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SUMMARY

Replication stress induced by nucleotide deficiency
plays an important role in cancer initiation. Replica-
tion stress in primary cells typically activates the
cellular senescence tumor-suppression mechanism.
Senescence bypass correlates with development
of cancer, a disease characterized by metabolic
reprogramming. However, the role of metabolic re-
programming in the cellular response to replication
stress has been little explored. Here, we report that
ataxia telangiectasia mutated (ATM) plays a central
role in regulating the cellular response to replication
stress by shifting cellular metabolism. ATM inactiva-
tion bypasses senescence induced by replication
stress triggered by nucleotide deficiency. This was
due to restoration of deoxyribonucleotide triphos-
phate (dNTP) levels through both upregulation of
the pentose phosphate pathway via increased
glucose-6-phosphate dehydrogenase (G6PD) activity
and enhanced glucose and glutamine consumption.
These phenotypes were mediated by a coordinated
suppression of p53 and upregulation of c-MYCdown-
stream of ATM inactivation. Our data indicate that
ATM status couples replication stress and metabolic
reprogramming during senescence.
INTRODUCTION

Replication stress induced by deficiency in cellular deoxyribonu-

cleotide triphosphate (dNTP) levels is an important early event

during cancer initiation (Bester et al., 2011), while its bypass cor-

relates with cancer progression (Bester et al., 2011; Zeman and

Cimprich, 2014). Replication stress causes DNA damage accu-

mulation and genomic instability (Bester et al., 2011; Burhans

and Weinberger, 2007; Zeman and Cimprich, 2014), which is a

hallmark of cancer (Negrini et al., 2010). Notably, activation of

oncogenes is known to decrease dNTP levels and consequently

triggers replication stress (Aird et al., 2013; Bartkova et al., 2006;
Di Micco et al., 2006; Mannava et al., 2013). In normal diploid

cells, activation of oncogenes, and the subsequent replication

stress, causes a tumor-suppressive, stable cell-growth arrest

termed cellular senescence (Yaswen and Campisi, 2007).

Indeed, oncogene-induced suppression of nucleotide meta-

bolism via suppression of ribonucleotide reductase M2 (RRM2)

underlies the observed replication stress and the associated

DNA damage response (DDR) during senescence (Aird et al.,

2013). Therefore, senescence suppresses tumors initiated by

replication stress (Bester et al., 2011; Zeman and Cimprich,

2014). dNTP biosynthesis relies on glucose and glutamine con-

sumption, which are at the heart of cancer metabolism (Ward

and Thompson, 2012). However, the role of metabolic reprog-

ramming in response to replication stress is unknown. Here,

we report that ataxia telangiectasia mutated (ATM) status

couples replication stress and metabolic reprogramming during

senescence.
RESULTS

Knockdown of ATM Bypasses Replication-Stress-
Induced Senescence
Suppression of RRM2, which depletes the levels of all four

dNTPs, underlies replication stress observed during oncogene-

induced senescence (Aird et al., 2013). This induces a robust

DDR and ultimately a stable senescence-associated cell growth

arrest. The replication stress sensors ataxia telangiectasia

and Rad3-related protein (ATR) and ATM are activated by onco-

genes during senescence (Di Micco et al., 2006). We sought to

determine whether ATM and/or ATR are regulated during senes-

cence induced by short-hairpin-mediated RRM2 knockdown

(shRRM2). shRRM2 significantly activated both ATM and ATR,

as demonstrated by immunofluorescence using phospho-spe-

cific antibodies (Figures 1A, 1B, and S1A). Next, we examined

whether these proteins are necessary for the observed senes-

cence. We knocked down ATM or ATR in combination with

RRM2 knockdown with two independent short hairpin RNAs

(shRNAs) for ATM (shATM) or ATR (shATR). shATM in combina-

tion with shRRM2 suppressed senescence markers such as p21

expression (Figure 1C) and senescence-associated b-galactosi-

dase (SA-b-gal) activity (Figures 1D and 1E). This correlated with
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Figure 1. Knockdown of ATM Bypasses Senescence and Suppresses DNA Damage Induced by RRM2 Knockdown

(A) Primary human IMR90 cells were infectedwith a lentivirus encoding shRRM2 or control. Cells were stained for p-ATM (Ser1981) by immunofluorescence. DAPI

staining was used to visualize nuclei.

