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Abstract

We show a possibility that a color ferromagnetic state exists in SU(3) gauge theory of quark matter with two flavors. Althou
the state involves three types of unstable modes of gluons, all of these modes are stabilized by forming a quantum
of one of the modes. We also show that at large chemical potential, a color superconducting state (2SC) appears e
ferromagnetic state. This is because Meissner effect by condensed anti-triplet quark pairs does not work on the mag
in the ferromagnetic state.
 2003 Elsevier B.V.

PACS: 12.38.-t; 12.38.Mn; 24.85.+p; 73.43.-f
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One of the most intriguing phases possessed by dense quark matter is the color superconductivity [1] c
the condensation of quark pairs with two flavors. The condensation breaks the gauge symmetry of SU(3) to SU(2).
Consequently, some of gluons gain masses due to the condensation and Meissner effect operates in the
field of the gluons. In the case of real superconductor, the condensation of Cooper pairs of electrons bre(1)
gauge symmetry so that the magnetic field associated with the U(1) gauge symmetry is expelled from or squeez
in the superconductor. Therefore, both ferromagnetism and superconductivity are not realized simultane
real condensed matter. In the quark matter, however, both phenomena [2] can be realized simultaneousl
magnetic fields in remaining SU(2) gauge symmetry are not affected by the condensation of the quark pair.

We have shown in the previous paper [2] that a color ferromagnetic state of quark matter arises in th(2)
gauge theory, in which a color magnetic field is generated spontaneously. Although the magnetic field
unstable modes of gluons [3,4], the modes have been shown to be stabilized by the formation of a quan
state [5] of the unstable gluons. The quantum Hall state possesses a color charge. The charge is supplied
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matter. Consequently, in the quark matter the stable ferromagnetic state in the SU(2) gauge theory exists alon
with the quantum Hall state of the gluons.

In this Letter we point out in the SU(3) gauge theory that a stable color ferromagnetic state [3] of q
matter also exists along with a quantum Hall state of gluons. In the state the diagonal color magne
�B ∝ cosθλ3 + sinθλ8 is spontaneously generated. The magnetic field induces three types of unstable mod
of which has different color charges. One of them condenses to form a quantum Hall state. The condensati
the ferromagnetic state be stabilized. Furthermore, the state coexists with 2 flavor color superconduct
(2CS). Namely, in a ferromagnetic state withB ∝ λ3 (θ = 0), an anti-triplet quark pair〈ε3jkqjqk〉 can condense
[1]. Since the magnetic fieldB ∝ λ3 does not couple with the quark condensation, the Meissner effect doe
operate on the field. In this way the coexistence of both ferromagnetism and superconductivity is possib
SU(3) gauge theory. This is owing to the fact that the SU(3) gauge group has the maximal Abelian subgroup
U(1)× U(1); each group of U(1) is associated with superconductivity or ferromagnetism, respectively. Ther
critical chemical potential which separates the phase of only the ferromagnetic state without the supercon
and the coexistence phase of both states.

We assume in the Letter that loop calculations or perturbative calculations give physically correct re
the ferromagnetic phase although the gauge coupling constant is not necessarily small in the energy regi
1000 MeV) of our consideration. (The existence of the nontrivial minimum of the effective potential ineB has
been proved [6] beyond the loop approximation under the reasonable assumption that the gauge coupling
allows the Landau singularity. Thus, our results depending on this existence is expected to hold even
coupling constant.)

As is well known [3,4], the one-loop effective potentialV of the constant color magnetic field in the SU(nc)

gauge theory withnf flavors is given byVeff = 11N
96π2g

2B2(log(gB/Λ2) − 1
2) − i

8π g
2B2, with an appropriate

renormalization [6] of the gauge couplingg, whereN = nc − 2nf/11. Hereafter we consider the SU(3) gauge
theory with massless quarks of two flavors;N = 29/11. But, most of our results (e.g., the existence of
ferromagnetic phase) hold even for massive quarks. The potential implies the spontaneous generation o
magnetic field. The direction of the magnetic field in real space can be arbitrarily chosen and the direction
space can be taken in general such asB is in the maximal Abelian sub-algebra;B = |B|(cosθλ3 + sinθλ8), where
λi are Gell-Mann matrices and we restrict the value ofθ such as−π/6 � θ � π/6 due to the Weyl symmetry. I
any case of their choices the spontaneous generation of the magnetic field breaks the spatial rotational s
and the SU(3) gauge symmetry into the gauge symmetry of U(1)×U(1). It is interesting to note that the hypothe
of “Abelian dominance” [7] holds exactly in this ferromagnetic phase since physics at long wave length is go
by only the gauge fields of maximal Abelian gauge group U(1)× U(1).

