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Abstract 

In this paper, the effects of the stacking sequence on the mechanical behavior of composite laminates subjected to low velocity 
impacts is investigated, taking into account inter-laminar and intra-laminar damage onset and evolution. The response of the 
composite laminate configurations characterized by different stacking sequences subjected to low velocity impacts with different 
impact energies have been studied to estimate the influence on the load-time, displacement-time and energy-time histories. A 
Finite element (FE) model has been used to numerically simulate the behavior of the composite plates. ABAQUS/EXPLICT FE 
environment has been considered for the implementation and the analyses and cohesive elements have been adopted to model the 
inter-laminar damage formation and evolution in the analyzed composite plate.  
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1. Introduction 

The increasing need of materials with high specific mechanical properties and low specific weight has driven the 
development of composite materials. The search for structural elements able to absorb impact energy has been 
carried out by several industries as aeronautical, railway, naval and automotive. The general manufacturing process 
of composite material components, restricts the stacking sequence combination to laminates with 90, ±45, 0 oriented 
plies. Clustering of plies becomes unavoidable to comply with certain directional stiffness requirements. Although a 
laminate might have good stiffness properties, it may show a poor response to impact loads in particular when plies 
with the same orientations are packed together. The impact damage response is evaluated for final designs that meet 
the static load [23-28] and it is not accounted in the early design phase. However, there might be a significant 
margin to improve the impact response of a laminate designed to withstand in-plane loads, just by varying its 
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stacking sequence. The influence of stacking sequence of laminated composite plates, on the  low velocity impact 
behavior, has been studied by several authors [1-11]. In low velocity impact phenomena the delaminated area is 
highly dependent on the out-of-plane displacement. This means that the bending stiffness plays an important role on 
the way the damage develops on an impacted laminate. In this paper the effect of the stacking sequence on the inter-
laminar and intra-laminar damage onset and evolution has been evaluated. A detailed FE model of the panel has 
been developed in ABAQUS/EXPLICIT FEM code. The Hashin [30-32] failure criteria implemented in the adopted 
FE code have been used to predict the intra-laminar damage, while the inter-laminar-damage between adjacent plies 
has been simulated by means of cohesive elements [29-33].Two different impact energy levels and two stacking 
sequences have been considered, in order to better understand the influence of stacking sequence on the stiffness, 
and on the inter-laminar and intra-laminar damages formation and evolution. 
 

2. Damage modelling 

 
In impacted composite plates the prediction of intra-laminar damage has been performed by considering energy 
criteria based on  Continuum Damage Mechanisms (CDMs)[23-28]. The intra-laminar damage models implemented 
in the FE code used in this work are based on several assumptions: the damage process is calibrated over the finite 
element dimension, the initiation and evolution criteria (based on an energy criteria) are defined for each failure 
mode and a damage variable is introduced which quantifies the damage occurring in terms of matrix and fiber 
traction and compression stiffness degradation .  
Abaqus uses Hashin’s failure criterion formulation [10-11] to evaluate the intra-laminar damage in composite 
laminates. The damage initiation criteria have the following general form shown in figure 1: 
 

       

                                                                 Fig. 1 Constitutive relation adopted for each failure mode 

The coefficient  allows to take into account the shear stress contribution in the fiber tensile failure mode (indeed 
=0 was set in this work). In Figure 1, the progressive damage bilinear model implemented in Abaqus FE code for 

each failure mode is also shown. According to the Hashin’s failure criteria, the point A in Figure 1 represents the 
initiation of stiffness material degradation, before this point the material is undamaged. The damage propagation for 
each element start from the point A up to point B where the element is totally degraded. The parameter dI represents 
the reduction of the stiffness for the failure mode I. It is possible to evaluate this parameter by the following relation: 
 

                          =     ;        I   (               (1) 

Where : 
 

•  is the equivalent displacement at which the initiation criterion is satisfied. 
•  is the equivalent displacement at which the material is complete damaged ( = 1).  
•  is obtained by eq.2, by assuming that the fracture energy  is specified and the softening is linear: 

                                              =                                                                               (2) 
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  is the equivalent stress at which the initiation criterion is verified. More details are available in the Abaqus FE 
code Manuals [33]. 
 

