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A subclass of transition systems called elementary transition systems
can be identified with the help of axioms based on a structural notion
called regions. Elementary transition systems have been shown to be
the transition system model of a basic system model of net theory called
elementary net systems. Here we show that by smoothly strengthening
the regional axioms for elementary transition systems, one obtains a
subclass called occurrence transition system. We then prove that
occurrence transition systems are the transition system model of yet
another basic model of concurrency, namely, prime event structures.
We then propose an operation of unfolding elementary transition
systems into occurrence transition systems. We prove that itis “‘correct”
in a strong categorical sense. € 1995 Academic Press, Inc.

INTRODUCTION

Elementary transition systems were introduced in Nielsen
et al. (1992). They were proved to be, in a strong categorical
sense, the transition system version of elementary net
systems. The question arises whether the notion of a region
and the axioms (mostly based on regions) imposed on
ordinary transition systems to obtain elementary transition
systems were simply “tuned” to obtain the correspondence
with elementary net systems. Stated differently, one could
ask whether elementary transition systems could also play a
role in characterizing other models of concurrency.

We show here that by smoothly strenghtening the axioms
of elementary transition systems one obtains a subclass
called occurrence transition systems which turn out to be
categorically equivalent to the well-known model of con-
currency called prime event structures. Thus there is more
to elementary transition systems than just their (co-reflec-
tive) relationship to a basic model of net theory, namely,
elementary net systems.

* To whom correspondence should be addressed.

Next, we turn to the problem of unfolding elementary
transition systems into occurrence transition systems. Prime
event structures have been studied extensively in the
literature. One of the first results concerning these objects
was a characterization in terms of so-called occurrence nets
(Nielsen et al., 1981). Within net theory, occurrence nets are
used to describe the behaviour of net systems, via a notion
of unfolding. One of the main results from this theory is
Winskel’s beautiful characterization (Winskel, 1987) of the
unfolding operation categorically as the right adjoint to the
inclusion functor from occurrence nets to 1-safe net systems
(with the co-unit as the folding morphism). This construc-
tion was adapted in Nielsen er al. (1990) to elementary net
systems. Combining our characterization of prime event
structures with the result of Nielsen er a/. (1981) we know
that occurrence transition systems are exactly the case-
graphs of occurrence nets. Also, from Nielsen et al. (1992)
we know that elementary transition systems are exactly the
case-graphs of elementary net systems. So, this raises the
natural question whether in our more abstract setting we
may characterize the unfolding of elementary transition
systems into occurrence transition systems, in the spirit of
Winskel. Indeed, we prove that the inclusion functor from
occurrence transition systems to elementary transition
systems does have a right adjoint, /e unfolding functor, the
definition of which is guided by the unfolding operation
from net theory.

In the next section, a brief review—and a convenient
reformulation—of the category of elementary transition
systems ETS is provided. Section 2 contains a quick intro-
duction to the category of prime event structures, PES, due
to Winskel (1987). In the subsequent section, we identify the
subcategory of occurrence transition systems, OTS, by a
smooth strengthening of the regional axioms for elementary
transition systems. We then proceed to establish a few
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properties of occurrence transition systems. Using these
properties, we show in Section 4 that OTS and PES are
equivalent categories. Thus, in some sense, occurrence
transition systems are the transition system model of prime
event structures (in the same sense that prime algebraic,
coherent domains, are the domain model of prime event
structures; see Winskel, 1987). In Section 5, we show that
occurrence transition systems can be used to define the
unfoldings of elementary transition systems. Exploiting
some technical results from the theory of trace languages,
we show that the unfold operation, when applied to the
objects in ETS, yields objects in OTS. Moreover, we prove
that this unfold operation uniquely extends to a functor
which is the right adjoint to the inclusion functor from OTS
to ETS. This result mirrors the strong result due to Winskel
(1987) on the side of net theory which established the
“correctness” of the unfolding of elementary net systems
(and, in fact, l-safe Petri nets) into occurrence nets
proposed in Nielsen ez al. (1981).

1. ELEMENTARY TRANSITION SYSTEMS

The purpose of this section is to recalil (and rephrase!) the
main concepts and results from Nielsen et al. (1992).

DeriNITION 1.1. A transition system is a four-tuple
TS=(S, E, T, s") where

S is the set of states,

E is the set of events,

T < Sx Ex Sis the set of transitions, and

s'" e S is the initial state.

DEeFINITION 1.2. A region of a transition system 7'S =
(S, E, T, s™) is a subset of states, R < S, satisfying:

V(SO’ e, S’O)a (Sl’ e, S’])ET‘
(speRASER)=(5,eRAS|¢R)

and (sp ¢ RAseER)<> (s, ¢ R A5, €R).

We shall use the following notations for a qiven a
transition system TS=(S, E, T, s™).

— Ry 1s the set of nontrivial (proper, nonempty subsets
of S) regions of TS.

— R, where s€ S, is the set of nontrivial regions con-
taining s; formally

R & {ReRs|seR}.
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— °R, R°, where R e R, is the set of events entering/
leaving R resp.; formally,

°op & lecE|3s,e,8)eT.5¢RAseR}, and
RO {ecE| s e.s')eT.se RA s ¢R).
— %e, e°, where e € E, is the set of pre- and post-regions

of e resp., le., the set of regions that ¢ is (consistently)
leaving/entering; formally,

def

¢ ={ReRss|3s,e,s')eT.seRAs¢R}, and

o def

e° = {ReRss| s, e,8)eT.s¢ RAs eR}.

ProprasiTioN 1.3. Let TS=(S, E, T, s') be a transition

system. Then
(1) R< Sisaregion iff S\R is a region,
(i) VeeE e°={S\R|Re°e),
(iii) ¥(s,e,5)eT R\R. = ¢
consequently R, = (R \°¢)u e°.

and R, \R,=e° and

Given a transition system 7S = (S, E, T, s'") we shall use
the following notation.

— For every ec E, — < 85x S, where (s,5')e -5 <=
(s,e,s)eT.

— Let peE* p=ee,---e,, nz1. Then =< S5x S
where (s, 5') € = iff 35, 51, ..., 5, such that s =55~ 5, -
Sp_1—5 s, =5". By convention, =" = {(s, 5) | s€ S}, where
A denotes the null string.

— The set of computations of TS is defined as

Crs={peE*| T n({s™} xS)# &)},
and the set of nonempty computations of 7S is defined as

CTS* = CTS ﬁE+.

— > < 8xS, where - =%{J,_.—%, and

— %, is the transitive and reflexive closure of —.

— ForeveryseS, fs="{s'eS|(s,5) e}

So 1s denotes the set of states reachable from s via the
transitions of T'S.

The results of Nielsen ez al. (1992) show that the category
of elementary transition systems, ETS, introduced below is
the category of the (sequential) case graphs of elementary
net systems. We recall that elementary net systems is a
basic system model of net theory in which fundamental
behavioural aspects of distributed systems such as causality,
concurrency, conflict, and confusion can be made trans-
parent (Thiagarajan, 1987). We also recall that there is a
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natural way of associating a transition system with an
elementary net system using the notion of a sequential
case-graph which explicates the operational behaviour of
elementary net system (Rozenberg, 1987).

We present the definition of ETS as it was stated in
Nielsen et al. (1992).

DEFINITION 1.4 (ETS-Objects). A Transition System
TS=(S, E, T,s™)is said to be elementary iff it satisfies the
following axioms:

(S1) 1s™ =S (every state reachable from s™).

(S2) Vs, s'eS. R,=R, =>s5=ys"(regional separability of
states).
(Tl) VYseS, eeE [¢ecR,=>35€eS. (5,6 5)eT]

(enabling of events).

(T2) Vis,e,s)eT s#s (ie, -5 irreflexive for every
eckE)
(T3) V(s,e,,s)). (5. e5,5,)eT. [s,=5,=>¢,=¢,]
(e, e, #£e,=—>N—> =)
(E) VeeE. 3(s,e,5)eT. (1e,—> nonempty).

DerFmITION 1.5 (ETS-morphisms). Let TS,=(S,, E,,
T, s") for i=0,1 be a pair of transition systems. A
morphism from TS, to TS, is a pair ( f, y) where

f: 8o — S, is a total function from S, to S, and

n: Eq — E| is a partial function from E; to E| such that

V{59, €0, 5p) € Tyq.

{f(so) =f(si))a
(f(s(])’ ’7(80)’ f(56))€ Tl 3

if #(e,) undefined,
if n(e,) defined.

Composition of morphisms is componentwise composi-
tion of the total/partial functions and identity is the pair of
identity functions. Note that isomorphisms are identities up
to names of states and events.

