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nonuniform finer mesh and well-known Runge–Kutta collocation methods. Moreover, a
further aspect thatwill be briefly investigated is the construction of an extended finermesh
for building B2VMs with nonminimal blocksize. Some advantages that may arise from the
use of the so-obtained methods will be also discussed.
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1. Introduction

In the nineties Boundary Value Methods (BVMs) were introduced for the numerical solution of differential problems,
see [1] and the references therein. They are Linear Multistep Methods (LMMs) coupled with suitable boundary conditions.
Many negative results concerning the stability properties of LMMs used as initial valuemethods have been overcome in this
more general setting. This is the case of the second Dahlquist barrier which, without doubt, constitutes a severe restriction
on the order of accuracy for methods well-suited for the solution of stiff differential equations. In this regard, the results
concerning the stability properties of BVMs have been reported in [1] and in several papers among which we quote [2–7].
On the other hand, for the numerical solution of conservative problems, the BVM approach also turns out to be successful for
overcoming the pessimistic conclusions reported in [8–10]. In particular, the results concerning the applicability of BVMs
for the numerical solution of Hamiltonian systems are described in [11–13].
As previously mentioned, by construction a BVM approximates the solution of the initial value problem{

y′(t) = f (t, y), t ∈ [t0, T ],
y(t0) = y0 ∈ R (1)

by means of a discrete boundary value one. It follows that if τ0 ≡ t0 < τ1 < · · · < τs ≡ T is an assigned grid over [t0, T ]
and y = (y1, y2, . . . , ys)T is the corresponding numerical solution provided by a BVM, all the entries in ymust be computed
simultaneously. A refinement of themesh thus determines an increase of the dimension of the system of algebraic equations
which have to be solved all at once. This may represent a relevant drawback that becomes more marked in the case of an
high nonlinearity of the function f defining the continuous problem.
When the block version of BVMs (B2VMs in the sequel), introduced in [14,15], is applied for solving problem (1), instead,

twodifferentmeshes are used: a coarsermeshwhich subdivides [t0, T ] into contiguous subintervals and a finermeshdefined
over each of them and composed of a fixed number of points. A selected BVM is then applied for approximating the exact
solution over each subinterval. Making use of the initial value y0 of the continuous problem the numerical integration can
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be therefore operated in a step-by-step fashion thus reducing, in general, the computational cost for solving the discrete
problem with respect to that of BVMs. As a matter of fact, a number of algebraic systems of equations of fixed size has to be
solved instead of a unique system of very large dimension. In the former case, the simplified Newton method or iterative
procedures based on suitable nonlinear splittings may be conveniently used [16–19].
From a theoretical point of view, B2VMs are related to one-step methods and a suitable reformulation of the discrete

problem they generate for (1) allows one to read them as Runge–Kutta (RK for short) methods. More precisely, as the
number of nodes composing the finer mesh varies, a family of RK methods is derived from a particular BVM implemented
in block form.
B2VMs have been used in the computational code GAMD designed for solving stiff ordinary and algebraic differential

equations [19–21]. The code implements a variable stepsize, variable order block-Generalized Adams Methodwith a uniform
finermesh. In this case, the freedomof choosing the blocksize s of the B2VMhas been exploited for deriving the implemented
order variation strategy. Another application of B2VMs constructed over a uniform finer mesh can be found in [22]. Here we
are interested in considering different distributions of the points composing the finermesh. In particular our principal aim is
the establishment of the existing connections between B2VMs and well-known RK collocation methods. As a matter of fact,
even thought such relations have been mentioned in previous works like [22,23], a systematic analysis of them has never
been reported.
The paper is organized as follows. In Section 2 we describe in some detail the construction of BVMs over an assigned

nonuniform partition of the integration interval. In Section 3 B2VMs are introduced and their connections with RK schemes
are discussed. In particular, we prove that B2VMs with minimal blocksize are equivalent to stiffly accurate RK collocation
methods. The obtained results are then specialized in Section 4 where their relations with well-known RK schemes are
put into evidence. Finally, in Section 5 a possible extension of the finer mesh for building B2VMs with larger blocksizes is
proposed and an example aimed to compare the performances of B2VMs used with different blocksizes is reported.

2. Boundary value methods

Let us assume that the partition π = {τ0 ≡ t0 < τ1 < τ2 < · · · < τs ≡ T } of the integration interval [t0, T ] has been
assigned with

τn = τn−1 + ĥn, n = 1, 2, . . . , s, (2)

and let us denote by yn the numerical approximation of y(τn). As is well-known, the discrete problem generated by a k-
step LMM is a difference equation of order k so that its solution is uniquely determined once k conditions are imposed for
it. Obviously one of them, namely the initial value y0, is inherited directly from the continuous problem. Concerning the
remaining k− 1 conditions, the BVM approach establishes splitting them into k1 − 1 initial and k2 = k− k1 final ones. The
parameter k1 depends on the particular formula and is chosen in order to ensure good stability properties of the method
itself [1]. The discrete problem generated by a BVM is then given by

k2∑
j=−k1

α
(n)
j+k1
yn+j − ĥn

k2∑
j=−k1

β
(n)
j+k1
fn+j = 0, n = k1, . . . , s− k2, (3)

y0, y1, . . . , yk1−1, ys−k2+1, . . . , ys fixed, (4)

with fn+j = f (τn+j, yn+j). Here, {α
(n)
j }

k
j=0 and {β

(n)
j }

k
j=0 are the coefficients of the n-th LMM; their values depend on the

distribution of the nodes on which such formula is constructed. In particular, in the case of a uniformmesh, α(n)j = α
(k1)
j and

β
(n)
j = β

(k1)
j for each j = 0, 1, . . . , k and n = k1, . . . , s− k2.

