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Abstract Recently, we and others identified the 66.3-kDa pro-
tein as one of several putative novel lysosomal matrix proteins
by analyzing mannose 6-phosphate receptors binding proteins
[Kollmann K., Mutenda K.E., Balleininger M., Eckermann E.,
von Figura K., Schmidt B., Lübke T. (2005) Identification of no-
vel lysosomal matrix proteins by proteome analysis. Proteomics
5(15), 3966–3678, Sleat D.E., Lackland H., Wang Y., Sohar I.,
Xiao G., Li H., Lobel P. (2005) The human brain mannose 6-
phosphate glycoproteome: a complex mixture composed of mul-
tiple isoforms of many soluble lysosomal proteins. Proteomics.
5(6), 1520–1532]. Here, we describe the expression of the mouse
66.3-kDa protein in HT1080 cells in which it is synthesized as a
precursor of about 75kDa and subsequently processed by limited
proteolysis to mature polypeptides accumulating in the lysosomal
compartment. The lysosomal localisation of the endogenous
66.3-kDa protein was verified by indirect immunofluorescence
in mouse embryonic fibroblasts and by subcellular fractionation
of tyloxapol-filled mouse liver lysosomes. Northern blot analysis
reveals high transcriptional levels in testis, liver and kidney,
whereas Western blot analysis shows high protein levels in brain,
heart, lung and spleen. Interestingly, in mouse the endogenous
66.3-kDa protein is processed in a highly tissue-dependent man-
ner to mature forms.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: 66.3-kDa protein; Lysosomes; Mannose
6-phosphate; Lysosomal localisation; Lysosomal processing;
Lysosomal storage diseases
1. Introduction

Recently, a number of proteomic studies have been per-

formed on lysosomes and the lysosomal matrix [1–3]. They

have been stimulated for at least two particular aspects:
Abbreviations: MPR, mannose 6-phosphate receptor; M6P, mannose
6-phosphate; MEFs, mouse embryonic fibroblasts; LSDs, lysosomal
storage diseases
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(i) Most of the approximately 50 known lysosomal matrix pro-