3. Interlaminar Failure 

 
To study the formation and evolution of the inter-laminar damage in composite material, cohesive interface elements 
have been introduced between each ply. The stress failure criterion used to estimate the delamination onset is given 
by the Quadratic nominal stress Criterion law [10]: 
 
                                            +   +  =  1                                               (3) 
 

 is the Nominal stress in the pure normal mode,  is the Nominal stress in the first shear direction and  
is the Nominal stress in the second shear direction. Where  (i=n,s, t) denotes the traction stress vector in the 
normal and shear directions. The traction stress  can be calculated as in [33] for modes I, II and III and the opening 
and/or sliding displacements i: 

                         i = n, s, t                                   (4) 
 
When the relation (3) is satisfied the material stiffness is gradually degraded. The damage variables for each failure 
mode is given by the following relation: 
 

                          =     ;                                             (5) 

 
where  is the equivalent displacement at which the initiation criterion is satisfied, and  is the equivalent 
displacement at which the material is fully damaged ( = 1). The  parameter corresponds to the total mixed-
mode displacement (normal, sliding, tearing) given by: 
 

                         =                                                         (6) 

 
A typical linear traction-separation model used for fracture Modes I, II and III is shown in Fig. 2. Initially, the linear 
elastic response is represented using the stiffness  (i = n, s, t). Once the normal or shear tractions reach the 
corresponding inter-laminar normal and shear strengths, delamination is initiated and then the stiffness is linearly 
degraded according to the damage evolution variable given by Eq.(5).  
 
 

  

Fig. 2 Traction-separation law for cohesive material. A) for mode I and b) for mode II/III 

The stiffness , characterizing the initial damage phase, can be determined from the material stiffness  by 
introducing a penalty factor [17] or rather assuming that the behaviour of the cohesive element is the same of the 
matrix itself. In this paper the cohesive stiffness in the normal direction is imposed equal to elastic modulus of 
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matrix along the transversal direction divided by cohesive numerical thickness , while the cohesive 
stiffness in the first and in the second shear directions is imposed equal to the matrix shear modulus divided by 
cohesive thickness .  
 

4. FEM Model 

 
As alredy mentioned, the finite element model has been built in the FE code Abaqus/Explicit [19-20]. The panel has 
been modelled by using the continuum shell element formulation available in the Abaqus database. Each element 
has eight nodes with three degrees of freedom at each node and one integration point. To better predict the onset and 
growth of the intra-laminar damage, each ply has been modelled with two continuum shell elements along the 
thickness. Localized stiffness reduction due to the presence of failed elements has been guaranteed by element 
deletion during the analysis. Interface between plies has been modelled thanks to cohesive element included in the 
Abaqus element database. Finite thickness cohesive elements have been placed at the interface between each ply. 
The plate was clamped between two holed rigid plates, modelled with 3D brick elements. The impactor has been 
modelled as a hemispherical 3-D rigid body. The diameter was set to 15 mm, the mass of the impactor have been set 
to 1Kg and 1.5 Kg to obtain the same initial velocity, in the vertical direction, for the two different energy value (see 
Figure 3). Contact pairs, using a penalty formulation, included in Abaqus/Explicit have been used to simulate the 
contact between the impactor and the laminate. Friction has been introduced between all the contacting surfaces. 
The friction coefficient between surfaces depends on the materials in contact, interface angle orientation and surface 
roughness, as demonstrated by several authors  [15-17]. In this work an average friction coefficient of 0.5 has been 
used for all the interfaces between components made of the same material. On the other hand, a friction coefficient 
of 0.3 has been used for different materials in contact. Figure 4 shows the two different stacking sequence 
configurations used in this paper. For all the numerical models the material properties reported in Table 1 have been 
considered.

As mentioned, the inter-laminar damage has been simulated by means of conveniently positioned cohesive element 
layers between each pair of plies. The “tie-constraints” method allowed to link the non-coincident meshes of solid 
and cohesive elements, using different sizes and element shapes for continuum shell elements and cohesive 
elements. This approach allows to refine the cohesive element layers in order to obtain more accurate predictions of 
the delamination shape without increasing the number of continuum shell elements with a reduction of  the 
computational cost. 
 

