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Abstract

Motivated by computer experiments, we study asymptotics of the expected maximum number of base pairs in secondary structures
for random RNA sequences of length n. After proving a general limit result, we provide estimates of the limit for the binary alphabet
{G, C} with thresholds k�0. We prove a general theorem entailing the existence of an asymptotic limit for the mean and standard
deviation of free energy per nucleotide, as computed by mfold, for random RNA of any fixed compositional frequency; higher
order moment limits are additionally shown to exist.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that there is a compositional bias in nucleotide usage of various classes of RNA, depending on
function (see, for instance [18]). For example, the mononucleotide (or compositional) frequency of 530 tRNAs from
Sprinzl’s tRNA database [26,27] is given by qA = 0.239922, qC = 0.253383, qG = 0.275618, qU = 0.231076, while
that from a collection of 155 16S ribosomal RNAs [1] is qA = 0.2642, qC = 0.2101, qG = 0.3178, qU = 0.2079. This
suggests the following motivating question: To what extent might compositional frequency of a class of RNAs determine
or constrain the stability of optimal secondary structures (hence the function) for members of that class?
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Table 1
Table of number BP of base pairs, ratio of base pairs to sequence length, etc. For random binary sequences of length n generated by Algorithm 1 to
have expected mononucleotide frequencies: qC = qG = 0.5

n BP StDev BP/n Error Max Min

10 3.1800 0.7795 0.3180 0.0779 4 1
100 44.1200 1.9610 0.4412 0.0196 46 35
200 90.2900 2.0312 0.4515 0.0102 92 82
300 136.8600 1.9850 0.4562 0.0066 140 127
400 183.0200 1.9848 0.4576 0.0050 186 175
500 229.6200 1.9939 0.4592 0.0040 233 220
600 276.2100 2.3845 0.4603 0.0040 280 266
700 322.8600 2.1449 0.4612 0.0031 326 311
800 369.3800 2.0188 0.4617 0.0025 372 358
900 416.0800 1.9114 0.4623 0.0021 420 411

1000 462.5500 2.1325 0.4626 0.0021 466 457

Our implementation of the Nussinov–Jacobson algorithm was used with threshold 1, and sequence length up to 1000. Average values were taken
over 100 iterations, where error means Stdev/n; points are indicated along with error bars. The asymptotic limit appears to be at least 0.4626.

In this paper, which vastly extends the preliminary report of [9], we study asymptotic properties of random RNA
generated by a 0th order Markov chain from fixed mononucleotide or compositional frequencies of nucleotides A, C,
G, U; in the appendix, we consider random RNA generated by kth order Markov chains. Our investigation is different
from the work of either Hofacker et al. [17] or of Nebel [22,23]. These authors consider a stickiness parameter,4

which gives the probability that any two positions can base pair. In [17], Hofacker et al. extend the technique of Stein
and Waterman [29] to compute asymptotic limits of the expected number of base pairs divided by sequence length,
the number of secondary structures of a given order, etc. They do this by deriving appropriate recurrence relations
and proceed by application of Bender’s Theorem (see [29]), a very powerful tool for solving asymptotic limits when
generating functions satisfy a particular functional relation. In [22], Nebel computes precise rth order moments of
asymptotic numbers of secondary structures by using sophisticated extensions of the generating function technique of
[30]. For example, Theorem 10 of [22] states that “the average number of unpaired bases in a secondary structure of
size n is asymptotically n√

5
+ 3

10 + 1√
5

+ O(n−1)”. This, however, concerns the expected number of unpaired bases

among all secondary structures, even those which are not optimal, where additionally any bases may pair (i.e. not just
Watson–Crick or GU wobble pairs). While the results of Hofacker et al. and of Nebel are both interesting and deep,
they do not concern the questions addressed in this paper. In particular, the asymptotic limits we establish concern
the expected maximum number of base pairs (and higher order moments) of random RNA of a given compositional
frequency (or of a given dinucleotide or more generally k-tuple frequency). This is not the same mathematical model as
the Bernoulli model with a given stickiness parameter. In particular, the asymptotic value Pn/nSn =0.2051 of expected
number of base pairs from the model of Hofacker et al. (cf. [17, Table 3]) is quite different from the asymptotic value
of approximately 0.46 suggested by our computer experiments summarized in the Table 1 and graph from Fig. 1. For
this latter comparison, for both the stickiness model of Hofacker et al. and our model, compositional frequency is
pG = 0.5 = pC and pA = 0 = pU , and the threshold (i.e. minimum number of unpaired bases in hairpin loops) is 1.
While the models of Hofacker et al. and of Nebel concern the collection of all secondary structures compatible with
a given RNA sequence, we consider only optimal secondary structures having a maximum number of base pairs for a
given RNA sequence.

In this paper, we consider different possible values t �0 for a minimum threshold on the number of unpaired bases
between any two paired bases (i.e. hairpin loops are required to have at least t unpaired bases in the loop region). We
prove a general limit theorem, which states that there is an asymptotic limit for the ratio of the expected maximum
number of base pairs in random RNA divided by sequence length; moreover, this limit depends only on the compositional
frequency used to generate the random RNA. In this regard, our simulations suggest that this limit is a minimum when

4 Stickiness parameter p = 2(pApU + pCpG + pGpU ) if Watson–Crick and GU wobble pairs are allowed, while p = 2(pApU + pCpG) if
Watson–Crick but no GU wobble pairs are allowed. Here, pA, pC, pG, pU denote the compositional frequency of a class of RNA.
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Fig. 1. Graph of the average number of base pairs in random RNA divided by length of RNA sequence. Values graphed come from columns 1 and 4
of Table 1.

the compositional frequency is 0.25 for each base A,C,G,U.5 In the Appendix, we extend the asymptotic limit result in
three directions: (i) we consider the more realistic Turner [33] energy model using Zuker’s algorithm [20,34], as well
as the Nussinov–Jacobson [24] energy model; (ii) we consider random RNA as generated from a kth order Markov
chain, for arbitrary but fixed k�1 (the asymptotic limit proved in the main part of the text concerns 0th order Markov
chain); (iii) we consider not only the mean minimum free energy (mfe) per nucleotide of random RNA, but the standard
deviation of the mfe per nucleotide as well as higher order moments. This extension is placed in an appendix, since the
focus of the current paper is combinatorial; i.e. to prove exact values or lower and upper bounds for the asymptotic limit
of the expected maximum number of base pairs of random RNA as a function of compositional frequency. A companion
paper [7] to this article focuses on the Turner energy model, dinucleotide frequencies, random RNA generated by a
first-order Markov chain, Z-scores,p-values and asymptotic Z-scores to quantify the extent to which (structural) RNA
has lower folding energy6 than random RNA of the same dinucleotide frequency.

