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An amperometric Bioelectronic Tongue is reported for glucose determination that contains eight sensor
electrodes constructed using different metal electrodes (Pt, Au), oxidoreductase enzymes (glucose oxi-
dase, ascorbate oxidase, uricase), and membrane coatings (Nafion, chitosan). The response to varying
concentrations of glucose, ascorbic acid, uric acid, and acetaminophen was tested for two models, con-
centration determination by current density measurements at individual electrodes and concentration
determination by a linear regression model for the entire electrode array. The reduced chi-squared for
the full array model was found to be about one order of magnitude lower than that for the individual-
electrode model. Discrimination of glucose from chemical interference by the other three species is
accomplished through a combination of enzyme catalysis, metal electrocatalysis, and membrane surface
charge. The benefit of incorporating enzyme electrodes into the sensor array is illustrated by the lower
correlation coefficients between different enzyme electrodes relative to non-enzyme coated electrodes.
This approach can be more generally applied to detection of other substrates of oxidoreductase enzymes.
� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license

(http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction metabolic intermediates by amperometric monitoring of either
Accurate monitoring of blood glucose levels is critical for health
management of diabetes and hypoglycemia, allowing patients to
monitor the effects of diet and exercise, and to make decisions
regarding insulin dosage and timing. Glucose monitoring with
handheld devices is often based on amperometric detection of
either O2 depletion or H2O2 formation during enzyme-catalyzed
glucose oxidation at enzyme-coated Pt electrode [1,2]. However,
the accuracy of glucose determination is limited by the possible
presence of other electrochemically active species such as ascorbic
acid, uric acid, and acetaminophen [1,2].

Chemical interference can be compensated for by using perm-
selective membranes such as Nafion [3,4] and co-immobilization
of glucose oxidase together with ascorbic oxidase [5], which pre-
oxidizes ascorbate. However, the use of perm-selective membranes
creates a diffusion barrier that increases response time and reduces
sensitivity. In addition, since perm -elective membranes are often
deposited by spin coating, the membrane pore size and thickness
are difficult to control [6]. Chemical interference by other species
that can be oxidized or reduced is also problematic during
oxidoreductase-based biosensing of alcohols, phenols, sugars, and
O2 depletion or H2O2 formation [7–12].
This problem is addressed here by creation of a Bioeletronic

Tongue for glucose determination within a mixture of chemically
interfering species. The concept of a Bioelectronic Tongue was
recently reported, combining hardware, an array of amperometric
or potentiometric sensor electrodes, and software, pattern recogni-
tion algorithms [13–19]. While the Electronic Nose and Tongue are
well-established, the limited sensitivity and selectivity of the indi-
vidual sensor elements limit accuracy of the overall device [20–
22], so sensor elements that incorporate biomolecules has emerged
as a major research thrust [22]. Here we report an amperometric
Bioelectronic Tongue that contains enzyme electrodes for determi-
nation of glucose ascorbic acid, uric acid, and acetaminophen in
controlled mixtures, and compare the response of individual sen-
sors with the pattern response of the entire array. While others
have reported electrode arrays that include multiple oxidoreduc-
tase enzymes, they have analyzed only the individual electrode
responses, not the collective array response [7,8,11,12].

2. Experimental

2.1. Materials and reagents

Three different oxidoreductase enzymes, glucose oxidase (type
X-S, from Aspergillus niger), ascorbate oxidase (from Cucurbita
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species), and uricase (from Anthrobacter globulin), were all pur-
chased from Sigma Aldrich. Chitosan, acetaminophen, AuCl3

(30 wt% weight in dilute HCl), H2PtCl6 hydrate, 5 wt% Nafion,
25 wt% glutaraldehyde, uric acid, glucose, potassium phosphate,
and sodium nitrate were also purchased from Sigma Aldrich. L-
Ascorbic acid was purchased from Fisher Scientific, while acetic
acid was purchased from Alfa Aesar.
2.2. Biosensor array