Although the magnetic field is spontaneously generated, this state is known to be unstable due to the
of the imaginary part inVeff. Namely, there are unstable modes [4,6] of gluons in the ferromagnetic state.
modes generate the imaginary part inVeff. In general, unstable modes are excited to lead to a stable state b
condensation. It is, however, non-trivial to find the stable state of gluons in the gauge theory.

As we have shown in the SU(2) gauge theory [2], such unstable gluons occupy the lowest Landau leve
condense to form a fractional quantum Hall state. Quantum Hall states of electrons [5] are known to have
gap like BCS states and be stable. Similarly, the quantum Hall state of the gluons has been shown to b
unstable modes disappear in the quantum Hall state. (According to numerical simulations [8], Laughlin
representing fractional quantum Hall states are shown to arise even for the bosons just like gluons.)

The condensed gluons leading to the quantum Hall state possess a color charge, in other words, the co
condenses in the state. Such a color charge of the condensed gluons must be supplied by others in a neut
Quark matter is such a supplier. Therefore, the stable ferromagnetic state involving the quantum Hall state o
can arise in the dense quark matter. (Since the energy density of the quarks in the presence of the mag
is lower [2] than that of the quarks without the magnetic field, the spontaneous generation of the magne
is favored also in the quark sector.) In contrast, the state does not arise as a spatially uniform vacuum sta
gauge theory. There are no suppliers of the color charges in the vacuum. The unstable modes cannot form
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Hall states. Instead, their large fluctuations would lead to “spaghetti vacuum” [6,9] in which quark confin
would be realized.

Now, we wish to study unstable modes of gluons in the SU(3) gauge theory and to see how they are stabili
by forming a quantum Hall state. In the SU(3) gauge theory there are three types of unstable modes in ge
They are identified as modes having an imaginary part in their energy spectra. In general, spectra of the g
the magnetic fieldB are given byE2 = 2giB(n+1/2±1)+k2

3 wheregi is the coupling strength with the magne
field. n, ±1 andk3 denote Landau level, spin and momentum parallel to�B, respectively. The imaginary part inE
comes from the contribution of their anomalous magnetic moments, which corresponds to the negative terE2.
Obviously, the unstable modes are those occupying the lowest Landau level (n = 0) with spin parallel (−1) to �B
and with small momentumk2

3 < giB. Hence, the identification of the unstable modes can be done by lookin
such modes with the anomalous magnetic moments. In general, there are 6 gluonsA′

µ which can couple withB,
i.e., [A′

µ,B] �= 0. Thus, 3 complex fields can be composed of the 6 real fields of the gluon. They are color c
vector fields coupled withB and possible unstable modes. Actually, unstable modes are easily identified fro
SU(3) gauge fields as,

(1)Φ1 = (A1 + iA2)/
√

2, Φ2 = (A4 + iA5)/
√

2 and Φ3 = (A6 − iA7)/
√

2,

whereAa is defined as a spatial component of the gauge field with particular polarization;A
µ
a = eµAa with

eµ = (0,1, i,0). These modes occupy the lowest Landau level with spin parallel to the magnetic field. The
conserved charges of U(1)× U(1) such that(Q3(Φ1) = 1, Q8(Φ1) = 0), (Q3(Φ2) = 1/2, Q8(Φ2) = √

3/2) and
(Q3(Φ3)= 1/2,Q8(Φ3) = −√

3/2). To clarify that these modes are really unstable, we see a Lagrangian for
modes by extracting them from the action of the SU(3) gauge field; we simply neglect the other stable modes,

(2)Lunstable=
∑

s=1,2,3

(∣∣(i∂µ − gsA
B
µ

)
Φs

∣∣2 + 2gsB|Φs |2
) − V (Φ),

where g1 = g cosθ , g2 = g(cosθ + √
3sin θ)/2, g3 = g(cosθ − √

3sinθ)/2 and the potential,V (Φ) =
g2((

∑3
s=1 |Φs |2)2 − 3|Φ2Φ3|2). AB

µ represents a gauge potential of the magnetic fieldB. We have used the fac
that the modesΦs occupy the lowest Landau level. We should note that all ofgi are positive or zero in the rang
of −π/6 � θ � π/6.