Obtaining provable, exact values for asymptotic limits of expected maximum number of base pairs for random RNA
of different compositional frequencies seems currently to be an intractable problem, so to shed light on this problem,
we study the expected maximum number of base pairs for random strings in {0, 1}∗ having a minimum number k of
hairpin loops, each having a threshold of size t . Here, in analogy to RNA, we allow base pairings between distinct
symbols (0 with 1, but not 0 with 0 or 1 with 1)—alternatively expressed, we consider RNA strings containing only
A, U or only C, G. For this binary alphabet problem, the asymptotic ratio of the expected maximum number of base
pairs over n is compared to D(p), the “dual” of the well-known constant L(p), the latter defined as the asymptotic
ratio of the expected length of the longest common subsequence (LCS) of two random strings of length n divided by
n, where bits are generated randomly and independently, 1 with probability p and 0 with probability 1 − p.

2. Computer experiments

Figures and tables from our computer experiments are found at the end of the paper. Some additional data, as well as a
short, self-contained proof of Lemma 7, is available in the web supplement found athttp://bioinformatics.bc.
edu/clotelab/. Throughout the paper, we consider an RNA sequence s to be a word over the finite alphabet

5 If only Watson–Crick base pairing is allowed, then clearly the maximum number of base pairs for RNA sequence s is bounded above by
min(|s|A, |s|U ) + min(|s|C, |s|G), where |s|x denotes the number of occurrences of x in sequence s. To avoid obvious trivialities of this form,
Conjecture 5 requires that mononucleotide frequencies qA = qU and qC = qG.

6 The folding energy of an RNA sequence s is the minimum free energy of s, as computed by Zuker’s algorithm [34] using the Turner energy
model [33]—i.e. using Zuker’s mfold or RNAfold from the Vienna RNA Package.

http://bioinformatics.bc.edu/clotelab/
http://bioinformatics.bc.edu/clotelab/
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{A, C, G, U}; i.e. s ∈ {A, C, G, U}∗. Given RNA sequences s, t , we write the concatenation of s with t by s · t , or
sometimes even st.

Recall that a secondary structure for an RNA sequence a = a1 · · · an ∈ {A, C, G, U}n is an expression s = s1 · · · sn
involving dot, left and right parenthesis, which is well-balanced, such that nucleotides corresponding to matching
parentheses are either Watson–Crick complements or GU wobble pairs. We say that a secondary structure has threshold
�, if hairpin loops have at least � unpaired bases.

Formally, define a secondary structure S on RNA sequence a1, . . . , an to be a set of ordered pairs (i, j) corresponding
to base pair positions, where i < j and the following requirements are satisfied.

(1) Watson–Crick or GU wobble pairs: If (i, j) belongs to S, then pair (ai, aj ) must be one of the following canonical
base pairs: (A, U), (U, A), (G, C), (C, G), (G, U), (U, G).7

(2) Nonexistence of pseudoknots: If (i, j) and (k, �) belong to S, then it is not the case that i < k < j < �.
(3) No base triples: If (i, j) and (i, k) belong to S, then j = k; if (i, j) and (k, j) belong to S, then i = k.
(4) Threshold requirement: If (i, j) belongs to S, then j − i > �.

A base pair (x, y) is interior to base pair (i, j) if i < x < y < j ; one also says that (i, j) is exterior to (x, y).
In [24] Nussinov and Jacobson present a dynamic programming algorithm to compute the maximum number of

base pairs in a secondary structure for a given RNA sequence. This O(n3) time algorithm is the basis for the more
realistic Zuker algorithm [34], as implemented in mfold and in Vienna RNA package RNAfold. Since the current
paper concerns a mathematical analysis of asymptotic properties of RNA, we adopt the simpler Nussinov–Jacobson
algorithm.

We now describe four methods of generating random RNA sequences: Markov 0, Markov1, Shuffle, Dishuffle. The
first method is known as the random word model, or more precisely a 0th order Markov chain.

Algorithm 1 (Markov 0). INPUT: An RNA sequence a1, . . . , an.
OUTPUT: An RNA sequence x1, . . . , xn of the same expected mononucleotide frequency as a1, . . . , an.

(1) Compute the mononucleotide frequency of a1, . . . , an.
(2) For i = 1, . . . , n, generate xi by sampling from mononucleotide frequency.

The next method generates a random sequence by taking a random walk on a first-order Markov chain, whose
transitional probabilities are obtained from measured dinucleotide frequencies.

Algorithm 2 (Markov1). INPUT: An RNA sequence a1, . . . , an.
OUTPUT: An RNA sequence x1, . . . , xn of the same expected dinucleotide frequency as a1, . . . , an.

(1) Compute the mono- and dinucleotide frequency of a1, . . . , an.
(2) Generate x1 by sampling from mononucleotide frequency.
(3) Generate remaining nucleotides x2, . . . , xn by sampling from the conditional probabilities Pr[X|Y ], where

Pr[X|Y ] equals the dinucleotide frequency that nucleotide X follows Y divided by mononucleotide frequency
of nucleotide Y.

The next method is a trivial shuffle, familiar to beginning students of computer science.

Algorithm 3 (Shuffle). INPUT: An RNA sequence a1, . . . , an.
OUTPUT: An RNA sequence x1, . . . , xn of the same exact mononucleotide frequency as a1, . . . , an.

(1) Choose a random permutation � ∈ Sn.
(2) For i = 1 to n, set xi = a�(i).

7 At times, we may disallow wobble pairs. Note that there is even an option in RNAfold of Vienna RNA Package [16,15] which disallows
wobble pairs.
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The last method is a clever dinucleotide shuffle process, due to Altschul and Erikson [2], which preserves the same
exact dinucleotide count. (Web server and Python source code for this algorithm is available in the web supplement. See
also [10] for a recent web server, which implements the Altschul–Erikson algorithm for k-tuple shuffles, for arbitrary
but fixed k.)

Algorithm 4 (Dishuffle). INPUT: An RNA sequence a1, . . . , an.
OUTPUT: An RNA sequence x1, . . . , xn of the same exact dinucleotide frequency as a1, . . . , an, where x1=a1, xn=an;

moreover, the Altschul–Erikson algorithm even produces the same number of dinucleotides of each type AA, AC, AG,
AU, CA, CC, etc.

(1) For each nucleotide x ∈ {A, C, G, U}, create a list Lx of edges x → y such that the dinucleotide xy occurs in the
input RNA.

(2) For each nucleotide x ∈ {A, C, G, U} distinct from the last nucleotide xn, randomly choose an edge from the list
Lx . Let E be the set of chosen edges (note that E contains at most three elements).