The biosensor array contains eight one-mm diameter Cu wires
embedded into a virgin Teflon holder and arranged concentrically,
as illustrated in Fig. 1. An array of six Pt and two Au working elec-
trodes was created by electrodeposition of first Au and then Pt onto
the exposed ends of the Cu wires. Direct electrodeposition of Pt
onto Cu yielded unstable amperometric signals, probably due to
poor Pt nucleation [23,24], which exposes the underlying and not
biocompatible Cu wire. Au electrodeposition provides enhanced
nucleation, preventing any Cu surface exposure.

The eight working electrodes were coated with different metals,
different membranes, and different enzymes as indicated in
Table 1. For sensor element #1, two units of glucose oxidase were
mixed in 2 ll of chitosan, cast onto the electrode, and allowed to
dry at room temperature for 1 h. For sensor element #2, two units
of glucose oxidase and 10 units of ascorbate oxidase were mixed in
2 ll of chitosan, cast onto the electrode, and allowed to dry at room
temperature for 1 h. For sensor element #3, the uricase/chitosan
coating was formed by a five-step procedure: (a) deposit 2 ll chito-
san, (b) deposit two unit of uricase, (c) cross-link with 25 wt% glu-
taraldehyde for 20 min, (d) deposit 2 ll of chitosan, and (e) dry for
½ h, then incubate in 0.1 M PBS. Uricase immobilization was more
challenging than glucose oxidase or ascorbate oxidase. In order to
obtain a stable amperometric signal from the uricase-coated elec-
trode, the more robust procedure of glutaraldehyde cross-linking
was needed, rather than simply casting the mixture of chitosan
and enzyme onto the electrode surface. After steps a, b, and e,
the sensor elements were allowed to dry at room temperature
for 1 h. For sensor element #4, ten units of ascorbate oxidase were
Fig. 1. Schematic of the eight-electrode sensor array.
mixed in 2 ll of chitosan, cast onto the electrode, and allowed to
dry at room temperature for 1 h. Sensor elements #5–8 were sim-
ilarly coated with either chitosan alone, or first chitosan and then
Nafion. Nafion coatings alone were unstable, typically delaminat-
ing during the course of testing.
2.3. Electrochemical measurements

The virgin Teflon holder with embedded Pt and Au working
electrodes was placed inside a virgin Teflon electrochemical cell,
which also contains an Ag/AgCl reference electrode and Pt wire
counter electrode. Amperometric measurements were performed
on the electrode array using a CHI-1030B multi-potentiostat from
CH Instruments. The biosensor array was sequentially exposed
to different concentrations of glucose (0–0.75 mM), uric acid
(0–0.15 mM), ascorbic acid (0–0.15 mM), and acetaminophen
(0–0.15 mM). Sensor electrodes #1, 2, and 5–8 measure anodic
currents associated with oxidation of H2O2, ascorbic acid, uric acid,
acetaminophen, and possibly other species that can be oxidized.
Sensor electrodes #3 and 4 measure cathodic currents, predomi-
nantly associated with O2 reduction. The amperometric response
of the entire biosensor array to the different solution concentra-
tions was obtained three times, twice for training, and once for
testing. The test solutions were stirred continuously during all
measurements.
3. Data analysis

3.1. Multivariate regression model

A multivariate regression model is created using the measured
current density from the eight electrodes as the inputs. Both the
dependent and the independent variables are scaled, although this
only has a minor effect on the results. The model output is the esti-
mated concentration of the four analytes in a mixture. First, a coef-
ficient matrix is created based on the measured electrode readings
and the known concentrations for the training data set. This coef-
ficient matrix is then used to estimate analyte concentrations
based on the measured current readings for the test data set.

