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a b s t r a c t

Let X1, . . . , Xn denote a set of n independent identically distributed k-dimensional
absolutely continuous random variables. A general class of complete orderings of such
random vectors is supplied by viewing them as concomitants of an auxiliary random
variable. The resulting definitions of multivariate order statistics subsume and extend
orderings that have been previously proposed such as norm ordering and N-conditional
ordering. Analogous concepts of multivariate record values and multivariate generalized
order statistics are also described.
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1. Introduction

Let X1, . . . , Xn denote a set of n independent identically distributed k-dimensional absolutely continuous random
variables. Several papers have recently appeared in which efforts were made to supply suitable definitions of multivariate
order statistics in this context (e.g. [1–4]). In this paper we point out that all of these definitions can be subsumed by an
ordering induced by considering the X i’s as concomitants of some continuous univariate random variable for which classical
order statistics are, of course, well defined. Analogous definitions are available for generalized multivariate order statistics,
multivariate record values and progressively censored multivariate variables in terms of multivariate concomitants.
The paper is organized as follows. In Section 2 the concomitants approach is presented. In Section 3 the distribution of

the j’th multivariate order statistic is obtained. In Section 4 the conditionally ordered multivariate variables are presented
as a special case. In Section 5 some extensions of the concomitants approach are analyzed. In Section 6 some examples are
given to illustrate the proposed methods.

2. Multivariate concomitants

Let (X i, Yi), i = 1, . . . , n, be independent identically distributed (i.i.d.) random variables. Assume that the X i’s are
absolutely continuous k-dimensional random variables with common joint density fX (x) and distribution function FX (x). In
addition, assume that the Yi’s are univariate random variables and have a common continuous distribution function FY (y).
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Note that we do not require that the (k+ 1)-dimensional random variables (X i, Yi) be absolutely continuous. Since the Yi’s
have a continuous distribution, their order statistics are unambiguously defined in the usual manner. For j = 1, . . . , n, the
j’th k-dimensional concomitant of the Yi’s is defined to be the X variable associated with the j’th largest Y variable (i.e. with
Yj:n). It will be denoted by X [j:n].
Inmost discussions of concomitants, we view the Y ’s as being ordered and view the X ’s as only being variables associated

with the ordered Y ’s. The construction can however be used to define a total ordering on the X ’s as follows. The smallest
X is the concomitant of Y1:n, the second smallest X is the concomitant of Y2:n, etc. This ordering of the X ’s depends on the
conditional distribution of Y given X . For any choice of the conditional distribution FY |X (y|x) a total ordering of the X ’s will
be well defined.
Thus, instead of being confronted with a lack of total orderings of the X ’s, we are possessed of an embarrassment of

riches, in terms of a plethora of total orderings associated with the many possible choices for FY |X (y|x). Typically we use
the notation X

[j:n] to denote the j’th concomitant. In the present context, since we are using the concomitant structure to
induce an ordering of the X ’s, we will use the notation X j:n and speak of this random variable as the j’th smallest X . The set
X1:n, . . . , Xn:n will be called the (multivariate) order statistics of the random sample of X ’s, though to be precise we should
speak of them as being the (FY |X )-order statistics.

3. The distribution of the j’th multivariate order statistic

For j ∈ {1, . . . , n} and for a fixed choice of FY |X , consider the distribution of X j:n (which we recall is, in fact, equal to X [j:n],
the j’th concomitant). For any k-dimensional Borel set Bwe have

Pr(X j:n ∈ B) = Pr(X [j:n] ∈ B)

=

n∑
k=1

Pr(Xk ∈ B and Yk is the jth largest among (Y1, . . . , Yn))

= n Pr(X1 ∈ B and Y1 is the jth largest among (Y1, . . . , Yn))

= n
(
n− 1
j− 1

)
Pr(X1 ∈ B, Y1 > Yl, l = 2, . . . , j, Y1 < Yl, l = j+ 1, . . . , n)

= n
(
n− 1
j− 1

)∫
· · ·

∫
B
fX1(x) Pr(Y2, . . . , Yj < Y1 and Yj+1, . . . , Yn > Y1|X = x)dx

= n
(
n− 1
j− 1

)∫
· · ·

∫
B

∫
∞

−∞

fX1(x) Pr(Y2, . . . , Yj < y and Yj+1, . . . , Yn > y|Y1 = y, X = x)dxdFY |X (y|x)

= n
(
n− 1
j− 1

)∫
· · ·

∫
B

∫
∞

−∞

fX1(x)[FY (y)]
j−1
[1− FY (y)]n−jdxdFY |X (y|x).

