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Abstract

We show a possibility that a color ferromagnetic state exists i(Bptauge theory of quark matter with two flavors. Although
the state involves three types of unstable modes of gluons, all of these modes are stabilized by forming a quantum Hall state
of one of the modes. We also show that at large chemical potential, a color superconducting state (2SC) appears even in the
ferromagnetic state. This is because Meissner effect by condensed anti-triplet quark pairs does not work on the magnetic field
in the ferromagnetic state.
0 2003 Elsevier B.VOpen access under CC BY license.
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One of the most intriguing phases possessed by dense quark matter is the color superconductivity [1] caused by
the condensation of quark pairs with two flavors. The condensation breaks the gauge symmetB) td SU(2).
Consequently, some of gluons gain masses due to the condensation and Meissner effect operates in the magneti
field of the gluons. In the case of real superconductor, the condensation of Cooper pairs of electrons (iyeaks U
gauge symmetry so that the magnetic field associated with ¢hedauge symmetry is expelled from or squeezed
in the superconductor. Therefore, both ferromagnetism and superconductivity are not realized simultaneously in
real condensed matter. In the quark matter, however, both phenomena [2] can be realized simultaneously because
magnetic fields in remaining SB) gauge symmetry are not affected by the condensation of the quark pair.

We have shown in the previous paper [2] that a color ferromagnetic state of quark matter arises itiZhe SU
gauge theory, in which a color magnetic field is generated spontaneously. Although the magnetic field induces
unstable modes of gluons [3,4], the modes have been shown to be stabilized by the formation of a quantum Hall
state [5] of the unstable gluons. The quantum Hall state possesses a color charge. The charge is supplied by quark
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matter. Consequently, in the quark matter the stable ferromagnetic state in (Bedaluge theory exists along
with the quantum Hall state of the gluons.

In this Letter we point out in the S@3) gauge theory that a stable color ferromagnetic state [3] of quark
matter also exists along with a quantum Hall state of gluons. In the state the diagonal color magnetic field
B o cos9A3 + sinf g is spontaneously generated. The magnetic field induces three types of unstable modes, each
of which has different color charges. One of them condenses to form a quantum Hall state. The condensation makes
the ferromagnetic state be stabilized. Furthermore, the state coexists with 2 flavor color superconducting state
(2CS). Namely, in a ferromagnetic state wiho A3 (6 = 0), an anti-triplet quark pai(e3-/kq.,~qk) can condense
[1]. Since the magnetic fiel® « A3 does not couple with the quark condensation, the Meissner effect does not
operate on the field. In this way the coexistence of both ferromagnetism and superconductivity is possible in the
SU(3) gauge theory. This is owing to the fact that the(SUgauge group has the maximal Abelian subgroup of
U(1) x U(1); each group of 1) is associated with superconductivity or ferromagnetism, respectively. There is a
critical chemical potential which separates the phase of only the ferromagnetic state without the superconductivity
and the coexistence phase of both states.

We assume in the Letter that loop calculations or perturbative calculations give physically correct results in
the ferromagnetic phase although the gauge coupling constant is not necessarily small in the energy regime (500—
1000 MeV) of our consideration. (The existence of the nontrivial minimum of the effective potental has
been proved [6] beyond the loop approximation under the reasonable assumption that the gauge coupling constant
allows the Landau singularity. Thus, our results depending on this existence is expected to hold even for large
coupling constant.)