Both multi-electrode and individual electrode models are com-
puted and then compared. For the individual-electrode model,
regression is computed for each combination of analyte and indi-
vidual electrode current density. For the full array model, regres-
sion is computed for the four analytes using all eight electrode
readings simultaneously. Eq. (1) describes the complete electrode
array model, while Eq. (2) describes the individual electrode mod-
els. The multivariate regression model based on the eight elec-
trodes is:

C ¼ jBþ A ð1Þ

where C is a 1 � 4 array representing the four analytes: C1 repre-
sents the glucose concentration, C2 the ascorbic acid concentration,
C3 the uric acid concentration, and C4 the acetaminophen concen-
tration; j is a 1 � 8 current density matrix for the eight electrodes;
B is an 8 � 4 coefficient matrix, and A is a 1 � 4 error or bias in the
corresponding concentration. The analyte concentrations studied
are chosen to be reasonably low so that a linear fit is expected.
The regression equation for the single electrode model is:

Ci ¼ jkBik þ Aik ð2Þ

where Ci represents the concentration for a single analyte, Bik is the
associated coefficient for the model, jk is the specific electrode cur-
rent density, and Aik the bias.



Table 1
Electrode preparation for biosensor array.

Sensor element Electrode material Membrane coating Enzyme(s) Applied potential (vs. Ag/AgCl) (mV)

#1 Pt Chitosan Glucose oxidase +700
#2 Pt Chitosan Glucose oxidase + ascorbate oxidase +700
#3 Pt Chitosan Uricase �600
#4 Pt Chitosan Ascorbate oxidase �300
#5 Pt Chitosan None +650
#6 Pt Chitosan, then Nafion None +650
#7 Au Chitosan None +650
#8 Au Chitosan, then Nafion None +650
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3.2. Leave-One-Out Cross-Validation

All data from one experiment are collected, and the resulting
dataset contains 45 samples. The Leave-One-Out Cross-Validation
(LOOCV) methodology is used to train and validate the model.
The advantage of this method is that there is no data lost [25].
The disadvantage is that this method is computing intensive and
can be time consuming.

For a dataset of N observations, the Leave-One-Out Cross-Vali-
dation (LOOCV) method performs N training iterations. In each
iteration, the LOOCV takes (N � 1) samples for model training
and the remaining sample for validation and the obtained model
is stored. In other words, it is repeated N times so that every time
one different sample is used as a validation sample. Finally, the
model coefficients are computed by averaging all the models
obtained during the iterative training process [26,27].

3.3. Performance metrics

Goodness-of-fit is quantified by the reduced chi-squared (v2
red),

which is normalized to the number of degrees of freedom (t):

v2
red ¼

v2

t
¼ 1

t
X

i

yi � �yð Þ2

r2 ð3Þ
4. Results and discussion

4.1. Individual-electrode model

A regression model is computed for each analyte to predict its
concentration from the current density measurements at each of
the eight electrodes individually. Table 2 provides correlation coef-
ficients between the actual and predicted value for each of the four
concentrations at all eight electrodes. Table 2 illustrates that the
glucose concentration (C1) is most highly correlated with j1 and
j2, the ascorbic acid concentration (C2) with j4, the uric acid concen-
tration (C3) with j3 and j5, and the acetaminophen concentration
with j7 and j8. Fig. 2A–D provide a graphical comparison between
the actual and estimated concentrations of glucose, ascorbic acid,
Table 2
Correlation coefficients (q) between actual concentrations (Ci) and electrode current
densities (ji).

These indicate the electrode most sensitive to each of the four analytes.
uric acid, and acetaminophen for the individual electrode (#1, 4,
3 and 8) that best predicts these concentrations (glucose, ascorbic
acid, uric acid, and acetaminophen).