From this we obtain the density of X j:n in the form

fX j:n(x) = n
(
n− 1
j− 1

)
fX (x)

∫
∞

−∞

[FY (y)]j−1[1− FY (y)]n−jdFY |X (y|x). (3.1)

By analogous arguments, we may obtain the joint density of several of the order statistics of the X ’s. Thus for 1 ≤ j1 <
· · · < jm ≤ nwe have

fX j1 :n,...,X jm :n(x1, . . . , xm)

= n!
m∏
l=1

fX (xl)
∫
∞

−∞

m+1∏
l=1

[FY (yl)− FY (yl−1)]
jl−jl−1−1

(jl − jl−1 − 1)!
I(y1 < · · · < ym)dFY |X (y1|x1) · · · dFY |X (ym|xm)

where we have used the notational convention that y0 = −∞, ym+1 = ∞, j0 = 0 and jm+1 = n+ 1.
Example 1: Suppose that (X1, X2, Y ) has a trivariate normal distribution with (for simplicity) mean vector (0, 0, 0) and
variance–covariance matrix

Σ =

(1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
.

It follows that the conditional distribution of Y given (X1, X2) = (x1, x2) is univariate normalwithmeanρ(x1+x2)/(1+ρ)
1
=

δ(x1 + x2) and variance (1 + ρ − 2ρ2)/(1 + ρ)
1
= τ 2 while the marginal distribution of Y is normal (0, 1). It follows that

the distribution of X j:n will be of the form

fX j:n(x) = n
(
n− 1
j− 1

)
fX (x)

∫
∞

−∞

[Φ(y)]j−1[1− Φ(y)]n−j
1
√
2πτ

exp−
1
2
(y− δ(x1 + x2))2

τ 2
dy.
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We remark that it is clearly possible to define record values of the X ’s as concomitants of the record values of the Y ’s,
and to consider progressively censored X ’s as concomitants of progressively censored Y ’s. See [5] for detailed discussion of
progressive censoring of ordinary order statistics. Some more details on these constructions will be provided in Section 5.
In the next section we discuss the relationship between the present concomitant based definition of order statistics and the
concept of conditionally ordered multivariate variables, introduced by Bairamov [6].

4. Conditionally ordered multivariate variables as a special case

Bairamov [6] (extending initial work by Bairamov and Gebizlioglu [1]) introduced a concept of conditional ordering of
k-dimensional random variables. We will verify that this may be viewed as a special case of concomitant based ordering.
Bairamov begins with X1, . . . , Xn, a set of i.i.d. absolutely continuous k-dimensional random variables. He then considers

amappingN : Rk → R. The functionN(x) is assumed to be a continuous function. It is also assumed thatN(x) ≥ 0, for every
x ∈ Rk with N(x) = 0 iff x = 0. With these assumptions, it is asserted that the random variables N(X1), . . . ,N(Xn) will be
i.i.d. continuous random variables and consequently will have unambiguously ordered values (no ties). He then defines an
ordering on Rk by x<N y if N(x) < N(y). The conditionally N-ordered statistics are then defined to be X

(N)
1:n , . . . , X

(N)
n:n where

X (N)j:n is the j’th largest of the X ’s with respect to the ordering <N . It is apparent that it is not necessary to restrict N to be a
non-negative function and it would appear that, to avoid ties among the N(X j)’s, we need to assume that, for every c ∈ R,

µ(k)({x : N(x) = c}) = 0, (4.1)

where µ(k) denotes k-dimensional Lebesgue measure. For a suitable choice of the function N(x), Bairamov [6] defines the
structural function hN(x) by

hN(x) = Pr(N(X) ≤ N(x)).

With this notation, the density of X (N)j:n , the j’th N-conditionally ordered statistic, is given by

fX(N)j:n
(x) = n

(
n− 1
j− 1

)
[hN(x)]j−1[1− hN(x)]n−jfX (x). (4.2)

This should be compared with (3.1), which provides the density of the j’th concomitant ordered statistic.
The link between the two expressions is provided by defining Y = N(X), i.e. by considering a joint distribution for (X, Y )

in which Y is a deterministic function of X . In such a case, the conditional distribution of Y given X = x is degenerate at N(x)
and (3.1) becomes

fX(N)j:n
(x) = n

(
n− 1
j− 1

)
[FN(X)(N(x))]j−1[1− FN(X)(N(x))]n−jfX (x),

which, recalling the definition of hN(x), coincides with (4.2).
In most of the examples considered by Bairamov [6] (and Bairamov and Gebizlioglu [1]), the function N(x) was chosen

to be a measure of the ‘‘size’’ or norm of the vector x. In this fashion the X ’s are ordered with respect to their relative ‘‘sizes’’,
in direct analogy to the univariate case. However, there is no need to restrict N(x) to be of such a form. It is only necessary
that (4.1) holds for the function N(x) in order to define conditional N-ordering.
The idea of using a function such as N(x) to induce an ordering on the X ’s had been discussed prior to the publication of

Bairamov and Gebizlioglu. Reiss [7, p. 66] speaks of totalψ-ordering and refers to [8] for the definition. Later Kaufmann and
Reiss [9] refer to the ordering as g-ordering.
Kaufmann and Reiss [9] point out that conditional ordering associated with the function N(x) = ‖x − x0‖, for some

specified point x0 in Rk, occurs quite naturally in the context of nearest neighbor analysis.