We let ETS denote the category of objects and morphisms
as defined in Definitions 1.4 and 1.5. In Nielsen er al. (1992),
a category ENS of elementary net systems as objects and
suitably defined behaviour preserving net-morphisms is
introduced. We recall the main result from this work.

THEOREM 1.6. There exists a co-reflection between ETS
and ENS, where the right adjoint is the well-known
case-graph construction from net systems, and the left adjoint
constructs an elementary net system from an ETS-object, in
which the regions play the role of local states (conditions in
net theory).

As stated earlier, the importance of this result is that the
axioms from Definition 1.4 identify a transition system
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based model of “true concurrency”-—not by adding struc-
ture, but by imposing the six axioms of Definition 1.4. The
reader will have noticed that the notion of regions plays a
central role in the axiomatization (S2,T1), but that the
axiomatization also contains structural/syntactical axioms
like T2, T3, and E. For the purpose of the following sections
we provide here an almost purely regional axiomatization of
elementary transition systems.

THEOREM 1.7. A transition system TS = (S, E, T, s™) is
elementary iff it satisfies axioms S1, S2, T1 from Definition
1.4, and

(El) VeeE. °e#{.

(E2) Ve, e € E. %e="¢ =>e=¢ (regional separability of
events).
Proof. (=) The fact that El and E2 follow from the

original ETS-axioms is immediate from (the proof of
Proposition 4.2 in) Nielsen et al. (1992).

(<==) Assume 7S satisfies E1. Let R e °e. By the defini-
tion of °e this implies that we must have (s, ¢, s') € T such
that se R and s’ ¢ R. Hence axiom E follows from EI.
Further assume (s, e, s') € T for some s, s' € S. This implies
seR, s"¢ R, 1e, s#5', and hence T2 also follows from El.
Assume 7§ satisfies E2 and that (s, ¢, s), (s, e,,8)eT.
Clearly this means that VRe R, . [Re e, « (se R and
s'¢ R)<> Re®e,]. By E2, ¢, = ¢, and hence T3 holds. |

It may be worth noting that the “if part” of the proof
above shows that T2, T3 and E (the old structural axioms)
follow from El and E2 (the new regional axioms). The other
direction of this implication does neot hold (the proof of the
“only if part” from Nielsen et a/. (1992) makes use of axioms
S2 and T1!).

2. PRIME EVENT STRUCTURES

In this section, we briefly introduce one of the fundamen-
tal models of concurrency called prime event structures
originally introduced in Nielsen ez al. ({1981) and since then
studied extensively by primarily Winskel (1987). It is impor-
tant to realize, that event structures is basically a model of
concurrency on the behavioural level; i.e., events represent
unique temporal occurrences of actions. In contrast the
models mentioned in the previous section, ETS and ENS,
are basically models on the system level, in which events
may have repeated occurrences at different times in different
contexts. We now introduce the category of prime event
structures, PES.

DerFintTION 2.1 (PES-Objects).
is a triple ES = (E, <, #) where

A prime event structure

E is a set of events,
& € E x E is a partial order (causality),
# < E x FE is a symmetric relation (conflict), where
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(Al) Veg,e,,e;eE ey # e, <e,=e¢, # e, (conflict
inheritance),

(A2) VeeE.[e]=%{e'eE|e <e} is finite and for
alle',e"e[e] not (&' # e").

Given ES as above—the configurations of ES are defined
as

def

C(ES) = {cc E|(Ve,e' ec.not(e # ¢))

and Ve,e'e E.¢' <ecc=e'ec}.

So, configurations of ES are the downwards (w.rt. <)
closed and conflict-free subsets of E. We use the notation
FC(ES) for the set of finite configurations of ES. In par-
ticular, for all ee E, (e] € FC(ES).

DEerFINITION 2.2 (PES-Morphisms). Let ES,=(E;, <,,
# ) for i=0, | be two Prime Event Structures. A morphism
from ES, to ES, is a partial function x from E, to E, satis-
fying (when extended pointwise to sets of events)

Vee C(ES,).
(#) [n(c)e C(ES,)and Ve, ¢’ ec.
[n(e) =n(e’) (and both defined) = e =¢"] 1.

Composition of morphisms is normal composition of par-
tial functions, and the identity is the identity function. Note
that isomorphisms are identities up to names of events.

We refer the reader to Winskel (1987) for intuition,
detailed explanations and results concerning the category
PES of prime event structures with objects and morphisms
defined in Definitions 2.1 and 2.2. We only wish to mention
here that the configurations of a prime event structure may
be thought of as the states of a distributed system, where the
state is identified with the “events having occurred” at the
given state. The fundamental notions of causality (or rather
causal dependence) and conflict (exclusion/choice among
events) are captured directly by the relations < and # in
the definition of a prime event structure. The notion of con-
currency (or independence ) between events may be derived
as follows:

!def ! ! !
ecoe <not(es<e ore' Keore #e').

We shall use the notation ¢, —2< ¢, for a structure evolving
from ¢, to ¢, through the occurrence of event e, ie., for a
prime event structure, ES, as in Definition 2.1. Actually it is
sufficient to consider just finite configurations., —< <
FC(ES) x Ex FC(ES) is given by

(co, e, c1)e—= iff g ey =0c4 U {e}.
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As usual, we will often write c¢,—%< ¢, instead of
(cy, €, ¢))e—<. We shall use the following facts about
prime event structures.

ProrosiTiON 2.3, Let ES=(E, <, #) be a prime event
structure. Then for every ¢ € FC(ES), and for every lineariza-
tion ey, €\, ..., e, (Le. every listing such that e, <e; = i< )
of the events belonging to c, there exist configurations
Ca» € s ey C, SUCH that

ey (4} €2 Cn
F——=cg—=c ~—=-¢

Proof. See Winskel (1987). |

LEMMA 2.4. Let ES, be two prime event structures as in
Definition 2.2, and let n be a partial function from E; to E|.
Then n is a morphism from ES to ES,| iff the condition ()
of Definition 2.2 is satisfied for all finite configurations ¢
of ES,.

Proof. The “only if” part of the Lemma is trivial, so we
concentrate on the nontrivial “if part.” Let y satisfy (%) for
all finite configurations and let ¢ be a (infinite) configuration
of ES,.

We first prove that n(c)e C(ES,). Assume e, € #(c) and
ey <, e,.e, en(c) implies that we must have e, such that
n(ey) =e, and since from definition [eq] e FC(ES,), we
have from our assumption »([ey]) € FC(ES,). Now, from
this we have e} ex([e,]), and hence there must exist
ey € [ e4] such that y(eg) = ¢} . Since ¢ is downwards closed,
¢, € ¢, and hence €} € y{c), i.e., #(c) is downwards closed.

Assume #(eg), nieg) € n(c), ey, e; € c. Then it follows that
[ec]uey] e FCIES,), hence #n([ey,]v[ey])e FCLES,)
(from the assumption of Lemma), and hence not
(nleg) # nley)), i.e., n(c) is conflict free.

Finally, let e,, e, € ¢ and n(e,) = n{ey) and both defined.
Then again, since [e,] w [ep] € FC(ES,), we get from the
assumption of the lemma, that not only is #([e,]J e} ]) a
configuration of ES,, but also ¢q=¢;. |

3. OCCURRENCE TRANSITION SYSTEMS

In this section, we introduce a (full} subcategory of ETS,
called the category of occurrence transition systems, OTS,
and prove some properties of this subcategory. The main
point is that OTS is defined as a simple strengthening of the
axiomatization of ETS-objects, and it will be proved in
the next section that OTS is (categorically ) equivalent to the
category of prime event structures. In this section we only
prove some technical lemmas for OTS to be used in the
proofs of the main results of the next sections.

DerFINITION 3.1, (OTS Category). Let OTS denote the

category consisting of
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— objects: transition systems 7S=(S, E, T, s™) satis-
fying axioms S1, S2, and T1 of Definition 1.4 and

axiom O: Vee E. 3se S. [1se Rygand °Ts={e} ],

----- morphisms: transition system morphisms as defined in
Definition 1.5.

ProrosiTioN 3.2, OTS is a fill subcategory of ETS.

Proof. Follows immediately from Theorem 1.7, because
axiom O trivially implies (by Proposition 1.3) El and
E2. |

One might say that OTS is obtained from ETS by a
strengthening of axioms E1 and E2. E1 and E2 may be inter-
preted as “each event is characterized by its nonempty set of
pre-regions (or, of course, equivalently its set of post-
regions)”. Axiom O may be interpreted as “each event is
charaterized by one single post-region (or equivalently pre-
region) of a particularly simple form (equal to {s for some
s€ S).” However, this seemingly innocent strengthening
implies some dramatic restrictions on the kind of allowable
transition systems.