(B) Quantification of (A). 200 cells from each of the indicated groups were quantified for p-ATM foci-positive cells (n = 3).

(C) Primary human IMR90 cells were infected with a lentivirus encoding shRRM2 alone or in combination with lentivirus encoding two independent shATMs. Cells

were examined for expression of RRM2, ATM, p21, and b-actin by immunoblotting.

(D) Same as (C) but stained for SA-b-gal activity.

(E) Quantification of (D). 100 cells from each of the indicated groups were quantified for SA-b-gal positivity (n = 3).

(F) Same as (C), but cells were labeled with BrdU for 1 hr and BrdU incorporation was visualized by immunofluorescence. DAPI staining was used to visualize

nuclei.

(legend continued on next page)
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an increase in cell proliferation markers such as cyclin A expres-

sion (Figure 1C), bromodeoxyuridine (BrdU) incorporation (Fig-

ures 1F and 1G), and apparent cell growth as determined by

focus-formation assays (Figures 1H and 1I). Similar results

were observed when ATM was inhibited by the specific inhibitor

KU55933 (Figures S1B and S1C). shATM suppressed DDR

induced by shRRM2 as determined by a decrease in gH2AX

and 53BP1 foci formation (Figures 1J and 1K). Notably, this is

in contrast to its positive role in DNA repair but consistent with

the idea that DDR contributes to senescence induced by replica-

tion stress. ATM phosphorylates H2AX during foci formation,

although other kinases can also phosphorylate H2AX (Yuan

et al., 2010). To confirm that the observed decrease in gH2AX

foci formation was due to decreased DDR instead of a depen-

dence of its phosphorylation by ATM, we directly measured

the extent of DNA damage in these cells by comet assay. shATM

significantly decreased the extent of DNA damage induced by

shRRM2 (Figures 1L and 1M). In contrast, neither two indepen-

dent shATRs nor the ATR inhibitor VE822 was able to suppress

senescence and its associated DDR induced by shRRM2 (Fig-

ures S1D–S1P). Interestingly, shRRM2/shATR cells had an

even more robust senescent phenotype than shRRM2 alone as

indicated by higher SA-b-gal activity and lower focus-formation

ability (e.g., Figures S1F and S1J). Likewise, shRRM2 failed to

induce senescence in primary patient fibroblasts with mutated

ATM (Figures S1Q–S1S), but not ATR (Figures S1T–S1V). Similar

to previous reports (Bartkova et al., 2006; Di Micco et al., 2006),

RAS-induced senescence was suppressed by shATM (Figures

S1W and S1X). These results demonstrate that loss of ATM,

but not ATR, bypasses senescence induced by replication

stress, which correlates with the suppression of DDR. In this

context, loss of ATM suppresses DDR induced by replication

stress, a function different from its canonical, positive role in

DNA repair.

Knockdown of ATM Rescues dNTP Levels and Aberrant
DNA Replication
We next sought to determine the effect of knockdown of ATM on

cellular dNTP levels. shATM significantly rescued the dNTPs

compared with shRRM2 alone (Figure 2A). This correlated with

a significant rescue of aberrant replication dynamics induced

by shRRM2 as determined by DNA combing analysis (Figure 2B).

Collapsed replication forks are characterized by co-localization

of pulse-labeled BrdU and gH2AX (Groth et al., 2010). shATM

significantly reduced the co-localized BrdU and gH2AX induced

by shRRM2 (Figures 2C and 2D). shATR did not affect aberrant

replication dynamics induced by shRRM2 (Figure S2), which

correlated with the inability of shATR to suppress senescence

(Figures S1D–S1N). These results demonstrate that knockdown
(G) Quantification of (F). 200 cells from each of the indicated groups were quant

(H) Same as (C), but an equal number of cells were seeded in six-well plates and

(I) Quantification of (H). The intensity of foci formed was quantified using NIH Ima

(J) Same as (C), but cells were examined for 53BP1 and gH2AX foci formation. S

(K) Quantification of (J). 200 cells from each of the indicated groups were quanti

(L) Same as (C), but comet assay was performed.

(M) Quantification of (L). The extent of DNA damage was quantified as Olive Mom

*p < 0.05 shRRM2 versus control; #p < 0.05 shRRM2/shATM versus shRRM2. Err

See also Figure S1.
of ATM rescues dNTPs, which correlates with the suppression of

aberrant replication dynamics and DDR.