teins are acid hydrolases that degrade macromolecules entering

the lysosomes. Generally, loss-of-function mutations of lyso-

somal hydrolases manifest as lysosomal storage diseases

(LSDs). Dependent on the affected protein and the severity

of the deficit, the more than 40 known LSDs show a wide vari-

ety of different symptoms but share some common features like

lysosomal storage of substrates of the hydrolases, a progressive

clinical course, recessive mode of inheritance and – in many

cases – neurodegenerative involvement [4]. The high likeliness

that novel lysosomal proteins direct to LSDs of yet unknown

etiology justifies the search for novel lysosomal proteins and

their characterization. (ii) The lysosomal matrix proteins offer

a particular advantage for an organelle proteome analysis as

these proteins receive mannose 6-phosphate (M6P) residues

as a unique lysosomal sorting signal. In vivo, M6P-tagged

lysosomal matrix proteins bind to M6P-receptors (MPRs),

which mediate their trafficking to the lysosomes. The M6P-

tag can easily be exploited for affinity purification on immobi-

lized MPRs. In former studies, we and other groups took

advantage of this approach [1–3]. Beside a number of well-

known lysosomal matrix proteins, we were able to identify at

least three candidate proteins of the lysosomal matrix: mam-

malian ependymin-related protein-2 (MERP-2), retinoid-

inducible serine carboxypeptidase (RISC) and the hypothetical

66.3-kDa protein (cDNA Accession No. BC038605; Protein

Accession No. AAH38605). We verified that C-terminally

tagged derivatives of the three candidate proteins bind in an

M6P-dependent manner to immobilized MPRs and are inter-

nalized by MPR-mediated endocytosis. To characterize the

hypothetical 66.3-kDa protein, we purified the protein and

raised an antiserum against it. The antiserum allowed us to

verify the lysosomal localisation of the endogenous 66.3-kDa

protein in mouse and its tissue specific processing to multiple

mature polypeptides. In HT1080 cells the putative protein is

synthesized as a 75 kDa precursor, in which all five potential

N-glycosylation sites are utilized. The precursor is processed

into multiple discrete and stable fragments.
2. Materials and methods

2.1. Cell lines and cell culture
If not stated different cell lines were maintained at 37 �C under 5%

CO2 in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO Life
Technologies) containing 10% FCS (PAN Biotech GmbH).
blished by Elsevier B.V. All rights reserved.
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2.2. Antibodies
Monoclonal antibodies were purchased as followed: a-RGS-His6-

Tag (Qiagen), a-Hsp60 and a-Porin (Calbiochem), a-LAMP-1
(1D4B, Developmental Studies Hybridoma Bank). HRP-conjugated
secondary antibodies were supplied by Dianova.

2.3. Cloning, transfection and protein expression of the 66.3-kDa protein
We subcloned the 66.3-kDa cDNA [1] by add-on PCR using a RGS-

His6 containing reverse primer into the pcDNA3.1/Hygro(+) vector
(Invitrogen). HT1080 cells were transfected with Lipofectamine 2000
following the protocol recommended by Invitrogen. After selection
with hygromycin (200–600 lg/ml, Calbiochem), colonies were picked
and grown with 600 lg/ml hygromycin.

2.4. Purification of recombinant 66.3-kDa protein
66.3-kDA expressing HT1080 cells were shifted to 0.05% FCS in

DMEM. Medium including cell debris was collected three times every
48 h and subjected to ammonium sulfate precipitation. After dialyza-
tion to PBS, the 66.3-kDa protein-His6 was purified by Ni-NTA aga-
rose and eluted as recommended by Qiagen. The eluate was dialyzed to
PBS and subjected to HPLC anion exchange chromatography (Biocad-
Vision, Applied Biosystems) by applying a step-wise gradient up to
500 mM NaCl in PBS. Purification was monitored by silver staining
and Western blotting.

2.5. Mass spectrometry and Edman degradation
Peptide mass fingerprint analysis was performed according to [1].

For N-terminal sequencing the samples were subjected to Edman deg-
radation on a Procise cLC sequenator (Applied Biosystems) [5].

2.6. Deglycosylation experiments
For deglycosylation with PNGase F, cell lysates from HT1080 cells

stably expressing the 66.3-kDa protein were treated with PNGase F
(Roche) according to [5].

2.7. Indirect immunofluorescence microscopy
To detect endogenous expression of 66.3-kDa protein and colocal-

ization studies, methanol-fixed cells were incubated with a 66.3-kDa
protein antiserum and a-LAMP-1 and visualized by secondary anti-
bodies as described in [1].

2.8. Lysosome (tritosomes) isolation
The isolation procedure was essentially performed as described be-

fore by [6] but was adopted from rat to mouse by injecting 0.75 mg/g
body weight tyloxapol four days prior to the subcellular fractionation.
Marker enzyme activity determinations were performed according to
[6].

2.9. Metabolic labeling of cells with [35S] methionine/cysteine
(Hartmann Analytic) followed by immunoprecipitation with the

66.3-kDa protein antiserum, SDS–PAGE and autoradiography was
performed as described earlier for cathepsin D [7].