As is well known [3,4], the one-loop effective potentidlof the constant color magnetic field in the &)
gauge theory withis flavors is given byVer = 225 ¢? B?(log(gB/A?) — 3) — g-g?B?, with an appropriate
renormalization [6] of the gauge coupling whereN =n¢ — 2ns/11. Hereafter we consider the 8) gauge
theory with massless quarks of two flavors;= 29/11. But, most of our results (e.g., the existence of the
ferromagnetic phase) hold even for massive quarks. The potential implies the spontaneous generation of a color
magnetic field. The direction of the magnetic field in real space can be arbitrarily chosen and the direction in color
space can be taken in general suclBas in the maximal Abelian sub-algebrB;= | B|(cos9 A3 + SinfAg), where
A; are Gell-Mann matrices and we restrict the valu@ aluch as—-7/6 < 6 < /6 due to the Weyl symmetry. In
any case of their choices the spontaneous generation of the magnetic field breaks the spatial rotational symmetry
and the SJ3) gauge symmetry into the gauge symmetry 61} U(1). Itis interesting to note that the hypothesis
of “Abelian dominance” [7] holds exactly in this ferromagnetic phase since physics at long wave length is governed
by only the gauge fields of maximal Abelian gauge groufp)k U(1).

Although the magnetic field is spontaneously generated, this state is known to be unstable due to the presence
of the imaginary part iVesr. Namely, there are unstable modes [4,6] of gluons in the ferromagnetic state. These
modes generate the imaginary partig:. In general, unstable modes are excited to lead to a stable state by their
condensation. It is, however, non-trivial to find the stable state of gluons in the gauge theory.

As we have shown in the SB) gauge theory [2], such unstable gluons occupy the lowest Landau level and
condense to form a fractional quantum Hall state. Quantum Hall states of electrons [5] are known to have a finite
gap like BCS states and be stable. Similarly, the quantum Hall state of the gluons has been shown to be stable;
unstable modes disappear in the quantum Hall state. (According to numerical simulations [8], Laughlin states
representing fractional quantum Hall states are shown to arise even for the bosons just like gluons.)

The condensed gluons leading to the quantum Hall state possess a color charge, in other words, the color charge
condenses in the state. Such a color charge of the condensed gluons must be supplied by others in a neutral systen
Quark matter is such a supplier. Therefore, the stable ferromagnetic state involving the quantum Hall state of gluons
can arise in the dense quark matter. (Since the energy density of the quarks in the presence of the magnetic field
is lower [2] than that of the quarks without the magnetic field, the spontaneous generation of the magnetic field
is favored also in the quark sector.) In contrast, the state does not arise as a spatially uniform vacuum state of the
gauge theory. There are no suppliers of the color charges in the vacuum. The unstable modes cannot form quanturr
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Hall states. Instead, their large fluctuations would lead to “spaghetti vacuum” [6,9] in which quark confinement
would be realized.

Now, we wish to study unstable modes of gluons in th&3Bldgauge theory and to see how they are stabilized
by forming a quantum Hall state. In the &) gauge theory there are three types of unstable modes in general.
They are identified as modes having an imaginary part in their energy spectra. In general, spectra of the gluons in
the magnetic field? are given byE? = 2g; B(n+1/2+1) + k% whereg; is the coupling strength with the magnetic
field. n, +1 andks denote Landau level, spin and momentum paralldhmespectively. The imaginary part i
comes from the contribution of their anomalous magnetic moments, which corresponds to the negativ&ferm in
Obviously, the unstable modes are those occupying the lowest Landaurdevél)(with spin parallel 1) to B
and with small momenturh% < g; B. Hence, the identification of the unstable modes can be done by looking for
such modes with the anomalous magnetic moments. In general, there are 6 gluatéch can couple withB,
i.e.,[A},, B1#0. Thus, 3 complex fields can be composed of the 6 real fields of the gluon. They are color charged
vector fields coupled wittB and possible unstable modes. Actually, unstable modes are easily identified from the
SU(3) gauge fields as,

®1=(A14iA2)/vV2, Pr=(As+iAs)/v2 and &= (Ag—iA7)/V2, 1)

where A, is defined as a spatial component of the gauge field with particular polarizatfpe: e A, with

e* =(0,1,,0). These modes occupy the lowest Landau level with spin parallel to the magnetic field. They have
conserved charges of(ll) x U(1) such that Q3(®1) = 1, Qg(®1) = 0), (Q3(P2) = 1/2, Qg(P2) = +/3/2) and
(Q3(P3) = 1/2, Qg(P3) = —+/3/2). To clarify that these modes are really unstable, we see a Lagrangian for these
modes by extracting them from the action of the(Sjyauge field; we simply neglect the other stable modes,