Knockdown of ATM Increases Substrate Availability
for dNTP Biosynthesis through Enhanced Glutamine
and Glucose Uptake and Metabolism
We next sought to determine the mechanism whereby loss

of ATM increases dNTPs. Ribonucleotide reductase (RNR) is

involved in de novo dNTP synthesis (Figure S3A) (Nordlund

and Reichard, 2006; Reichard, 1988). We first sought to deter-

mine whether the increase in dNTPs was due to the salvage

pathway, which does not rely on RNR (Blakley and Vitols,

1968; Murray, 1971; Reichard, 1988). We used 3-AP, which

inhibits de novo dNTP synthesis by inhibiting both RRM2 and

RRM2B, two enzymes necessary for de novo dNTP synthesis

(Finch et al., 2000; Finch et al., 1999). Suppression of the de

novo pathway reversed the ability of shATM to bypass senes-

cence (Figures S3B and S3C). We next sought to determine

whether the rescue of dNTP levels is due to a compensation

of shRRM2 by an increase in RRM2B expression. shATM did

not increase RRM2B expression in shRRM2 cells (Figure S3D).

These results suggest that de novo dNTP synthesis and RRM2B

activity are necessary for the observed senescence bypass.

Substrates for dNTP synthesis are derived from consumption

of glucose and glutamine (Figure S3A). Since ATM is a tumor

suppressor, we hypothesized that knockdown of ATM may

increase glucose and glutamine consumption, a hallmark of

cancer metabolism, which increases substrate availability for

dNTP synthesis. We used 2NBDG, a fluorescent glucose analog,

to determine whether shATM increased glucose uptake in

shRRM2 cells. shATM in combination with shRRM2 significantly

increased glucose uptake (Figure 3A). Metabolite profiling also

showed a significant increase in glucose consumption (Fig-

ure 3B). Lactate levels were significantly increased in the media,

suggesting glucose utilization (Figure 3B). Both glutamine con-

sumption and utilization (glutamate secretion) were also signifi-

cantly increased (Figure 3C). Similar results were also observed

using KU55933, an ATM inhibitor (Figures S3E and S3F). Like-

wise, shATM also increased glucose and glutamine consump-

tion and utilization in RAS-expressing cells (Figures S3G–S3I).

These results were observed in multiple cell types (Figures

S3J–S3M). Thus, knockdown of ATM increases substrate

availability for dNTP biosynthesis by enhancing glucose and

glutamine uptake and metabolism.

Knockdown of ATM Increases PPP Activity through
p53-Mediated Regulation of G6PD Activity
Glucose is metabolized and shunted into different metabolic

pathways (Vander Heiden et al., 2009). We used liquid
ified for BrdU positivity (n = 3).

focus formation was determined by crystal violet staining 14 days later.

geJ software (n = 3).

cale bars, 5 mm.

fied for 53BP1 and gH2AX foci positivity (n = 3).

ent using CometScore software (n = 100).

or bars represent SEM. Scale bars represent 10 mm unless otherwise specified.
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Figure 2. Knockdown of ATM Rescues

Replication Stress by Restoring Cellular

dNTP Levels

(A) Primary IMR90 cells were infected with an

shRRM2-expressing lentivirus alone or in combi-

nation with a shATM (#1)-expressing lentivirus.

dNTP levels were quantified day 1 post-drug

selection (n = 3).

(B) Same as (A). DNA fiber analysis was conducted

to observe replication fork dynamics in the

indicated cells at day 1 post-drug selection. The

percentage of elongating, terminated, or newly

fired replication forks was quantified in the indi-

cated cells (n = 3).

(C) Same as (B), but cells were labeled with BrdU

for 15 min and the collapsed replication forks

were visualized by co-localized BrdU and gH2AX

as determined by immunofluorescence using a

confocal microscope. Scale bars, 5 mm.

(D) Quantification of (C). 200 cells from each of the

indicated groups were quantified for BrdU and

gH2AX co-localization-positive cells (n = 3). Note

that more than ten/nuclei of co-localized BrdU

and gH2AX foci was considered positive.