(3) Let G be the graph, whose edge set is E and whose vertex set consists of those nucleotides x, y such that x → y

is an edge in E. If there is a vertex of G which is not connected to the last nucleotide an, then return to (2).
(4) For each nucleotide x ∈ {A, C, G, U}, permute the edges in Lx − E. Append to the end of each Lx any edges

from E which had been removed.
(5) For i = 1 to n − 1, generate xi+1 by taking the next available nucleotide such that xi → xi+1 belongs to the list

Lxi
.

The proof of correctness of the Altschul–Erikson dinucleotide shuffle algorithm depends on well-known criteria for
the existence of an Euler tour in a directed graph. See [2] for details of Algorithm 4 and its extensions.

Now, given an RNA sequence s of length n, by the previous four methods, we can generate many random sequences
t of the same length n, guaranteed to have the same expected or exact mono- or dinucleotide frequency as that of s,
depending on choice of algorithm. While the theoretical contribution of this paper focuses on the random word model
or 0th order Markov chain, we experimented with each of the four algorithms to generate random sequences.

2.1. miRNA versus random RNA

The results of this section suggest that functionally important RNA, such as precursor micro-RNA (miRNA) from
the Rfam database [13], have more base pairs than that of random RNA of the same expected mononucleotide and/or
dinucleotide frequency, as computed by our implementation of the Nussinov–Jacobson algorithm [5,24].8 In computa-
tions described in this section we allow GU wobble pairs, in addition to Watson–Crick pairs, and alternately investigate
the situation with threshold 0 and 3.

We computed the mono- and dinucleotide frequencies of 506 precursor miRNAs, with sequence data taken from
Bonnet et al. [3] (the data of Bonnet et al. was extracted from Rfam), as well as the minimum, maximum, average
and standard deviation of the precursor miRNA lengths. Table 2 and Fig. 2 indicate clearly that precursor miRNA has
more base pairs than random RNA, when applying the Nussinov–Jacobson algorithm with threshold 3, where random
RNA is generated by each of Algorithms 1–4. In contrast, Table 3 and Fig. 3 indicate that for the biologically irrelevant
case of threshold 0, there is no such phenomenon. See the web supplement for additional experiments with transfer
RNA, type III hammerhead ribozymes and riboswitches, all of which yield that real RNA has more base pairs than
random RNA. Though a crude approximation to the real energy model, the Nussinov–Jacobson energy model does
indicate, for threshold 3, that structural RNA has more base pairs than random RNA. Unlike the Turner energy model,
the Nussinov–Jacobson energy model is simple enough to allow us to establish numerical limits and upper and lower

8 As shown in [6], most structurally important RNA has lower folding energy than random RNA, where folding energy is measured using
Zuker’s algorithm, as implemented in mfold or RNAfold. Although the Nussinov–Jacobson energy model, in particular computing the maximum
number of base pairs, is a crude approximation to the real energy model, other classes of RNA (tRNA, hammerhead ribozymes, riboswitches)
illustrate consistently that when applying the Nussinov–Jacobson algorithm for threshold 3, real RNA has more base pairs than random RNA. For
the biologically irrelevant case of threshold 0, this is no longer the case. See additional data, tables and figures in the web supplement of this paper.
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Table 2
Descriptional statistics for the number of base pairs divided by sequence length for a collection of 506 precursor miRNAs (miRNA sequence data
from [3]) and for random RNA, according to Algorithms 1–4

Mean StDev Max Min

miRNA 0.396588 0.017623 0.445783 0.353535
Markov0 0.365564 0.019093 0.424242 0.247312
Markov1 0.366969 0.020685 0.427083 0.154930
Shuffle 0.371138 0.012318 0.418919 0.319444
Dishuffle 0.374058 0.012256 0.430380 0.323529

For each miRNA, 100 random RNAs of the same size were generated, and the number of basepairs was computed, using our implementation of
the Nussinov–Jacobson algorithm, where Watson–Crick and GU base pairs are allowed, with threshold set to 3. Table values concern the ratio of
number of base pairs over sequence length. The theoretical analysis of the current paper principally concerns random RNA generated by Algorithm
1. For each method of generating random RNA, the mean number of base pairs is less than that of real RNA.
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Fig. 2. This figure displays the ratio of number of base pairs over sequence length, for 506 precursor miRNAs (sequence data taken from [3]).
Number of base pairs was computed using our implementation of the Nussinov–Jacobson algorithm, allowing Watson–Crick and GU wobble pairs
with threshold of 3. The histogram of number of base pairs divided by sequence length for precursor miRNA lies to the right of the histograms
produced by each of the four methods for generating random RNA—Algorithms 1–4. Histograms were obtained by generating, for each miRNA
sequence, 100 random RNAs per real RNA, using each of the four methods discussed. Descriptional statistics for these graphs are given in Table 2.

Table 3
Descriptional statistics generated in an identical manner to those from Table 2, with the exception that threshold is set to 0

Mean StDev Max Min

miRNA 0.436927 0.017835 0.484536 0.368421
Markov0 0.424635 0.032262 0.494737 0.225806
Markov1 0.421845 0.034673 0.500000 0.140845
Shuffle 0.439826 0.017681 0.494118 0.363636
Dishuffle 0.437898 0.018040 0.494118 0.355263

Note the anomaly in this case of threshold 0, that random RNA obtained by both shuffling methods has a larger average number of base pairs
divided by sequence length. Structural RNA has been under selective pressure to have lower folding energy than random RNA [6]. Although the
Nussinov–Jacobson energy model is a crude approximation for the real energy model, in the case of threshold 3, random RNA appears to have fewer
base pairs than real RNA. In the biologically irrelevant case of threshold 0, this is no longer the case.
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Fig. 3. This figure differs from Fig. 2 only in that threshold 0 was taken in the Nussinov–Jacobson algorithm, rather than threshold 3. Descriptional
statistics are given in Table 3.

bounds for the maximum number of base pairs. In the companion paper [6], we compute Z-scores and p-values to
study how the folding energy of real RNA compares with random RNA.

2.2. Simulations suggest an asymptotic limit

In Table 6, we give a table of the expected number BP of base pairs in random RNA with varying compositional
frequency, no GU bonds, threshold 0, and string length 500, where the average was taken over 100 random sequences
per fixed compositional frequency. While it is clear that a maximum number of base pairs is obtained for compositional
frequency of 0.5 for each of A, U (or of C, G),9 it is not obvious how to prove the following conjecture.

Conjecture 5. Let ��0 be a fixed threshold, and n�� + 2 arbitrary. Let qA, qC, qG, qU be compositional (mononu-
cleotide) frequencies of A, C, G, U, satisfying qA = qU , qC = qG and qA + qU + qC + qG = 1. Generate random RNA
sequences of length n, obtained by appending nucleotides, where A is appended with probability qA, C with probability
qC , G with probability qG and U with probability qU . Let BP(n) be the expected maximum number of base pairs in
such random sequences, where Watson–Crick but no GU pairs are allowed. Then BP(n) achieves a minimum with the
uniform distribution qA = qU = qC = qG = 0.25.