Lunstaie= Y (|(id — 8sAZ) @ |* + 2¢, BI &, [2) — V (@), @
s=1,2,3

where g1 = gcosd, go» = g(cosd + /3sinh) 2, gz = g(cosd — +/3sink)/2 and the potentialV (®) =
g2((X3_ 18,192 — 3 P2031). AB represents a gauge potential of the magnetic flaVe have used the fact
that the mode®; occupy the lowest Landau level. We should note that ayj;cdre positive or zero in the range
of —r/6 <0 <7 /6.

We can see the negative mass term@g; B|®,|?) of the modesd;. It implies the instability of the state,
(&5) = 0. Thus, they are unstable modes. This situation is very similar to a model of complex scalar field with
double-well potential. Namely, in the model with a potential such-as|®|2 + A|®|*/2, the state such that
(@) =0 is unstable. Thus, a spatially uniform unstable mode (the mode is given by the fluctdetiaith zero
momentumf = 0, around the statep) =0) is excitedjo condense and form a stable stéte= m/+/A. In this
simple model the spatially uniform unstable max2(k = 0) is unique. On the other hand, there is no such a
solution as(®;) = const#£ 0 in the gauge theory described by Eq. (2). This is because the gauge po%fntias
a spatial dependence. Physically, not only there are no spatially uniform modes but also there are infinite number
of degenerate unstable modes in the magnetic field. That is, the unstable énothethe lowest Landau level
have such a form of the wave functions as [exik2x> — %gsB(xl — k2/gsB)?], wherek, denotes a momentum
perpendicular th = (0, 0, B). Here we have taken only modes with= 0 uniform in the direction parallel t&.
Obviously, all of the modes labeled by the paraméteare infinitely degenerate. The parameter indicates the
location of the modes in the coordinatexaf We can see that none of these unstable modes is spatially uniform.
Since each type of the modes involves infinitely degenerate nonuniform states, it is not trivial to find a uniform
stable state formed by the condensation of the modes. Actually, it was a very difficult task to find such a stable
state formed by the unstable modes. We need to take into account repulsive interd¢tiorizetween the modes
in order to find the state. Although a reasonable variational state has been proposed [6], the state has no spatial
uniformness and has not yet been shown to be really stable.
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In the case of the S{2) gauge theory, only one type of the unstable mode exist with a repulsive interaction term
such ag®|*. We have shown that the mode forms a quantum Hall state, in which the instability disappears. On the
other hand, in the S{3) gauge theory we have three types of the unstable modes with their repulsive interaction
termsV (®,) more complicated than the terf@|* in the case of the S(2) gauge theory. But we can show that
one (@1) of the modes condenses to form a stable quantum Hall state. Consequently the instability of the mode
disappears just as in the 8) gauge theory. The other modesy(3) gain sufficiently large positive mass terms
from the condensation @;. Since such positive masses are larger than the bare negative masses, the modes obtain
positive mass terms in consequence. In this way all of the unstable modes are stabilized.

It is important to note that the relevant unstable modes should be uniform in a coordingteNafmely, the
mode withkz = 0 has stronger instability than those with#£ 0 since it grows up more rapidly in time; the wave

function of the mode WithE (k3) = i,/gs B — k3 grows up just ag/£*3)!*. Thus, we take only such a mode with
k3 = 0. Accordingly, the gluons of the field; are spatially 2-dimensional ones just like electrons in 2-dimensional
quantum wells, which may form quantum Hall states under external magnetic field. Consequently, we can use a
Chern-Simons gauge theory in spatial 2 dimensions for the discussion of the unstable modes

Itis well known that the Chern—Simons gauge theory [5] is very useful for analysis of quantum Hall states. That
is, we consider so-called composite gluons which are bosons with fictitious magnetic flux. The flux is expressed by
the Chern-Simons gauge field. The point for the use of such composite gluons is that only when the fictitious flux
cancels with the magnetic fiell, the bosons can condense to form quantum Hall states with spatially uniformness.
This way of understanding the quantum Hall state is well known in condensed matter physics; the picture of
“composite electrons” is used as very powerful tool for the analysis of quantum Hall states. Thus, we apply the
method to the physics of the gluons.

