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Let M be a nonconstant polynomial in the polynomial ring RT=Fq[T ] over the
finite field Fq . We show that the universal ordinary punctured distribution on
1
M RT�RT is a free abelian group and determine its rank. We also compute the tor-
sion subgroups of the universal ordinary punctured even and odd distributions.
� 2001 Academic Press

INTRODUCTION

Distributions in the rational function fields were studied by S. Galovich
and M. Rosen in studying the arithmetic of cyclotomic function fields.
However, punctured distributions were not fully discussed in their papers.
In this article we introduce an ordinary punctured distribution other than
those appeared in Galovich and Rosen [3], but used by Ennola [1] and
Schmidt [7, 8] without the notion of distributions. Using this we prove
that the universal ordinary punctured distribution is a free abelian group
of rank ,(M)+?(M)&1 (see below.). Then we show that up to the torsion
and the roots of unity all the relations between cyclotomic units in function
fields are consequences of the distribution relation of the torsion points of
the Carlitz module. Finally we compute the torsion subgroups of the
universal punctured even and odd distributions in the rational function
fields. Recently L. Yin extended the concept of distributions to the case of
global fields [10]. We fix the following notations:

RT=Fq[T ]

k=Fq (T )

RT (M)= 1
M RT�RT , for a monic polynomial M of RT

*M=a primitive M th root of the Carlitz module \
,(M)= the Euler , function

?(M)= the number of monic irreducibles dividing M
vP= the P-adic valuation of k, where P is an irreducible polynomial

in RT .
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The term ``�A mod B '' always implies that the sum is over the polynomials
A with deg A<deg B. The term ``�A mod *B'' implies that the sum is over
the polynomials A relatively prime to B with deg A<deg B.

1. DISTRIBUTIONS

A distribution is a family of functions

[ fN : RT (N) � V | N # RT , monic],

V an abelian group, such that for N | M and deg A<deg N we have

fN \A
N+= :

B#A mod N

fM \ B
M+ . (V)

A distribution of level M is a family of functions

[ fN : RT (N) � V | N divides M, monic],

which satisfies (V). A punctured distribution is such a family which is
not defined at 0 but satisfies the relation for A{0. A distribution is said
to be ordinary if fM ( A

M)= fN( B
N) when A

M= B
N . In this case the family [ fN]

can be replaced by a single function f : k�RT � V (RT (M) � V in the case
of level M). In this article we are interested mainly in the ordinary
punctured distributions. A distribution is said to be even (real in the
terminology of [2]) if fN(:x)= fN(x) for every : # Fq* and every monic N,
and odd if �: # F*q

fN(:x)=0. Note that for a distribution [ fN],
[hN(x)=�: # F*q

fN(:x)] is an even distribution and [gN=(q&1) fN&hN]
is an odd distribution. In the following we denote \A (x) by xA for
simplicity.

Example 1. It is shown in [2, Proof of Lemma 5], that the function
A
M [ *A

M is an even ordinary punctured multiplicative distribution. Thus for
each place ^ of k the map .P( A

M)=v^ (*A
M), where v^ is a fixed extension

of vP to k(*M), is an even ordinary punctured distribution. If P divides M
and ^1 and ^2 are two places over P, then .^1 ( A

M)=.^2 ( A
M). In this case

we write .P instead of .^ for any place ^ over P.

The Galois group G of k(*M) over k is isomorphic to (RT �M)*. We fix
an isomorphism A [ _A so that _A (*M)=\A (*M).
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Example 2. Let /: Fq* � C* be a nontrivial character. Let

3/ \A
M+=3/

M \A
M+

={�X mod *M /~ M (AX) _&1
X ,

0
if M |% A
otherwise,

where /~ M (B) is the value of / at the leading coefficient of C which is con-
gruent to B modulo M and deg C<deg M. Then it is an ordinary /-dis-
tribution, that is, 3/ (:x)=/(:) 3/ (x) for : # Fq*. In particular 3/ is an
odd distribution. Again 3/ is the distribution St(,/) in [3].

Let S be the set of all nonzero polynomials of degree less than deg M.
Let V be a free abelian group of rank qdeg M&1 with basis [eA ; A # S].
For a nonconstant polynomial D dividing M and a nonzero polynomial X
of degree less than deg M&deg D, we define

a(D, X)=eXD& :
Y mod D

eX+Y(M�D) .