Table 6 provides evidence for the likelihood of this conjecture, when n = 500 and threshold � = 0.
Some classes of RNA have compositional frequencies of approximately qA = qU = qC = qG = 0.25, so the above

conjecture might suggest that such RNA is optimized for structural instability, which appears to contradict the data
presented in Fig. 2. As previously mentioned, the case of threshold 0 is biologically irrelevant; moreover, for simplicity,
we have disallowed GU wobble pairs, and in counting the maximum number base pairs, there is no distinction between
GC and AU base pairs. These ignored factors are all biologically relevant. Table 4 illustrates the expected mfe, as
computed by Version 1.4 of Vienna RNA Package RNAfold, in random RNA with varying compositional frequency,
no GU bonds, threshold 3, and string length 500, where the average was taken over 100 random sequences per fixed
compositional frequency. In this case, uniform compositional frequency qA = qU = qC = qG = 0.25 does not yield a
maximum mfe value.

9 The formal proof is left to the reader; however, the idea is that by replacing all A’s by C’s and U’s by G’s, the number BP cannot decrease.
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Table 4
Table of expected minimum free energy (mfe) in random RNA with varying compositional frequency, no GU bonds, threshold 3, string length 500,
average values over 100 iterations, using Vienna RNA Package RNAfold

qA qC qG qU Mean StDev Max Min Ratio

0.0000 0.5000 0.5000 0.0000 −475.5846 8.5438 −458 −495 −0.951169
0.0156 0.4844 0.4844 0.0156 −436.4168 12.5359 −402 −460 −0.872834
0.0312 0.4688 0.4688 0.0312 −408.6424 16.4497 −371 −441 −0.817285
0.0469 0.4531 0.4531 0.0469 −372.4908 14.5766 −333 −410 −0.744982
0.0625 0.4375 0.4375 0.0625 −348.0432 15.4277 −311 −377 −0.696086
0.0781 0.4219 0.4219 0.0781 −322.3006 13.6317 −294 −353 −0.644601
0.0938 0.4062 0.4062 0.0938 −296.3844 15.8813 −266 −339 −0.592769
0.1094 0.3906 0.3906 0.1094 −273.6242 14.7602 −230 −305 −0.547248
0.1250 0.3750 0.3750 0.1250 −251.7838 16.8178 −207 −285 −0.503568
0.1406 0.3594 0.3594 0.1406 −235.4784 14.4806 −198 −271 −0.470957
0.1562 0.3438 0.3438 0.1562 −214.0264 12.2795 −187 −245 −0.428053
0.1719 0.3281 0.3281 0.1719 −200.9744 12.8800 −171 −236 −0.401949
0.1875 0.3125 0.3125 0.1875 −185.1242 10.8777 −162 −205 −0.370248
0.2031 0.2969 0.2969 0.2031 −170.3640 13.3179 −146 −204 −0.340728
0.2188 0.2812 0.2812 0.2188 −156.9842 14.6035 −125 −196 −0.313968
0.2344 0.2656 0.2656 0.2344 −143.9242 11.6329 −123 −167 −0.287848
0.2500 0.2500 0.2500 0.2500 −132.1930 10.2426 −112 −157 −0.264386
0.2656 0.2344 0.2344 0.2656 −120.3692 7.8277 −103 −140 −0.240738
0.2812 0.2188 0.2188 0.2812 −109.9630 8.2964 −97 −127 −0.219926
0.2969 0.2031 0.2031 0.2969 −101.8248 9.4531 −76 −120 −0.203650
0.3125 0.1875 0.1875 0.3125 −93.6436 7.6687 −76 −112 −0.187287
0.3281 0.1719 0.1719 0.3281 −84.3984 7.3432 −72 −99 −0.168797
0.3438 0.1562 0.1562 0.3438 −78.6708 7.2501 −61 −93 −0.157342
0.3594 0.1406 0.1406 0.3594 −71.9054 7.5020 −54 −85 −0.143811
0.3750 0.1250 0.1250 0.3750 −65.8294 6.2562 −54 −85 −0.131659
0.3906 0.1094 0.1094 0.3906 −61.3780 5.3742 −50 −71 −0.122756
0.4062 0.0938 0.0938 0.4062 −59.4470 5.6267 −44 −76 −0.118894
0.4219 0.0781 0.0781 0.4219 −56.9226 4.0502 −44 −66 −0.113845
0.4375 0.0625 0.0625 0.4375 −56.4236 4.8504 −47 −68 −0.112847
0.4531 0.0469 0.0469 0.4531 −57.3960 4.4266 −50 −71 −0.114792
0.4688 0.0312 0.0312 0.4688 −62.3824 5.4518 −51 −75 −0.124765
0.4844 0.0156 0.0156 0.4844 −68.1114 4.8157 −57 −81 −0.136223
0.5000 0.0000 0.0000 0.5000 −79.6382 4.9443 −66 −88 −0.159276

Note that while Table 6 illustrates our conjecture that the uniform compositional frequency pA =pC =pG =pU = 0.25 yields the fewest base pairs
as computed by the Nussinov–Jacobson algorithm, the situation is radically different when computing with Zuker’s algorithm, as implemented in
Vienna RNA Package. For the latter, pA = 0.4375 = pU , pC = 0.0625 = pG appears to yield the highest (i.e. negative with smallest absolute value)
minimum free energy. This is in part because AU bonds are weaker than GC bonds (for this experiment we have disallowed GU base pairs, to allow
comparison of results between Tables 6 and 4.

Further simulations suggest an asymptotic limit phenomenon. For any fixed compositional frequency (see Fig. 4 and
Table 5), for instance qA = qC = qG = qU = 0.25, we generated random RNA sequences of length n by Algorithm 1,
computed the number BP of base pairs in the Nussinov–Jacobson optimal structure, and determined the ratio BP/n.
See Figs. 1, 5 and 7, and Tables 6 and 7, which illustrate the dependence of this asymptotic limit on the compositional
frequency, for fixed threshold. The remainder of the paper furnishes proof of this asymptotic limit phenomenon, as
well as upper and lower bounds in the case of binary sequences.

3. Expected maximum number of base pairs in labeled secondary structures

We now prove the existence of an asymptotic limit, as suggested by the computer experiments from the previous
section.
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Fig. 4. Graph of the average number of base pairs in random RNA divided by length of RNA sequence. Values graphed come from columns 1 and 4
of Table 5.