We can see the negative mass terms (−2gsB|Φs |2) of the modes,Φs . It implies the instability of the state
〈Φs 〉 = 0. Thus, they are unstable modes. This situation is very similar to a model of complex scalar fie
double-well potential. Namely, in the model with a potential such as−m2|Φ|2 + λ|Φ|4/2, the state such tha
〈Φ〉 = 0 is unstable. Thus, a spatially uniform unstable mode (the mode is given by the fluctuation,δΦ with zero
momentum,�k = 0, around the state〈Φ〉 = 0) is excited to condense and form a stable state〈Φ〉 = m/

√
λ. In this

simple model the spatially uniform unstable modeδΦ(�k = 0) is unique. On the other hand, there is no suc
solution as〈Φs〉 = const�= 0 in the gauge theory described by Eq. (2). This is because the gauge potentialAB

µ has
a spatial dependence. Physically, not only there are no spatially uniform modes but also there are infinite
of degenerate unstable modes in the magnetic field. That is, the unstable modesΦs in the lowest Landau leve
have such a form of the wave functions as exp[−ik2x2 − 1

2gsB(x1 − k2/gsB)
2], wherek2 denotes a momentum

perpendicular to�B = (0,0,B). Here we have taken only modes withk3 = 0 uniform in the direction parallel toB.
Obviously, all of the modes labeled by the parameterk2 are infinitely degenerate. The parameter indicates
location of the modes in the coordinate ofx1. We can see that none of these unstable modes is spatially uni
Since each type of the modes involves infinitely degenerate nonuniform states, it is not trivial to find a u
stable state formed by the condensation of the modes. Actually, it was a very difficult task to find such a
state formed by the unstable modes. We need to take into account repulsive interactionsV (Φ) between the mode
in order to find the state. Although a reasonable variational state has been proposed [6], the state has
uniformness and has not yet been shown to be really stable.
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In the case of the SU(2) gauge theory, only one type of the unstable mode exist with a repulsive interactio
such as|Φ|4. We have shown that the mode forms a quantum Hall state, in which the instability disappears.
other hand, in the SU(3) gauge theory we have three types of the unstable modes with their repulsive inte
termsV (Φs) more complicated than the term|Φ|4 in the case of the SU(2) gauge theory. But we can show th
one (Φ1) of the modes condenses to form a stable quantum Hall state. Consequently the instability of th
disappears just as in the SU(2) gauge theory. The other modes (Φ2,3) gain sufficiently large positive mass term
from the condensation ofΦ1. Since such positive masses are larger than the bare negative masses, the mod
positive mass terms in consequence. In this way all of the unstable modes are stabilized.

It is important to note that the relevant unstable modes should be uniform in a coordinate ofx3. Namely, the
mode withk3 = 0 has stronger instability than those withk3 �= 0 since it grows up more rapidly in time; the wa

function of the mode withE(k3) = i

√
gsB − k2

3 grows up just ase|E(k3)|t . Thus, we take only such a mode wi
k3 = 0. Accordingly, the gluons of the fieldΦs are spatially 2-dimensional ones just like electrons in 2-dimensi
quantum wells, which may form quantum Hall states under external magnetic field. Consequently, we ca
Chern–Simons gauge theory in spatial 2 dimensions for the discussion of the unstable modes

It is well known that the Chern–Simons gauge theory [5] is very useful for analysis of quantum Hall state
is, we consider so-called composite gluons which are bosons with fictitious magnetic flux. The flux is expre
the Chern–Simons gauge field. The point for the use of such composite gluons is that only when the fictiti
cancels with the magnetic fieldB, the bosons can condense to form quantum Hall states with spatially uniform
This way of understanding the quantum Hall state is well known in condensed matter physics; the pic
“composite electrons” is used as very powerful tool for the analysis of quantum Hall states. Thus, we ap
method to the physics of the gluons.