Usually, the boundary values in (4) are replaced with the following equations:

k−n∑
j=−n

α
(n)
j+n yn+j − ĥn

k−n∑
j=−n

β
(n)
j+n fn+j = 0, n = 1, . . . , k1 − 1, (5)

k−n∑
j=−n

α
(n)
j+nys−k+j+n − ĥn

k−n∑
j=−n

β
(n)
j+nfs−k+j+n = 0, n = s− k2 + 1, . . . , s. (6)

This means that the method in (3), called the main method, is coupled with k1 − 1 initial additional methods and k2
final ones. Often, all these formulas are chosen so that they have the same order of accuracy. In particular, for each
n = k1, k1 + 1, . . . , s− k2, the n-th formula has (at least) order p if its coefficients satisfy

k2∑
j=−k1

((
ξj,n
)`
α
(n)
j+k1
− `

(
ξj,n
)`−1

β
(n)
j+k1

)
= 0, ` = 0, 1, . . . , p, (7)
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with

ξj,n ≡
τn+j − τn

τn − τn−1
. (8)

Such order conditions are obtained by applying the Taylor series expansion of the exact solution at τn and the first two of
them are called conditions of consistency. Similar relations must be satisfied by the coefficients of the additional methods.
For later reference, the order conditions are now stated in matrix form. Let

α(n) =


α
(n)
0
α
(n)
1
...

α
(n)
k

 , β(n) =


β
(n)
0
β
(n)
1
...

β
(n)
k

 , Lp =


0

1
. . .

. . .
. . .

p 0

 , (9)

V (p)n,k,µ =


1 . . . 1

ξ−µ,n . . . ξk−µ,n
...

...(
ξ−µ,n

)p
. . .

(
ξk−µ,n

)p
 , (10)

where

µ ≡ µ(n, k1, k, s) =

{n if n = 1, . . . , k1 − 1,
k1 if n = k1, . . . , s− k2,
n+ k− s if n = s− k2 + 1, . . . , s.

(11)

The relations (7), together with the corresponding ones for the additional methods, can be equivalently stated as

V (p)n,k,µ α(n) = Lp V
(p)
n,k,µ β(n), n = 1, 2, . . . , s. (12)

We now briefly describe some families of BVMs which we shall consider in this paper; for further details on them refer to
[1,6,7].

(i) Generalized Backward Differentiation Formulas (GBDFs)
The methods in this family are derived by fixing ‘‘a priori’’ the coefficient vectors β(n) as, see (11),

β(n) = eµ+1, n = 1, 2, . . . , s, (13)

with k1 =
⌈ k+1
2

⌉
and, hereafter, el the l-th unit basis vector in Rk+1, l = 1, 2, . . . , k+ 1. For each n, the corresponding

coefficient vectorα(n) is then selected in order to gain themaximum attainable order of accuracy, which results in being
p = k.

(ii) Generalized Adams Methods (GAMs)
These are methods with coefficient vectors α(n) ‘‘a priori’’ fixed as, see (11),

α(n) = eµ+1 − eµ, n = 1, 2, . . . , s,

with k1 =
⌈ k
2

⌉
. The first equation in (12) is therefore trivially satisfied and, consequently, the maximum attainable

order is now p = k+ 1. When k is odd, these schemes are also called Extended Trapezoidal Rules (ETRs).
(iii) Top Order Methods (TOMs)

The main formula of this family of BVMs is a k-step LMM without ‘‘a priori’’ restrictions on the choice of its
coefficients. This permits one to construct methods having the highest possible order, which is given by p = 2k. The
step-number k is restricted to be odd and the number of initial conditions has been chosen as k1 = k+1

2 for stability
reasons. Concerning the additional methods, they are usually taken to be equal to the ones used for the (2k − 1)-step
ETR having order 2k.