Table 5
Table of number BP of base pairs, ratio of base pairs to sequence length, etc. for random RNA sequences of length n generated by Algorithm 1 to
have expected mononucleotide frequencies: qA = qC = qG = qU = 0.25

n BP StDev BP/n Error Max Min

10 2.9600 0.8823 0.2960 0.0882 5 1
100 42.4200 2.2635 0.4242 0.0226 46 35
200 87.9100 2.3499 0.4395 0.0117 92 82
300 133.9500 2.6434 0.4465 0.0088 139 127
400 179.5300 3.1574 0.4488 0.0079 187 171
500 225.2100 2.9776 0.4504 0.0060 232 216
600 271.1300 3.5543 0.4519 0.0059 278 263
700 316.8800 3.3654 0.4527 0.0048 324 308
800 362.7400 4.0562 0.4534 0.0051 371 351
900 409.1800 3.8429 0.4546 0.0043 418 400

1000 455.0100 3.5539 0.4550 0.0036 463 443

Our implementation of the Nussinov–Jacobson algorithm was used with Watson–Crick base pairs (no GU base pairs), threshold 0, and sequence
length up to 1000. Average values were taken over 100 iterations, where error means Stdev/n; points are indicated along with error bars.

Definition 6. A function f defined on the positive integers is said to be superadditive if for all integers s, s′,

f (s) + f (s′)�f (s + s′). (1)

Similarly, a function f is said to be subadditive if

f (s + s′)�f (s) + f (s′). (2)

The following useful lemma is due to Fekete [11]; see also Steele [28] for extensions and additional information.
For the sake of completeness, we include a short self-contained proof in the web supplement.

Lemma 7 (Superadditivity Lemma, Fekete [11]). For any superadditive function f, the limit

lim
n→∞

f (n)

n
= sup

n�1

f (n)

n

always exists.
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Fig. 5. Graph of data from Table 7; values from column 4 (expected number of base pairs of random RNA divided by sequence length n) are graphed
as a function of those from column 1 (sequence length n).

Fix arbitrary compositional frequencies qA, qC, qG, qU with qA + qC + qG + qU = 1. For integer n let E(n, qA, qC,

qG, qU ) denote the expected number of base pairs in an optimal secondary structure (i.e. having maximum number
of base pairs) for random RNA of length n generated by sampling the compositional frequencies qA, qC, qG, qU

(i.e. 0th order Markov chain). Since the compositional frequencies are fixed throughout, we write E(n) instead of
E(n, qA, qC, qG, qU ). Writing 4n instead of {A, C, G, U}n, let N(s) be the number of base pairs in an optimal secondary
structure on RNA sequence s ∈ 4n when applying the Nussinov–Jacobson algorithm (i.e. N(s) is the maximum number
of base pairs in a secondary structure on s). Of course N(s) depends on fixed threshold �, so we should really write
N(�, s), but the existence of a limit is independent of the value of �.10

Lemma 8. For fixed compositional frequencies qA, qC, qG, qU , E(n) is superadditive.

Proof.

E(n + m) =
∑

r∈4n+m

Pr[r] · N(r)

=
∑
s∈4n

∑
t∈4m

Pr[s] Pr[t]N(st)

�
∑
s∈4n

∑
t∈4m

Pr[s] Pr[t](N(s) + N(t))

=
∑
t∈4m

Pr[t] ·
∑
s∈4n

Pr[s]N(s) +
∑
s∈4n

Pr[s] ·
∑
t∈4m

Pr[t]N(t)

=
∑
s∈4n

Pr[s]N(s) +
∑
t∈4m

Pr[t]N(t)

= E(n) + E(m).

This concludes the proof of Lemma 8. �

10 In mfold, � is taken to be 3.
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Table 6
Table of expected number BP of base pairs in random RNA with varying compositional frequency, no GU bonds, threshold 0, string length 500,
average values were taken over 100 iterations

qA qC qG qU Mean StDev Max Min Ratio

0.0000 0.5000 0.5000 0.0000 240.0300 7.0999 250 220 0.480060
0.0156 0.4844 0.4844 0.0156 238.4600 6.6550 249 219 0.476920
0.0312 0.4688 0.4688 0.0312 237.6100 6.6210 247 222 0.475220
0.0469 0.4531 0.4531 0.0469 236.5900 6.4095 247 222 0.473180
0.0625 0.4375 0.4375 0.0625 236.0400 5.9547 246 220 0.472080
0.0781 0.4219 0.4219 0.0781 234.9800 5.5479 244 219 0.469960
0.0938 0.4062 0.4062 0.0938 234.2100 5.6909 243 216 0.468420
0.1094 0.3906 0.3906 0.1094 233.6500 5.6752 244 216 0.467300
0.1250 0.3750 0.3750 0.1250 232.9300 5.5177 242 217 0.465860
0.1406 0.3594 0.3594 0.1406 232.4200 5.6217 242 217 0.464840
0.1562 0.3438 0.3438 0.1562 232.0500 5.3859 241 217 0.464100
0.1719 0.3281 0.3281 0.1719 231.7900 5.2140 241 217 0.463580
0.1875 0.3125 0.3125 0.1875 231.4400 4.9302 241 220 0.462880
0.2031 0.2969 0.2969 0.2031 231.0700 4.9925 241 219 0.462140
0.2188 0.2812 0.2812 0.2188 231.0100 4.9163 242 217 0.462020
0.2344 0.2656 0.2656 0.2344 231.1300 5.0807 242 219 0.462260
0.2500 0.2500 0.2500 0.2500 231.0500 4.7167 241 221 0.462100
0.2656 0.2344 0.2344 0.2656 231.3900 4.4898 241 222 0.462780
0.2812 0.2188 0.2188 0.2812 231.3600 4.6444 241 222 0.462720
0.2969 0.2031 0.2031 0.2969 231.3500 4.7463 241 221 0.462700
0.3125 0.1875 0.1875 0.3125 231.5700 4.5503 240 222 0.463140
0.3281 0.1719 0.1719 0.3281 231.9200 4.7972 241 223 0.463840
0.3438 0.1562 0.1562 0.3438 232.2600 5.1529 241 217 0.464520
0.3594 0.1406 0.1406 0.3594 232.6500 5.3224 243 216 0.465300
0.3750 0.1250 0.1250 0.3750 233.0400 5.2305 246 218 0.466080
0.3906 0.1094 0.1094 0.3906 233.6700 5.4223 245 221 0.467340
0.4062 0.0938 0.0938 0.4062 234.5400 5.3989 245 220 0.469080
0.4219 0.0781 0.0781 0.4219 234.9500 5.4118 243 221 0.469900
0.4375 0.0625 0.0625 0.4375 236.0400 5.3646 245 223 0.472080
0.4531 0.0469 0.0469 0.4531 237.1000 5.7541 245 222 0.474200
0.4688 0.0312 0.0312 0.4688 237.6200 6.0527 247 221 0.475240
0.4844 0.0156 0.0156 0.4844 238.4600 6.5459 249 218 0.476920
0.5000 0.0000 0.0000 0.5000 240.0300 7.0999 250 220 0.480060