Using Chern–Simons gauge fields, we write down spatially 2-dimensional Lagrangian of the composite
representing the unstable modes in the following way,

La = ∣∣(i∂µ − g1A
B
µ + aµ

)
φ1

∣∣2 + 2g1B|φ1|2 − εµνλ

4α
aµ∂νaλ

(3)+
∑
s=2,3

(∣∣(i∂µ − gsA
B
µ

)
φs

∣∣2 + 2gsB|φs |2
) − Va(φ),

with Va = V/l3 (l3 being the length scale of quark matter in 3 direction) andφs =Φs

√
l3/2 for s = 2,3. We have

introduced a Chern–Simons gauge field only for the unstable mode,φ1, which has the largest negative mass te
and is expected to compose quantum Hall states. This Lagrangian describes the composite bosonsφ1 attached by
Chern–Simons fluxεij ∂iaj (fictitious magnetic flux).α should be chosen to be 2π × integer in order to guarante
that the fieldφ1 describes boson. Hereafter, we takeα = 2π for simplicity. The equivalence of this Lagrangian,La

andLunstablehas been demonstrated in the operator formalism [10] although the equivalence had been k
the path integral formalism using the world lines of theφa particles.

In order to see that the unstable modes denoted byφ1 form a stable quantum Hall state, we derive equation
motion for the fieldφ1,

(4)φ
†
1i∂0φ1 + c.c.+ 2a0|φ1|2 = 1

4π
εij ∂iaj ,

(5)φ
†
1

(
i∂i − g1A

B
i + ai

)
φ1 + c.c.= 1

4π
εij (∂0aj − ∂ja0),

(6)(i∂0 + a0)
2φ1 − (

i�∂ − g1 �AB + �a1
)2
φ1 + 2g1Bφ1 = ∂

∂φ
†
1

Va.
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We can easily find a solution of a spatially uniform state〈φ1〉 = v1 (〈φ2〉 = 〈φ3〉 = 0) only when the Chern–
Simons flux cancels withB, that is,g1 �AB = �a. This cancellation is only possible fora0 andv1 satisfying

(7)2a0v
2
1 = g1B

4π
and a2

0v1 + 2g1Bv1 = ∂Va

∂φ
†
1

= 2g2

l3
v3

1

or in dimensionless notations

(8)2ā0v̄
2
1 = cosθ

4π
and ā2

0 + 2 cosθ = 2g2

l̄3
v̄2

1,

whereā0(θ), v̄2
1(θ) and 1/l̄3 are dimensionless quantities normalized in unit of(gB)1/2.

Solving Eqs. (7) or (8) forv1 and a0, and insertingv1 into the potentialV (φ), we can see that the mod
φ2 andφ3 gain a sufficiently large positive mass (= 2g2v2

1/l3 = 2g1B + a2
0) caused by the condensation of t

modeφ1. Therefore, the masses ofφ2,3 become positive owing to this Higgs mechanism because 2g1B + a2
0 is

larger than their original negative masses,−2g2B and−2g3B, respectively; note thatg1(θ) > g2(θ), g3(θ) for
−π/6< θ < π/6. Hence, the instability of the state,〈φ2,3〉 = 0 is removed. As in the SU(2) gauge theory, the stat
〈φ1〉 = v1 is also stable. In this way, the condensation of the field,φ1 leads to the stable ferromagnetic state.

It is well known in the picture of the composite boson that the state〈φ1〉 = v1 represents a quantum Hall state
theφ1 particles with so-called filling factor,ν = 2πρg1/g1B, being equal to 1/2;ρg1 (= φ

†
1i∂0φ1+c.c.+2a0|φ1|2)

denotes a number density ofφ1 particles. It is easy to show [11] that Hall conductivity of the state is given
2πν/g1 as expected in usual quantum Hall states. Similarly, we can show that the state has a finite gaE, by

solving a small fluctuation aroundφ1 = v1 in Eq. (4);E = 2
√
a2

0 + g2
1v

2
1/l3. Therefore, all of the unstable mod

become harmless owing to the formation of a quantum Hall state of the modeφ1. Obviously, the result hold
irrespective of quark mass.

