsymbol{\ell} \cdot \boldsymbol{\xi}\|}.$$
(3.2)

Proof. We apply Lemma 1 with $\xi_m = m\xi - \lambda$ (m = 1, ..., M), where λ is the center of *I*. We conclude that

$$M \leq 3 \sum_{\boldsymbol{\ell} \in \mathcal{B}_p^*(2pN)} \left| \sum_{m=1}^M e(\boldsymbol{\ell} \cdot \boldsymbol{\xi}_m) \right|.$$
(3.3)

The lemma follows on inserting a standard estimate for the inner sum in (3.3). \Box

Lemma 10. Let $\boldsymbol{u} \in \mathbb{R}^d$, $|\boldsymbol{u}| = 1$ and suppose that

$$\boldsymbol{u} \cdot \boldsymbol{b} \neq 0 \quad \left(\boldsymbol{b} \in \mathcal{B}_d^*(2dN^{d+1})\right). \tag{3.4}$$

Let $\epsilon > 0$ and $N = [2/\epsilon] + 1$. Let $Y \subseteq U(\boldsymbol{u})$,

$$\#Y \ge \left(4dN^{d+1}+1\right)^{dN^d} \left(2d^2N^{d+1}+1\right). \tag{3.5}$$

Then there is a natural number m such that mY is ϵ -dense (mod 1) in $[0, 1)^d$.

Proof. Let $\{C^{(1)}, \ldots, C^{(N^d)}\}$ be a partition of $[0, 1)^d$ into pairwise disjoint cubes of side 1/N,

$$C^{(j)} = I_{j1} \times \cdots \times I_{jd}.$$

It suffices to show that there is a natural number m such that there is an element of mY in each $C^{(j)}$.

Let $p = dN^d$, $L = N^d$. By (3.4), (3.5), we may apply Lemma 8 with

$$K = 2pN = 2dN^{d+1}$$

to obtain distinct elements $\mathbf{y}^{(j)} = (y_1^{(j)}, \dots, y_d^{(j)}), j = 1, \dots, N^d$, of *Y*, satisfying (3.1) whenever $\mathbf{b}_1, \dots, \mathbf{b}_L$ are points of $\mathcal{B}_d(2pN)$, not all zero. Writing

$$\boldsymbol{\xi} = (y_1^{(1)}, \dots, y_d^{(1)}, \dots, y_1^{(N^d)}, \dots, y_d^{(N^d)}),$$

this yields

 $\boldsymbol{\ell} \cdot \boldsymbol{\xi} \neq 0 \pmod{1} \quad \big(\boldsymbol{\ell} \in \mathcal{B}_p^*(2pN)\big).$

In view of Lemma 9, there is a natural number m with

$$m\boldsymbol{\xi} \in I_{11} \times \cdots \times I_{1d} \times \cdots \times I_{N^d 1} \times \cdots \times I_{N^d d},$$

that is,

$$m \mathbf{y}^{(j)} \in C^{(j)} \quad (j = 1, \dots, N^d)$$

as required. \Box

The following lemma and its proof are adapted from material in [5].

Lemma 11. Suppose that S satisfies (1.4). Let $\epsilon > 0$, $N = [2/\epsilon] + 1$. Let $a, u \in \mathbb{R}^d$, |u| = 1 and suppose that (3.4) holds. Let I be an open box in $[0, 1)^d$, $I = I_1 \times \cdots \times I_d$, $\min_j |I_j| = 2\epsilon$. Let X be a compact subset of L(a, u) and suppose that

$$a_j \mathbf{x} \notin I \pmod{1} \quad (\mathbf{x} \in X, j \ge 1).$$

Then X is k-granular, where

$$k = (4dN^{d+1} + 1)^{dN^d} (2d^2N^{d+1} + 1).$$

Proof. Suppose the contrary, and let Y be a set in FLS(X) with #(Y) > k. By Lemma 10, there is a natural number m such that mY is ϵ -dense (mod 1).