Table 7
Table of number BP of base pairs, ratio of base pairs to sequence length, etc. for random binary sequences of length n generated by Algorithm 1 to
have expected mononucleotide frequencies: qG = qC = 0.5

n BP StDev BP/n Error Max Min

10 3.7000 1.0724 0.3700 0.1072 5 1
100 46.4200 3.2716 0.4642 0.0327 50 35
200 94.7000 4.3070 0.4735 0.0215 100 82
300 143.2900 5.2293 0.4776 0.0174 150 127
400 191.3900 6.1788 0.4785 0.0154 200 175
500 240.0300 7.0999 0.4801 0.0142 250 220
600 289.2600 7.9531 0.4821 0.0133 300 266
700 338.7600 8.3751 0.4839 0.0120 350 311
800 388.5900 8.5687 0.4857 0.0107 400 358
900 437.2800 9.0278 0.4859 0.0100 450 414

1000 485.3800 9.7445 0.4854 0.0097 500 462

Our implementation of the Nussinov–Jacobson algorithm was used with Watson–Crick base pairs (no GU base pairs), threshold 0, and sequence
length up to 1000. Average values were taken over 100 iterations, where error means Stdev/n; points are indicated along with error bars. By Theorem
11, the asymptotic limit is 0.5.
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Note that the previous lemma depends on two conditions.

(1) Random words are generated by a 0th order Markov process, which implies that Pr[st] = Pr[s] · Pr[t], where st
is the concatenation of sequence s followed by sequence t .

(2) N(st)�N(s) + N(t). This is clear, since the union of a secondary structure for s and one for t yields a valid
secondary structure for st, and so the maximum number of base pairs in a secondary structure for st is at least
N(s) + N(t).

The condition (2) is not always valid for the Turner energy rules. For instance, if s = CCCUUUGGG = t , then Vienna
RNA package RNAfold yields

CCCUUUGGG
(((...)))
minimum free energy = −0.90 kcal/mol

CCCUUUGGGCCCUUUGGG
(((...(....)...)))
minimum free energy = −3.30 kcal/mol

where the mfe structure for s and for t each has 3 base pairs, but that for the concatenation st has only 4.

Theorem 9 (Asymptotic expected maximum number of base pairs). For any compositional frequencies qA, qC, qG, qU ,
there exists a limit L(qA, qC, qG, qU ) such that the expected maximum number of base pairs in random RNA of given
compositional frequency and of length n is asymptotically equal to n · L(qA, qC, qG, qU ).

Proof. By Lemma 8, E(n) is superadditive, so by Lemma 7, the limit limn→∞ E(n)/n exists. �

In the remainder of the paper, we provide rigorous upper and lower bounds for the asymptotic limit of the expected
maximum number of base pairs for random RNA as a function of the compositional frequency. In the appendix, we
prove an asymptotic limit for mean and standard deviation (as well as higher order moments) of mfe per nucleotide
of random RNA of a given compositional frequency, where mfe is computed by Zuker’s algorithm using the Turner
energy model.

3.1. Motivation

We now turn to the question of computing the asymptotic limit, whose existence was just shown. Throughout the
remainder of the paper, we will consider a binary alphabet 0, 1, instead of the usual RNA nucleotides A, C, G, U—this
would correspond to the (unrealistic) case where an RNA sequence consisted only of C, G or only of A, U . It is hoped
that our analysis of asymptotics for a binary alphabet may deliver techniques useful for the general problem.

For the purposes of combinatorial analysis a secondary structure is modeled as an outerplanar graph with vertices
1, 2, . . . , n such that there is at most one edge between any two vertices.11 A base pair (i, j), where i < j , is an edge
connecting two positions of the RNA sequence a1, . . . , an. Base pair (x, y) is interior to base pair (i, j) if i < x < y < j ;
equivalently, (i, j) is said to be exterior to (x, y). A labeled secondary structure, denoted LSS, differs from a secondary
structure in two respects: first, the bases are labeled by either 0 or 1, and second, a base is paired with another base only
if their labels are different. Thus a LSS is an outerplanar graph with n vertices such that the valence of every vertex is
at most one and vertices are labeled with either 0 or 1 in such a way that vertices i, j connected by an edge (i, j) must
have different labels. Graph vertices will indistinguishably be called nodes and bases, and edges will be called base
pairs.

11 Technically, the graphs we consider are labeled, outerplanar graphs with valence 1. For display, we order the vertices 1, 2, . . . , n along a
horizontal line, and depict edges by arcs above this line. While an outerplanar graph has all edges depicted by arcs above the line, a planar graph
could additionally have arcs below the line, corresponding for instance to a type-H pseudoknot.
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u v
threshold

Fig. 6. Two bases u and v and a threshold of size t .

The structural components of RNA secondary structures (see [5,31]) are stacked base pairs, hairpin loops, bulges,
interior loops, and multiloops. Such components, with the exception of hairpin loops, are not important for our analysis.
In the sequel we are interested in secondary structures having at least k hairpin loops, each having at least threshold �
(see Fig. 6). For our purposes, a hairpin loop in a secondary structure for a given binary sequence is given by a base
pair (i, j) having no interior base pairs. Such a base pair has threshold � if j − i =�+1; i.e. j = i +�+1 and positions
i + 1, . . . , i + � do not belong to any base pair.

Definition 10. Consider a LSS with a random distribution of 0 − 1 labels. A threshold position is a collection of
unpaired bases delimited by a base pair (see Fig. 6).

A 0-threshold is a base pair (i, j) with j = i + 1. In general, an LSS may have several hairpin loops, each having
possibly different thresholds. The threshold of the LSS is defined to be the minimum threshold over all its hairpin
loops.

3.2. Secondary structures with 0-thresholds

We can prove the following theorem that gives the asymptotic behavior of the expected maximum number of base
pairs of a random labeled secondary structure.

Theorem 11 (0 − 1 Algorithm). Let E0(n, p) be the expected maximum number of base pairs for a random word
s ∈ {0, 1}n, where s is generated by Algorithm 1 and probability of generating 1 is p, while that of 0 is 1 − p.
Then

lim
n→∞

E0(n, p)

n
= min{p, 1 − p}.

Moreover, the resulting max size base pairing has no threshold positions.

Proof. For any binary string s of length n which contains i many 0’s, E0(s) = min(i, n − i). To see this consider the
following algorithm.

Algorithm 0 − 1 Algorithm

Input: A string s1s2 · · · sn of bits of length n.
Output: An optimal secondary structure.