Table 2 shows that electrodes #1 and 2 are much more highly
correlated with the glucose concentration that the rest of the elec-
trode array. Table 2 also illustrates that the correlation coefficients
are similar (0.86–0.94) between each of the four analytes and the
electrode that best predicts its concentration. Thus Table 2 alone
would appear to indicate that the concentration of all four analytes
can be equally well determined by current density measurements
at individual electrodes. However, comparison of the root-mean-
squared error (RMSE) for predicting the concentration of all four
analytes illustrates that this is not true, and that predicting the glu-
cose concentration is more difficult. Predicting glucose has an
RMSE of 0.427, whereas predicting the other three concentrations
has an RMSE ranging from 0.076 to 0.089. This reflects the fact that
ascorbic acid, uric acid, and acetaminophen can all be oxidized at
electrodes #1 or 2, thus obscuring the correct glucose concentra-
tion, which is measured indirectly as oxidation of a reaction prod-
uct, H2O2. On the other hand, since glucose is not electrochemically
active, the presence of glucose does not interfere with concentra-
tion measurement of the other three analytes.

Table 3 provides the correlation coefficients between the cur-
rent densities measured at the eight electrodes. This illustrates that
electrodes #1 and 2 are highly correlated (0.989), since glucose
oxidase is immobilized at both of these sensor electrodes. Elec-
trodes #3 and 4 are also correlated (0.667), since both electrodes
measure O2 depletion. However, all of the other correlation coeffi-
cients are low (<0.4) between the four enzyme electrodes (#1–4).
On the other hand, the current densities at electrodes without an
immobilized enzyme (#5–8) are highly correlated (>0.78). This
Fig. 2A. Performance of the individual-electrode model for predicting the concen-
trations of glucose (C1) based on electrode 1.



Fig. 2B. Performance of the individual-electrode model for predicting the concen-
trations of ascorbic acid (C2) based on electrode 4.

Fig. 2C. Performance of the individual-electrode model for predicting the concen-
trations of uric acid (C3) based on electrode 3.

Fig. 2D. Performance of the individual-electrode model for predicting the concen-
trations of acetaminophen (C4) based on electrode 8.
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illustrates the value of having enzyme electrodes in the sensor
array, since this yields current density measurements that are
much less correlated.

The goodness-of-fit for the individual-electrode model can be
estimated from the reduced chi-squared, which is given in Table 4.
These are presented separately for each of the four analytes to
illustrate the differing levels of predictive accuracy, and for easier
comparison to the full-array model discussed below. For the indi-
vidual-electrode model, the acetaminophen concentration is most
poorly determined.

4.2. Full-array model

A regression model is also computed for each analyte to predict
its concentration from the current measurements at all eight elec-
trodes simultaneously, referred to here as the full array model.
Fig. 3A–D provide a graphical comparison between the actual
and estimated concentrations of glucose, ascorbic acid, uric acid,
and acetaminophen for the full-array model. Table 4 presents a
comparison between the individual-electrode and full array mod-
els, summarizing the slopes, intercepts and correlation coefficients
for the graphical results of Figs. 2 and 3. In all cases, the full array
model provides a much more accurate measurement of all four
analyte concentrations, as evidenced by correlation coefficients
quite close to unity, y-intercepts almost equal to zero, and a nearly
unity linear relationship between the actual and model-predicted
analyte concentrations.

Table 4 also presents and compares the reduced chi-squared for
both models. Table 4 illustrates that the reduced chi-squared for
the full array model is about 10� lower than for the individual
electrode model. The acetaminophen concentration in particular
is determined much more accurately by the full array than the
individual-electrode model. However, acetaminophen is less well
determined than the other three analytes because no enzyme elec-
trode is included in the array with specificity to acetaminophen.

4.3. Choice of sensor materials

The best way to understand the materials’ choice at the differ-
ent sensor electrodes is to compare the response of each electrode
Table 3
Correlation coefficients between measurements at different sensor electrodes.