2.10. Other methods
Bioinformatic analysis has been performed as described in [1] using

NCBI BLAST and Vector NTI software (Invitrogen). Northern blot
analysis was carried out as described [8].
3. Results

3.1. Heterologous expression and purification of 66.3-kDa

protein from HT1080 cells

The expression of the formerly described V5-His6-double

tagged version of the 66.3-kDa protein [1] resulted only in

low protein levels. The murine 66.3-kDa protein cDNA could

be stably expressed at high levels in HT1080 cells as a C-termi-

nally His6-tagged derivative. The 66.3-kDa protein was puri-

fied from the secretions of these cells by a combination of

Ni-NTA affinity and anion exchange chromatography.
SDS–PAGE separated the purified protein into six polypep-

tides ranging from 75 kDa to �14 kDa (Fig. 1A, lane 1). To

confirm that these polypeptides correspond to the 66.3-kDa

protein, the polypeptides visualized by Coomassie staining

were analyzed by mass spectrometry peptide mass fingerprint

(MS PMF) or blotted onto a membrane, stained with Coomas-

sie (Fig. 1A, lane1) and analyzed by Edman degradation. N-ter-

minal sequencing (Edman degradation) of the major 75 kDa

polypeptide identified a sequence predicted for the 66.3-kDa

protein starting with leucine at position 47. Edman analysis

of the 66 kDa polypeptide yielded the same N-terminal

sequence starting with Leu47. PMF identified 13 peptides of

the 66.3-kDa protein, covering 33% of the entire protein

sequence. The N-terminus of the 40 kDa polypeptide started

with Cys249 of the 66.3-kDa protein. PMF identified eight pep-

tides of the 66.3-kDa protein all located C-terminal of Cys249.

Edman analysis for the 28 kDa polypeptide identified Leu47

at the N-terminus while the N-terminus of the 15/14 kDa poly-

peptides corresponded to Ser514 of the 66.3-kDa protein.

The purified protein (Fig. 1A) was used to generate a rabbit

polyclonal antiserum against the full length 66.3-kDa protein.

Western blot analyses of purified protein with the 66.3-kDa

antiserum showed high immunoreactivity of the serum against

the 75, 66 and 28 kDa form but only weak reactivity with the

40 and 15 kDa forms (Fig. 1A, lane 2). Western blot analyses

with an antibody directed against the C-terminal His6-tag of

the 66.3-kDa protein detected the 75, 40 and the 15 kDa forms

(Fig. 1A, lane 3) indicating that these polypeptides carry the C-

terminus of the 66.3-kDa protein. The 66 kDa polypeptide was

not detected by the anti-His6 antibody suggesting that this

form is C-terminally truncated.

We were interested to see whether the seven cysteines located

between position 147 and 562 of the 66.3-kDa protein contrib-

ute to a covalent linking of the different polypeptides of the

purified protein. Under non-reducing conditions, we observed

an aggregation of the protein that prevented electrophoretic

separation. This aggregation was not observed in cell lysates

of HT1080 cells stably expressing the 66.3-kDa protein. In

HT1080 cells, the 66.3-kDa protein was represented by 75,

40, 28 and 15/14 kDa polypeptides (Fig. 1B, lane 2). Their elec-

trophoretic mobility was not or only slightly affected (Fig. 1B,

lane 3) when reducing agents were omitted from the electro-

phoresis buffers indicating that the different polypeptides are

not linked to each other by disulfide bonds.
3.2. N-Glycosylation of 66.3-kDa protein derived from HT1080

cells

Cell lysates of HT1080 cells expressing the 66.3-kDa protein

were treated with PNGase F for up to 6 h, separated by SDS–

PAGE and analyzed by Western blotting using the 66.3-kDa

antiserum. After treatment with PNGase for 30 min and 1 h,

the 75 kDa form became partially deglycosylated and after

3 h only the �66 kDa fully deglycosylated form remained

detectable (Fig. 1C). The 40 kDa form was deglycosylated

via an intermediate to a �35 kDa form indicating that it car-

ries two N-linked glycans. The 28 kDa form was deglycosy-

lated via three intermediates to a �19 kDa form indicating

that it carries 3N-linked glycans (Fig. 1C). The glycosylation

of the different polypeptides and their position relative to the

N- and C-terminus of the precursor of the 66.3-kDa protein

are summarized in Fig. 1D.