5. Remarks

5.1. Record values

(i) Concomitant based definition. Let {(X i, Yi)}
∞

i=1 be a sequence of absolutely continuous i.i.d. random variables with the
X ’s being of dimension k and the Y ’s of dimension 1. A convenient reference for the definition and elementary properties
of record values is [10]. Let T (0), T (1), . . . denote the record times associated with the sequence {Yi}∞i=1 and let {Y(i)}

∞

i=0
denote the corresponding sequence of record values of the Y ’s. Thus Y(i) = YT (i), 1 = 0, 1, . . .. Note that, by convention,
Y1 is a record, the zeroth record, so T (0) = 1. The sequence of concomitant based record values of the X ’s is defined
by identifying X (i), the i’th record among the X ’s, to be the X concomitant of the i’th record Y(i). The density of this i’th
record is then given by

fX(i)(x) =
∫
∞

−∞

fX |Y (x|y)fY(i)(y)dy.
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(ii) Conditional N-record values. In this case Y = N(X) and the i’th record X (i) is defined to be XT (i) where T (i) is the i’th
record time for the sequence {N(X i)}

∞

i=1. If we define Yi = N(X i) then we may obtain the following expression for the
density of X (i):

fX(i)(x) = fX (x)
∫ N(x)

−∞

fY(n−1)(y)

1− FY(n−1)(y)
dy.

5.2. Progressive censoring and other generalized order statistics

Concomitants of generalized order statistics of the Y ’s can viewed as generalized order statistics of the X ’s. See [11] for
details on generalized order statistics. This includes progressively censored samples. See [6] for some specific expressions
for N-conditional progressively censored samples.

5.3. Jones constructions

Beginning with a univariate density fX (x) one way to write the density of the i’th order statistic is as

fXi:n(x) =
FX (x)i−1[1− FX (x)]n−i

B(i, n− i+ 1)
fX (x). (5.1)

Jones [12] suggested the construction of an extended family of distributions analogous to (5.1) of the form

f (x;α, β) =
F(x)α−1[1− F(x)]β−1

B(α, β)
f (x), (5.2)

where α > 0, β > 0. Perhaps the easiest way to confirm that (5.2) is indeed a valid density function (i.e. integrates to 1)
is to consider a random variable Y ∼ B(α, β). It is then easy to verify that F−1(Y ) has (5.2) as its density, confirming that
(5.2) is a valid density. Our discussion of multivariate order statistics leads naturally to a k-dimensional extension of this
construction. We have, rewriting (3.1), for the i’th multivariate order statistic,

fX j;n(x) = fX (x)

∫
∞

−∞
[FY (y)]j−1[1− FY (y)]n−jdFY |X (y|x)

B(j, n− j+ 1)
.

It is natural to extend this, following Jones, and to consider

fα,β(x) = fX (x)

∫
∞

−∞
[FY (y)]α−1[1− FY (y)]β−1dFY |X (y|x)

B(α, β)
.

In the case of N-conditional ordering with a structural function h(x) this simplifies to

fα,β(x) = fX (x)
[h(x)]α−1[1− h(x)]β−1

B(α, β)
. (5.3)

An even more general family of models would be one in which h(x) is simply required to satisfy 0 ≤ h(x) ≤ 1 and is not
required to be a structural function of someN(x). Of course, in such a case, the required normalizing constantwill not usually
be [B(α, β)]−1. Some examples of bivariate densities of the form (5.3) may be found in Section 6.

5.4. Concomitant densities revisited

The expression that we have in Eq. (3.1) for the density of the j’th concomitant looks different from the one usually
encountered in the fully absolutely continuous case (i.e. the case in which (X, Y ) is absolutely continuous). Our expression
in this case is

fX [j:n](x) =
(
n− 1
j− 1

)
fX (x)

∫
∞

−∞

[FY (y)]j−1[1− FY (y)]n−jfY |X (y|x)dy.

The usual expression is

fX [j:n](x) =
∫
∞

−∞

fX |Y (x|y)fYj:n(y)dy

= n
(
n− 1
j− 1

)∫
∞

−∞

fX |Y (x|y)[FY (y)]j−1[1− FY (y)]n−jfY |X (y|x)fY (y)dy.

But of course these are identical since both can be written as

fX [j:n](x) = n
(
n− 1
j− 1

)∫
∞

−∞

[FY (y)]j−1[1− FY (y)]n−jfX,Y (x, y)dy.
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Fig. 1. Bivariate densities generated from the uniform family densities (6.2)–(6.4), from left to right (when α = 2 and β = 4).