There exists a sequence of intervals $\{J_i\}_{i \ge 1}$ in L(a, u) with $|J_i|$ tending to 0 and

$$\lim_{i\to\infty}\Lambda(X,J_i)=Y.$$

Put $J_i = \boldsymbol{a} + [b_i, c_i]\boldsymbol{u}, d_i = c_i - b_i, X_i = J_i \cap X$, so that

$$\lim_{i \to \infty} d_i = 0. \tag{3.6}$$

In view of (3.6) and (1.4), we can choose s_i in $\{a_j: j \ge 1\}$ such that

$$\lim_{i \to \infty} s_i \frac{d_i}{m} = 1.$$

Now

$$\Lambda(X, J_i) = \frac{X_i - \boldsymbol{a} - b_i \boldsymbol{u}}{d_i} \to Y.$$

This immediately yields

$$\lim_{i \to \infty} \frac{mX_i - ma - mb_i u}{d_i} = mY.$$
(3.7)

We claim that

$$\lim_{i \to \infty} D\left(\frac{mX_i - m\boldsymbol{a} - mb_i\boldsymbol{u}}{d_i}, s_iX_i - \frac{m\boldsymbol{a}}{d_i} - s_ib_i\boldsymbol{u}\right) = 0.$$
(3.8)

To see this, let $x \in X_i$. Then

$$\left|\frac{m\mathbf{x} - m\mathbf{a} - mb_i\mathbf{u}}{d_i} - \left(s_i\mathbf{x} - \frac{m\mathbf{a}}{d_i} - s_ib_i\mathbf{u}\right)\right| = \left|\left(\frac{m}{d_i} - s_i\right)(\mathbf{x} - b_i\mathbf{u})\right|$$
$$\leqslant (c_i - b_i)\left|\frac{m}{d_i} - s_i\right| = |m - s_id_i| \to 0.$$

It follows from (3.7) and (3.8) that

$$\lim_{i\to\infty}\left(s_iX_i-\frac{m\boldsymbol{a}}{d_i}-s_ib_i\boldsymbol{u}\right)=mY.$$

Since mY in ϵ -dense (mod 1), we see that

$$s_i X_i - \frac{ma}{d_i} - s_i b_i u$$

is 2ϵ -dense (mod 1) for sufficiently large *i*. This implies that the set $s_i X_i$ is 2ϵ -dense (mod 1) for large *i*, and has a point in common with *I*. Since $s_i \in \{a_j: j \ge 1\}$ and $X_i \subseteq X$, this gives the desired contradiction. \Box

Proof of Theorem 1. By combining Lemmas 11 and 6, we see that for any compact subset W of $E_I(S)$, any $a \in \mathbb{R}^d$, and any unit vector u satisfying

$$\boldsymbol{u} \cdot \boldsymbol{b} \neq 0 \quad \left(\boldsymbol{b} \in \mathcal{B}_d^* \left(2dN^{d+1} \right) \right)$$

we have

$$\dim(W \cap L(\boldsymbol{a}, \boldsymbol{u})) = 0. \tag{3.9}$$

Here $N = [2/\epsilon] + 1$; 2ϵ is defined as in Lemma 11.

Suppose now that

$$\dim E_I(\mathcal{S}) > d - 1.$$

Select s, $d - 1 < s < \dim E_I(S)$, so that $\mathcal{H}^s(E_I(S)) = \infty$. By Lemma 3, there is a compact subset W of $E_I(S)$ such that

$$0 < \mathcal{H}^{s}(W) < \infty.$$

We now apply Lemma 4 with A = W, f = d - 1, d - f = 1. For almost all lines $V(u) = \{tu: t \in \mathbb{R}\}$ with respect to the measure $\gamma_{d,1}$, there exists $u \in V^{\perp}$ such that

$$\dim(W \cap V(u)_a) = s - (d - 1). \tag{3.10}$$

We may rewrite $V(u)_a$ in the form L(a, u). Now apart from the set of measure 0 already excluded, say E_1 , there is a further set E_2 of measure 0 consisting of lines V(u) for which

$$\boldsymbol{u} \cdot \boldsymbol{b} = 0$$

for some $\boldsymbol{b} \in \mathcal{B}_d^*(2dN^{d+1})$. Pick any \boldsymbol{u} such that $V(\boldsymbol{u}) \notin E_1 \cup E_2$. Then (3.10) is in contradiction to (3.9). We conclude that dim $E_I(S) \leq d-1$. \Box

4. Proof of Theorem 2

Let S_1, \ldots, S_r be given with the respective properties $D(C_j)$ $(j = 1, \ldots, r)$. Choose C'_j arbitrarily with $C'_j > C_j$. By replacing C_j by C'_j , we can suppose that the blocks B_r in (1.5) (with $S = S_j$) have the additional property

$$u_r \to \infty$$
.