Fig. 1. Molecular forms of 66.3-kDa protein in HT1080 cells. (A) Murine 66.3-kDa protein with a C-terminal His6-tag stably expressed in HT1080
cells was purified using Ni-NTA affinity and anion exchange chromatography, separated on SDS–PAGE under reducing conditions, blotted onto a
membrane and stained by Coomassie (lane 1) or analyzed by Western blot using either the 66.3-kDa antiserum (lane 2) or a monoclonal antibody
against the C-terminal His6-tag (lane 3). (B) 50 lg of cell extracts of non-transfected HT1080 cells (lane 1) and HT1080 cells stably expressing the
His6-tagged 66.3-kDa protein (lanes 2 and 3) were separated by SDS–PAGE under reducing (lanes 1 and 2) or non-reducing (lane 3) conditions and
analyzed by Western blotting using the 66.3-kDa protein antiserum. (C) 50 lg of HT1080 cells stably expressing 66.3-kDa protein were treated with
PNGase for up to 6 h, separated by SDS–PAGE and analyzed by Western blotting using the 66.3-kDa protein antiserum. The filled arrowheads (b)
point to the different glycosylated forms with the number of their N-glycans. The open arrowheads (/) point to deglycosylated 66.3-kDA forms. (D)
Scheme of the polypeptides seen in the purified 66.3-kDa protein fraction and their N-glycosylation sites.
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3.3. Localisation of endogenous 66.3-kDa protein

To localize endogenous 66.3-kDa protein, mouse embryonic

fibroblasts were analyzed by indirect immunofluorescence with

the antiserum against the murine 66.3-kDa protein. The 66.3-

kDa protein perfectly colocalizes with LAMP-1 (Fig. 2A), a

lysosomal membrane protein. In the confocal images, the

LAMP-1 signal appears as a ring-like structure surrounding

the lysosomal matrix protein 66.3-kDa protein.

3.4. Localisation of 66.3-kDa protein in tyloxapol-filled

lysosomes

Exposing cells to tyloxapol (Triton WR1339) leads to uptake

of tyloxapol into lysosomes and lowering of the density of

lysosomes [9]. Tyloxapol-loaded rat liver lysosomes can be eas-

ily separated from other organelles by a combination of differ-

ential centrifugation and a single discontinuous sucrose-

density gradient [6]. We adopted this method to mouse liver

and typically obtained in the final fraction a 40–60-fold enrich-

ment of lysosomal b-glucuronidase and b-hexosaminidase,

with only traces of the mitochondrial marker succinate de-

hydrogenase and the ER marker glucose-6-phosphatase (see
Supplementary Material Table 1, fraction F2). Western blot

analysis of the fractions obtained after sucrose density gradient

centrifugation revealed two major signals at 30 kDa and

15 kDa in the lysosomal fraction F2. The lysosomal marker

LAMP-1 was markedly enriched in the lysosomal fraction

F2, whereas the mitochondrial marker porin and Hsp60 are

absent from F2 (Fig. 2B). These results confirm the lysosomal

localisation of the 66.3-kDa protein.

3.5. Tissue distribution of the 66.3-kDa protein

Transcripts for the 66.3-kDa protein in mouse multiple

tissue Northern blots were examined with two different probes

(full-length and 3 0-probe). Three RNA species ranging

between 2 kb to �4 kb, expressed in variable relative amounts

were detected with the highest levels in testis, liver and kidney

(see Supplementary Material Fig. 1). The two probes

detected identical transcript patterns in the different tissues

(not shown).