6. Examples

In Section 5, the following general class of multivariate distributions was developed, beginning with a basic density fX (x)
and an auxiliary function h(x) satisfying 0 ≤ h(x) ≤ 1:

fα,β,h(x) ∝ fX (x)[h(x)]α−1[1− h(x)]β−1. (6.1)

If, when X ∼ f0(x), h(X) ∼ U(0, 1), then it is readily verified that the required normalizing constant in (6.1) is [B(α, β)]−1.
One way to assure this is to begin with an arbitrary function g(x) and compute, assuming X ∼ f0(x), Pr(g(X) ≤ t) = F∗g (t).
Now define h(x) = F∗g (g(X)). By construction we will have h(X) ∼ U(0, 1)when X ∼ f0(x).

Example 1 (A Uniform Case). For simplicity assumem = 2 and assume that f0(x) = I(x ∈ [0, 1]2).
Consider the function g1(x) = x1 + x2. If X ∼ f0(x), i.e. X1, X2 are i.i.d.U(0, 1), then g1(X) = X1 + X2 has distribution

function given by

F∗g1(t) =


t2

2
, 0 < t < 1

4t − t2 − 2
2

, 1 < t < 2.

We then define h1(x) = F∗g1(g1(x)) = F
∗
g1(x1 + x2) and our model (6.1) becomes

fα,β,h1(x) =

{[
(x1 + x2)2

2

]α−1 [
1−

(x1 + x2)2

2

]β−1
I(x1 + x2 < 1)

+

[
1−

(2− x1 − x2)2

2

]α−1 [
(2− x1 − x2)2

2

]β−1
I(x1 + x2 > 1)

}
[B(α, β)]−1I (x ∈ [0, 1]2). (6.2)

If instead we use g2(x) = max(x1, x2)we obtain the family

fα,β,h2(x) =
(max(x1, x2))2(α−1)[1− (max(x1, x2))2]β−1

B(α, β)
I (x ∈ [0, 1]2). (6.3)

As a third example, we use the function g3(x) = x1x2. Using it we are led to the family

fα,β,h3(x) =
(x1x2(1− log(x1x2)))α−1(1− x1x2(1− log(x1x2)))β−1

B(α, β)
I (x ∈ [0, 1]2). (6.4)

In Fig. 1, the densities (6.2)–(6.4) are displayed for when α = 2 and β = 4.

Example 2 (An Exponential Case). Again assume m = 2 and this time assume that f0(x) = λ2e−λ(x1+x2)I(x1 > 0, x2 > 0).
Thus when X ∼ f0(x), X1 and X2 are independent exponential random variables. If we use the function g1(x) = x1 + x2 in
our construction we find that the distribution function of g1(X) = X1 + X2 is given by

F∗g1(t) = 1− (1+ λt)e
−λt .

So we define h1(x) = F∗g1(x1 + x2) and our model (6.1) assumes the form

fα,β,h1(x) = λ
2e−λ(x1+x2)

(1− e−λ(x1+x2)(1+ λ(x1 + x2)))α−1(e−λ(x1+x2)(1+ λ(x1 + x2)))β−1

B(α, β)
× I (x1 > 0, x2 > 0).

(6.5)
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Fig. 2. Bivariate densities generated from the exponential family densities (6.5) (upper figures) and (6.6) (lower figures) with α = β = 8 and λ = 0.5, 1
and 2 (from left to right).

If instead we use the function g2(x) = x1, we eventually obtain, from (6.1), the family of densities

fα,β,h2(x) = λ
2e−λ(x1+x2)

(1− e−λx1)α−1e−λ(β−1)x1

B(α, β)
I (x1 > 0, x2 > 0). (6.6)

Sample densities of these forms are illustrated in Fig. 2 from the exponential family densities (6.6) (upper figures) and (6.6)
(lower figures) with α = β = 8 and λ = 0.5, 1 and 2 (from left to right).

7. More general conditional distributions

Motivated by the discussion provided in [9] for conditional ordering the following resultsmay be verified for (FY |X )-order
statistics.
Begin with (X i, Yi), i = 1, . . . , n, as i.i.d. random variables where the Yi’s have a common continuous distribution. Define

X j:n to be the jth smallest X (actually the concomitant of Yj:n), j = 1, 2, . . . , n. It follows that the conditional distribution of
X j1+1:n, . . . , X j2−1:n given that Yj1:n = y1 and Yj2:n = y2 is identical to the distribution of the j2 − j1 − 1 X-concomitants of a
sample from the joint distribution of (X, Y ) truncated to the set {(x, y) : y1 < y < y2}.
Point process distributions analogous to these described in [9] may also be formulated in the more general context in

which Y is a non-deterministic function of X , as contrasted with the case in which Y is a deterministic function of X as
described in [6,9,8].
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