To see this, let $0 < \epsilon < 1$ and

$$B'_r = [u_r + \epsilon(v_r - u_r), v_r] \cap \mathcal{S}_j = [u'_r, v_r] \cap \mathcal{S}_j,$$

say. Then $v_r - u'_r \to \infty$ and $u'_r \to \infty$; moreover,

$$C_{j}\#(B'_{r}) \ge C_{j}\#(B_{r}) - C_{j}\epsilon(1+v_{r}-u_{r})$$
$$\ge (1+v_{r}-u_{r})(1-C_{j}\epsilon).$$

Choosing ϵ so that $C'_j = C_j/(1 - C_j \epsilon)$, we establish the assertion

We may suppose that $E'_I(S_1, \ldots, S_d)$ is nonempty. Let x_1, \ldots, x_u be distinct points of $E'_I(S_1, \ldots, S_d)$. Let $I = I_1 \times \cdots \times I_d$. By hypothesis,

$$x_s(n_1, \dots, n_d) \notin I_1 \times I_2 \times \dots \times I_d \pmod{1} \tag{4.1}$$

for

$$1 \leq s \leq u, \quad n_j \in \mathcal{S}_j, \ n_1 < \cdots < n_d.$$

We select blocks $B^{(1)}, \ldots, B^{(d)}$,

$$B^{(t)} = \left[u^{(t)}, v^{(t)}\right] \cap \mathcal{S}_t, \quad 1 \le u^{(t)} < v^{(t)}, \tag{4.2}$$

$$1 + v^{(t)} - u^{(t)} \leqslant C'_t \# (B^t) \quad (t = 1, \dots, d)$$
(4.3)

and moreover

$$v^{(t)} < u^{(t+1)}$$
 $(t = 1, ..., d - 1).$ (4.4)

Blocks of this kind exist with each $v^{(t)} - u^{(t)}$ arbitrarily large.

By (4.2),

$$x_s(n_1,\ldots,n_d)\notin I_1\times\cdots\times I_d \pmod{1} \quad (1\leqslant s\leqslant u,\ n_t\in B^{(t)}).$$

We apply Lemma 1 with $\xi_m = x_\ell(n_1, \dots, n_d) - \lambda$, where λ is the center of I, and $\epsilon_j = |I_j|/2$. We obtain

$$u\#(B^{(1)})\dots\#(B^{(d)}) \leq 3 \sum_{\substack{\ell \in \mathcal{B}(\frac{2d}{|I_1|},\dots,\frac{2d}{|I_d|})\\ \ell \neq 0}} \left| \sum_{s=1}^u \sum_{\substack{n_1,\dots,n_d\\n_t \in B^{(t)}}} e(x_s(\ell_1n_1+\dots+\ell_dn_d)) \right|.$$

For brevity, define *K* by

$$K^{-1} = 3\left(\frac{4d}{|I_1|} + 1\right)\cdots\left(\frac{4d}{|I_d|} + 1\right).$$

We select $\boldsymbol{\ell} \in \mathcal{B}(\frac{2d}{|I_1|}, \dots, \frac{2d}{|I_d|}), \, \boldsymbol{\ell} \neq \boldsymbol{0}$, with

$$Ku#(B^{(1)})\dots #(B^{(d)}) \leq \left| \sum_{s=1}^{u} \sum_{\substack{n_1,\dots,n_d \\ n_t \in B^{(l)}}} e(x_s(\ell_1n_1 + \dots + \ell_dn_d)) \right|.$$

Let *k* be the largest integer with $\ell_k \neq 0$; then

$$Ku#(B^{(1)})\dots #(B^{(k)}) \leq \left| \sum_{s=1}^{u} \sum_{\substack{n_1,\dots,n_k \\ n_t \in B^{(t)}}} e(x_s(\ell_1n_1 + \dots + \ell_kn_k)) \right|.$$

Changing the sign of (ℓ_1, \ldots, ℓ_k) if necessary, we may suppose that $\ell_k > 0$. Now, for some $n_1 \in B^{(1)}, \ldots, n_{k-1} \in B^{(k-1)}$ (if k > 0), we have

$$Ku\#(B^{(k)}) \leq \sum_{n_k \in B^{(k)}} \left| \sum_{s=1}^u e(x_s(\ell+\ell_k n_k)) \right|$$

with $\ell = \ell_1 n_1 + \dots + \ell_{k-1} n_{k-1}$. Of course $\ell = 0$ if k = 1. By Cauchy's inequality,

$$K^{2}u^{2}\left\{\#\left(B^{(k)}\right)\right\}^{2} \leq \#(B_{k})\sum_{n_{k}\in B^{(k)}}\left|\sum_{s=1}^{u}e\left(x_{s}(\ell+\ell_{k}n_{k})\right)\right|^{2}.$$