Using Chern—Simons gauge fields, we write down spatially 2-dimensional Lagrangian of the composite bosons
representing the unstable modes in the following way,

VA

Lo=|(i9, — 2142 + a,)1]” + 26181612 — ——a,d,a,
+ 3 (19— 8 A b |* + 28, Blgs 1) = Va(@), @)

§=2,3

with V, = V/I3 (I3 being the length scale of quark matter in 3 direction) anek ®,./I3/2 fors = 2, 3. We have
introduced a Chern—Simons gauge field only for the unstable ngad&hich has the largest negative mass term
and is expected to compose quantum Hall states. This Lagrangian describes the compositg;battacised by
Chern-Simons flux'/ 3;a; (fictitious magnetic flux)a should be chosen to ber2« integer in order to guarantee
that the fieldp; describes boson. Hereafter, we take 27 for simplicity. The equivalence of this Lagrangidn,
and Lynstapiehas been demonstrated in the operator formalism [10] although the equivalence had been known in
the path integral formalism using the world lines of theparticles.

In order to see that the unstable modes denotephlfprm a stable quantum Hall state, we derive equations of
motion for the fieldp1,

1
$lidop1 + C.C. + 2a0|pa|? = acijdiaj, (4)

1
o1 (i0; — g1AP + a;)p1 +c.c. = 7 (doaj — d;a0), (5)

. .2 - 2 \2 ad
(id0 + ao)?pr — (id — g1A® +d1) ¢1 + 2g1Bp1 = 87)TVa- (6)
1
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We can easily find a solution of a spatially uniform stége) = v1 ((¢2) = (¢3) = 0) only when the Chern—
Simons flux cancels witlB, that is,g1 A® = a. This cancellation is only possible fag andv; satisfying

B v, 2g2
2aovf = 818 and agvl +2g1Bv1 = i = iv:f @)
47 d, I3
or in dimensionless notations
cosd 2g2
2002 = —— and a2+ 2co® = =22, @)
4 I3

whereag(9), v2(9) and Y3 are dimensionless quantities normalized in uni¢g$)/2.

Solving Egs. (7) or (8) fow1 andap, and insertingv1 into the potentialV (¢), we can see that the modes
¢2 and¢s gain a sufficiently large positive mass: @g?v2/13 = 2g1B + a3) caused by the condensation of the
modeg1. Therefore, the masses ¢$ 3 become positive owing to this Higgs mechanism becaygs® 2- ag is
larger than their original negative masse£g>B and —2g3B, respectively; note that1(0) > g2(0), g3(0) for
—n/6 <6 < /6. Hence, the instability of the stat@, 3) = 0 is removed. As in the S2) gauge theory, the state
(¢1) = v1 is also stable. In this way, the condensation of the figldeads to the stable ferromagnetic state.

Itis well known in the picture of the composite boson that the state= v1 represents a quantum Hall state of
theg, particles with so-called filling factor, = 27 0,1/¢1 B, being equal to A2; pe1 (= ¢Ii80¢1+ C.C.+ 2ao|¢1/2)
denotes a number density ¢f particles. It is easy to show [11] that Hall conductivity of the state is given by
2mv/g1 as expected in usual quantum Hall states. Similarly, we can show that the state has a finke lgap,

solving a small fluctuation aroungh = v1 in Eq. (4); E = 2,/a2 + g3v?/13. Therefore, all of the unstable modes
become harmless owing to the formation of a quantum Hall state of the gwd@bviously, the result holds
irrespective of quark mass.