*p < 0.05 shRRM2 versus control; #p < 0.05

shRRM2/shATM versus shRRM2. Error bars

represent SEM. See also Figure S2.
chromatography (LC) tandem mass spectrometry (MS/MS) to

determine changes in metabolites of multiple metabolic path-

ways downstream of glucose. There was a significant decrease

in the pentose phosphate pathway (PPP) metabolite 6-phospho-

gluconate (6-PG) in shRRM2/shATM cells (Figure 3D), suggest-

ing that PPPmetabolites are being consumed to a greater extent

in these cells. To determine whether glucose is being utilized by

the PPP, we performed stable isotope tracer analysis using

[13C6]-glucose. There was an increase in the fractional propor-

tion of 13C-labeled 6-PG in shRRM2/shATM cells (Figure 3E).

These findings suggest that the observed increase in glucose

uptake was at least in part utilized by the PPP in these cells for

dNTP biosynthesis.

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-

limiting enzyme in the PPP, and its activity metabolizes

glucose-6-phosphate (G6P) into 6-PG for dNTP synthesis (Fig-

ure S3A) (Patra and Hay, 2014). We sought to determine whether

G6PD is regulated by ATM knockdown in shRRM2 cells. G6PD

activity was significantly increased in shATM/shRRM2 cells

compared to shRRM2 alone (Figure 3F). Similar results were

observed using KU55933, an ATM inhibitor (Figure S3N), or in

RAS/shATM cells (Figure S3O). There was no change in G6PD

protein expression (Figure 3G). Notably, wild-type p53 has

been shown to negatively regulate G6PD activity (Jiang et al.,

2011), and knockdown of ATM significantly decreased p53 levels

in shRRM2 cells (Figure 3G). Therefore, we sought to determine
896 Cell Reports 11, 893–901, May 12, 2015 ª2015 The Authors
whether p53 levels contributed to G6PD

activity in the context of shATM-mediated

senescence bypass. We used melanoma

cell lines with known p53 mutational

status. Knockdown of ATM (Figure 3H)
significantly increased G6PD activity in shRRM2-expressing

p53 wild-type, but not mutant, melanoma cells (Figure 3I).

Knockdown of p53 (shp53) in combination with shRRM2 in

wild-type melanoma cells increased G6PD activity compared

to shRRM2 alone (Figure S3P). p53 status, and therefore G6PD

activity, correlated with the ability of shATM to bypass senes-

cence in melanoma cells induced by shRRM2 (Figures 3J and

3K). These results were observed in multiple p53 wild-type

and mutant cell lines (Figures S3Q–S3T), demonstrating this is

not a cell-line-specific effect. Notably, shRRM2 alone did not

decrease G6PD activity (Figure 3F), even though we observed

an increase in p53 expression (Figure 3G). This suggests that

G6PD activity is also regulated by another p53-independent

mechanism in shRRM2-expressing cells. Indeed, G6PD activity

is known to be positively regulated by ATM-mediated phosphor-

ylation of HSP27 (pHSP27) (Cosentino et al., 2011). Consistently,

pHSP27 was increased in shRRM2 cells (Figure S3U), which

correlates with activation of ATM by shRRM2 (Figures 1A and

1B). These data support that G6PD activity is regulated in a

context-dependent manner through a balance between p53

and HSP27, and when ATM is inhibited, downregulation of p53

correlates with an increase in G6PD activity. We conclude that

loss of ATM leads to an increase in G6PD activity through abro-

gation of p53-mediated suppression.

Suppression of p53 is known to affect metabolism (Cairns

et al., 2011; Schwartzenberg-Bar-Yoseph et al., 2004). Indeed,



Figure 3. Senescence Bypass by ATM Knockdown Correlates with an Enhanced Glucose and Glutamine Consumption and a Metabolic

Shift toward the Pentose Phosphate Pathway through an Increase in G6PD Activity

(A) Primary IMR90 cells were infected with a shRRM2-expressing lentivirus alone or in combination with a shATM-expressing lentivirus, and glucose uptake was

determined by incubating cells with a fluorescent glucose analog (2NBDG) followed by flow cytometry (n = 3). Cells were gated for high glucose uptake based on

fluorescence.

(B and C) Same as (A). Media was harvested, and glucose consumption and lactate production (B) or glutamine consumption and glutamate production (C) were

quantified (n = 3).