(iv) BS methods (BSs)
They are a class of LMMs based on B-Splines with distinct nodes that can be interpreted as (spline) collocation

methods. This means that for a k-step BS method, a k + 1 degree spline function, continuous up to the k-th derivative
can be associated with the numerical solution. They were originally introduced in [24,25] and they resulted in being
convergent only for k ≤ 2. In recent papers [6,7] the authors proved that, when implemented as BVMs with k1 =

⌈ k
2

⌉
and k2 = k− k1 boundary conditions, these methods are convergent of order p = k+ 1 for each k and that, when k is
odd, they satisfy very good stability properties. Concerning the additional methods (5)- (6), their coefficients are always
derived by imposing the not-a-knot condition for the collocation spline over suitable knots near the extremes of the
interval [t0, T ]. The so-obtained additional methods turn out to be of the same order of accuracy of the main formula.
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3. B2VMs: definition and connections with RK schemes

When a k-step B2VM is applied for solving problem (1), the interval of integration is discretized bymeans of two different
meshes. The first one, called a coarser mesh, subdivides [t0, T ] intom subintervals determined by the nodes

tr = tr−1 + hr , r = 1, . . . ,m, tm ≡ T . (14)
Then, each subinterval [tr−1, tr ] is discretized bymeans of a finer mesh composed by a fixed number of nodes, say s+1, and
an assigned distribution of such nodes, that is

tn,r = tr−1 + cnhr , n = 0, 1, . . . , s, (15)
with

c0 = 0 < c1 < · · · < cs = 1. (16)
In order to provide the numerical solution for the initial value problem (1), the integration begins by applying a selected
k-step BVM on the first subinterval [t0, t1], making use of the initial value y0 provided by the continuous problem. An
approximation of the solution at t = t1 is thus obtained and this is used as the initial value for the computation of the
numerical solution over the second subinterval [t1, t2] through the same BVM. The integration proceeds in this way until
the entire interval [t0, T ] has been covered. This procedure defines a B2VM.

Remark 1. In the sequel, when a GBDF is the selected method used to construct a B2VM, we shall refer to the latter as a
block-GBDF. Similarly, this will be done for the methods in the other families of BVMs.

Remark 2. It is important to note that the blocksize smust be greater than a minimum value, say s̄, which depends on the
BVM used and on the corresponding additional methods; in particular, for each k, s̄ = k for all k-step B2VMs based on the
methods introduced in the previous section, with the only exception of the k-step block-TOM for which s̄ = 2k− 1. In fact
in the former case, both the main and the additional formulas have the same stepnumber, i.e. k. For the k-step block-TOM,
instead, the additional methods are (2k− 1)-step LMMs for preserving the order 2k of accuracy of the scheme. In any case,
one verifies that s̄ = max(k, p− 1), where p is the order of the used BVM.

For each subinterval of integration, the finer mesh (15) plays the role of the mesh π given in (2). In particular, the two
meshes coincide when m = r = 1 (see (14)) by letting τn = tn,1 and ĥn = (cn − cn−1)(T − t0). Therefore, in the new
notation, for each n = 1, 2, . . . , s, j = −µ, . . . , k− µ, with µ defined in (11), the values of ξj,n are given by, see (8),

ξj,n =
tn+j,r − tn,r
tn,r − tn−1,r

=
cn+j − cn
cn − cn−1

, r = 1, 2, . . . ,m. (17)

In the previous expression we have not introduced the index r on ξj,n since the ratios do not depend on it. By virtue of this
property the coefficients of themethod are invariantwith respect to the subinterval of integration since the order conditions
are invariant too (see (12)). Therefore, the discrete problem composed of the Eqs. (3) and (5)-(6), for the generic subinterval
[tr−1, tr ], becomes

k−µ∑
j=−µ

α
(n)
j+µ yn+j,r − hrφn

k−µ∑
j=−µ

β
(n)
j+µ fn+j,r = 0, n = 1, 2, . . . , s,

where yn+j,r ≈ y(tn+j,r), fn+j,r = f (tn+j,r , yn+j,r), φn = cn − cn−1, and µ is defined in (11). By denoting with

Yr =
(
y1,r , y2,r , . . . , ys,r

)T
, Fr =

(
f1,r , f2,r , . . . , fs,r

)T
,

such a discrete problem can be stated in matrix form as
A Yr − hrB Fr + a y0,r − hrb f0,r = 0. (18)

Here 0 = (0, 0, . . . , 0)T ∈ Rs, [a|A] ∈ Rs×(s+1) is given by

[a|A] =



α
(1)
0 α

(1)
1 · · · α

(1)
k

...
...

...

α
(k1)
0 α

(k1)
1 · · · α

(k1)
k

. . .
. . .

. . .
. . .

α
(s−k2)
0 α

(s−k2)
1 · · · α

(s−k2)
k

...
...

...

α
(s)
0 α

(s)
1 · · · α

(s)
k


≡ Â (19)

and, by denoting with β̃(n)j ≡ φnβ
(n)
j , the matrix [b|B] ≡ B̂ is similarly defined via the formal substitution β̃

(n)
j ↔ α

(n)
j .
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Remark 3. The coefficientmatrices Â and B̂ for a block-TOMhave a slightly different structure due to the additionalmethods
used that are (2k− 1)-step LMMs.

