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Abstract
Though modern data often provides a massive amount of information, much of the insight might 

be redundant or useless (noise). Thus, it is significant to recognize the most informative features of 
data. This will help the analysis of the data by removing the consequences of high dimensionality, in 
addition of obtaining other advantages of lower dimensional data such as lower computational cost 
and a less complex model. Modern data has high dimension, sparsity and correlation besides its 
characteristics of being unstructured, distorted, corrupt, deformed, and massive. Feature extraction has 
always been a major toll in machine learning applications. Due to these extraordinary features of   
modern  data, feature extraction and feature reduction  models and techniques have even more 
significance in analyzing and understanding the data.
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1 Introduction
Feature reduction and al its related topics of feature selection, feature extraction or dimension 

reduction have a long history in statistical analysis [22]. The main purpose for the application of 
feature reduction has been to reduce the amount of data and its complexity, to save time and cost and 
to make analysis more effective and simpler.

There have been a variety of algorithms and models used for feature reductions. Some of these 
algorithms include the ones using clustering, CUR, PCA/SVD [22].

In this work, a data matrix X of m by n dimensions is defined  with its m rows  called users 
(objects, observations, customers, Items, measurements, replications Records). The data matrix  n 
columns are called features (variables, covariates, predictors, dimensions, attributes, factors, 
regressors, inputs, fields, and so on). 
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2 Feature Extraction and Dimensional Reduction for Modern 
Data

The enormity of the observed and collected modern data is of great advantage in machine learning, 
data mining, data analytics and all related fields. Apart from its massive size, modern data has some 
other unique features such as high dimensionality, high sparsity, non-Gaussian distribution, high 
correlation, unstructured format, and high frequency (data stream). Unfortunately, the commonly used 
phrase of “big data” cannot possibly describe the characteristics of “modern data”. Modern data 
possesses distinct features that forcing the data science and all its related areas to come up with 
innovative solution in dealing with today data.  

These features of modern data have brought fundamental challenges for data  science. Some of 
these difficulties are related to “data storage”, “data management”, “data platform architecture” and 
“data collection techniques”. Analytical and modeling challenges are perhaps the most serious ones in 
dealing with modern data. They include high computational cost and scaling related adjustments. The
curse of dimensionality poses even more significant challenge in analyzing modern data. Some 
examples of these are;

                           

1. Because of Curse of dimensionality, you may get patterns by chance
2. Learning from data is accompanied by overfitting
3. Random and noisy but false model validation

The modern data properties of high level of sparsity and  high dimensionality introduce another major 
difficulty for  data science since the definition of distance and hence similarities/dissimilarities are not 
well-defined for high dimensional and sparse data. Due to the fact the data is lying in high dimension
and is also very sparse, data points tend to be places at the edges of the high dimensional space and 
thus the distances are very large. As a result, the usual distance metrics would compute data points 
distances to be maximum and all objects are rendered to be dissimilar.

Since Gaussian noise distribution  is not a valid assumption for the modern data, many available 
models that are based on Gaussian distribution assumption, cannot be readily applied to the analysis 
and modeling  of modern data.

Though, modern data has some advantageous properties that could help us in its modeling and 
analysis. Some of these helpful features are:

1. Concentration of measure
2. Existence of structure
3. Massive size
4. High Correlation
5. Rand  deficiency of the data matrix X, i.e., 

rank(X)<< min(m,n),  indicating X is severely ill- conditioned.

2.1 Feature Selection as a Means for Data Analysis

The main task of machine learning is to make actionable and useful insights from the massive 
amount of modern data. The data has very large dimension representing much knowledge and 
information. In the past, the amount of data collected was limited and mostly gathered through 
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controlled experimentations  and it was carefully done so basically a targeted selected data would be 
observed or measured. The data gathered this way was mostly very relevant data to the analysis that 
the data was collected for. Today, though, we have access to huge  volume of the data, in part since the 
cost of collecting the data is negligible.

Though, as a consequence we collect much of irrelevant (noise) data. But how do we know which 
part of data has hidden information knowledge about the metrics (phenomena) we are interested in and 
which part of the data does not. This is very crucial to recognize the portion of the data having impact 
on our metrics. This, in no small part, is  important because of the curse of dimensionality which 
makes any analysis of data impossible. Other good reasons for this is to save storage, making analysis 
faster and more stable and to provide more intuitive understanding of the data.