(D–G) Same as (A). Cells were subjected to the following analysis: liquid chromatography followed by mass spectrometry (LC-MS), and shown are the relative

6-phosphogluconate (6-PG) levels normalized to cell number (n = 3) (D); [13C6]-glucose labeling for 30 min. Shown is the percent of 13C-labeled 6-PG (n = 3) (E);

glucose-6-phosphate dehydrogenase (G6PD) activity (n = 3) (F); and immunoblotting of G6PD, p53 and b-actin (G). Error bars represent SD.

(H) Melanoma cells with known p53 status were infected with a shRRM2-expressing lentivirus alone or in combination with a shATM (#1)-expressing lentivirus,

and RRM2, ATM, G6PD, and b-actin protein expression was determined by immunoblotting.

(I) Same as (H), but G6PD activity was determined (n = 3).

(J) Same as (H), but cells were examined for SA-b-gal activity. Scale bars, 10 mm.

(K) Quantification of (J). 100 cells from each of the indicated groups were quantified for SA-b-gal positivity (n = 3).

*p < 0.05 shRRM2 versus control; #p < 0.05 shRRM2/shATM versus shRRM2. Error bars represent SEM unless otherwise indicated. See also Figure S3.
shp53 in combination with shRRM2 increased glucose uptake

(Figure 4A) and glucose and glutamine consumption compared

to shRRM2 alone (Figures S4A and S4B). Therefore, we sought

to determine whether shp53 phenocopies shATM. shp53 (Fig-

ure 4B) only partially suppressed senescence phenotypes,

such as causing a decrease in SA-b-gal activity (Figures 4C

and 4D). However, shp53 did not fully bypass the senescence-

associated cell-growth arrest, as demonstrated by BrdU

incorporation (Figures 4E and 4F) and focus-formation assays

(Figures 4G and 4H). This correlated with the inability of shp53

to reduce markers of DNA damage (Figures 4I and 4J). These re-

sults suggest that p53 suppression is necessary, but not suffi-

cient, for bypassing senescence induced by replication stress.

Knockdown of ATM Cooperatively Regulates p53
and c-MYC to Increase Substrate Availability
shp53 in combination with shRRM2 increased glucose uptake

but to a lesser extent compared to that of shATM (Figure 4A).

This suggests that an additional pathway is implicated in the
observed shift in cellular metabolism induced by shATM.

c-MYC plays a major role in cellular metabolism (Dang et al.,

2009). c-MYC is a known regulator of RAS-induced senescence

(Land et al., 1983; Sinn et al., 1987). Thus, we examined c-MYC

protein levels. shATM in combination with shRRM2 significantly

increased c-MYC protein expression compared to shRRM2

alone (Figure 4K). This was observed in multiple cell lines (Fig-

ure S4C). Notably, shp53 did not increase c-MYC expression

(Figure S4D).

Next, we determined the mechanism underlying the observed

c-MYC upregulation by shATM. No change in c-MYC mRNA

expression was observed in senescence-bypassed cells (Fig-

ure S4E). p27 has been implicated in negatively regulating

c-MYC protein stability post-translationally (Maclean et al.,

2007). Bypass of senescence by shATM correlated with downre-

gulation of p27 (Figure S4F). This correlated with an increase

in c-MYC protein stability (Figures S4G and S4H). To further

demonstrate the role of c-MYC upregulation in the observed

senescence bypass, we simultaneously knocked down ATM,
Cell Reports 11, 893–901, May 12, 2015 ª2015 The Authors 897



Figure 4. ATM Knockdown Cooperatively Inhibits p53 and Upregulates c-MYC in Senescence-Bypassed Cells

(A) Primary IMR90 cells were infected with lentivirus expressing the indicated shRNAs. Glucose uptake was determined by incubating cells with a fluorescent

glucose analog (2NBDG) followed by flow cytometry. Cells were gated for high glucose uptake based on fluorescence (n = 3).

(B) Primary IMR90 cells were infected with a shRRM2-expressing lentivirus alone or in combination with a shp53-expressing lentivirus, and RRM2, p53,

and b-actin protein expression was determined by immunoblotting.

(C) Same as (B), but SA-b-gal activity was determined.

(D) Quantification of (C). 100 cells from each of the indicated groups were quantified for SA-b-gal positivity (n = 3).

(E) Same as (B), but cells were labeled with BrdU for 1 hr and BrdU incorporation was determined by immunofluorescence. DAPI staining was used to visualize

nuclei.