From a theoretical point of view, a B2VM can be read as a one-step method. In fact, for each subinterval [tr−1, tr ], the
only information inherited from the past consists of y0,r ≈ y(t0,r) = y(tr−1).Moreover, in the case of a uniform finer mesh,
for each family of B2VM considered here, the coefficient matrix A in (19) turns out to be nonsingular independently of the
blocksize. Hereafterwe shall assume that such nonsingularity holds true even for thematrix A corresponding to the assigned
distribution of the finer mesh (15)-(16). This seems a reasonable assumption since, otherwise, the method does not provide
a unique solution for the simple equation y′ = 0. Under such a hypothesis, it is possible to relate B2VMs to RK methods,
whose stages play a role similar to the internal steps. In fact, the consistency conditions imply that (see (7) with ` = 0)

A e+ a = 0⇔ −A−1 a = e,

being e = (1, 1, . . . , 1)T ∈ Rs. Therefore the discrete problem (18), generated by a B2VM for the r-th subinterval of
integration, can be stated in the equivalent form

Yr = e y0,r + hrA−1 B̂
(
f0,r
Fr

)
, (20)

so that such a method coincides with the RK scheme, used over the coarser mesh, defined by the following Butcher tableau

c0
... A
cs

eTs+1A

, (21)

where es+1 = (0, . . . , 0, 1)T ∈ Rs+1 and

A =

(
0T

A−1 B̂

)
≡


0 0 · · · 0
a10 a11 · · · a1s
...

...
...

as0 as1 · · · ass

 . (22)

Remark 4. In general this is an (s+ 1)-stage RKmethod having the last stage which coincides with the new approximation
(stiffly accurate method). However, the tableau corresponding to a block-GBDF has all zero entries in the first row and
column since b = 0 (see (13), (19) and the subsequent sentence). The first stage, corresponding to c0 = 0, can be therefore
removed from the scheme. This is because the remaining stages donot dependon the value of f0,r and the newapproximation
coincides with the last stage. The RK method equivalent to a block-GBDF with blocksize s is therefore more properly an s-
stage method.

3.1. Accuracy and stability properties

Clearly, the described reformulation of a B2VM as a RK scheme has not affected the accuracy and stability properties of
the method. For this reason, in the sequel we shall refer to the original formulation (18) of the discrete problem for the
discussion of such properties. As usual for one-step methods, they are studied by considering only the first application of it,
i.e., the one corresponding to r = 1. Moreover, without loss of generality, in the sequel we shall assume for simplicity the
coarser mesh (14) to be composed by equally spaced nodes, that is hr = h for each r = 1, 2, . . . ,m.
Concerning the accuracy properties, they are studied by considering the asymptotical behavior of the local error with

respect to the stepsize h. From the derivation of a B2VMof order p, it follows that the residual obtainedwhen the continuous
solution (assumed to be suitably regular) is inserted into (18) (local truncation error) is given by

A Ŷ1 − hB F̂1 + a y(t0,1)− hbf (t0,1, y(t0,1)) = hp+1 v y(p+1)(t0,1)+ O(hp+2) ≡ τ1, (23)

where Ŷ1 =
(
y(t1,1), . . . , y(ts,1)

)T
, F̂1 =

(
f (t1,1, y(t1,1)), . . . , f (ts,1, y(ts,1))

)T and v is the vector of the principal error
coefficients of the composite scheme. By subtracting (18) from (23), both premultiplied by A−1, and considering that
y0,1 = y(t0,1), one obtains

(Ŷ1 − Y1)− hA−1B (F̂1 − F1) = A−1τ1.

Consequently, since F̂1 − F1 = J (Ŷ1 − Y1), being

J = diag
(
∂ f
∂y
(t1,1, ζ1,1), . . . ,

∂ f
∂y
(ts,1, ζs,1)

)
,
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if h is sufficiently small a first order approximation of the local error is given by

Ŷ1 − Y1 =
(
I − hA−1BJ

)−1
A−1τ1 = hp+1

(
A−1 v

)
y(p+1)(t0,1)+ O(hp+2).

A very important consideration must be made at this point regarding the role played by the components of the solution
vector Y1. In fact, the B2VM approach establishes to consider all of them as belonging to the numerical solution; the RK
approach for a stiffly accurate method, instead, considers only the last entry of Y1 as part of the numerical solution. This
implies that the definition of order of convergence is different for the two approaches. In particular, with the former one
the order of convergence coincides with that of the LMMs associated with each row of the coefficient matrices (i.e. the so-
called stage order in the RK literature). With the RK approach, instead, the order of convergence is defined on the base of
the asymptotical behavior, with respect to h, of eTs (Ŷ1 − Y1), where es is the last unit vector in Rs+1. Consequently, a higher
order of convergence (superconvergence) of the method may occur in this case. As an example, if eTs

(
A−1 v

)
= 0 then the

RK formula is considered to have at least order p+ 1. However, in the sequel, we will adopt the B2VM approach. Therefore,
when speaking about the order of a RK method derived from a B2VM, we will refer to the stage order. We observe that by
using this approach the order reduction phenomenon cannot occur [26].
On the other side, the analysis of the stability properties of themethod takes into account only the last entry of Y1 in both

of the approaches. As it is well-known, such analysis is done by considering the behavior of the numerical solution provided
by the method applied for solving the classical test equation

y′ = λy, Re (λ) < 0.
In this case, the resulting discrete problem (18) for the first subinterval of integration reduces to

(A − q B)Y1 = − (a− q b) y0,1, q = hλ. (24)
Then, obviously, the last entry in Y1 is given by

ys,1 = −eTs (A − q B)
−1 (a− q b) y0,1 ≡ R(q) y0,1.