Next, we wish to determine the directiérof B in the color space. The determination is not trivial. In order to
determineg explicitly, we need to take account of the physical conditions, that is, color neutrality of quark matter
and the minimum of its energy including the energy of the gluon condensate; both the energies of the quark and
the condensatég1 ), of the unstable modes depend on the direction.

We first impose the color neutrality conditiorisz) = (Ag) = 0, where the average should be taken over all of
the quarks and the gluon condensate; we should note that owing to the gener#@tjcheofU3) gauge symmetry
is broken into the gauge symmetry of1) x U(1) so that only conserved color charges are those associated with
the group generators @g s. It is easy to see that the condition implies that number depsit§ quarks with color
typei satisfies the following equations; + p,1 = p2 andp1 + p2 = p3. (We denote the color types of quarks such
thatgs = (1,0, 0), g2 = (0, 1, 0) andg3 = (0,0, 1).)

Furthermore, we impose the condition of the energy minimum. In order to calculate the energy of quarks, we
note that the coupling strength of ith quark with the magnetic field is given ly = g(cos + sind/+/3)/2,
e2 = g|—cosh + sinf/+/3|/2, andes = g|—2sind/~/3|/2, whereg is the gauge coupling constant. Then, the
energy ofith massless quark in the magnetic field is givervévyB(Zn +1+1)+ k% where integer > 0 denotes
Landau level and-1 does the quark spin; momentumis a component parallel t8. Minimizing the total energy
density of the three types of quarkstris difficult in general. As a simple example, we calculate it in a case where
all of quarks occupy the lowest Landau levek€ 0) with spin parallel 1) and the condensation of gluopg, is
negligible. Then, the energy densityith quark is given by; = nte; BkZ /4n% = 72p?/nte; B whereky; denotes
the Fermi momentum ang = 2 denotes the number of flavors. Here we have used the expression of the number
density of quarksy;, in terms of the Fermi momentuka ; p; = nfe; Bks; /272, Since all of the quark densities are
identical,p; = p, whenp,1 = 0, we find that the total energy densiy, _;_s€; = 720%(1/e1+1/e2+1/e3)/n¢B,
takes the minimum value dt= /6. This is a simple case of all quarks occupying the lowest Landau level (namely
much smallp/(gB)%? « 1) and of the negligible gluon contribution. But actually, the gluon contribution to the
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energy is dominant over the quark contribution since the energy density of the quarks occupying higher Landau
levels depends very weakly on the directidof the color magnetic field.
In order to see it we calculate the energy of the gluon condensate dependingsing the solutions of Eq. (8),
we find that the energy density of the condensate normalizeéd By is given by
2

2
E,= (ag(e)ﬁf(e) — 202(9) cosd + g_—al(9)> 1 (2&5(9)55(9) - g_—al(e)) 1 9)

I3 I3 I3 I3
where we have represented the dependence efplicitly. Note that we have the factor of/f in the above
equation in order to obtain the three-dimensional energy detsifyrom two-dimensional Lagrangian in Eq. (3).
We have proved numerically that the energy of the condensate takes the minirdumQatActual values off,,
atd =0 are as followsE,l3 = —0.02,—0.08, —1, —10 for g2/i3 (= g2/(I3/gB)) = 20, 10, 1, 0.1, respectively.
Smaller coupling constantg?/I3, give rise to negatively larger energies. We do not know how large the coupling
parameteg? is. We tentatively assume thgf is of the order of 1 or less for the consistency of our calculation.
Then, assuming = 1-3 fm in real quark matter produced by heavy ion collisions and assughgiy~ 200 MeV,
we obtain/z = 1-3 and the order of the magnitude of the coupling consfdnk being 0(0.1)-0(1). Hence,
the energy of the condensate takes a value, at least, suEh @s—1 até = 0. On the other hand, the energy
density,E g, of the quarks normalized ki B)? is approximately given by g_o = (37%/3/27/3)(p /(g B)3/%)*/3 ~
1.28(p/(gB)¥%)*/3, i.e., the energy density of the quarks in the absence of the magnetic field. Naméyearly
equal toE g for large quark number densiy, Eg = Ep—o in the limit of p/(gB)%? — oco. Note thatEg_g
does not depend ah This indicates thad dependent part of 5 is much small. For instancé&,z — Ep_o atéd =0
is about 009 (013) for p/(gB)%? = 10 (1000). Therefor#, dependence of the energy is determinedthyThus,
we conclude that the direction of the magnetic fiBlds chosen such as= 0, which gives the minimum energy
of the quarks and the gluons. Anyway, the condensatiopy ahakesB point to the direction oz in maximal
Abelian subalgebra.