LEMMA 3.3. Let TS=(S, E, T, s} be an OTS-object.
Then %+ = S x S is a partial order with s as the least element.

Proof. Transitivity and reflexivity of * follow from
definition. We must only prove antisymmetry. Take any
(s',e,5")eT. From axiom O we have a region R=1s for
some se S such that °R={e}, ie,, s' ¢ R, 5" € R. Antisym-
metry now follows from the observation: (s"€1s and
s’ ¢ 1s) =5 ¢1s". Minimality of s w.r.t. % follows directly
from axiom S1. |

LemMMa 3.4. Let TS=(S, E, T, s™) be an OTS-object.
Assume 1s is a region of TS such that °1s = {e}. Then there
exists s' € S such that (s', e, s)e T. Furthermore, assume also
for some 5", °1s" = {e}. Then s=s".

Proof. Consider 1s. Since 1se Ryg,s#s™ and from
Lemma 3.3 and S1 we get 5™ ¢ Ts. But s € 15 and so, because
{e} =°1s, there exist § §eS such that §¢1s 5e1s, and
s %5 5 §% 5. From °ts={e} we get $e1s, and hence
from Lemma 3.3, s=s. This proves the first part of the
lemma. Furthermore, if {€} = °1s", it must be that 5" *» s.
By symmetric arguments we get s % s”. Hence, by Lemma
33, 5=5". 1|

So, from Lemma 3.4, we may talk about the state s
satisfying the property of axiom O for a given e of an OTS-
object. We shall use the notation s,, e € E, for this particular
state. Obviously from the definition of °R, this association
is injective in the sense that s,=s5,=¢=¢". So, we may
think of s, as “the state representation of e.”

643118 2-2
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As an example, in Fig. 3.1. the elementary transition
systems (a) and (b) do not satisfy axiom O {with respect to
event e—left to the reader to check). (¢), however, is an
occurrence transition system, and we have indicated the
unique state representations for the three events.

Based on this, one may ask if there is also a natural way
to talk about the states of an OTS-object in terms of its
events. One obvious idea seems to be to associate with a
state s the set of events e for which s belongs to the charac-
teristic region 1s,.

DerINITION 3.5, Let TS=(S, E, 7, s™) be an OTS-
object. Let past: S — 2% be the function defined as past(s) =

{e|sels.}.

In Fig. 3.1c, past(s) = {e,, e,}, pasi(s,,) = {e,, e;}.
The use of the word “past” is justified by the following
lemma.

LEMMA 3.6. Let TS=(S, E, T, s') be an OTS-object.

(a) past(s™) = & and
(b) for every (s, e, s')e T, past(s) < past(s') = past(s) u

{e}.

For every computation of the form

€n
s, =,

we have
(c)
(d)

Proof. Clearly (¢) and (d) follow from (a) and (b).
Assume 5™ € 1s,. From axiom S1 we get 1s,=S, contra-
dicting ts, being a nontrivial region. Hence we conclude
(a).

Consider an arbitrary (s, e, s')e T.

Obviously s’ € Ts, and so past(s) S past(s’).

Since 1s, is a region such that °7s,= {e}, s¢°1s, and
s €°1s,. Hence e € past(s')\ past(s).

Now let ¢’ € past(s') be such that e £ ¢'. Since ¢’ € past(s'),
s'e1s,. Since e # ¢’ and °1s, = {e'}, it must be that se 1s,
(due to T3) which implies that ¢’ € past(s). Consequently
past(s')\past(s) = {e}, and so (b) holds. {

LemMA 3.7. Let TS=(S, E, T, s™) be an OTS-object.
The function past from Definition 3.5 is injective.

I<i<jg<n=e #¢;, and

{e,| 1 <i<n} =past(s).

Proof. Let s€ S, and let R be any region of TS. Then
from Lemma 3.6 (c) and (d) we get
(*) se Riffeither (s™ e Rand |R° N past(s)|
= |°R ~past(s)])
or (s™ ¢ Rand |R° n past(s)| + 1 = |°R n past(s)|),
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where | M| denotes the cardinality of a set M. From this we
clearly get for two states s and s’ that

past(s)=past(s')=>YRe R;c. [se Rifl s e R].

But then by axiom S2 (Definition 1.4), we conclude that
s=s". |

4. EQUIVALENCE BETWEEN OTS AND PES

In this section, we prove that there is a very strong rela-
tionship between the two categories OTS and PES; they are
basically one and the same thing in the sense that they are
categorically equivalent. So, one might conclude that the
axioms of OTS-objects identify the transition system version
of prime event structures.

It was indicated already in Nielsen er al. (1981) that one
may view a PES-object as a transition system, where the
states correspond to configurations, and transitions to the
—f-_relations mentioned previously. We start by proving
that this idea may be formalized in the form of a functor
T PES — OTS.

THEOREM 4.1.
to OTS:

T defined as follows is a functor from PES

—— On objects: T(ES = (E, <, #)) =*' (FC(ES), E,
—. ).

— On morphisms: Let n be a PES-morphism from ES, to
ES,. Then T(n)=(f.n), where Vc,e FC(ES,). flcy) =
nico).

Proof. The only non-trivial part is to see that T(ES) as
defined satisfies the axioms for OTS objects.

(S1) 1@ =FC(ES) in T(ES). Follows from Proposi-
tion 2.3.
(S2) R.=R.=c=c in T(ES), where ¢, ¢’ € FC(ES).

Assume ¢ # ¢’, e.g., there exists e€ ¢, e¢ ¢'. It is easy to see
that R, =9 {x e FC(ES) | e x} is a region of T(ES) (such
that °R, = {e} and R = ). Clearly ce R,, ¢" ¢ R...

(T1) ®ecR,=3".[c—=<c¢ in T(ES)], ek, ce
FC(ES). Obviously all one must prove is that from the

a b

€1
/\ 1 €2
i
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assumption ce FC(ES) and °e< R, in T(ES) we get
cu{e} e FC(ES). (From °e< R, and the fact that
FC(ES)\R, is a region we at once get e ¢ ¢ (R, is the region
constructed above)).

cw {e} can fail to be a configuration for two reasons.

Case 1. cu {e} is not downwards closed, ie., there
exists ¢’ <e such that ¢' ¢ c U {e}, le, ¢ ¢c From e <eit
is easy to see that R={x e FC(ES) | ¢’ € x, e ¢ x} isa region
of T(ES) such that Re °e. But we have also R¢ R, (since
¢ ¢c). Thus we get contradiction to our assumption
‘¢S R,.

Case 2. cu{e} is not conflict free, ie, there exists
¢' € ¢ such that e # ¢' (remember c is configuration). From
e # ¢', it is again easy to see that R={xe FC(ES)|e¢x
and ¢ ¢ x} is a region of T(ES) such that Re e (and
Ree’). But since ¢ €c we also have R¢ R, and hence
again a contradiction to our assumption °¢ S R,..

(O) VeeE 3ce FC(ES). [(1ce Rygs, and “Te={e})
in T(ES)]. Given ecE, define c¢,=%"[e]. It follows
immediately that [ ¢] € FC(ES). It follows from Proposition
2.3 that f[e] = {xe FC(ES) | ee x} = R, as in the proof of
S2 above. Now we have already seen that R, € Ry, and

‘R,={e}. 1

As an example, the reader may verify that applying 7T to
the following PES-object yields an OTS-object isomorphic
to the one from Fig. 3.1(c): ES=({e, e,, e:}, <, #),
where < = {(e,, €;)} and # = {(e|, €3), (es, €1)}.

THEOREM 4.2. The functor T determines an equivalence
of categories between PES and OTS.

Proof. It follows from MacLane (1971, theorem 4.4.1)
that it is sufficient to prove that T is full and faithful, and
that for every OTS-object TS there exists a PES-object ES
such that TS is isomorphic to T(ES). These three facts are

proved in three separate lemmas in the following. ||
Lemma 4.3, Tis full.