For a polynomial X in S we define

n(X)= :
: # F*q

e:X ,

and

n$(X)=eX&e#X ,

where # is a fixed generator of Fq*. Let U be the subgroup of V generated
by a(D, X)'s. Let R1 be the subgroup of V generated by U and n(X), and
R$1 the subgroup generated by U and n$(X). An ordinary distribution is
called universal if it is an initial object in the category of ordinary distribu-
tions. The universal ordinary punctured (even or odd) distribution (of level
M) is defined in a similar way. Then A=V�U is isomorphic to the sub-
group generated by the images of RT(M) under a universal ordinary
punctured distribution of level M, V�R$1 is isomorphic to the subgroup
generated by the images of RT (M) under a universal even ordinary
punctured distribution of level M, and V�R1 is isomorphic to the subgroup
generated by the images of RT (M) under a universal odd ordinary
punctured distribution of level M.

Let �i , i=1, ...,,(M)
q&1 , be the places of k(*M) over �. Define

8M : RT (M) � Q,(M)�(q&1)+?(M)
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by

8M \A
M+=\.�i \A

M+ , .P \A
M+ : i=1, ...,

,(M)

q&1
, P | M+ .

Lemma 1.1. The abelian group generated by 8M (RT (M)) has rank at
least ,(M)

q&1 +?(M)&1.

Proof. It is clear, by definition, that .P( 1
P)= 1

,(P) and .Q ( 1
P)=0 for

P{Q. We know that �A mod M cA .P ( A
M)=0 for every P dividing M if and

only if >A mod M (* A
M)cA is a unit, and that the group of cyclotomic units

has rank ,(M)
q&1 &1. Then various combinations of the vectors 8M ( A

M) give
the valuations of the ,(M)

q&1 &1 independent units and the P-components of
these vectors are 0. Thus these vectors and 8M ( 1

P)'s, P | M a prime, are
linearly independent.

The following proposition is the analog of Proposition 12.11 of [9], and
the proof is exactly the same.

Proposition 1.2. Let f be the universal punctured ordinary distribution.
Then the subgroup generated by f (RT(M)) requires at most ,(M)+
?(M)&1 generators.

Suppose that h+ and h& are any two punctured distributions with h+

even and h& odd. Let H + (resp. H &) be the group generated by h+

(RT (M))(resp. h& (RT (M))). Define

h \A
M+=\h+ \A

M+ , h& \A
M++ # H+�H&.

Let H be the subgroup generated by h(RT (M)). Then

:
: # F*q

h \:A
M+=((q&1) h+ \A

M+ , 0+ # H

and

(q&1) h \A
M+& :

: # F*
q

h \:A
M+=\0, (q&1) h& \A

M++ # H.

Hence

(q&1) H+ � (q&1) H&/H/H +�H &,

so rank(H)=rank(H+)+rank(H&). Then Lemma 1.1, Proposition 1.2,
and Proposition 3.4 of [3] give the following theorem.
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Theorem 1.3. Let f be a universal ordinary punctured distribution. Then
the subgroup generated by f (RT (M)) is a free abelian group of rank
,(M)+?(M)&1.

For an ordinary distribution f of level M we can define a homo-
morphism f� on V by f� (� nXeX)=� nX f ( X

M). From now on we will not
distinguish distributions and homomorphisms on V induced by the distri-
butions and drop the tilde from the notation.

2. RELATIONS BETWEEN CYCLOTOMIC UNITS

From now on we assume that M is a monic polynomial. We say that a
multiplicative homomorphism

9: (RT�M)* � C*

is a polynomial-Dirichlet character, or simply, a character. Then as in the
classical case the conductor of a character is defined. As usual 91 denotes
the trivial character. We say that 9 is even if 9(:A)=9(A) for every
: # Fq* , and odd otherwise.

Let

R= ,
/{/1

ker 3/
M ,

and

R$=ker 8M .

Then it is clear that R1 /R and R$1 /R$.

Remark. R$ is the analog of ker (3) in [1]. In [1] the distribution .P did
not appear, but we have to use .P to define R$. The reason for this is that
in the classical case log p's for different prime numbers are algebraically
independent, but in the function field case logq |P|� 's are all integers.

Let r=�A # S cAeA be an element of V, and 9 a character with conduc-
tor F. For a nonconstant monic polynomial D dividing M and F | D, we
define

T(9, D, r)= :
A mod *D

9(A) C(M�D) A
.
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In case deg F�1, let

Y(9, r)= :
D, F | D | M

1
,(D)

`
P | D

(1&9� (P)) T(9, D, r).

Remarks. (1) It is clear from the definition that Y(9, r) is the analog
of Y(/, R) and .P(r) is the analog of Yp (R)�,( p# p) of [1].

(2) From the definition of 8M we may view R$ as the relation sub-
group of cyclotomic units.

In this section we are going to prove the following three theorems.