(F) Quantification of (E). 200 cells from each of the indicated groups were quantified for BrdU positivity (n = 3).

(G) Same as (B), but an equal number of cells were seeded in six-well plates and focus formation was determined by crystal violet staining 14 days later.

(H) Quantification of (G). The intensity of foci was quantified using NIH ImageJ software (n = 3).

(I) Same as (B) but 53BP1 and gH2AX foci were observed by immunofluorescence.

(J) Quantification of (I). 200 cells from each of the indicated groups were quantified for 53BP1 and gH2AX foci-positive cells (n = 3).

(K) Primary IMR90 cells were infected with an shRRM2-expressing lentivirus alone or in combination with a shATM-expressing lentivirus, and c-MYC and b-actin

protein expression was determined by immunoblotting.

(L) Same as (K), but cells were also infected with a shc-MYC expressing lentivirus and glucose uptake was determined by incubating cells with a fluorescent

glucose analog (2NBDG), followed by flow cytometry (n = 3). Cells were gated for high glucose uptake based on fluorescence.

(M) Publically available lung adenocarcinoma databases from cBioPortal were analyzed for ATM, p53, and c-MYC status. Blue boxes indicate patients with ATM

mutation or deletion. Red boxes indicate patients with p53 mutation/deletion and c-MYC amplification.

(N) Schematic of senescence bypass induced by shATM. Replication stress induced by nucleotide deficiency activates ATM. If ATM is inhibited, p53 is

not activated, which abrogates its inhibition of G6PD. Additionally, c-MYC expression is increased, which along with lower p53 expression leads to increased

glucose and glutamine consumption. The convergence of increased substrates and increased G6PD activity leads to increased dNTP levels, which allows for

DNA replication and proliferation.

*p < 0.05 versus control; #p < 0.05 versus shRRM2/shATM. Error bars represent SEM. Scale bars, 10 mm. See also Figure S4 and Table S1.
RRM2, and c-MYC (Figure S4I). These cells showed decreased

glucose uptake and glutamine consumption compared to senes-

cence-bypassed shATM/shRRM2 cells (Figures 4L and S4J).
898 Cell Reports 11, 893–901, May 12, 2015 ª2015 The Authors
These results support that increased c-MYC expression cooper-

ates with decreased p53 to induce metabolic reprogramming

to allow the senescence bypass by shATM.



Our results indicate that ATM converges on the p53 and

c-MYC pathways to regulate senescence. We found that ATM

mutation/deletion is mutually exclusive from p53 mutation/dele-

tion and c-MYC amplification in multiple tumor types (Figure 4M;

Table S1). These data support the notion that ATM functions in

the same pathway as p53 and c-MYC in cancers. Overall, our

data support a model whereby loss of ATM affects both p53

and c-MYC to bypass the senescence-associated cell-growth

arrest to drive cell proliferation (Figure 4N).

DISCUSSION

Senescence induced by oncogenes is characterized by

increased glucose consumption that is shunted toward the

tricarboxylic acid cycle and away from aerobic glycolysis and

presumably the PPP (Kaplon et al., 2013; Li et al., 2013;

Mazurek et al., 2001). Consistently, we observed increased

glucose and glutamine consumption in cells undergoing senes-

cence induced by shRRM2 (Figures 3A–3C and S3), suggesting

that replication stress itself may cause changes in cellular

metabolic pathways similar to those induced by oncogenes.

Knockdown of ATM in combination with shRRM2 further

increased both glucose and glutamine consumption. These

data are consistent with the idea that ATM inactivation further

drives senescence-associated metabolic reprogramming over

a threshold that is necessary to support the proliferation of

senescence-bypassed cells in cancer. Our data support the

notion that the increased glucose was shunted into the PPP,

because we observed an increase in 13C-labeling of the PPP

metabolite 6-PG after incubation with [13C6]-glucose (Figure 3E).

In this context, ATM functions as a tumor suppressor by inhibit-

ing cancer-associated metabolic reprogramming.