The usual property of A-stability is equivalent to require that the so-called stability function R(q) of the method verifies
q ∈ C− ⇒ |R(q)| < 1.

In particular, the method is perfectly A-stable when also the converse holds true. The weaker notion of A(ϑ)-stability
requires that

|R(q)| ≤ 1, ∀ q ∈ C− : | arg(q)− π | ≤ ϑ.
Moreover, a B2VM is said to be L-stable (L(ϑ)-stable) if it is A-stable (A(ϑ)-stable) and, in addition, |R(q)| → 0 as |q| → ∞.
The latter property is highly desirable when the method is applied for solving stiff problems. On the other hand, when a
conservative one, like an Hamiltonian system, is to be integrated, the use of symmetric and perfectly A-stable schemes is
more appropriate. In particular, a B2VM is symmetric if it is constructed over a symmetric finer mesh, i.e., cj = 1− cs−j, j =
0, 1, . . . , s, and its coefficient matrices, see (19) and the subsequent sentence, satisfy

Ps ÂPs+1 = −Â, Ps B̂Ps+1 = B̂,
where, for any integerm, Pm denotes the antiidentitymatrix of sizem, i.e. thematrixwith 1’s in themain antidiagonal and 0’s
elsewhere. It is known that this is the case of B2VMs based on the ETR, BS and TOMmethods constructed over a symmetric
finer mesh, [1,7]. When the previous property holds true, the numerical solution, provided by the method starting from y0,1
with stepsize h, coincides with the one provided by the same method starting from ys,1 with stepsize −h in the reverse
order. In particular, this implies that the stiffly accurate RK method corresponding to a symmetric B2VM is symmetric (or
time-reversible) as well.

3.2. B2VMs with minimal blocksize and RK collocation schemes

As is well-known, the numerical approximation provided by a (polynomial) collocationmethod for (1) coincideswith the
values of a polynomial of degree η which collocates the differential equation at η assigned points. In particular, an (s+ 1)-
stage stiffly accurate RK scheme verifying the so-called simplifying assumption

C(η) :
s∑
j=0

anjc`−1j =
c`n
`
, n = 0, 1, . . . , s, ` = 1, 2, . . . , η, (25)

is a collocation method if and only if η = s+ 1, as proved in [27, Theorem 7.8]. It is worth noting that for an (s+ 1)-stage
stiffly accurate RK collocation scheme the condition C(s + 1) uniquely determines the coefficients of the method once the
abscissae cj have been assigned. In order to discuss the existing relations between RK collocation methods and B2VMs with
minimal blocksize, we need to move our notation towards the more standard one used in the RK framework. This is done
with the following lemma.

Lemma 1. The order conditions (12) for the coefficients of a B2VM with a finer mesh as in (15) can be reformulated as

W (p)
n,k,µα

(n)
= LpW

(p)
n,k,µ β̃

(n)
, n = 1, . . . , s, (26)
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where

β̃
(n)
≡
(
β̃
(n)
0 , . . . , β̃

(n)
k

)T
= φn β(n), with φn = cn − cn−1, (27)

Lp and µ are defined in (9) and (11), respectively, and

W (p)
n,k,µ =


(
cn−µ

)0
. . .

(
cn−µ+k

)0
...

...(
cn−µ

)p
. . .

(
cn−µ+k

)p
 . (28)

Proof. Let Φn = diag
(
1, φn, . . . , φ

p
n
)
and P cn be the generalized Pascal matrix, namely the lower triangular matrix with

non-zero entries given by(
P cn
)
ij =

(
i− 1
j− 1

)
c i−jn , 1 ≤ j ≤ i ≤ p+ 1.

It is known that Pcn = ecn Lp (see, for example, [28]) from which one plainly deduces that Pcn and Lp commute. Moreover

W (p)
n,k,µ = P

cn
(
ΦnV

(p)
n,k,µ

)
. (29)

In fact, by denoting with v(t) = (1, t, . . . , tp)T, from (28) we obtain that for each j = 1, 2, . . . , k + 1, the j-th column of
W (p)
n,k,µ is equal to v(cn−µ+j−1) and from (10) and (17) we get that the same column ofΦnV

(p)
n,k,µ is equal to v(cn−µ+j−1 − cn).

Then, (29) is a consequence of the fact that v(t) = Pcnv(t − cn) [28].
From the previous arguments the statement (26) follows by multiplying from the left both sides of (12) by P cn Φn. In fact,
due to (29) the left-hand side becomes

P cnΦnV
(p)
n,k,µ α(n) = W (p)

n,k,µ α(n).