Proof. Given two prime event structures £S5, =(E;, <,
#,), i=0,1 and an OTS-morphism (f, #) from T{ES,) to

FIGURE 3.1
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T(ES,), we must prove that there exists a PES-morphism #
from ES, to £S, such that T(4)=(f, n). Since (f, n) is an
OTS-morphism, we have from the definition of T that # is
a partial function from E, to E,. Suppose # is itself a PES-
morphism from ES, to ES,. Then, once again by the defini-
tion of T, T(n)=1(g, ) is an OTS-morphism from T(ES,)
to T(ES,) where g: FC(ES,) to FC(ES,) is given by
gle)=n(c) for every ce FC(ES,). But from [NRT2], it
follows that if (f7,#n,) and (f,,n,) are a pair of OTS-
morphisms from 78 to TS* then 5, =x, implies f, = f5.
Now ( f, n} and (g, n) are a pair of morphisms from T(ES,)
to T{ES,). Hence we can conclude that f = g and this would
establish the fullness of 7.

Thus 1t suffices to prove that » is a PES-morphism from
ES, to ES,. So, to prove that # must be a PES-morphism
from ES, to ES,, we make use of Lemma 24; i.e., we show
that property () of Definition 2.2 is satisfied for every
ce FC(ES,). By simple induction on the size of ¢, we can
show that f{c) =n(c} and since f: FC(ES,) — FC(ES,) we
have that #(¢) e C{ES,). Second, assume e, ¢’ € ¢, e % €', and
that n(e) and (e} are both defined. From Proposition 2.3
we may assume configurations ¢, ¢” such that ¢’ —<< ¢” and
e' € ¢’. From the arguments above, we have f(c') =5(c'), e,
nie’ye f(c'). But since { £, ) is a morphism and #{e) defined
we have f(¢') 2 fle”) in ES,, but this implies
nle) ¢ f(c'), 1e, nle) #nle') as required. ||
T is faithful.

Proof. Let n,# be two PES-morphisms from ES, to

ES,. We must prove that # #»' imphes that T(n)# T(%’).
But this follows from the definition of 7. |

LEMMA 4.4,

LemMMma 4.5. For every OTS-object TS there exists a
PES-object ES such that TS and T(ES) are isomorphic.

Proof. Given an OTS-object TS=(S, E T, s™) we
define {(TS)=(FE, <, #) where Ve, ¢’ e E.

e e iff s,% s,in TS and

e# e iff (ts,n1s,.)=in TS,

where s, and s, are the unique states associated with e and
e', respectively according to Lemma 3.4. First, we must
prove that {(7S) is a prime event structure. Lemma 3.3 tells
us that < is a partial order and from the definition we get
that # is a symmetric relation such that < N # =&, # is
also clearly inherited by < in the sense of Al of Definition
2.1. Finally, A2 of Definition 2.1 follows from Lemma 3.6
and the fact that [ e] from the definition equals past(s,). So,
{(TS) is a prime event structure.

Next we prove that (past, idg) is the required
isomorphism between 7S and T({(TS)), where past: § — 2%
is defined in Definition 3.5, and id;: E— E is the identity
function. Clearly, past as defined is a function from S to
FC(L(TS)) (left for the reader to see) and it follows from

197

Lemma 3.6 that (past, id) is a TS-morphism. From Lemma
3.7, it follows that past is injective, and hence has a partial
inverse past~'. From Lemma 4.6 (to follow) we conclude
that past~' is a total function on FC({(TS)) and that
(past ™', id) is the categorical inverse of (past, id). This
concludes the proof of Lemma 4.5. ]

As an example, applying the construction of the proof of
Lemma 4.5 to the OTS-object from Fig. 3.1c gives exactly
the PES object mentioned following Theorem 4.1!

LEMMA 4.6. Let TS=(S, E, T, s™) be an OTS object.
Then for every ce FC{{(TS))

(a) past~'(c) is defined and
(b) for every in {(TS),
past ¢ eT.

ey,

(past=(c'), &,

Proof. We prove the lemma by induction on the size
of c.

¢ = (. Clearly, past(s™) = &, and (b) is trivially satisfied.
¢ # (. We distinguish here between two cases.

Case 1.

(a) In this case, we get immediately from the definition
that past(s,)=c¢, where s, is the state representative
associated with e from Lemma 3.4.

(b) Take any ¢’ —%< ¢ in {(TS). In this case we must
have e =¢’ and ¢’ = c\{e} (remember ¢’ is a configuration).
From Lemma 3.4, we get for some s'€ S, (s', ¢/, 5,) e T, and
from Lemma 3.6 we get past(s') = past(s,)\{e} = c\{e} =¢".
This proves (b) in Case 1.

Jeec.c={e'€eE|e <e}.

Case 2. Veec.c#{e'€eE|e <e}.

(a) In this case we must have at least two maximal
elements in ¢ (with respect to < ). Take any such two
elements e, and e,. It follows from Proposition 2.3 that in
{(TS) we have configurations related as in Fig. 4.1.

So, from the induction hypothesis, we must have states
$1, S5, and s, in S such that past(s,)=c,, i=1,2,3, and
transitions in T as in Fig. 4.2. Now from our assumption we
have that e, and e, are neither related by < or #, and hence
from Lemma 4.7 (to follow) we get (°e; L ef) N (%e, Ues) =
. Furthermore, from s, - we have °e, R,,, and hence
from Proposition 1.3(iii), °e, = R,,. From axiom T1, we get
that there must exist a state s €S such that (s,,¢e,,5)eT.

c2=c\{ez)
x /
c=c\(e1}

FIGURE 4.1
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But now clearly from Lemma 3.6, we get past(s)=
pastisyu e} =c, u{e} =c

(b) Take any ¢’ —< ¢. ¢’ must be a maximal element in
¢. But now choosing ¢, = ¢’ in the proof of (a) above, we get
the conclusion of (b) directly. |

LEMMA 4.7. Let TS=(S,E.T,s")eOTS, and let
ey, ¢, € E be two events not related by either < or #
as defined in the proof of Lemma 4.5. Then (°e, weg) N
(e, vely=F inTS.

Proof. Since ¢y and e, are not #-related, 1s, N 15, #
by the definition given in the proof of Lemma 4.5. Hence we
have a state s such that 5, * s and s, * s in TS, where
Se,» S, are the unique states associated with eg, ¢, from
Lemma 3.4. Choose s to be a minimal (w.r.t. past) state
satisfying this property. We want to argue that we must
have states s, and s, such that the situation shown in
Fig. 4.3 obtains. Since s, % s, we have from Lemma 3.6
that any computation in 7S from s™ to s must contain
exactly one e,-occurrence. Now, consider any computation
of the form s™ *» 5, * 5. Such a computation cannot have
an e,-occurrence before s, since this would imply s,
contradicting our assumption that e, and e, are not
< -related. So, we must have states s and s" such that
sPE g, By - " 5 5 But now s, ® 5" and also from
axiom O, s,, % 5", and hence from the minimality of s, we
get s =s". By a symmetric argument applied to ¢,, we have
the situation as shown in Fig. 4.3.

Now, based on Fig. 4.3, we want to argue for the conclu-
sion of the lemma. Assume Re (¢, weg) n (e, uel).

Case 1. Re(°eynef)u(ejney). This assumption
leads to the immediate contradiction s R<>s¢ R,

*
- sela

Case 2. Re ey °e,. From Lemma 3.4, we must have
for some s', (', €4, 5,,) € T, and hence (from the assumption

in TS

FIGURE 43
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FIGURE 4.4

Re"ey), 5., ¢ R Also (from the assumption Re °¢), s, € R
and hence there exist some s', s” € S and ¢, such that Ree$
and the situation shown in Fig. 44 obtains. Now, from
axiom O we know that s” € 1s,, and hence s € (s, 0 15, N
1s..), so we can have neither ¢, # e, nor ¢, # e,. But from
the existence of Rees n(®¢, N °e;) we must have from
Case | of this proof that e, must be <-related to both ¢,
and e,.

Assume e, <e,. This implies from definition, s, €1s,,
and hence s’ € 1s,, contradicting the fact that 1s,, is a post-
region of ¢,. So, we must have e, <e,.

Assume ¢, <e,. This implies from definition s, €1s,,
and hence, since 5" € 1s,, (because 1s,, is post-region of e,)
and also s, € 15" (see Fig. 44), we get s, e1s,, contra-
dicting the fact that 1s,, is a post-region of e,. So, we must
have e, <e,.

But now obviously ¢, < ¢, and e, < e, imply ¢, < e, con-
tradicting our assumption that e, and ¢, are not <-related.
All in all, we have contradicted the assumption of Case 2.

Case 3. Reejnef. In this case,we would have R (the
complement of R) belonging to °¢, n °e,---thus this case is
reduced to Case 2.

Since these three cases exhaust the assumption Re
(°eq ueg) (%, vel), we have proved Lemma 4.7 and
hence our main Theorem 4.2.