Next, we wish to determine the directionθ of B in the color space. The determination is not trivial. In orde
determineθ explicitly, we need to take account of the physical conditions, that is, color neutrality of quark m
and the minimum of its energy including the energy of the gluon condensate; both the energies of the qu
the condensate,〈φ1〉, of the unstable modes depend on the direction.

We first impose the color neutrality conditions,〈λ3〉 = 〈λ8〉 = 0, where the average should be taken over a
the quarks and the gluon condensate; we should note that owing to the generation ofB, the SU(3) gauge symmetry
is broken into the gauge symmetry of U(1)× U(1) so that only conserved color charges are those associated
the group generators ofλ3,8. It is easy to see that the condition implies that number densityρi of quarks with color
typei satisfies the following equations,ρ1 +ρg1 = ρ2 andρ1 +ρ2 = ρ3. (We denote the color types of quarks su
thatq1 = (1,0,0), q2 = (0,1,0) andq3 = (0,0,1).)

Furthermore, we impose the condition of the energy minimum. In order to calculate the energy of qua
note that the coupling strengthei of ith quark with the magnetic field is given bye1 = g(cosθ + sinθ/

√
3)/2,

e2 = g|−cosθ + sinθ/
√

3|/2, ande3 = g|−2 sinθ/
√

3|/2, whereg is the gauge coupling constant. Then,

energy ofith massless quark in the magnetic field is given by
√
eiB(2n+ 1± 1)+ k2

3 where integern � 0 denotes
Landau level and±1 does the quark spin; momentumk3 is a component parallel toB. Minimizing the total energy
density of the three types of quarks inθ is difficult in general. As a simple example, we calculate it in a case w
all of quarks occupy the lowest Landau level (n= 0) with spin parallel (−1) and the condensation of gluonsρg1 is
negligible. Then, the energy density ofith quark is given byεi = nfeiBk

2
fi /4π

2 = π2ρ2
i /nfeiB wherekfi denotes

the Fermi momentum andnf = 2 denotes the number of flavors. Here we have used the expression of the n
density of quarks,ρi , in terms of the Fermi momentumkfi ; ρi = nfeiBkfi /2π2. Since all of the quark densities a
identical,ρi = ρ, whenρg1 = 0, we find that the total energy density,

∑
i=1–3 εi = π2ρ2(1/e1+1/e2+1/e3)/nfB,

takes the minimum value atθ = π/6. This is a simple case of all quarks occupying the lowest Landau level (na
much smallρ/(gB)3/2 � 1) and of the negligible gluon contribution. But actually, the gluon contribution to
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energy is dominant over the quark contribution since the energy density of the quarks occupying higher
levels depends very weakly on the directionθ of the color magnetic field.

In order to see it we calculate the energy of the gluon condensate depending onθ . Using the solutions of Eq. (8
we find that the energy density of the condensate normalized by(gB)2 is given by

(9)Ēv =
(
ā2

0(θ)v̄
2
1(θ)− 2v̄2

1(θ)cosθ + g2

l̄3
v̄4

1(θ)

)
1

l̄3
=

(
2ā2

0(θ)v̄
2
1(θ)− g2

l̄3
v̄4

1(θ)

)
1

l̄3
,

where we have represented the dependence ofθ explicitly. Note that we have the factor of 1/l̄3 in the above
equation in order to obtain the three-dimensional energy density,Ēv , from two-dimensional Lagrangian in Eq. (3
We have proved numerically that the energy of the condensate takes the minimum atθ = 0. Actual values ofĒv

at θ = 0 are as follows.Ēv l̄3 = −0.02,−0.08,−1, −10 forg2/l̄3 (= g2/(l3
√
gB )) = 20, 10, 1, 0.1, respectively

Smaller coupling constants,g2/l̄3, give rise to negatively larger energies. We do not know how large the cou
parameterg2 is. We tentatively assume thatg2 is of the order of 1 or less for the consistency of our calculat
Then, assumingl3 = 1–3 fm in real quark matter produced by heavy ion collisions and assuming