A commentis in order. To make a quantum Hall state, we can make all of thedietasidense by introducing
different Chern—Simons gauge fields,to eachg,;. Then, we have such a state(g@g) = vy # 0 for s = 1-3. But
we can show that the state is not stable because the fluctuaipihgve an imaginary frequency in their spectra.

On the other hand, the formation of the quantum Hall state of only thedieidakes the stat&p1) £ 0, (¢2) =0
and(¢3) = 0 stable as we have explained above. Similarly we can show that a quantum Hall state {gy¢h-23,

(¢p2) # 0 and ¢3) # 0, is also stable. In the state two fielgisz condense. Thus, the state possibly exists although
we consider only the case of the condensed stagg of this Letter.

Up to now, we have shown that there are three types of the unstable modes of gluons induced by the color
magnetic field generated spontaneously. These unstable modes are stabilized by the formation of the quantum Hall
state of the unstable modeg. Owing to the generation of the magnetic field, the gauge symmet(g)3&broken
into the gauge symmetry@) x U(1). Furthermore, the formation of the quantum Hall sta#a Y = v1) breaks the
gauge symmetry into the gauge symmetry ¢1)J This is the case for the color magnetic field whose directipn,
is general. On the other hand, one of the unstable modes disappears at specific valkes@famplegs vanishes
for 6 = /6 so that the negative massZg3B) of the field¢s vanishes¢s becomes massless. Thus, the mode of
¢3 is stable. In this case, the gauge symmetry 3k broken into the gauge symmetry &)Y x U(1). Namely,
there are 4 massless real fields; gauge fields of the maximal Abelian gauge groﬂﬁbodrresponding t@3.
Subsequent formation of a quantum Hall state with) = v, breaks the symmetry into the gauge symmetry of
U(1). Stability of the statég, 3) = 0 is guaranteed by the positivity of their masses produced by the condensation
of the fieldg1; ¢3 becomes massive as well@s In any case, stable ferromagnetic states accompanied by quantum
Hall states are realized in the 88) gauge theory. Since the gauge symmetry is broken, the state is not a real vacuum
of QCD, but a state of quark matter.

We should note that the color chargs(¢1) of the condensatépi) must be supplied by the quark matter
produced by heavy ion collisions. Unless the chemical potential of the quark matter is large enough to supply
the charge, such a condensation cannot occur, so that the stable ferromagnetic state cannot arise. Thus, we wisl
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to estimate the minimum chemical potential of the quark matter needed for the formation of the condensate. We
note that two-dimensional color charge density of the gluon condensation is given bygi B/4m, namely the
number density of the; particles. When the radius of the quark mattdgjghe three-dimensional densipy,, of

the condensed gluons is approximately given suchghat p,1//3. On the other hand, the color charge density

of u and d quarks i% x 2 X k]?"/:’m2 whereks denotes a Fermi momentum; the factoy@ and 2 come from the
coupling strength in unit o and the number of the flavor, respectively. The chemical poteptjaf the quark at

zero temperature is given Q/kfz + mg where we have taken account of the quark mass;- 300 MeV. Hence,
by equating both densities we obtain the lower bound of the chemical potential such that

p = (GraaB /A1) +m2

180\? ((gB)/0.04 Ge\?)2/3  [300\2 )

where we have referred to a typical scale of QCO@B). Therefore, the ferromagnetic state of the quark matter
may arise in heavy ion collisions at chemical potentials larger than 350 MeV.