5. UNFOLDINGS OF ELEMENTARY
TRANSITION SYSTEMS

One of the nice aspects of net theory is that it provides a
uniform formalism in which both distributed systems and
their behaviours can be defined. For instance, one may
define the behaviour of an elementary net system in terms of
its unfolding (Nielsen et al.,, 1990). The unfolding is simply
an elementary net system called an occurrence net. Hence
occurrence nets can be defined as a subcategory of the
category of elementary net systems. Furthermore, the
operation of unfolding of an elementary net system
(extended in a natural way to a functor) was shown by
Winskel to be not an arbitrary functor (from the category of
elementary net systems to the subcategory of occurrence
nets) but, in fact, the right adjoint to the inclusion functor
from occurrence nets to elementary net systems. A categori-
cal result like this provides a good deal of insight.
Originally, the notion of unfolding was just introduced as
one of many possible ways of associating occurrence nets
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with net systems (Nielsen et. al., 1981 ). But Winskel’s result
proved that this construction was actually unique among all
in the following sense.

Given a net system, N, a notion of unfolding consists of
two parts. One telling what the unfolded object looks like,
UF(N), and another telling how the elements (conditions
and events) of UF(N) are related to the elements of N,
usually called the folding, fold: UF(N)— N. This folding is
nothing but a special case of a general notion of simulation
morphism, setting up a category of nets. In this categorical
setting, the uniqueness of the particular construction of
UF(N) and fold 1s expressed elegantly by Winskel as a
universal property: for any occurrence net ON and a simula-
tion morphism f: ON — N there is a unique g: ON — UF(N)
such that the diagram shown in Fig. 5.1 commutes. So,
UF(N) is in a formal sense “maximal” among all possible
notions of unfolding, and uniquely defined with this
property (up to isomorphism}. This result was originally
proved by Winskel for 1-safe net systems (Winskel, 1987)
and later adapted to elementary net systems ( Nielsen ef al.,
1990).

This is a nice example of the power of using the language
of category theory. Note how morphisms come in naturally
because fold is a morphism! It should be mentioned that the
notion of simulation morphism adapted by Winskel has
independent motivation, in the sense that many constructs
from process algebra may be understood as universal con-
structs in the category like product (parallellism) and co-
product (choice). The same holds for our choice of category
for elementary transition systems, as shown in Nielsen er al.
(1992).

So, we are looking for a similar universal notion of
unfolding of elementary transition systems into occurrence
transition systems. The question is very natural, since we
know that the occurrence transition systems are exactly the
case-graphs of occurrence nets and the elementaty transi-
tion systems are exactly the case graphs of elementary nets
systems. The first fact follows from Winskel’s established co-
reflection between prime event structures and occurrence
nets combined with our results from Section 4. This is pic-
tured in Fig. 5.2. The second fact follows from Nielsen er al.
(1992) as shown in Fig. 5.3.

It is tempting to try to fit these two pictures together and
try to establish our required co-reflection based on some

f fold

FIGURE 5.1
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Occurrence Nets coref. ) Occurrence Transition Systems

coref.

Elementary Net Sysiems

FIGURE 5.2

general grounds. Irrespective of whether such grounds exist
(note that our co-reflection does not follow directly from
glueing the two pictures together) there are some major
obstacles even in relating the two pictures. The point is that
the notion of net morphisms used in Fig. 5.2 is different from
the net morphisms used in Fig. 5.3. And this is not just a
coincidence.

A Winskel morphism from a net system N,, to another net
system N, consists of a partial function from the N,-events
to the N,-events, and a relation between the conditions of
the two nets satisfying certain axioms which imply that “N,
may simulate N, with respect to the partial function on
events.” In Nielsen et al. (1992), we worked with a restricted
type of such morphisms, requiring the condition part to be
a partial function from conditions of N, to conditions of N,,.
As a matter of fact, historically these morphisms were the
first type of morphisms to be considered by Winskel but
were generalized exactly to cope with unfoldings! Let us
illustrate this with an example. In Fig. 5.4 we have shown a
net system N and a small part of the folding from UF(¥) to
N. In this folding, each condition of N has to be related to
all of its occurrences in UF(N). On the other hand, the co-
reflection from Nielsen ez al. (1992) shown in Fig. 5.3 does
not hold with this liberal view of net morphism as illustrated
by the example in Fig. 5.5. The point of the example is that
there is exactly one morphism from the case graph of N, to
the case graph of N, satisfying #»(e,)=#n(es)=¢ and
n(e') = €', whereas there are at least two Winskel morphisms
from N, to N, satisfying this requirement (one relating b to
b, and b,, another relating b just to b,).

Another important observation concerning Figs. 5.2 and
5.3 is the fact that the co-reflection from Nielsen et al.
(1992), shown in Fig. 5.3, does not cut down to the co-reflec-
tion between the respective (occurrence) subcategories in
Fig. 5.2. As a matter of fact the left adjoint of Fig. 5.3 when
applied to occurrence transition systems does not in general
produce occurrence nets (e.g., the saturated set of regions
will in general introduce cycles in the nets constructed). So,
also on objects the glueing of the pictures is not as easy as one
might hope. Thus there seems to be no general implication of

coref.
Elementary Net Systems d———————) Elementary Transition Systems

FIGURE 5.3
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the existence of our required universal unfolding based on
existing results from net theory.

However, based on the results from Figs. 52 and 5.3,
despite the problems indicated above, one may actually read
off a particular way of unfolding a given elementary transition
system 7S in the following way. First construct the
(saturated) net associated with it according to Fig. 53.
Unfold this net and finally construct the occurrence transition
system of the unfolded net-—both constructions following Fig.
5.2. This, at least, gives us one way of associating occurrence
transition systems with elementary transition systems. What
we shall prove in the following is that this construction on
objects extends uniquely to a functor which is indeed the right
adjoint to the inclusion functor. So, in the abstract setting of
transition systems the problems with the variety of notions of
morphisms disappear and the derived notion of unfolding
from net theory is the unfolding in the standard category of
transition systems.

We shall start by presenting this unfolding of elementary
transition systems in terms of objects. A formal definition
following the lines above would be very heavy, and require
the introduction of a lot of technical machinery from net
theory and existing work of Winskel (1987} and Nielsen et
al. (1992). Hence we have chosen to give a direct definition
of the construction close to the theory of transition systems
and leave it for the (interested) reader to check in the rele-
vant literature that our definition is indeed the one derived
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from net theory as indicated. For the sake of completeness,
we do include a sketch of a proof that our construction does
produce occurrence transition systems.

We shall use the theory of trace languages—originating
from the work of Mazurkiewicz (1989)—to define
unfoldings of elementary transition systems.

We will show that this “unfold” map produces occurrence
transition systems and it can be smoothly extended to
become a functor from ETS to OTS. More importantly, we
will prove that this functor is the right adjoint of the
inclusion functor from OTS to ETS.

In the literature, a number of authors have independently
shown that a strong relationship exists between trace
languages and prime event structures (Bednarczyk, 1988;
Shields, 1988; Rozoy and Thiagarajan, 1991). In what
follows, we will appeal to a number of technical results that
arise in the process of establishing that trace languages yield
prime event structures. We will not give detailed proofs of
these results since they can be found in or can be easily extrac-
ted from Rozoy and Thiagarajan (1991). For background
material on trace languages, the reader is referred to Aal-
bersberg and Rozenberg (1986} and Mazurkiewicz (1989).

Until further notice, fix an elementary transition system
TS =(S, E, T, s™). Then FS, the set of firing sequences of
TS and the relation [ )¢ S{s™} x FS;y x S are given
inductively by:

o AeFSyscand s"[A) y¢5™.

e fpeFSyq, s™[p)rssand (s, e, s')e T, then pe e FS
and s ped ¢ 8.

When 7§ is clear from the context, we will write FS
instead of FS,¢ and [ ) instead of [ > 1. In fact, we will
follow this convention for a number of relations that we will
soon define relative to TS. The independence relation
I+ € E x E associated with TS is given by

Irg={(e\,e2) | (°e, veD) N (%e; uel) =}

FIGURE 5.5
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Clearly Fr is irreflexive and symmetric and hence induces
an equivalence relation (see Mazurkiewicz, 1987) over E*.
This equivalence relation will in fact be a congruence w.r.t.
the operation of concatenation over E£*. To be specific, =,
(written for convenience as = ;) is the subset of £* x E*
given by

o =,50 iffdo,,0,eE* e, e')el . [0=0¢¢'0,

ando’' =0,¢'eq,].