In addition to an increase in metabolic substrates for dNTP

synthesis, ATM knockdown also increased activity of the PPP

pathway rate-limiting enzyme G6PD. Increased G6PD activity

correlated with decreased p53 expression (Figures 3F and 3G).

p53 downregulation is known to shift cellular metabolism (Cairns

et al., 2011). Knockdown of ATM decreased p53 (Figure 3G),

which correlated with increased glucose and glutamine con-

sumption (Figures 3B and 3C). Knockdown of p53 did not in-

crease glucose uptake to the same extent as ATM knockdown

(Figure 4A). Indeed, knockdown of p53 was not sufficient to fully

overcome senescence (Figure 4). Consistently, there was also

an increase in c-MYC expression induced by ATM knockdown

(Figure 4K). c-MYC is among genes that are upregulated in

ATM-knockout mice (Yan et al., 2006). In the present study,

the observed increase in c-MYC expression was post-transcrip-

tional and correlated with a decrease in p27 expression, a known

negative regulator of c-MYC protein stability (Figure S4F).

Indeed, c-MYC stability was increased in cells with knockdown

of both RRM2 and ATM compared to knockdown of RRM2 alone

(Figures S4G and S4H). These data support a model whereby

downregulation of p53 and upregulation of c-MYC cooperate

to enhance glucose and glutamine consumption, which ac-

counts for the observed increase in substrate availability for

the dNTP biosynthesis induced by ATM knockdown (Figure 4N).

Our data show that ATM plays a central role in coupling repli-

cation stress and metabolic reprogramming. ATM suppresses
cancer-associated metabolic reprogramming to prevent bypass

of the senescence tumor-suppression mechanism, where its

inactivation suppresses DDR induced by replication stress.

This is different from its classical role in DNA repair, where its

activation suppresses cancer by preventing genomic instability.

Replication stress induced by nucleotide deficiency plays an

important role in the early stages of cancer development; there-

fore, this mechanistic insight will have broad implications for

understanding replication stress and metabolic reprogramming

in cancer.

EXPERIMENTAL PROCEDURES

Cells and Culture Conditions

IMR90 human fibroblasts were cultured according to the ATCC in low oxygen

(2%) as previously described (Tu et al., 2011). Experiments were performed on

IMR90 between population doubling #25-35. Human melanoma cell lines

(a kind gift from Dr. Meenhard Herlyn) were cultured as previously described

(Satyamoorthy et al., 1997).

Reagents, Plasmids, and Antibodies

All chemicals and reagents were purchased from Sigma-Aldrich. pLKO.1-

shRNA plasmids were obtained from Open Biosystems. The mature sense

sequences are shRRM2: 50-CGGAGGAGAGAGTAAGAGAAA-30; shATM #1:

50-CGTGTCTTAATGAGACTACAA-30; shATM #2: 50-TGATGGTCTTAAGGAA

CATCT-30; shp53: 50-GAGGGATGTTTGGGAGATGTA-30; and shc-MYC: 50-
CCTGAGACAGATCAGCAACAA-3. The following antibodies were obtained

from the indicated suppliers: mouse anti-phospho-ATM (Rockland), goat

anti-ATM (Bethyl), goat anti-RRM2 (Santa CruzBiotechnology),mouse anti-cy-

clin A (Novocastra), mouse anti-gH2AX (Millipore), rabbit anti-53BP1 (Bethyl),

mouse anti-BrdU fluorescein isothiocyanate (BD Biosciences), mouse anti-

p53 (Calbiochem), rabbit anti-G6PD (Sigma-Aldrich), rabbit anti-p21 (Abcam),

rabbit anti-c-MYC (Cell Signaling), and mouse anti-b-actin (Sigma-Aldrich).

Lentivirus Infections

Lentivirus was packaged using the Virapower Kit from Invitrogen following the

manufacturer’s instructions as described previously (Li et al., 2010; Tu et al.,

2011). Cells infected with viruses encoding the puromycin-resistance gene

were selected in 1 mg/ml puromycin.

Immunofluorescence, BrdU Labeling, Single-Cell Gel

Electrophoresis, also known as Comet Assay, and SA-b-Gal Staining

Immunofluorescence staining, BrdU labeling, and single-cell gel electropho-

resis (comet assay) for cultured cells was performed as described previously

using the antibodies described above (Tu et al., 2011). Confocal microscopy

was used for co-localization of BrdU and gH2AX using a Leica TCS SPII scan-

ning confocal microscope. The comet assay was analyzed using CometScore

software (TriTek). SA-b-gal staining was performed as previously described

(Dimri et al., 1995).