√
gB ∼ 200 MeV,

we obtainl̄3 = 1–3 and the order of the magnitude of the coupling constantg2/l̄3 beingO(0.1)–O(1). Hence,
the energy of the condensate takes a value, at least, such asĒv � −1 at θ = 0. On the other hand, the ener
density,EB , of the quarks normalized by(gB)2 is approximately given byEB=0 = (3π2/3/27/3)(ρ/(gB)3/2)4/3 �
1.28(ρ/(gB)3/2)4/3, i.e., the energy density of the quarks in the absence of the magnetic field. Namely,EB is nearly
equal toEB=0 for large quark number densityρ; EB = EB=0 in the limit of ρ/(gB)3/2 → ∞. Note thatEB=0
does not depend onθ . This indicates thatθ dependent part ofEB is much small. For instance,EB −EB=0 atθ = 0
is about 0.09 (0.13) forρ/(gB)3/2 = 10 (1000). Therefore,θ dependence of the energy is determined byĒv . Thus,
we conclude that the direction of the magnetic fieldB is chosen such asθ = 0, which gives the minimum energ
of the quarks and the gluons. Anyway, the condensation ofφ1 makesB point to the direction ofλ3 in maximal
Abelian subalgebra.

A comment is in order. To make a quantum Hall state, we can make all of the fieldsφs condense by introducin
different Chern–Simons gauge fields,�as to eachφs . Then, we have such a state as〈φs〉 = vs �= 0 for s = 1–3. But
we can show that the state is not stable because the fluctuationsδφs have an imaginary frequency in their spect
On the other hand, the formation of the quantum Hall state of only the fieldφ1 makes the state〈φ1〉 �= 0, 〈φ2〉 = 0
and〈φ3〉 = 0 stable as we have explained above. Similarly we can show that a quantum Hall state such as〈φ1〉 = 0,
〈φ2〉 �= 0 and 〈φ3〉 �= 0, is also stable. In the state two fieldsφ2,3 condense. Thus, the state possibly exists altho
we consider only the case of the condensed state ofφ1 in this Letter.

Up to now, we have shown that there are three types of the unstable modes of gluons induced by t
magnetic field generated spontaneously. These unstable modes are stabilized by the formation of the qua
state of the unstable modeφ1. Owing to the generation of the magnetic field, the gauge symmetry SU(3) is broken
into the gauge symmetry U(1)×U(1). Furthermore, the formation of the quantum Hall state (〈φ1〉 = v1) breaks the
gauge symmetry into the gauge symmetry of U(1). This is the case for the color magnetic field whose directionθ ,
is general. On the other hand, one of the unstable modes disappears at specific values ofθ . For example,g3 vanishes
for θ = π/6 so that the negative mass (−2g3B) of the fieldφ3 vanishes.φ3 becomes massless. Thus, the mode
φ3 is stable. In this case, the gauge symmetry SU(3) is broken into the gauge symmetry SU(2)× U(1). Namely,
there are 4 massless real fields; gauge fields of the maximal Abelian gauge group andA6,7

µ corresponding toφ3.
Subsequent formation of a quantum Hall state with〈φ1〉 = v1 breaks the symmetry into the gauge symmetry
U(1). Stability of the state〈φ2,3〉 = 0 is guaranteed by the positivity of their masses produced by the conden
of the fieldφ1; φ3 becomes massive as well asφ2. In any case, stable ferromagnetic states accompanied by qua
Hall states are realized in the SU(3) gauge theory. Since the gauge symmetry is broken, the state is not a real v
of QCD, but a state of quark matter.

We should note that the color chargeQ3(φ1) of the condensate〈φ1〉 must be supplied by the quark matt
produced by heavy ion collisions. Unless the chemical potential of the quark matter is large enough to
the charge, such a condensation cannot occur, so that the stable ferromagnetic state cannot arise. Thu
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to estimate the minimum chemical potential of the quark matter needed for the formation of the condens
note that two-dimensional color charge density of the gluon condensation is given byρg1 = g1B/4π , namely the
number density of theφ1 particles. When the radius of the quark matter isl3, the three-dimensional density,ρg , of
the condensed gluons is approximately given such thatρg = ρg1/l3. On the other hand, the color charge dens
of u and d quarks is12 × 2 × k3

f /3π
2 wherekf denotes a Fermi momentum; the factors 1/2 and 2 come from the

coupling strength in unit ofg and the number of the flavor, respectively. The chemical potential,µ, of the quark at

zero temperature is given by
√
k2

f +m2
q where we have taken account of the quark mass,mq ∼ 300 MeV. Hence,

by equating both densities we obtain the lower bound of the chemical potential such that