1. Repeat as long as two adjacent bases with different labels exist;
2. Basepair any two adjacent bases with different labels;
3. Remove the paired bases and go to step 1;

To analyze this algorithm we use the DeMoivre–Laplace theorem. Letting q = 1 − p, and recalling standard notation
for the binomial probability distribution, where b(i; n, p) denotes

(
n
i

)
piqn−i , we have

E0(n, p) =
n∑

i=0

min(i, n − i)
(n

i

)
piqn−i = A + B,
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where

A =
�n/2	∑
i=0

i
(n

i

)
piqn−i

= np

�n/2	∑
i=1

(
n − 1

i − 1

)
pi−1q(n−1)−(i−1)

= np

�n/2	−1∑
j=0

(
n − 1

j

)
pjq(n−1)−j

= np

�n/2	−1∑
j=0

b(j ; n − 1, p),

B =
�(n−1)/2	∑

i=0

i
(n

i

)
qipn−i

= nq

�(n−1)/2	−1∑
j=0

b(j ; n − 1, q).

Before proceeding, we define the notation f ∼ g to mean that limn→∞ f
g

= 1.12 Now, by the DeMoivre–Laplace
theorem (a version of the central limit theorem—see Feller [12, p. 182]),

�n/2	−1∑
j=0

b(j ; n − 1, p) ∼ �

(
n/2 − 1 − (n − 1)p√

(n − 1)pq

)
∼ �

(√
n − 1( 1

2 − p)√
p − p2

)
,

�(n−1)/2	−1∑
j=0

b(j ; n − 1, q) ∼ �

(
(n − 1)/2 − 1 − (n − 1)q√

(n − 1)pq

)
∼ �

(√
(n − 1)(p − 1

2 )√
p − p2

)
,

where

�(x) = 1√
2�

∫ x

−∞
e−t2/2 dt ,

denotes the cumulative distribution function for the standard normal distribution with mean 0 and standard deviation
1. Thus

A = np

�n/2	−1∑
j=0

b(j ; n − 1, p) ∼ np�

(√
n − 1( 1

2 − p)√
p − p2

)
,

B = nq

�(n−1)/2	−1∑
j=0

b(j ; n − 1, q) ∼ nq�

(√
n − 1(p − 1

2 )√
p − p2

)
.

Let xn denote the expression
√

n−1( 1
2 −p)√

p−p2
. By properties of the normal distribution, the following is evident: for p < 1

2 ,

as n tends to infinity, �(xn) tends to 1, while �(−xn) tends to 0; for p > 1
2 , as n tends to infinity, �(xn) tends to 0,

12 In analysis and number theory (e.g. [14, p. 7]) and in some probability texts (e.g. [12]), the notation ∼ is used in this context. This should not
be confused with the statistics notation X ∼ D, which means that random variable X has probability distribution D.
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while �(−xn) tends to 1. Thus if p < 1
2 we have

lim
n→∞

E0(n, p)

n
= p(1 − 0) + 0 = p,

while if p > 1
2 we have

lim
n→∞

E0(n, p)

n
= p(0 − 1) + 1 = 1 − p.

This completes the proof of Theorem 11. �

4. Asymptotics of optimal secondary structures

In this section we consider asymptotics of optimal secondary structures with bases labeled with 0, 1. We will extend
the asymptotic result of Theorem 11 to the case of secondary structures with a given threshold size.13 In answer to a
question of one of the referees:

Definition 12. Consider a sequence s = s1, s2, . . . , sn of 0’s and 1’s. Given integers k, t we consider the combinatorial
function Nk,t (s) which is defined as the maximum number of base pairs of an optimal secondary structure over the
string s with at least k threshold positions and each threshold position has at least t unpaired bases.

Let s =s1, s2, . . . , sn be a sequence of independent and identically distributed {0, 1}-valued random variables, where
1s are generated with probability p and 0’s with probability 1 − p.

Assume that k is a subadditive integer valued function; i.e. k satisfies

k(m + n)�k(m) + k(n) for all integers m, n. (3)

Definition 13. Let Ek,t (n, p) be the expected maximum number of base pairs of an optimal secondary structure over a
random string s of length n with at least k(n) threshold positions and each threshold position has size at least t unpaired
bases. Formally we define

Ek,t (n, p) =
∑

s∈{0,1}n
Nk(n),t (s)p

|s|1(1 − p)|s|0 ,

where |s|0, |s|1 is the number of 0s and 1s in s.

Lemma 14. Assume that k is a subadditive integer valued function, and that 0�p�1 is fixed. Then Ek,t (n, p) is
superadditive as a function of n; moreover, the limit

Ek,t (p) := lim
n→∞

Ek,t (n, p)

n

exists.

Proof. Let s, s′ be two strings of length m and n, respectively, with at least k(m) and k(n) thresholds each, respectively,
and each threshold of size at least t . If we concatenate the two strings s ∈ {0, 1}m and s′ ∈ {0, 1}n we form the string
ss′ which will have at least k(m)+k(n) thresholds and each threshold of size at least t . It follows easily from Inequality
(3) that

Nk(m),t (s) + Nk(n),t (s
′)�Nk(m+n),t (ss

′).

13 From the annotation of base pairs in the 50 S large ribosomal unit (PDB code 1FFK, NDB ID RR0011, we computed 75 hairpin loops, with
an average of 5.4 unpaired bases per hairpin loop, using only cis (anti-parallel) Watson–Crick base pairs. This answers a question of one of the
referees.
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Finally, we can prove the superadditivity of Ek,t (n, p). Indeed,

Ek,t (m, p) + Ek,t (n, p) =
∑

s

Nk(m),t (s)p
|s|1(1 − p)|s|0

+
∑
s′

Nk(n),t (s
′)p|s′|1(1 − p)|s′|0

=
∑
ss′

Nk(m),t (s)p
|ss′|1(1 − p)|ss′|0

+
∑
ss′

Nk(n),t (s
′)p|ss′|1(1 − p)|ss′|0

=
∑
ss′

(Nk(m),t (s) + Nk(n),t (s
′))p|ss′|1(1 − p)|ss′|0

�
∑
ss′

Nk(m+n),t (ss
′)p|ss′|1(1 − p)|ss′|0

= Ek,t (m + n, p).

The existence of the limit is an immediate consequence of the superadditivity of Ek,t (n, p). This completes the proof
of Lemma 14. �

Our goal is to prove the following theorem.

Theorem 15. Fix t , let 0�p�1 and let k be any subadditive integer valued function which satisfies limn→∞ k(n)/n=0.
Then the limit limn→∞ Ek,t (n,p)

n
exists; moreover,

p(1 − p) + p2
(

1 − p

p2 − p + 1

)
� lim

n→∞
Ek,t (n, p)

n
= lim

n→∞
E1,t (n, p)

n

� min{p, 1 − p}. (4)

The rest of this section is devoted to the proof of this theorem. The proof will follow a detour in which we will first
consider the simpler problem of the longest dual-common subsequence of two random sequences (see Section 4.1) as
well as an optimization result concerning the position of the threshold in an optimal secondary structure with a single
threshold position (see Section 4.2).