Concerning the right-hand side in (12), by considering thatΦnLp = φnLpΦn, as one easily verifies, and by taking into account
(27), from (29) one obtains

P cnΦnLpV
(p)
n,k,µ β(n) = φnP cnLpΦnV

(p)
n,k,µ β(n)

= LpP cnΦnV
(p)
n,k,µ β̃

(n)
= LpW

(p)
n,k,µ β̃

(n)
. �

We are now in the position to prove the following main result.

Theorem 1. A B2VM based on a k-step BVM of order p with minimal blocksize s̄ = max(k, p − 1) and nonsingular coefficient
matrix A is equivalent to a RK collocation method.
Proof. In order to prove the statement we need to show that (25) holds true with η = s̄ for the RK methods derived from
the block-GBDFs and η = s̄+1 in all the other cases (see Remark 4). We observe that the RKmethod (20) has been obtained
by multiplying from the left both sides of (18) by A−1. This implies that the corresponding local truncation error is given
by A−1τ1 = hp+1

(
A−1 v

)
y(p+1)(t0,1) + O(hp+2). Therefore, for each n = 1, 2, . . . , s̄, the n-th equation in (20)–(22) can be

interpreted as the one generated by a s̄-step LMM of order pwith

α(n) = en+1 − e1 ∈ Rs̄+1, β̃
(n)
= (an0, an1, . . . , ans̄)T .

Consequently, such two coefficient vectors satisfy the order conditions (26). However, on minimal blocksize (11) and (28)
reduce to

µ = µ(n, k1, s̄, s̄) = n, W (p)
n,s̄,n =


1 1 . . . 1
c0 c1 . . . cs̄
...

...
...

cp0 cp1 . . . cps̄

 ≡ W (p),

and then the order conditions (26) now become

LpW (p)


an0
an1
...
ans̄

 = W (p) (en+1 − e1) .

Since the first one of the previous equations is trivially satisfied (see (9)), some linear algebra on the remaining order
conditions allows one to rewrite them as
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GpW (p−1)

an0...
ans̄

 = W (p−1)D(en+1 − e1),

where Gp = diag(1, . . . , p) and D = diag(c0, . . . , cs̄). By considering that c0 = 0, see (16), one gets D e1 = 0 ∈ Rs̄+1.
Therefore,

W (p−1)

an0...
ans̄

 = G−1p
cn...
cpn

 , n = 1, 2, . . . , s̄.

It is easy to see that such equations are essentially the conditions (25), with η = p, recast in matrix form. In fact, they also
hold true when n = 0 since c0 = 0 and all the entries in the first row of A in (22) are zero. We recall that p = k for the
block-GBDFs and p > k in all the other cases and that s̄ = max(k, p − 1). It follows that p = s̄ in the former case and
p = s̄+ 1 in the latter ones. This completes the proof. �

In the following sectionwe shall analyze the question of the distribution of the points in the finermeshwhich, aswe have
seen, uniquely characterizes a stiffly accurate RK collocationmethod. Thiswill allowus to put into evidence the equivalences
between the classes of B2VMs with minimal blocksize already defined and some classes of known and (so far) unknown RK
collocation methods.

4. Possible choices for the finer mesh

The simplest choice for the finermesh certainly consists of a set of equally spaced nodes.With such a choice the obtained
B2VMs are not always pre-stable, that is they do not always have the corresponding matrix pencils A− qB contained in C+.
In particular, the property of pre-stability is always satisfied by the ‘‘lower’’ order formulae, it is satisfied by the ‘‘medium’’
order formulae when the blocksize is sufficiently large and it disappears for the ‘‘higher’’ order ones. The exact ranges of the
orders corresponding to the three previous cases depend on the family of BVMs, as reported in [1, Table 11.2]. The absence
of pre-stability is due to the effect of the additional methods on the whole composite scheme and it represents a drawback
since a non pre-stablemethod cannot be A-stable (see (24)). In order to overcome this problem, in [1] a second distribution of
the finermeshwas proposed. It is characterized by the introduction of a suitable number of auxiliary nodeswith a geometric
progression distribution near the extremes of the subintervals. This choice of the finer mesh was successful since almost all
the corresponding B2VMs turned out to be A-stable independently of the blocksize.
In this paper we consider other choices for the finer mesh and in the remaining part of this section we will introduce

them for a B2VM with minimal blocksize s̄. They are derived from the abscissae of the following Gauss type quadrature
formulae: Legendre-Gauss-Radau (LGR), Chebyshev-Gauss-Radau (CGR), Legendre-Gauss-Lobatto (LGL), Chebyshev-Gauss-
Lobatto (CGL). More precisely, by denoting with Ls̄(·) and Ts̄(·) the Legendre polynomial of degree s̄ and the Chebyschev
polynomial of the first kind having the same degree, respectively, such abscissae are the roots of the polynomialsPs̄(c) listed
below:
– LGR : Ps̄(c) = Ls̄−1(c)+Ls̄(c),
– CGR : Ps̄(c) = Ts̄−1(c)+ Ts̄(c),
– LGL : Ps̄(c) = (1− c2)L′s̄(c),
– CGL : Ps̄(c) = (1− c2) T ′s̄ (c).