We have discussed the ferromagnetic phase of th@Sjauge theory. The phase appears at chemical potentials
larger than a critical one, below which the hadronic phase is present. We already know the presence of a color
superconducting phase (2SC) in much large chemical potential. Thus, we wish to ask which state arises in the
quark matter, the color superconducting state or the color ferromagnetic state. Although both states do not appear
simultaneously in the ordinary matter owing to Meissner effects, they are compatible in (B¢ giluige theory
without any contradictions.

In order to analyze the possibility, we note that the direction of the color magnetic field is pointed suetDas
Thus, an anti-triplet quark pair condensation such"-é{%(qjqk> = (0,0, u3) may arise because the magnetic field
B « Az is not inhibited by the Meissner effect; the magnetic field does not couple with the condensation. Therefore,
both states may arise simultaneously in a dense quark matter.

Explicit calculations have been done [12] within a NJL model where the effects of the color magnetic field,

B o 13 on the chiral condensation and the quark pair condensation have been discussed. The authors of the papel
considered such a model in order to see the effect of vacuum fluctuations of the color magnetiBfiejdp on

the quark matter. On the other hand, as we have shown, such a color magnetic field is generated spontaneously
Using their results, we find that the magnetic field induces the chiral condensation at any chemical potentials
less than a critical one, beyond which the quark pair condensation arises; 2CS appears. It is interesting that the
chiral condensation is not compatible with the quark pair condensation. Thus, in the 2CS, the chiral symmetry
is not broken. The point we learn from the Letter is that the ferromagnetic phase can coexist with the color
superconducting phase.

It seems apparently that the pointing®fto A3 is necessary for the existence of the superconducting state. We
remember that our conclusion 6f= 0 has been obtained by minimizing the energy of the quark matter under
the assumption o§? being the order of 1. Without the assumption the conclusiof €f0 cannot be obtained.
However, the magnetic field naturally orientsite when the superconducting state arises in the ferromagnetic
state. This is because the presence of such a state is energetically more favored than the absence of the state; tf
state withé = 0 involving the superconducting state is energetically favored at large chemical potentials than a
state with # 0 involving no superconducting state.

To summarize, we have found that the phase of the quark matter at zero temperature has the following structure.
At small chemical potentials the hadronic phase with the broken chiral symmetry is present. It is unclear whether or
not the ferromagnetic phase arises before the chiral symmetry is restored when we increase the chemical potential.
Butit is clear that the hadronic phase is changed into the ferromagnetic phase at a certain chemical potential. In the
phase the color magnetic fielH,oc cosf A3+ Sind Ag, is generated spontaneously whose direction in the color space
is pointed such a8 = 0. A quantum Hall state of gluongy, is also formed in the phase. As a result,(S).gauge
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symmetry is broken into the (@) gauge symmetry and the chiral symmetry is also broken. Further increase of the
chemical potential makes a quark pair condensaﬂd‘i’(q,-qj) = (0, 0, u) arise so that the color superconducting

phase (2CS) appears. This state does not expel the color magnetic field because the field does not couple with the
quark pair condensate. In the phase of the coexistence of both states (ferromagnetic and superconducting states)
the chiral symmetry is restored, but th¢lygauge symmetry is broken due to the quark pair condensation. This is

a brief picture of the phase of the quark matter in thé3\dauge theory with two flavors. At much larger chemical
potentials strange quarks may play a role and they may form color flavor locking superconducting phase with u
and d quarks. In the phase the color ferromagnetic state disappears.
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