Sensor j1 j2 j3 j4 j5 j6 j7 j8

j1 1
j2 0.989 1
j3 0.382 0.397 1
j4 0.173 0.112 0.667 1
j5 0.475 0.500 0.890 0.615 1
j6 0.579 0.615 0.603 0.353 0.826 1
j7 0.525 0.548 0.694 0.526 0.925 0.892 1
j8 0.528 0.576 0.485 0.226 0.787 0.889 0.938 1

Table 4
Comparison of fitting parameters (r, slope, and intercept) and good-ness-of-fit (v2

red)
for the both full array model and the individual electrode model for all four analytes.

r Slope Intercept (mM) v2
red

Individual-electrode C1 0.904 0.6386 0.405 0.240
C2 0.938 0.6719 0.078 0.191
C3 0.895 0.7262 0.056 0.210
C4 0.650 0.7519 0.037 0.262

Full array C1 0.999 0.9981 0.001 0.002
C2 0.984 0.9373 0.016 0.040
C3 0.992 0.9944 �0.001 0.018
C4 0.988 0.9788 0.003 0.028



Fig. 3A. Performance of the full-array array model for predicting the concentrations
of glucose (C1).

Fig. 3B. Performance of the full-array array model for predicting the concentrations
of ascorbic acid (C2).

Fig. 3C. Performance of the full-array array model for predicting the concentrations
of uric acid (C3).

Fig. 3D. Performance of the full-array array model for predicting the concentrations
of acetaminophen (C4).
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to glucose, ascorbic acid, uric acid, and acetaminophen, as summa-
rized in Table 2. The sensor array contains four enzyme electrodes
(#1–4) at which the following reactions are catalyzed by glucose
oxidase, ascorbate oxidase, and uricase, respectively:

C6H12N6O3ðglucoseÞ þ O2 þH2O$ C6H12O7 þH2O2 ð4Þ

C6H8O6ðL-ascorbic acidÞ þ 1
2

O2 $ C6H6O6 þH2O ð5Þ

C5H4N4O3ðuric acidÞ þ O2 þH2O$ C4H4N4O2 þ CO2 þH2O2 ð6Þ

Amperometric biosensors based on O2 reduction or H2O2 oxida-
tion have been reported for glucose, ascorbic acid, and uric acid,
based on the similarity of these oxidoreductase enzyme reactions
[1,2,28–32].

The concentration of glucose is monitored at sensor elements
#1 and #2 by the oxidation of H2O2 at +700 mV vs. Ag/AgCl, as
shown in Table 1. At this potential, uric acid, ascorbic acid, and
acetaminophen can all be readily oxidized, so they may interfere
with accurate glucose determination. This motivated the co-immo-
bilization of ascorbate oxidase with glucose oxidase at sensor ele-
ment #2 in order to pre-oxidize ascorbate, therefore reducing its
interference with glucose detection. However, the results in Table 2
for the individual-electrode model illustrate that electrode #1
(r = 0.904) is slightly better than electrode #2 (r = 0.876) for detect-
ing glucose in these four-analyte mixtures.

According to the results in Table 2, ascorbic acid is best deter-
mined at sensor electrode #4, at which ascorbate oxidase is immo-
bilized, and uric acid is best-determined at sensor electrode #3, at
which uricase is immobilized. Both sensor electrodes are operated
at cathodic potentials and are employed to detect the current den-
sity from oxygen (O2) reduction. In Eqs. (4)–(6) above, all three oxi-
doreductase enzymes consume O2, so all three reactants (glucose,
ascorbic acid, uric acid) can be detected by measuring the extent
of oxygen depletion at the corresponding electrodes. This method
is used here for detection of ascorbic acid and uric acid, but not
for detection of glucose. However, this method was employed for
early glucose biosensors utilizing the Clark electrode [33,34].