It is well-known that the Lobatto type formulae are symmetric and closed, namely their abscissae include both the
extremes of the interval [−1, 1]. The Radau type formulae, instead, are not symmetric and semi-closed since only the left
extreme of such interval is included. In any case, the nodes of the finermesh for a B2VMwithminimal blocksize s̄ are selected
as follows

cj =
1− ĉj
2

, (30)

with
Ps̄(ĉj) = 0, ĉ` > ĉ`+1 > · · · > ĉs̄, j = `, . . . , s̄,

and ` = 0, 1 for the nodes derived from a Lobatto and a Radau type formula, respectively. We observe, in fact, that Ps̄ is a
polynomial of degree s̄+1 in the former case (see LGL and CGL) and of degree s̄ in the latter one (see LGR and CGR). Obviously,
the abscissae cj defined in (30) are contained in the interval [0, 1]. We must underline the fact that in the literature, see for
example [29,30], the finer meshes (30) corresponding to the abscissae of an LGR quadrature formulae are always called
Radau-right since they include the right extreme of the interval [0, 1] and not the left one. However, for later convenience,
in the Radau case we formally include the node c0 = 0 since the B2VMs always require it. In the sequel we will refer to the
above described finer meshes by using the acronym for the corresponding quadrature formula name.
In Table 1 we list the equivalences between some B2VMs with minimal blocksize and RK methods together with their

stability properties. In particular, by numerical inspection, we found the block-GBDFs constructed over the CGR nodes to be
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Table 1
Equivalences between B2VMs on minimal blocksize and RK collocation methods and their stability properties

Nodes B2VM RK method Stability

LGR GBDF Radau IIa L-stable
LGL GBDF Unknown L(ϑ)-stable
LGL GAM, BS, TOM Lobatto IIIa Perfectly A-stable
CGR GBDF Unknown L(ϑ)-stable
CGL GBDF Unknown except for the method of order 4 in [33] L(ϑ)-stable
CGL GAM, BS, TOM Methods in [23,34] Perfectly A-stable

Table 2
Values of ϑ for the L(ϑ)-stable k-step block-GBDFs

k 3 4 5 6 7 8 9

LGL 89.722◦ 89.242◦ 88.819◦ 88.450◦ 88.295◦ 88.180◦ 88.146◦
CGL 89.890◦ 89.747◦ 89.700◦ 89.764◦ 89.936◦ 89.999◦ 89.997◦

L(ϑ)-stable methods with ϑ ≥ 89.999◦, at least for k ≤ 9. The numerically computed values of ϑ for the remaining L(ϑ)-
stable methods are listed in Table 2. It is worth mentioning that the block-GBDFs, in their original formulation, constructed
over the CGL nodes, are known in the literature as Chebyschev Spectral Collocation methods [22,31] and that, recently, on
the same set of nodes another family of RK methods has been introduced in [32].

Remark 5. We observe that by using the LGR and CGR finer meshes we have constructed only block-GBDFs. This is because,
as already observed, the associated equivalent RK methods do have the first stage, corresponding to c0 = 0, inactive and
such a node has been introduced only a posteriori.

5. Finer mesh for B2VMs with nonminimal blocksize

In this section we propose a possible extension of the finer meshes just described for building B2VMs with nonminimal
blocksize. The main idea consists in the introduction of a suitable number of equidistant nodes in the middle of the
subintervals. This seems a reasonable choice by virtue of the good stability properties of the main formula of the BVMs
considered in this paper when defined over a uniformmesh [2–6]. Let {cn}n=0,...,s̄ be the starting abscissae of the finer mesh
and let

cν − cν−1 = max
n=1,...,s̄

(cn − cn−1).

The abscissae of the finer mesh {c̄n}n=0,...,s for the corresponding B2VM with blocksize s ≥ s̄ are given by

c̄n =

{cn, n = 0, 1, . . . , ν − 1,
c̄n−1 + (cν − cν−1), n = ν, . . . , s− s̄+ ν,
c̄n−1 + (cn−s+s̄ − cn−s+s̄−1), n = s− s̄+ ν + 1, . . . , s.

The proposed extension is represented graphically in Fig. 1. In the left plots the differences among two consecutive nodes
for the finer meshes of type LGR and LGL, when s̄ = 7, have been reported. In the right ones, we have plotted the same
differences for the corresponding extended finer meshes with doubled blocksize s = 14. The graphics corresponding to
the extension of the CGR and CGL meshes are very similar with respect to the ones here reported. We observe that, even
though this is not strictly necessary, a rescaling of the extended finer meshmay be operated if one prefers to have the nodes
contained in the interval [0, 1].

Remark 6. It is important to underline the fact that from each B2VM constructed over the extended finer mesh a whole
family of RKmethods can be derived by simply varying the blocksize and by using the reformulation of the discrete problem
described in Section 3 (see (18) and (20)).