Focus-Formation Assay

For focus formation, an equal number of cells (3,000 cells/well) were inoculated

in six-well plates and cultured for an additional 2 weeks. Focus formation was

visualized by staining the plates with 0.05% crystal violet as previously

described (Tu et al., 2011). Integrated density was determined using NIH

ImageJ software.

DNA Combing Analysis

DNA combing was performed as previously described (Aird et al., 2013).

DNA replication forks were scored as elongating, terminated, or newly fired

as previously described (Aird et al., 2013; Bartkova et al., 2006).

Measurement of dNTP Concentrations in Cells

Samples were harvested and dNTP levels were measured as previously

described (Aird et al., 2013; Wilson et al., 2011).
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Flow Cytometry for Glucose Uptake

Cells were incubated with 5 mM 2NBDG (Invitrogen) for 2 hr. After rinsing with

PBS, 2NBDG-positive cells were run on a LSRII (14-color; Becton Dickinson),

and data were analyzed with FlowJo Software.

YSI Metabolite Measurements

Glucose and glutamine consumption and lactate and glutamate production

weremeasured using a YSI 7100Bioanalyzer. Briefly, the same number of cells

was seeded in 12-well plates, and 24 hr later, the media was changed. The

media was harvested 24 hr later, and cells were counted to normalize for

proliferation.

C13-Glucose Labeling and LC-MS Analysis

To extract metabolites, media was aspirated and cells were quenched by the

direct addition of 1 ml �80�C 4:1 methanol:water (v/v). Plates were placed at

�80�C for 20 min then scraped and transferred into tubes. Samples were

pulse sonicated on ice for 30 s at a rate of 1 pulse/s prior to centrifugation

at 16,000 3 g at 4�C for 10 min. The supernatants were transferred to clean

glass tubes and evaporated to dryness under nitrogen. Dried residues were

resuspended in 100 ml of mobile phase A for LC-MS analysis. For labeling

studies, cells were grown in media omitting glucose supplemented with

1 mg/mL [13C6]-glucose.

For liquid chromatography-mass spectrometry, separations were per-

formed using an Agilent 1200 series high-performance liquid chromatography

pump and autosampler (Agilent Technologies). Analytes were separated by

reverse-phase ion-paring chromatography using a Phenomenex Kinetex

Luna C18 column (250 3 2.1 mm I.D., 3 mm). N,N-diisopropylethylamine

(DIPEA) was used as the ion-pairing reagent. Solvent A was 400 mM

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and 10 mM DIPEA in water, and

solvent Bwas 300mMHFIP and 10mMDIPEA inmethanol. The linear gradient

conditions were as follows: 2% B at 0 min, 2% B at 3 min, 10%B at 32 min,

95% B at 38 min, and 2% B at 39 min, followed by a 6-min equilibration.

Analyses were conducted using an Agilent Technologies 6460 triple-quadru-

pole mass spectrometer with a JetStream electrospray ionization source, in

the negative mode. The samples were maintained at 4�C, and injections of

10 ml were made for all runs. The column effluent was diverted to waste for

the first 5 min and the last 10 min of the analyses. The Agilent 6460 operating

conditions were as follows: gas temperature was set at 275�C, and the gas

flow was set to 8 l/min. Sheath gas temperature was 400�C, and the sheath

gas flow was set to 10 l/min. The capillary voltage was set to 3,500 V. The

nozzle voltage was set to 1,000 V.

G6PD Activity Assay

Cells were harvested by trypsinization and resuspended in cold PBS. Cells

were sonicated and then centrifuged at 16,000 rpm for 10 min at 4�C. The
supernatant was transferred to new tubes, and the combined activity of

G6PD and 6-phosphogluconate dehydrogenase (6PGD) was measured by

the rate of conversion of NADP+ to NADPH in the presence of G6P. The activity

of 6PGD alone was then measured by the conversion of NADP+ to NADPH in

the presence of 6-PG. G6PD activity was calculated as the difference of

these two activities. Cell lysates were added to the reaction buffer containing

50 mM Tris and 1 mM MgCl2 (pH 8.1), NADP+ (100 mM), and G6P (200 mM) or

6-PG (200 mM). The absorbance at 341nm was read 10 min later. Enzyme

activities were normalized to protein concentration.

Statistical Analysis

GraphPad Prism version 5.0 was used to perform statistical analyses. The Stu-

dent’s t test was used to determine p values of raw data. A p value < 0.05 was

considered significant.
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