Western blot analysis in adult mouse tissues showed high

expression of the 66.3-kDa protein in spleen, lung and brain

and intermediate levels in heart. In testis, liver and kidney



Fig. 2. Localisation of endogenous 66.3-kDa protein. (A) Endogenous 66.3-kDa protein was visualized in mouse embryonic fibroblasts by indirect
immunofluorescence using 66.3-kDa protein antiserum and LAMP-1 as a lysosomal marker. Bars 20 lm. (B) A 28 kDa form of the 66.3-kDa protein
localizes to Tyloxapol-filled lysosomes from mouse liver. Protein (50 lg/lane) from all fractions of the sucrose gradient of the lysosomal preparation
were separated by SDS–PAGE, blotted and probed with the antibodies indicated. F2 represents the fraction enriched in lysosomes as indicated by the
LAMP-1 signal (bottom panel) and b-hexosaminidase and b-glucuronidase activity (see Suppl. Material Table 1).
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immunoreactive material was barely detectable (Fig. 3). Most

interestingly, spleen, lung, brain and heart showed highly dis-

tinct molecular forms of the protein.

Brain showed a prominent �50 kDa polypeptide and weak

signals at 100 and 34 kDa. In lung the pattern was almost re-

verse with a dominant 34 kDa but only a faint 50 kDa form. In

addition a minor 24 kDa form was seen. In spleen, the 34 kDa

polypeptide was a minor form whereas the 24 kDa form was

prominent. In heart, a 32 kDa was the major form accompa-

nied by minor 50 and 15 kDa forms. In kidney, a very faint

32 kDa signal was detectable. In mouse embryonic fibroblasts

we observed several weak signals ranging from 66 to 75 kDa

and two major bands at 34 kDa and 28 kDa (Fig. 3). The faint

40 kDa band seen in brain, heart, liver and kidney was detect-

able also with the preimmune serum of the rabbit used for rais-

ing the antiserum and is therefore considered to be unrelated

to the 66.3-kDa protein.

3.6. Biosynthesis and processing of the 66.3-kDa protein

HT1080 cells overexpressing the His-tagged 66.3-kDa pro-

tein and vector transfected HT1080 cells were pulse-labelled

with [35S] methionine/cysteine for 30 min and harvested after
various chase periods. The 66.3-kDa protein was immunopre-

cipitated, separated by SDS–PAGE and visualized by auto-

radiography (Fig. 4). The 66.3-kDa protein was synthesized

as a �75 kDa precursor (Fig. 4). The precursor was processed

to a 40 kDa form (first seen after a chase for 1 h) and to a

32 kDa intermediate (seen after 1 and 4 h of chase). After four

hours of chase a 28 kDa form became detectable at the expense

of the 32 kDa intermediate form while a 15 kDa form

appeared first after 12 h of chase. A fraction of the 75 kDa

precursor was detectable even after three days of chase along

with the 40, 28 and 15 kDa forms.
4. Discussion

This study demonstrates that the 66.3-kDa protein is a lyso-

somal matrix protein. The endogenous 66.3-kDa protein colo-

calizes with LAMP-1 and it cofractionates with lysosomal

markers like b-hexosaminidase, b-glucuronidase and LAMP-

1 upon subcellular fractionation of mouse liver. These data

confirm our earlier assumption on the lysosomal nature of

the 66.3-kDa protein which was based on the MPR-dependent
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Fig. 3. Distribution of 66.3-kDa protein in adult mouse tissue. 100 and 200 lg of total protein from various tissue lysates and mouse embryonic
fibroblasts (MEF) were separated on SDS–PAGE, transferred onto PVDF membrane and detected with the 66.3-kDa protein antiserum. Brain
(50 kDa), lung (34 kDa), spleen (24 kDa) and heart (32 kDa) show immunoreactive bands of different sizes whereas in testis, liver and kidney signals
were not or barely detectable.
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Fig. 4. Processing of the 66.3-kDa protein in normal and stably expressing 66.3-kDa protein HT1080 cells. HT1080 cells, non-transfected (�) or
stably expressing C-terminally His6-tagged 66.3-kDa protein (+) were metabolically labelled for 30 min with 100 lCi of [35S] methionine/cysteine and
chased for the indicated times. The 66.3-kDa protein was immunoisolated from cell extracts and media, separated by SDS–PAGE and visualized by
autoradiography. The polypeptides of the 66.3-kDa protein are marked by arrows together with their apparent molecular size. The 32 kDa form is an
intermediate from that is seen only between one and four hours of chase. The �45 kDa signal (marked with an asterisk at chase time 0) was
immunoisolated also from the cell extracts and media of non-transfected cells and is therefore considered to be unrelated to the 66.3-kDa protein.
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internalization and transfer to lysosomes of a C-terminally

tagged variant of the 66.3-kDa protein [1].