µ=
√(

(3πg1B/4l3)1/3
)2 +m2

q

(10)∼ 350 MeV

√(
180

350

)2
(〈gB〉/0.04 GeV2)2/3

(l3/3 fm)2/3
+

(
300

350

)2

(mq/300 MeV)2,

where we have referred to a typical scale of QCD as〈gB〉. Therefore, the ferromagnetic state of the quark ma
may arise in heavy ion collisions at chemical potentials larger than 350 MeV.

We have discussed the ferromagnetic phase of the SU(3) gauge theory. The phase appears at chemical pote
larger than a critical one, below which the hadronic phase is present. We already know the presence o
superconducting phase (2SC) in much large chemical potential. Thus, we wish to ask which state arise
quark matter, the color superconducting state or the color ferromagnetic state. Although both states do no
simultaneously in the ordinary matter owing to Meissner effects, they are compatible in the SU(3) gauge theory
without any contradictions.

In order to analyze the possibility, we note that the direction of the color magnetic field is pointed such asθ = 0.
Thus, an anti-triplet quark pair condensation such asεijk〈qjqk〉 = (0,0, u3) may arise because the magnetic fi
B ∝ λ3 is not inhibited by the Meissner effect; the magnetic field does not couple with the condensation. The
both states may arise simultaneously in a dense quark matter.

Explicit calculations have been done [12] within a NJL model where the effects of the color magnetic
B ∝ λ3 on the chiral condensation and the quark pair condensation have been discussed. The authors of
considered such a model in order to see the effect of vacuum fluctuations of the color magnetic field,〈B2〉 �= 0 on
the quark matter. On the other hand, as we have shown, such a color magnetic field is generated spon
Using their results, we find that the magnetic field induces the chiral condensation at any chemical po
less than a critical one, beyond which the quark pair condensation arises; 2CS appears. It is interesting
chiral condensation is not compatible with the quark pair condensation. Thus, in the 2CS, the chiral sy
is not broken. The point we learn from the Letter is that the ferromagnetic phase can coexist with th
superconducting phase.

It seems apparently that the pointing ofB to λ3 is necessary for the existence of the superconducting state
remember that our conclusion ofθ = 0 has been obtained by minimizing the energy of the quark matter u
the assumption ofg2 being the order of 1. Without the assumption the conclusion ofθ = 0 cannot be obtained
However, the magnetic field naturally orients toλ3 when the superconducting state arises in the ferromag
state. This is because the presence of such a state is energetically more favored than the absence of th
state withθ = 0 involving the superconducting state is energetically favored at large chemical potentials
state withθ �= 0 involving no superconducting state.

To summarize, we have found that the phase of the quark matter at zero temperature has the following s
At small chemical potentials the hadronic phase with the broken chiral symmetry is present. It is unclear wh
not the ferromagnetic phase arises before the chiral symmetry is restored when we increase the chemical
But it is clear that the hadronic phase is changed into the ferromagnetic phase at a certain chemical potent
phase the color magnetic field,�B ∝ cosθλ3+sinθλ8, is generated spontaneously whose direction in the color s
is pointed such asθ = 0. A quantum Hall state of gluons,φ1, is also formed in the phase. As a result, SU(3) gauge
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symmetry is broken into the U(1) gauge symmetry and the chiral symmetry is also broken. Further increase
chemical potential makes a quark pair condensationεijk〈qiqj 〉 = (0,0, u) arise so that the color superconduct
phase (2CS) appears. This state does not expel the color magnetic field because the field does not coup
quark pair condensate. In the phase of the coexistence of both states (ferromagnetic and superconducti
the chiral symmetry is restored, but the U(1) gauge symmetry is broken due to the quark pair condensation. T
a brief picture of the phase of the quark matter in the SU(3) gauge theory with two flavors. At much larger chemi
potentials strange quarks may play a role and they may form color flavor locking superconducting phas
and d quarks. In the phase the color ferromagnetic state disappears.
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