Theorem 2.1. Let r # V. Then r # R$ if and only if

Y(9, r)=0

for every even character 9{91 with conductor dividing M, and

.P(r)=0,

for every prime P dividing M.

Theorem 2.2. r # U if and only if

Y(9, r)=0,

for every nontrivial character 9 with conductor dividing M, and

.P(r)=0,

for every prime P dividing M.

Theorem 2.3. If r # R$, then (q&1) r # R1$ .

Proof of Theorem 2.1. Assume that 9 is even. Choose *N=
!(N) e(N) (1), where !(N) NRT is the lattice associated with the Carlitz
module \ and e(N) the lattice function corresponding to the ideal (N). Then
for M=ND, *D=\N(*M). Let F9 be the conductor of 9. For a non-
constant polynomial D such that D | M, F9 | D, define

S(9, D)=ln q :
X mod *D, monic

9(X) logq |*X
D |�

and

S(9)=S(9, F9).
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If 9{91 , then from Proposition 7.15 of [5]

S(9)=&(q&1) L$(0, 9){0,

where L(s, 9) is the L-function of RT , and from Lemma 6 of [2]

S(9, D)= `
P | D, monic

(1&9(P)) S(9).

As in the classical case

S(91 , D)=ln q : logq |*X
D | �=ln q } logq | ` *X

D | �

={
ln q

q&1
deg P,

0,

if D is a power of a prime P

otherwise.

Then from the definition of S(9, D) we have

ln q } logq |*X
D |�=

q&1
,(D)

:
9 even, F9 | D

9� (X) S(9, D),

for D | M, D nonconstant, (X, D)=1.

For r=�X mod M cX eX , define

r$= :
X mod M, monic

c$X eX ,

where c$X=�: # F*q
c:X . Then it is clear that r # R$ if and only if r$ # R$,

because v(Fq*)=0 for any valuation v of k. Thus we may assume that
cX=0 if X is not monic. Then as in [1] we have

(q&1) :
9{91, even, F9 | M

9� (K) S(9) Y(9� , r)+ln q :
P | M

.P(r) deg P=0,

for every K prime to M if and only if r # R$. Since .P(r)=0 for r # R$
by the definition of 8M ,we get the result on multiplying by 9(K) and
summing over K.

Proof of Theorem 2.2. The necessity is exactly the same as in the classi-
cal case. The lemmas in [1] hold with only minor changes, so we do not
state them explicitly. We are now going to prove the sufficiency.
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Let r be any element of V such that Y(9, r)=0 for every 9{91 and
.P(r)=0 for every prime P dividing M. Assume that 2(r)=1, where 2 is
defined as in [1, Sect. 5]. Define rP and r� P as in [1]. Then we get

rP&r� P=c(P) : eMX�PvP(M) ,

where the sum runs over the X 's of degree less than vP(M) deg P and
prime to P. Since .P(rP&r� P)=0, c(P)=0. Therefore rP # U. The rest of the
proof is almost the same as in [1].

Proof of Theorem 2.3. Let r=�X mod M cXeX belong to R$. Let

r$= 1
2 :

X mod M, monic
\ :

:, ; # F*q

(c:X&c;X)(e:X&e;X)+ .

Then it can be easily verified that r$ is in R$1 and

r"=(q&1) r&r$= :
X mod M \ :

: # F*q

c:X+ eX .

Thus the coefficients of e:X in r" are the same for any : # Fq*. Then
Y(9, r")=0 for any odd character 9. Thus r" lies in U by Theorem 2.1
and Theorem 2.2, and we get the result.

3. TORSION OF PUNCTURED DISTRIBUTIONS

It is easy to see that V is a G-module via _A (eX)=eAX . Let J be the
subgroup of G consisting of _: with : # Fq*. Let

NJ= :
: # F*q

_: and IJ=1&_# ,

where # is a generator of Fq*. In this section we are going to compute the
torsion subgroups of the modules V�(U+IJV) and V�(U+NJ V). Note
that U+IJV is isomorphic to R1 and U+NJV is isomorphic to R$1 . In
the following T(B) denotes the torsion subgroup of a group B.

Lemma 3.1. We have

(a) H0 (J, A)=T(A�NJ A)=T(V�(U+NJ V)).

(b) H&1 (J, A)=T(A�IJ A)=T(V�(U+IJV)).

Proof. Once we have Theorem 2.2, the proof is exactly the same as the
classical case (cf. [8, Lemma 2.1]).
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Lemma 3.2. r # R if and only if for each odd character 9 of (RT�M)* we
have Y(9, r)=0.