The order of convergence of the so-obtained B2VMs does not depend on the used blocksize. This is because, by
construction, the asymptotic behavior, with respect to the stepsize, of the local error is preserved when the blocksize is
increased.
Concerning stability, we found that a few additional nodes are sufficient for getting L-stablemethods, when starting from

methods that were only L(ϑ)-stable on the minimal blocksize (see Table 3). As an example, in Fig. 2 we plot the boundary
loci of the 6-step block-GBDFs based on the (extended) LGL nodes, for increasing values of the blocksize.
On the other hand, we have numerically verified that good stability properties of a B2VM are always preserved when

the blocksize is increased. In particular, the proposed extension of the LGL and CGL finer meshes do not destroy the original
symmetry of the nodes. Therefore, in view of what stated at the end of Section 3, the block-ETR, block-BS, and block-TOM
methods constructed over the extended (symmetric) mesh turn out to be symmetric and perfectly A-stable schemes. This
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Fig. 1. The finer mesh for a B2VM with nonminimal blocksize.

Fig. 2. Boundary loci for the 6-step block-GBDFs based on LGL nodes with different blocksizes and their details near the imaginary axis.

Table 3
Minimum blocksize for getting L-stable block-GBDFs

k 3 4 5 6 7 8 9

LGL 4 7 7 9 9 11 11
CGR 3 4 6 7 8 8 10
CGL 4 6 6 7 8 10 10

means that the introduction of extra points for increasing the blocksize of symmetric B2VMsdoes not lead to an improvement
of the accuracy and stability properties of such schemes. Nevertheless, a possible advantage that may arise from the use of
symmetric B2VMs with nonminimal blocksize is presented in the next example.
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Fig. 3. Numerical results for the block-BS method of order 4 constructed by using the LGL finer mesh and its extension.

Example 1. Let us consider the Lotka-Volterra problem in logarithmic scale{
p′(t) = 8 (1 − eq)
q′(t) = (ep − 1 ), (31)

with t ∈ [0, 150 000] and initial value p(0) = log 4, q(0) = 0. This is a non-reversibleHamiltonian systemwithHamiltonian
given by

H(p, q) = ep − p+ 8 (eq − q).

It is known that when a non-reversible Hamiltonian system is solved by applying a symmetric RK scheme, like a Lobatto
IIIa method, the long-time behavior of the numerical Hamiltonian should present a drift, [35]. For problem (31), however,
such phenomenon appears to be significantly reduced if the blocksize of the equivalent B2VM is increased. In particular, the
numerical experiments we have conducted suggest that this happens by using, with nonminimal blocksize, the block-ETR
and the block-BS methods of orders 4 and 6 and the block-TOM of order 6. All the methods have been constructed over the
described extension of the LGL and CGL finermeshes, while a uniform coarsermesh has been always used for discretizing the
interval of integration. Moreover, in order to keep constant the total number of mesh points, the stepsize h, representing the
time-interval covered by one application of the block method, has been varied with the blocksize. This means, for example,
that when the blocksize has been doubled the stepsize has been doubled as well. The discrete problems generated by the
methods have been solved by means of the simplified Newton method with a tolerance for the residual in the iteration of
the order of the machine precision.
In Fig. 3 we report the error in the Hamiltonian when problem (31) is solved by means of the block-BS method of order 4

with minimal blocksize s = 3 and blocksize s = 15 constructed over the extension of the LGL finer mesh; we recall that in
the former case the method is equivalent to the 4-stage Lobatto IIIa scheme (see Table 1). In order to put into evidence that
the loss of superconvergence is not so important for this application, we plot only the values corresponding to the right end
of each subinterval. As a matter of fact, they are the only values the users of RK methods consider as numerical solution. As
one can see, a linear drift in the numerical Hamiltonian provided by themethodwithminimal blocksize is clearly present. In
particular, we have verified that its slope is proportional to h8. This result is in perfect agreement with the analysis reported
in [35]. On the other hand, no drift in the numerical Hamiltonian seems to be presentwhen themethodwith larger blocksize
is used or, at least, its slope is no longer appreciable.
For completeness, in Fig. 4 we report the corresponding results obtained by using the block-TOMmethod of order 6 with

minimal blocksize s = 5 and blocksize s = 25 constructed over the CGL finer mesh and its extension. The same comments
previously made also apply in this case.

6. Conclusions

The construction of RK collocationmethods via B2VMs (withminimal blocksize) has been analyzed in detail. The analysis
has permittedmany classical knownRKmethods to be rederived, alongwith some ‘‘apparently’’ unknown ones. The analysis
has also permitted such methods to be generalized by introducing extra points in order to extend the blocksize. This
additional flexibility has either led to improve the stability properties of some L(ϑ)-stable methods or to reduce the drift in
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Fig. 4. Numerical results for the block-TOMmethod of order 6 constructed by using the CGL finer mesh and its extension.

the approximation of a non-reversible Hamiltonian problem. By virtue of these results, a deeper study of the so-obtained
B2VMs with nonminimal blocksize seems to be an interesting topic for future investigations.
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