The equivalence relation we want is denoted as =, and
it is the reflexive transitive closure of = .. In other words,
=re=(= )% For o€ E* we let [o],¢ denote the equiv-
alence class containing ¢ and call it a trace. Formally,
[c]lrs=1{6"| 6 =rga'}. As remarked earlier, we will often
write [ o } instead of [ 6] ;4. Unless otherwise stated, in what
follows we let p, p’, p” with or without subscripts range over
FS; we let o, 0', 6" with or without subscripts range over
E* welete, e, e" e, e, range over E. The result we men-
tion next i1s a well-known and very useful characterization
of the relation =, (see, for instance, Aalbersberg and
Rozenberg, 1986, for a proof).

In stating the result we will use the following notations.
For ec E, # (o) is the number of times the symbol e
appears in g. For X < E, Proj, (o) is the sequence obtained
by erasing from ¢ all appearences of non-members of X. In
other words,

e Proj (A)=A.
if eelX,
otherwise.

. Projy(a)e,
* Projyloe)= Projy(a)
xlak

ProPOSITION 5.1, 0, =70, if the following two condi-
tions are satisfied.

(1) VeeE #o0,)=#,0,)
(ii) V(e,e')e(ExE)—Iq4g. Proj,, . (0y)=Proj,, ,.(0,).

Next we recall the standard ordering over the traces
generated by =,¢. [0] <5 [0'] ff J6". 006" =750 It is
easy to check that < is well defined and a partial ordering
relation with [A]={A} as the least element. [¢] L [o']
will denote the least upper bound of [¢] and [ ¢’ ] under <,
if 1t exists.

Given our purposes, a relation closely related to < and
denoted as —> will turn out to very useful to have around.

— S E*x E* is given by

g— ¢’

: " "o '
- iff 36" 006" =50

The next set of observations are easy to verify.

ProrosITION 5.2. (1) [o]<[d']iff o> . Thus — is
a pre-order the equivalence relation induced by which is
exactly = .

201

(i)
(i) Suppose
pee’, pe'ee FS.

VpeFS.[p]<FS.

pe,pe' € FS  with (e, ¢'Yely,. Then

Part (ii1) of this result leans on the fact that TS, being
elementary, satisfies the axiom T1.

The set {[p]| peFS} will serve as the set of states of
Uf(TS), the unfolding of TS, that we wish to construct. To
identify the events of Uf(TS) we must work with the prime
intervals generated by TS denoted as PI,. It is the subset
of E*x E* given by Plg={(0,0")|3ecE ge=r50'}.
Next we define the map ¢, PI—-E as follows:
V(g,a')e Pl ¢p(o,0")=¢ provided oe=,,0". (For con-
venience, we will write ¢(x, y) instead of @((x, v))).

Now suppose that ge=j;g0¢. Then according to
Proposition 5.1, e=¢". Hence ¢ is well-defined. This
map-—or more precisely, our extension of this map to cer-
tain equivalence classes of prime intervals—will turn out to
be crucial for linking up the behaviour of Uf(TS) to that of
TS; but we still need to identify the events of Uf(TS).

To this end, define the relation o« -, = PI'x PI by

(01,0%) K p5(0,, 04)

iff Jo.[0,0 =150, and g\6 = ;504 ].

Set xpg=(oC5U(Xpg) ")* Clearly x, is an equiv-
alence relation over PI. In what follows, we denote by
{a,a") ys the equivalence class of prime intervals contain-
ing the prime interval (g, ¢'). Again using Proposition 5.1
and the definitions, the next set of observations is easy to

verify.
PROPOSITION 5.3. (1) o 1g is a pre-order.

(1) Suppose (o,,0)), (6,2, 05) € P Then

[{o,,0)) € rsl0,.0%), and (0,,6%) « pela,, )]

iff [plo,,0))=¢lo,,0%)ando, = 1c0,].

(111)  Suppose (a,.0)) « r5(05,0%). Then @lo,,d))=
plo,, a%).
Extend ¢ to = y¢-equivalence classes of prime intervals as

follows (by abuse of notation, this extension will also be
denoted as ¢):

Vie,,01)e Pl p({0,,0\>)=9pla,,d)).

According to Proposition 5.3(iii), this extension of ¢ is
also well-defined. Some of the equivalence classes of prime
intervals will serve as the events of Uf{ TS).

DerFintTiON 5.4, Uf(TS), the unfolding of TS, is the
transition system Uf(TS)=(S, E, T, 3,,) where
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S={[p]| peFs},

E={<p,p') | p,p' €eFSand(p,p')e P},
T={([pL.<p.p'> [P D 1<p,p'> £},
Sm=[411.

and

In Fig. 5.6, we have shown two small examples of
unfolding, illustrating that the notion involves a certain
kind of horizontal and vertical unfolding. Only a few
selected states in the unfolded systems are labeled with
their definition. We claimed above that our definition of
unfolding is derived from net theory. Let us be a bit more
precise. Let H and J be the two functors from Nielsen et al.
(1992) forming a co-reflection as in Fig. 5.3.

Elementary £, Elementary

Net Systems «— Transition Systems

In Nielsen et al. (1990), a version of Winskel’s unfolding was
defined—a mapping associating with each elementary net
system N its unfolding UF(N) as an occurrence net. Our
claim is now the following:

Conjecture. For every elementary transition system 7S,
Uf(TS) as defined in Definition 5.4 is isomorphic to H(UF
(J(TS))).

We do not prove this claim here (and hence we have
termed it a conjecture!), partly because it would involve

e ez
TSD
- TS,

e //////g:'

legl 7
Leoezl

Uf(TSO)

= UF(TS)) >

——
Ee1e3]

1
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quite a lot of extra technical machinery not relevant for the
rest of the paper, partly because the interested rader may
find a more or less complete proof in Nielsen ez al. (1990).
Here we limit ourselves to proving that Uf(TS) is an
occurrence transition system. In doing so, we shall appeal to
a number of technical results from Rozoy and Thiagarajan
(1991). However, we will provide sufficient information so
that an enterprising reader can work out the details for
herself/himself.

LEMMA 5.5. (1) Suppose ce 0, =5 0e,0, with e, #
e,. Then (e,, e,) € lrs. Moreover there exists o' such that
0€,0, =75 0€,8,0 =15 06,€,0 =15 0€,0,. Consequently,
[oe,Juoe,]=[oe e,].

(i1)
exIsts.

(1)

Suppose ¢, - and o, —0o. Then [o,]u[0,]

Suppose p — o and p' — o (with p, p' € FS, 6 € E*).
Then[plufp']es.

The property captured in part (1) of this result is the so-
called forward diamond property. The relevant situation is
shown in Fig. 5.7. The proof follows easily by repeated
applications of Proposition 5.1, Part (ii) of the result follows
by repeated applications of part (i) of the result. Part (iii) of
the result follows from part (i1) and repeated applications of
Proposition 5.2.

LEMMA 5.6. Suppose g,e, =, 0, €, with e, #€,. Then
(e, ey) € Irs. Moreover, there exists o such that oe, = r5 0,

and oe| =5 0,.

€

€2
Legl Lege e eq]
[eoell
[eoelezell

FIGURE 5.6
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This is the so-called backward diamond property. This
result also follows easily through repeated applications of
Proposition 5.1. The relevant situation is shown in Fig. 5.8,

For introducing the next result, we need a notation. This
notation will be used extensively in the sequel. Let
(a,0')e PI. Then Base ({o,0' ))<= (g, g is the set

{(60,00) | (04, 05) €0, 0")
and Y(g,,0))e (o, ) - (64, 04) Lrs(0,,0) )}-
Recall that according to Proposition 5.2,
i.f(a'),d'] )s (VGQaGE)EBase(<69 G'/>),

theno, = ;5 0,and o' = 5 d5.

Hence Buase({o,d’)) identifies in some sense the “least”
elements of (a,a’)> under x ¢ modulo the equivalence
relation = .

\\ / VR € /
\ 7\/ A /
oﬁ\ // Y = US\ : /22

\
\/ \\!//

FIGURE 5.8
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LEmMma 5.7. (1) V(0,0 )e Pl Base({o,0">)# .
(il) VéeE. Base(é)< FSx FS.

The first part of the result follows leans on Lemma 5.6.
The main observation exploiting Lemma 5.6 (and the
definition of x,¢) can be depicted graphically as shown
in Fig. 5.9.