Proof. Under the fixed isomorphism between (RT�M)* and G=
Gal(k(*M)�k) we can view a character 9 of (RT �M)* as a function on G.
Suppose that, for a nontrivial character / of Fq* and a nontrivial character
9 of (RT�M)* with conductor F9 |M, we have

9 \3/
M \ 1

M++=9 \3/
F9 \ 1

F9++ `
P | M

(1&9� (P)), (1)

and

9 \3/
M \X

M++={9(X0) 9 \3/
M0 \ 1

M0++
,(M)
,(M0)

, if F9 | M0

0, otherwise,

where X=(X, M) X0 and M=(X, M) M0 . It is shown in [3], Proposi-
tion 3.4, that 9(3/

F9
(1�F9 )){0 if and only if 9=/ on Fq*. Then the

result follows from the same argument as in [7, Satz 1], if we prove (1) and
(2). But we should note that we do not have the condition that
�0{X mod M cX=0 because 91 (3/

M(X�M))=0 for each nontrivial character
/ of Fq*. (1) is just a special case of Proposition 3.1 of [10]. For (2) we first
note that if B#B$ mod M0 , then /~ M (XB)=/~ M (XB$). Also it is not hard to
show that /~ M (XB)=/~ M0

(X0B). Then we have

3/
M \X

M+=3/
M0 \X0

M0+ :
A # S0

_&1
A ,

where S0=[A # RT : deg A<deg M, (A, M)=1, A#1 mod M0]. Then one
can follow the proof of Lemma 2 of [7] to get (2).

Lemma 3.3. We have

(a) T(V�(U+NJV))=R�(U+NJV)=R�R1 .

(b) T(V�(U+IJV))=R$�(U+IJ V)=R$�R1$ .

Proof. It is clear from the definitions that R1 /R, R$1/R$, and both
R and R$ are torsion free. Thus for (a) it suffices to prove

(q&1) R/U+NJV.
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For r=� cX eX # R define

r$= 1
2 :

X mod M, monic
\ :

:, ; # F*q

(c:X&c;X)(e:X&e;X)+
=(q&1) r& :

X mod M, monic \ :
: # F*q

c:X+ n(X)

as in the proof of Theorem 2.3. Then .P(r$)=0 and Y(9, r$)=0 for even
character 9 from the first expression of r$ above. Also Y(9, r$)=0 for odd
character 9 from the second expression of r$ and Lemma 3.2. Thus we
see that r$ # U using Theorem 2.2, and (q&1) r&r$=�X mod M, monic

(�: # F*q
c:X) n(X) # NJV.

For (b) it suffices to prove that (q&1) R$/R$1 which is the content of
Theorem 2.3.

Corollary 3.4. We have

(a) R�R1 &H 0 (J, A).

(b) R$�R$1&H &1 (J, A).

For each monic prime P dividing M let TP be the inertia group at P in
G and TP be defined modulo M by

TP #1 (mod PvP(M)), TP #P (mod M�PvP(M)).

For a monic divisor D of M let

HD=[_A ; A#1(D)].

Let A be the Z[G]-submodule of Q[G] generated by the elements

:D= :
_ # HD

_ `
P | D \1&_&1

TP

1
|TP | \ :

{ # TP

{++ .

Let

|= :
9{90

,(F9) e9 eM�F9
,

where e9=1� |G| �_ # G 9(_&1) _. A and | are first defined by Galovich
and Rosen in [4].

Lemma 3.5. For each nonconstant monic divisor D of M both ( |G|&
�_ # G _) V and :D| lie in (.P)&1 (0) for every prime P dividing M.
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Proof. For each _ in G, _eX=eXY for some polynomial Y prime to M.
Hence .P(eX&_eX)=0 for every P dividing M. Since the unit group of
OM , the ring of integers in k(*M), is stable under the action of G, we get
the result.

Now one can follow the arguments in [8] to show that the G-modules
( |G|&�_ # G _) A and (1&e90

) A are isomorphic. It is shown in [4,
Proposition 5.3] that Hn (J, A)& (Z�(q&1))2?(M)&1

. Almost the same argu-
ment as in [8, Lemma 4.1 and Lemma 5.1] gives

Lemma 3.6. H2n (J, (1&e90
) A)& (Z�(q&1))2?(M)&1&1, and

H2n&1 (J, (1&e90
) A)& (Z�(q&1))2?(M)&1

.

Lemma 3.7. (a) AG is a free abelian group of rank ?(M) with basis

B={bP= :
V mod *P

e� V(M�P) ; P | M= .

Here e� means the image of e in A.

(b) AG�(NJA)G=0.

Combining all the results in this section we get

Theorem 3.8. We have

H2n (J, A)& (Z�(q&1))2? (M)&1&1,

and

H2n&1 (J, A)& (Z�(q&1))2? (M)&1&?(M).
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