Simplifying,

$$K^{2}u^{2}\#(B^{(k)}) \leq \sum_{n_{k}\in B^{(k)}} \left|\sum_{s=1}^{u} e(x_{s}(\ell+\ell_{k}n_{k}))\right|^{2}.$$
(4.5)

To bound the last expression from above, we write

$$\ell + \ell_k n_k = h + \ell_k (n_k - u^{(k)} + 1), \quad h = \ell + \ell_k (u^{(k)} - 1).$$

For $n_k \in B^{(k)}$, the product $v = \ell_k (n_k - u^{(k)} + 1)$ is a natural number between 1 and

$$H = \ell_k \big(v^{(k)} - u^{(k)} + 1 \big).$$

Hence

$$\sum_{n_k \in B^{(k)}} \left| \sum_{s=1}^u e(x_s(\ell + \ell_k n_k)) \right|^2 \leqslant \sum_{v=1}^H \left| \sum_{s=1}^u e(x_s(h+v)) \right|^2.$$
(4.6)

Let $\epsilon > 0$. Taking $v^{(k)} - u^{(k)}$ sufficiently large, the last expression in (4.6) is

 $\leq u(1+\epsilon)H$

by Lemma 2. Recalling (4.5),

$$K^2 u^2 \# \left(B^{(k)} \right) \leq u(1+\epsilon) H.$$

Since

$$\#(B^{(k)}) \ge \frac{1}{C'_k} (v^{(k)} - u^{(k)} + 1) = \frac{H}{C'_k \ell_k}$$

it follows that

$$\frac{K^2 u}{C'_k \ell_k} \leqslant 1 + \epsilon.$$

Since ϵ is arbitrary, and C'_k can be taken arbitrarily close to C_k , we obtain

$$u \leq \frac{C_k \ell_k}{K^2} = 9C_k \ell_k \left(\frac{4d}{|I_1|} + 1\right)^2 \cdots \left(\frac{4d}{|I_d|} + 1\right)^2.$$

We complete the proof of Theorem 2 on inserting the bounds

$$\ell_k \leqslant \frac{2d}{|I_k|}$$
 and $\frac{4d}{|I_j|} + 1 \leqslant \frac{5d}{|I_j|}$

References

- [1] Y. Amice, Un théorème de finititude, Ann. Inst. Fourier 14 (1964) 527-531.
- [2] R.C. Baker, R. Coatney, G. Harman, Weyl's theorem in the measure theory of numbers, in: Dependence in Probability, Analysis and Number Theory, Kendrick Press, 2010, pp. 51–72.
- [3] J.T. Barton, H.L. Montgomery, J.D. Vaaler, Note on a Diophantine inequality in several variables, Proc. Amer. Math. Soc. 129 (2000) 337–345.
- [4] D. Berend, Y. Peres, Asymptotically dense dilations of sets on the circle, J. Lond. Math. Soc. 47 (1993) 1-7.
- [5] M.D. Boshernitzan, Density modulo 1 of dilations of sublacunary sequences, Adv. Math. 108 (1994) 104-117.
- [6] B. de Mathan, Sur un problème de densité modulo 1, C. R. Acad. Sci. Paris Sér. A 287 (1978) 277–279.
- [7] B. de Mathan, Numbers contravening a condition in density modulo 1, Acta Math. Acad. Sci. Hung. 36 (1980) 237–241.
- [8] K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985.
- [9] J.-P. Kahane, Sur les mauvaises répartitions modulo 1, Ann. Inst. Fourier 14 (1964) 519–526.
- [10] Y. Katznelson, An Introduction to Harmonic Analysis, 2nd edn., Cambridge University Press, 2004.
- [11] R. Kaufman, Density of integer sequences, Proc. Amer. Math. Soc. 19 (1968) 1501-1503.
- [12] J.M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. 4 (1954) 257–302.
- [13] P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Math. 1 (1975) 227–244.
- [14] J.R. Munkres, Topology, a First Course, Prentice Hall, 1975.
- [15] A.D. Pollington, On the density of sequences $\{n_k\zeta\}$, Illinois J. Math. 23 (1979) 511–515.
- [16] R. Salem, Uniform distribution and capacity of sets, Comm. Sem. Math. Univ. Lund. Suppl. (1952) 193–195.
- [17] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916) 313-352.