The second part of the result follows from the first part
and the observation that FS is prefix-closed. Thanks to
Lemma 5.7 we can injectively associate with each element of
S (in Uf(TS)) a set of events in £; the events that have
“occurred so far.” To see this, define Ev: FS — P(E) (to be
soon extended to S!) as: Vpe FS. Ev(p)=1{é|3(p,,p\)e
é.py —p}. To be precise, we must define Fuv(p) as
{¢|3(o,,01)€é. g} — p}. But, once again, the fact that FS
1s prefix-closed guarantees that our definition captures the
intended meaning. Ev is extended to a map—also denoted
as Ev by abuse of notation—from S to P(£) via

Vpe FS. Ev([ p])= Ev(p).

It is easy to verify that this extension is well-defined.

LEMMA 5.8. (i) Suppose pecFS. Then {p,pe)>¢
Ev(p). Moreover, Ev(pe)= Ev{p)u {{p, ped>t.

(i1) Vp,p'eFS.p—p iff Evip)<Ev(p'). Hence
p=rs p iff Ev(p)=Ev(p'). Thus Ev: $ — P(E) is injective.

(iii) Suppose ([pl.é.[p'1)eT (in UATS)). Then
é¢ Ev([ p]). Moreover, Ev([p'])=Ev([p])u {¢}.

(iv)  Suppose [o]u[o’'] exists. Then Ev([a] u[o']) =
Ev([a])u Ev({a']).

This result follows from Lemma 5.5 and Lemma 5.7. The
details are a bit tedious but straightforward. This completes
the chain of technical results we shall borrow from the
literature. We now turn to the task of proving that Uf(TS)
is an occurrence transition system.

Here, we find it technically convenient to exploit the main
result of Section 4. Recall the functor 7 going from PES to
OTS. We will show that there exists a prime event structure

N

N /

FIGURE 5.9
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ES such that T(ES) and Uf(TS) are isomorphic transition
systems (relative to the notion of morphisms specified in
Definition 1.5). Since T(ES) is an OTS-object we would
have then established that Uf(TS) is also an OTS-object.

Define ES = (£, <, #) where <, # < E x E are defined
as follows:

(1) é,<é,iffé, € Fv(p'), where ( p, p') € Buse(é,).

(1) &, # é, Iff there does nor exist p e FS such that
é, € Ev(p) and é, € Ev(p).

It is easy to verify that ES is indeed a prime event
structure in the sense of Definition 2.1. Recall that 7(ES) =
(FC(ES), E, —, &).

The proof of the fact that T(ES) and Uf(TS) are
isomorphic can be split into two steps.

LEMMA 5.9. Let é,,é, € £ be such that not (é,<é, or
é,<é,0ré, # &,). Then (¢(é)), p(&,)) € 1.

Proof. Let (p,, pi)€ Base(é,) and ¢(é;,)=e, for i=1, 2.
Since neither é, <é, nor é,<é,, it must be the case that
[£] and [ p5] are incomparable. Since it is not the case
that &, # é,, there exists pe FS such that é,,é, € Ev(p).
Consequently pj —=p and p, —p. Hence [p,Juwp.]
(o Julpi), [pi1ulpe] and [pi]u(ph] all exist by
Lemma 5.5(i1). Let pj, e[ p 1 ulp2]), praelpi]ulp.)
poelpilulpi)and pyy e[ piTu[p3]. Itis easy to verify
the following:

(1) Ev(py)=Ev(p ) {é )} and Ev(py) = Ev(py) v
(1)
8.}

. , _
(i) py e, =75 P, and pye;=y4¢ py and plhre, =gy
r
Pn=r1s P2né€r

Ev(p,) U {é,} = Ev(py) v {8, 8} = Ev(py)u

From (iii), it follows at once that p,,¢,¢;, =75 P11€2€;,
which leads to (e, e;) e . |

LemMa 5.10.
S 10 FC(ES).

The map Ev. S — P(E) is a bijection from

Proof. From the definition of ES it follows easily that
Ev([p])e FC(ES) for every pe FS. This map is injective
according to Lemma 5.8. Let ce FC(ES). We must show
that there exists p € FS such that Fv(p) =c. We proceed by
induction on k = |c|.

k=0. Then ¢=(J and we can set p = A.

k> 1. Suppose there exits é € ¢ such that é, < é for every
é, € ¢. (In other words, ¢ has a unique maximal element).
Let (p', p) € Base(é). Then it is easy to check, using the
definition of ES, that Ev(p)=c.

So assume that ¢ contains (at least) two distinct maximal
elements é, and é,. Let co=c\{é,,é,}, ¢, =c\{é,}, and
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¢;=c\{#é,}. Then by the induction hypothesis there exist
p: € FS such that Ev(p,)=c; for i=0,1, 2. It is also clear
from Lemma 5.8 that pye, =, p, and pye, = ¢ p, wWhere
@(é,)=e¢, and @{é,) =¢,. Clearly not (¢, <é, or é,<é, or
é, # é,) holds. Hence, by the previous lemma (e, ¢,) € I ;.
According to Proposition 5.2, pye,¢,, pye.e, € FS. It is now
straightforward to verify that Ev(p,e,e;)=c¢. |

THeorem S5.11. UA(TS) is

system.

an occurrence transition

Proof. We know that T(ES)=(FC(ES), E,—<, ) is
an occurrence transition system where ES is as constructed
above. Consider the pair of maps (Euv, id) where id is the
identity map over E. By the previous lemma, Ev is a bijec-
tion. From Lemma 5.8(iii) and the proof of Lemma 5.10 it
is easy to verify that ([ p], &, [ p' 1) e T'iff Ev(p) %< Ev(p’).
From this it follows that (Ev, id) is a transition system
morphism, and hence is in fact an isomorphism. From this
it follows that Uf(TS) is also an occurrence transition
system. i

To proceed towards the main result we next define the
notion of folding as a morphism from Uf(TS) to TS. This
map will turn out to be the co-unit of the co-reflection
between OTS and ETS that we are trying to establish.

Let 7S and Uf(TS) be as defined previously. Let

Jold = 1(f, n) be given by

(i) f:$—S is such that YpeFS. f([p])=s, where
sP[p>sin TS,

(ii) n: E—~ E is such that ¥{p, p' Y e E n({p.p'>)=
PP, p' D).

PrROPOSITION 5.12.  folds is a transition system mor-
phism from Uf(TS) to TS.

Proof. It follows easily from the fact that 7S is an ETS-
object and that fand n are well-defined total functions. It is
then routine to verify that fold ;¢ is indeed a morphism. |}

The following lemma will turn out to be useful for
proving the main theorem of this section.

LemMa 5.13. Let TSy =(Sq, Ey, Ty, 8¢) be an occurrence
transition system and TS =(S, E, T, s™) be an elementary
transition system. Let (g, i) be a morphism from TS, to TS.
Suppose so[ p> s and s p'> 5 in TS, (ie., p and p' are two
computations—firing sequences—leading to a common
state s). Then u(p) =4 pu(p').

Proof. By Lemma 3.6, we know that |p| =|p']. We now
proceed by induction on k = | p|.
k=0. Then clearly u(p)=A=u(p’).

k>0. Let p=p,eand p’=pie’. Assume so[ p,> 5, and
so[ P> 81. Suppose ¢ = ¢'. Then once again from Lemma 3.6
it follows that past(s;) = past(s}) and hence by Lemma 3.7,
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it must be the case that s, =s|. Now by the induction
hypothesis, u(p,) =75 p{ py). Clearly, it now follows that
ulp e)=rs pulpe’), since we have assumed e = ¢’

So suppose that e#e¢'. Let s,[ p,> 5, and so[p7) 5, as
before. Consider the PES-object {( TS) defined in the proof
of Lemma 4.5. [t now follows directly from the properties of
the function past that there must exist a state s* in TS, such
that the situation shown in Fig. 5.10 obtains.

Let s,[ p"> &' as indicated in Fig. 5.10. By the induction
hypothesis, u(p)=pu(p"¢') and u(p)=pu(p"e). Suppose
u(e) is undefined. Consequently upe)=ulp,)=rs
plpte'y=uip'ee’ )=, puip\e'). By a symmetric argument
the result follows if x(e’) is undefined.

So suppose that both u(e) and p{e') are defined. First sup-
pose that u(e) = u(¢’). Then in TS, we would get g(s') £
g(s4) 2% ¢(s). This is impossible since TS is elementary
(see Nielsen et al. 1992). Thus u(e) s u(e'). But then this
at once would imply, once again by the fact that 7S is
elementary that (e, ¢')e I,¢. Hence u(p“ee’) =, u(p’e'e),
and from the induction hypothesis, we get, u(p,e)=rg

uip'e'ey=rgu(p'ee’) =g p(pie’). 1

We are now prepared to prove the main result. According
to MacLane (1971), proving that unfold is the right adjoint
to the inclusion functor from OTS to ETS boils down to
establishing the following result.