As an example of using feature extraction in machine learning is to find out which of the users  or 
visit sessions’ attributes  have the most significant with respect to the general areas of  online targeting 
and campaign more  efficient. By recognizing these important features, we could stress more resources 
and focus on them to make our online campaign more effective.

There are many methods for feature selections in machine learning, data mining and data analytics 
fields. These methods are divided into two classes of supervised and unsupervised feature selections. 
For unsupervised feature selection approaches, unlike the supervised ones, the data is not labeled in 
the sense that there is no specific output or particular application of data in mind when using  feature 
selection models. Another division of feature selection methods is based on whether we select a new, 
though smaller number, of features that are combination of the old features or we select a subsection 
of the original features. The first methods are called  “feature selection” and the latter types of 
approach is called “feature extraction”. Feature extraction has the advantage of recognizing a smaller 
group of the original features and thus related directly to the original data.  Feature selection methods 
use  some  combination of the original features, thus making interpretation of the new features non 
trivial. Both “feature reduction”  approaches of  “feature selection” and “feature extractions” are 
examples of data “dimension reduction”.

In general, and for both types of feature reduction models, we have two criteria of correlation and 
variation of data in mind. In the sense that the reduced features must represents the correlation and or 
variation of the original data well.  In choosing the best model and algorithm for feature reduction,
there is often a tradeoff  between  variation- and –correlation representation of the original data in the 
new space. In other words the projection of the data onto a reduced dimension space considers the best 
projection or approximation of the data by having the variation and correlation of the data as the 
objective function to be optimized.

3 Description of the Feature Extraction Model Using SVD

In this section, we describe the feature extraction model that is based on principal component 
analysis of our data matrix X. PCA uses singular value decomposition of the centered X and thus is 
equivalent to SVD for the purposes of this work.              

3.1 Singular Value Decomposition (SVD)

For any matrix X (m by n), SVD exists and is unique up to the  signs. The singular value 
decomposition for the data matrix  X  is;=
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Where:  U, the left singular vectors,  is m×n  orthogonal matrix,
                                 = =

V, the right singular  vectors, is n×n  orthogonal matrix

                                 = =           and D = diag ( , , … , ) with the singular vectors;
                                 . 0

Using a threshold (often it is 80%-90%) for the amount of original data variation explained by the new 
features leads to the selection of a small number (k) of the new features. These new features contain a
weighted combination of all of the original features. Thus, SVD cannot be directly used for feature 
extraction because the new features (columns of U) combine the original features (columns of X). In 
this work, we impose rank constraints on the singular value decomposition to have only a selected
limited number of nonzero factors in each new principal coordinates (columns of U). This will lead to 
extraction of original features with their significance. The model follows the following steps;

Step (1) Matrix completion: All missing values of matrix X is computed at this step using an iterative 
svd algorithm [60]. The algorithm has the following steps:

For a centered X ;
Step (1.1) compute 

,  , to obtain , and 

For  q= numerical rank of the matrix.
Step(1.2) compute  the   rank –q of  X; =

             using newly computed , we have new values for the missing entries.

             Step (1.3) Iterate steps (1.1) and (1.2) till convergence ;

                         ( )  -  ( )  / ( ) 
              for small .

Step (2) Computing rank constrained SVD;

Using  Rank-1 approximation to our data matrix X;

            argmin( , , )    . .  = =1 

           With the rank constraints;                                                        and    
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Since norm-zero computation is NP hard problem and thus  not feasible, we use a 
surrogate constraint (second norm), or equivalently

            argmin( , , )    . .  = =1  with the constraints of;                                                and    
Equivalently, Using Minimum Reconstruction Error [32] in     Approximating   X               argmin( , , )    . .  = =1 also    and    

Which is equivalent to

              argmin( , , )    . .  = =1 also    and    
Similarly, since norm-zero computation is not tractable, a surrogate constraints of norm one is 

used. [32,33,60 ]

4 Results
The model in section 3 has been applied to two different  data sets. The first example  is a 2722×122 
matrix containing the length of time spent by users on different sites (variables).

Figure 1 shows the most significant features with their significance.  

The second example is a data matrix is of 75715×12 dimension containing the conversion of 
different ad campaigns for a variety of regions (variables). Figure 2 shows the most significant 
features with their significance for the second data set.
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Figure 1. the most significant features  with their significance for the data matrix in
Example1.
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.

The test is done by using the extracted features for SVD (PCA) computation. We see the difference 
between k-rank svd for both cases in terms of the relative error based of  Euclidean difference between 
the new coordinates in both cases.
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Figure 2. the most significant features  with their significance for the data matrix in
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