Intralaminar model Properties 
Density  1.6e-9 
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Orthotropic property = 153 GPa; = =10.3 Gpa 
= = 6 GPa ; = 3.7GPa 
= =0.3 ; =0.4 

Ultimate stress =2537 ; = 82 ; =1580 ; =263  
= 90 ; =40 

In-Plane fracture toughness  =91.6 =79.9 ; =0.22 =1.1 
=0.7 

Interlaminar model Properties 
Density  1.6e-9 
 Mode I Mode II Mode III 
Normalised Elastic modulus   1373.3 493.3 493.3 
Inter-laminar strength (MPa) 62.3 92.3 92.3 
Inter-laminar fracture toughness  0.28 0.79 0.79 

Table 1 Material properties 

5. Results and conclusion 

In this section the simulations performed on the analysed two different stacking sequences for the considered two 
impact energies are presented and discussed. The mechanical behaviour of the numerical models is represented by 
the graph of the absorbed energy versus impact energy level. In Figure 5 and Table 2 the percentage of absorbed 
energy for the different configurations and impact energies is presented. In Figure 5 the graph is split in three 
regions  representative of the composite plate impact behaviour: region 1 - the composite plate have a quasi-elastic 
behaviour, because the fraction of absorbed energy is very low (under 20%) as failure mechanisms are, in general  
not activated; region 2 - the composite plate shows some failure mechanisms, which are matrix crack and 
delaminations, so, the fraction of absorbed energy is intermediate (between 20% and 50%); region 3 - the composite 
plate shows many failure mechanisms, so the fraction of absorbed energy is very high, more than 50%. 
 

  

Fig. 5 Absorbed Energy     Table 2 Absorbed Energy 

In Figures 6 and 7 and in Figures 8 and 9, The impact Force-Time and the Force-Displacement curves for the 
analysed stacking sequences and impact energies are reported. Intense oscillations occurring near the peak force 
value indicate initiation of damage. For plates that includes 45 and -45 oriented plies the peak impact force was 
higher than the configuration with 0/90 oriented ply, for both the impact energy value. This result highlights the 
influence of stacking sequence on the bending stiffness of the plate. Indeed the configuration with [0/90]2s plies is 
less stiff than the other configuration. In Figure 10 and 11 the trends of internal energy are reported.  From these 
figures it can be appreciated that, for both impact energies, the configuration [0/90]2s absorbs an amount of energy 
greater than the other configuration. 
  

1

3

2

Impact Energy level [J] 
Absorbed Energy 

[0/90]2s [-45/45/90/0]s 
7J 32.28 19 

11J 60 40.27 
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Fig.   Force-time, 7 J impact energy 

 
 
Fig. Force-time, 11 J impact energy 
 

 

 
 
Fig.  Force-Displacement, 7 J impact energy 
 

 

 
 
Fig 9 Force-Displacement, 11 J impact energy 
 

 
 

 
Fig.  Energy-Time, 7 J impact energy 
 

 
 
Fig.  Energy-Time, 11 J impact energy 
 

The final absorbed energy as inter-laminar and intra-laminar damage with different impact energies and for different 
stacking sequences are better represented by figures 12-15. In these figures the damaged interface elements and the 
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damaged ply elements are shown for the analysed stacking sequence configurations and impact energies. The 
formation of delaminations generally relates to matrix cracking. For the analysed models, it can be appreciated how 
the delamination is influenced by the breaking of the underlying ply matrix. The matrix damage of the single ply is 
obviously influenced by the considered stacking sequence. 
 

Fig.  [0/90]2s configuration  7 J impact energy Fig.  [0/90]2s configuration  11 J impact energy 

 
Fig.  [-45/45/90/0]s configuration  7 J impact energy 
 

 
Fig.  [-45/45/90/0]s configuration  11 J impact energy 
 

Finally, in Figures 16 and 17 the overlapped images of the inter-laminar damages throughout the whole lay-up, for 
the impact energies and for the considered stacking sequence, are reported. As expected, the delaminations for a 
given stacking sequence increase with the increase of the impact energy, keeping the same shape. 
 

 

 
Fig.   Delamination 7 J 

 
Fig.  Delamination 11 J 
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