THEOREM 5.14. Let TS be an elementary transition
system and Uf(TS) and fold = (f, n) be as defined pre-
viously. Suppose TS,=(S,, Ey, Ty, $5) is an occurrence
transition system and (g, i) is a morphim from TS, to TS.
Then there exists a unigque morphism {(h, 0} from TSy to
U(TS) so that the diagram in Fig. 5.11 commutes.

Proof. We propose the following definition (A, 8):

h: Sy — S is given by Vse Sy h(s)=[u(p)]ss where
sol p> s (In TS,).

0. E, — E is given by

undefined,
VecE,. fle) = if u(e) is undefined,
Culp), ulpe)y,
otherwise where so[ pe> s, In TS,,.
Yy e~ - —51
et / \
-~
- 4 s s
50\ e
~
- \ /
ul — — — '

FIGURE 5.10
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UF(TS) fold(Ts) - TS
»
AN
(h,8) N (g,u)
AN
1S,
FIGURE 5.11

Recall that s, 1s the unique state in 7S, with the property
that 1s, is a non-trivial region with °(1s,)={e}. By the
previous lemma, 4 and € are well-defined total and partial
functions respectively. We need to prove

(1) (A, 0)is a morphism from 7S, to Uf(TS),

(it) (f,me(h 0)=(g u), and
(u1) (h, 8) 1s unique w.r.t. the properties (i) and (ii).

Proof of (1). Letee Eyand (s, e, s) € T,,. Suppose fl{e) is
undefined. We must show that A(s) = A(s'). Assume that
solp' > s  in TS,. Then u(p’) =4 u(p'e). Hence h(s')=
[u(p) ] =[u(p'e)] = his) as required.

So suppose that 6(e) is defined. We then prove that (h(sh,
Oe), his))eT. Let so[ poed s, in TS,. Then B(e) = {u(py),
y(poe)> Since e € past(s), we must have p” EE(, such that

I!|

s.[p"> sin TS,. We now proceed by induction on &k = [p”|.

k=0. Then s—s and therefore soLpoe> s in TS.
Consequently h(s'y=[ulpo)], hisy=[ulpye)], and Ble) =
Lulpo) e)d. Clearly (his), ()(e), hisheT

k> O. Let p" =p,e,. Then from Lemma 4.7, it follows
that (e ue®) N {%e, uel) = & in TS, and there exist states
8, and s} such that the situation shown in Fig. 5.12 obtains.

By the induction hypothesis, (k(s,). O(¢), his\)) e T. If
d(e,) is undefined, then by the previous argument dealing
with the case (¢) undefined, we must have A(s,) = A(s') and
h(s})=h(s). Thus (h(s"), 8(e), h(s)) e T as required.

So suppose that 0(e,) is defined. Then from the fact that
{g, p) is a morphism from 7S, into the elementary transi-
tion system 7S, we at once get (u(e), u(e,)) € I . Therefore
by the definition of the equivalence relation on prime
intervals, we get {u(popier), ulpopieie)y = {plpopi)
ulpep,e)> =0(e) (induction hypothesis). This leads, by
the definition of (A, 0) to the desired conclusion that

(h(s"), O(e), k(s e T.

P0P1

S
/

FIGURE 5.12
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Proof of (ii). As observed in Nielsen et al. (1992), to
prove that (f, n)=(h, 0)= (g, p), it suffices to prove that
f2h=g But this identity follows immediately from the
definitions of fand A.

Proof of (111). Let (4, §') be some morphism from TS,
to Uf(TS) which also satisfies the properties (i) and (i1). As
observed above, it suffices to show that 4= /h', because by
Nielsen et al. (1992) this would imply #=0". Let s€ S, and
sl p> sin TS,. We proceed by induction on &k = | p}.

k=0. Then s=s, and the two morphisms (4, #) and
(h', 8') must satisty h(sy)=[A] =W (s,).

k>0. Let p=p,e, and s,[p,> s, in TS,. Then
(81, ¢,,s)e Ty. By the induction hypothesis a(s,)=H'(s,).

Suppose ule,) is undefined. Since 77> =y and x is total,
it must be the case that d(e,) 1s undefined. Similarly from
n -8 =u and the totality of # we can conclude that 8'(e,) is
also undefined. Now (4, #) being a morphism, we must have
h(s,) = h(s) and similarly A'(s,) = h'(s). Thus h(s) = Hh'(s).

So suppose that u(e;) is defined. Then once again from
nef=u=n-0 we conclude that both 8(e,) and §'(e,) are
defined. Since (4, 8) and (#',#') are morphisms we get
(h(s)), 0(e), his)eT and (K'(s,),0(e)), W (s))eT. Now
h(s\)=[pu(p,)] by the definition of A and h(s)=
[u#(p,)ule,)]. From property (ii) and the definition of
UA(TS), it now follows that A(s)=[u(p,) n(B(e,))] and
His)=[u(p,ynit(e,))]. But n(ble,))=n((e,)) at once
implies that A(s) = h'(s) as required. §

THEOREM 5.15. The map unfold uniquely extends to a
functor which is the right adjoint of the inclusion functor from
OTS to ETS, ie., OTS is a co-reflective full subcategory of
ETS.

Proof. Follows easily from the previous theorem
according to MacLane (1971). |

6. DISCUSSION

Elementary transition systems were introduced in Nielsen
et al. (1992) where they were shown to be the transition
system version of elementary net systems, a basic system
model of net theory. Elementary transition systems were
identified by imposing some axioms on ordinary transition
systems, with the axioms being predominantly formulated
in terms of a structural notion called regions. In this paper,
we have shown that elementary transition systems can also
be used to characterize, at the level of transition systems, yet
another basic model of concurrency, namely, prime event
structures. More precisely, we have shown that by smoothly
strengthening the axioms for elementary transition systems
one obtains a subclass called occurrence transition systems.
This subclass turns to be the transition system version of
prime event structures. We have chosen to phrase this result
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in the language of category theory. Thus our first main
result (Theorem 4.2) states that the categories OTS and
PES are equivalent categories.

Our second main result concerns the unfolding of elemen-
tary transition systems into occurence transition systems.
The fact that one can do so follows from our first main
result (Theorem 4.2), the main result of Nielsen er al.
(1992)-—stated as Theorem 1.6 in this paper—and the
results of Nielsen er al. (1981) adapted for elementary net
systems as in Nielsen et al. (1990). This is informally cap-
tured by the conjecture following Definition 5.4. However,
the question arises as to why this unfolding operation is to
be preferred over the multitude of other unfolding opera-
tions one can think of. (Here is an easy alternative: Unfold
every elementary transition system into the occurrence
transition system consisting of just one state, no events and
no transitions! ). Here, as demonstrated by Winskel (1987),
category theory—modulo the chosen notion of behaviour
preserving morphisms—can be used to provide convincing
evidence that the chosen unfolding operation is the
“correct” one. In this spirit, our second main result
(Theorem 5.15) states that our unfolding operation extends
uniquely to the right adjoint of the inclusion functor from
OTS to ETS. What this means 1s that for every ETS object
TS, the pair (Uf(TS), fold ) consisting of the unfolding of
TS and the associated folding morphism from Uf(TS)to TS
the “best” pair possible; every other pair (OTS, f) where
OTS is an occurrence transition system and f'is 2 morphism
from OTS to TS must uniquely “factor” through the pair
(UA(TS), fold ) as described in Theorem 5.14. This, in our
opinion, is one of the main justifications for using the
language of category theory to describe relationships
between models of concurrency. Through this language, one
can hope to show that constructions that transform one
type of model into another are not just ad hoc translations
but instead enjoy certain universal properties. We refer the
reader to Winskel and Nielsen (1995) for a variety of such
results and further justifications for using the language of
category theory to study models of concurrency.

Admittedly, we have not shown here that the chosen
notion of unfolding indeed corresponds to the well-known
unfolding operation at the net level. As pointed out in
Section 5, we have not established this mainly to avoid a con-
siderable technical expansion of the paper and construction
of arguments that are more or less available in the literature.
We wish to point out, however, that this correspondence
between the unfolding operations in the two worlds does rot
directly lead to a proof of Theorem 5.15. For one thing, as
pointed out in Section 5, Winskel uses—and must use—a
weaker notion of net morphisms (compared to the one used
in Nielsen et al., 1992) to establish his co-reflection between
occurrence nets and 1-safe Petri nets.

It would be interesting to explore the structure of the
nets that arise out of occurrence transition systems. A
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characterization of this class of nets might then lead to a
translation of our unfolding operation in the language of nets.
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