Our studies in HT1080 cells stably expressing 66.3-kDa pro-

tein revealed that the 66.3-kDa protein is synthesized as

75 kDa precursor that is subject to limited proteolysis at multi-

ple sites yielding fragments of 66 kDa, 40 kDa, 28 kDa and

15 kDa. Analysis of the different fragments revealed that the

N-terminus of the mature protein and of the N-terminal

28 kDa fragment starts with leucine 47 rather than with serine

41 as predicted by the classical algorithms for signal peptide

cleavage sites [1]. The 40 kDa form (starting with cysteine

249) and the 15/14 kDa form, starting with serine 514, carry

the C-terminus of the 66.3-kDa protein. The 66 kDa form
lacks the C-terminal His6-tag and therefore results from C-ter-

minal truncation of the precursor.

A fraction of the 75 kDa precursor escapes targeting to lyso-

somes and is secreted (Fig. 4). As typical for lysosomal matrix

proteins, presence of NH4Cl impaired the intracellular process-

ing and increased the secretion of the precursor (not shown).

The lack of covalent disulfide bridges between the proteo-

lytic fragments points to non-covalent interactions between

the fragments, which coelute as an approximately �70 kDa

complex upon gel filtration of purified 66.3-kDa protein (not

shown).

Limited deglycosylation of the precursor and processed

fragments by PNGase F treatment demonstrated that all five
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putative N-glycosylation sites in the murine precursor are uti-

lized in HT1080 cells. This finding is in line with observations

of the 66.3-kDa homologue from human brain for which in a

proteome wide analysis of all glycopeptides carrying M6P-res-

idues, five of the six peptides of the 66.3-kDa peptides carrying

N-glycosylation sites were detected [10].

Most interestingly, a Western blot analysis of different

mouse tissues with our 66.3-kDa antiserum revealed a complex

pattern of 66.3-kDa-protein-derived immunoreactive forms

with apparent sizes of 75 kDa down to 15 kDa. Some forms

are present in several tissues but varying expression levels, as

been shown for the 50 and 34 kDa forms, whereas other forms

are limited to specific tissues like the prominent 32 kDa form

in heart. The tissue specific processing to the extent as we

observed for the 66.3-kDa protein and the profound tissue

specific expression are features that distinguish the 66.3-kDa

protein from most other lysosomal matrix proteins. This

may point to particular and tissue specific roles of the 66.3-

kDa protein, the function of which is yet completely unknown.

A BLAST analysis (blastp) of the 66.3-kDa protein revealed a

number of orthologs from human (81% identity) to p67 from

Trypanosoma brucei (27%). The latter has been formerly shown

to be an integral lysosomal membrane protein [11] and has

been extensively discussed before in the context of the identifi-

cation of the 66.3-kDa protein [1]. In order to get insights into

the function of the 66.3-kDa protein, we are generating a

knock-out model in mouse for the 66.3-kDa protein. Provided

the mouse model exhibits a phenotype, this might help to ad-

dress a number of questions regarding its function and its rela-

tion to LSD-like diseases of unknown etiology. Such a reverse

genetical approach has already helped to identify the loss of

the integral lysosomal membrane protein LAMP-2 as the cause

of Danon disease, also known as ‘‘glycogen storage disease

with normal acid maltase’’ [12,13].
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Appendix A. Supplementary data

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.febslet.2006. 09.

029.
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