The use of two different electrode materials, Au and Pt, was
originally motivated by the observation of electrocatalytic effects
in sensors that detect H2O2 [35–37]. Inspection of Table 2 sug-
gested that Au electrodes might be more capable of discriminating
acetaminophen from the other three analytes than Pt electrodes.
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The correlation coefficients between acetaminophen and the two
Au electrodes (j7 and j8) are 0.73 and 0.86, respectively. These val-
ues are almost as high as those for electrodes at which the oxido-
reductase enzyme corresponding to the analyte of interest is
immobilized (0.904 for j1, 0.938 for j4, and 0.895 for j3). This sug-
gests that Au electrodes are electrocatalytic towards acetamino-
phen oxidation, and this effect has indeed been recently reported
[38–41].

The use of different membrane materials is motivated by the
different electrostatic behavior of Nafion and chitosan. Nafion is
a sulfonated tetrafluoroethylene that is highly anionic in neutral
buffer solutions due to its numerous F atoms and SO3

� groups.
For this reason, Nafion and its composite membranes have been
proposed for enzymatic glucose biosensors in order to repel nega-
tively charged species such as urate and ascorbate, while allowing
permeation of neutral glucose molecules [42]. However, Nafion
films are difficult to incorporate into enzymatic glucose biosensors
due to a tendency to crack, and inadequate reproducibility [6,43].
In addition, the negatively charged sulfonic groups on Nafion can
also concentrate cationic species present in the physiological sys-
tem, resulting in interference with the measured glucose signal [6].

Chitosan was introduced into the glucose Bioelectronic Tongue
because this polymer is widely known as a polycationic polymer
that is positively charged in neutral buffer solutions. Chitosan is
a linear polysaccharide composed of randomly distributed b-(1-
4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-gluco-
samine (acetylated unit). The sensor array contains two electrodes
(#5 and #7) with no immobilized enzyme that are coated with
chitosan (cationic), and two electrodes (#6 and #8) with no immo-
bilized enzyme that are coated Nafion (anionic). The situation is
complicated somewhat by the inability to make pure Nafion coat-
ings that are stable for the duration of these experiments. As
described in the Experimental Section, the Nafion coatings atop
electrodes #6 and #8 are deposited atop an underlying chitosan
coating to improve the adhesion and durability of Nafion.

The correlation coefficients in Table 3 illustrate that the elec-
trodes with an anionic outer Nafion layer are less sensitive to the
presence of anionic species (ascorbic acid and uric acid) than those
with a cationic outer chitosan layer. In other words, for both C2 and
C3, the current densities j6 are less than j5 and the current densities
j8 are less than j7. The simplest explanation is that the anionic
membrane coatings on electrodes #6 and #8 repel urate and ascor-
bate, while the cationic membrane coatings on electrodes #5 and
#7 do not.

5. Conclusions

An amperometric Bioelectronic Tongue was tested for determi-
nation of glucose in mixtures that also contain ascorbic acid, uric
acid, and acetaminophen. This device contains eight sensor elec-
trodes constructed using different metal electrodes (Pt, Au), oxido-
reductase enzymes (glucose oxidase, ascorbate oxidase, uricase),
and membrane coatings (Nafion, chitosan). The system response
was tested using two models, concentration determination by indi-
vidual electrodes and concentration determination by a linear
regression model for the entire electrode array. The reduced chi-
squared for the full array model was found to be about one order
of magnitude lower than that for the individual-electrode model.
Discrimination of glucose from chemical interference by the other
three species is accomplished through a combination of enzyme
catalysis, metal electrocatalysis, and membrane charge. Interfer-
ence from ascorbic acid and uric acid is eliminated by using sensor
electrodes coated with ascorbate oxidase and uricase, respectively.
Interference from acetaminophen is eliminated partly by the use of
an Au electrode, which is electrocatalytic towards acetaminophen
oxidation, and partly through use of membrane materials Nafion
and chitosan, which are negatively and positively charged, respec-
tively, at physiological pH. The benefit of incorporating enzyme
electrodes into the sensor array is illustrated by the lower correla-
tion coefficients between different enzyme electrodes relative to
non-enzyme coated electrodes. This approach may be generalized
to other detection of other substrates of oxidoreductase enzymes.
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