4.1. Longest dual-common subsequences

Let s, s′ ∈ {0, 1}n be two strings s = s1s2 · · · sn, s′ = s′
1s

′
2 · · · s′

n of length n. A common subsequence of s and
s′ is determined by sequences i1 < i2 < · · · < ik �n and j1 < j2 < · · · < jk �n of indices such that sir = s′

jr
, for all

r = 1, 2, . . . , k. The integer k is called the length of the common subsequence. Given 0�p� 1
2 , let the sequence

of bits be generated randomly and independently, where 1s are generated with probability p and 0s with probability
1 − p. Let C(n, p) be the expected length of the longest common subsequence of two random sequences s and s′
and let C(p) := limn→∞ C(p, n)/n. The longest common subsequence problem goes back to [4,25] and concerns the
computation of C( 1

2 ). Related to this is proving that C( 1
2 ) < C(p), for p �= 1

2 . Both of these are open problems.
Of interest to us is the dual problem which we now define. A dual-common subsequence of s and s′ is determined

by sequences i1 < i2 < · · · < ik �n and j1 < j2 < · · · < jk �n of indices such that sir �= s′
jr

, for all r = 1, 2, . . . , k.
The integer k is called the length of the dual-common subsequence. Let D(n, p) be the expected length of the longest
dual-common subsequence of two random sequences s and s′ and let D(p) := limn→∞ D(p, n)/n. In this section we
prove the following result.
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Theorem 16. For any p, D(p) > 2p(1 − p) + p2(1 − p/(p2 − p + 1)).

Proof. Before proving the main theorem we digress in order to derive two useful results using Chernoff bounds. Let
X1, X2, . . . , Xn be a sequence of independent, identically distributed {0, 1}-valued random variables such that 1s are
generated with probability p and 0s with probability 1 − p. Let N be the random variable that counts the number of
occurrences of the pattern 01 in X1, X2, . . . , Xn. We have

Lemma 17.

Pr

[
N �

(
1 −

√
2 ln n

np(1 − p)

)
(n − 1)p(1 − p)

]
�1 − 2

n
. (5)

Proof. Consider the indicator random variables Ii , i�2, where Ii = 1 if 01 ends in position i, and is 0 otherwise.
Clearly, Ii, Ij are independent random variables if and only if |i − j |�2. Define the random variables

N =
n∑

i=2

Ii, N0 =
�n/2	∑
i=1

I2i , N1 =
�(n+1)/2	∑

i=2

I2i−1. (6)

Since E[Ii] = p(1 − p), it is clear that

� := E[N ] =
n∑

i=2

E[Ii] = (n − 1)p(1 − p),

�0 := E[N0] =
�n/2	∑
i=1

E[I2i] = �n/2	p(1 − p),

�1 := E[N1] =
�(n+1)/2	∑

i=1

E[I2i−1] = �(n + 1)/2	p(1 − p).

Using Chernoff bounds (see [21]) for 0 < � < 1 we see that

Pr[N0 �(1 − �)�0]�1 − exp(−�0�
2/2),

Pr[N1 �(1 − �)�1]�1 − exp(−�1�
2/2).

Let A0 and A1 denote the events “N0 �(1 − �)�0” and “N1 �(1 − �)�1”, respectively, and observe that

Pr[N �(1 − �)�] = Pr[N0 + N1 �(1 − �)�]
� Pr[N0 �(1 − �)�0 and N1 �(1 − �)�1]
= Pr[A0 and A1]
= 1 − Pr[A0 or A1]
�1 − Pr[A0] − Pr[A1]
= Pr[A0] + Pr[A1] − 1

�1 − exp(−�0�
2/2) − exp(−�1�

2/2).



776 P. Clote et al. / Discrete Applied Mathematics 155 (2007) 759–787

Now if we choose � =
√

2 ln n
np(1−p)

then after a few elementary calculations we derive easily that

Pr

[
N �

(
1 −

√
2 ln n

np(1 − p)

)
(n − 1)p(1 − p)

]
�1 − 2

n
.

This completes the proof of Lemma 17. �

LetX1, X2, . . . , Xn andY1, Y2, . . . , Yn be two sequences of independent, identically distributed {0, 1}-valued random
variables such that 1s are generated with probability p and 0s with probability 1 − p. Let N(X) and N(Y ) be the
random variables that count the number of occurrences of the pattern 01 and 10 in the sequences X1, X2, . . . , Xn and
Y1, Y2, . . . , Yn, respectively. Finally, define the random variable N(X, Y ) := min{N(X), N(Y )}. We have:

Lemma 18.

E[N(X, Y )]�
(

1 −
√

2 ln n

np(1 − p)

)
(n − 1)p(1 − p)

(
1 − 2

n

)2

. (7)

Proof. Using Lemma 17 we derive that for � =
√

2 ln n
np(1−p)

,

Pr[N(X, Y )�(1 − �)(n − 1)p(1 − p)]
= Pr[min{N(X), N(Y )}�(1 − �)(n − 1)p(1 − p)]
= Pr[N(X)�(1 − �)(n − 1)p(1 − p)] · Pr[N(Y )�(1 − �)(n − 1)p(1 − p)]

�
(

1 − 2

n

)2

.

Using this last result we can estimate the expected value of the random variable N, we have that

E[N(X, Y )] =
n∑

k=0

Pr[N(X, Y )�k]

�
∑

0�k � (1−�)(n−1)p(1−p)

Pr[N(X, Y )�k]

�
(

1 −
√

2 ln n

np(1 − p)

)
(n − 1)p(1 − p)

(
1 − 2

n

)2

. �

Now we can turn to proving the theorem. For this purpose, let us assume that s = s1s2 · · · sn and s′ = s′
1s

′
2 · · · s′

n

be two binary strings generated randomly and independently, where 1s are generated with probability p and 0s with
probability 1 − p.

Fix a nonnegative r �n and consider all substrings 01 in sr+1sr+2 · · · sn−r and all substrings 10 in s′
r+1s

′
r+2 · · · s′

n−r .
Now pair the ith 01 substring with the ith 10 substring obtaining the ith block. Let Br be the ordered set of blocks, from
left to right say. Since s and s′ have uniform distributions, we can use Lemma 18 to lower bound the expected size of Br :

E[|Br |]�
(

1 −
√

2 ln(n − 2r)

(n − 2r)p(1 − p)

)
(n − 2r − 1)p(1 − p)

(
1 − 2

n − 2r

)2

. (8)

Every block gives rise to two matchings (base pairs); see Fig. 7. Therefore the expected length of the longest
dual-common subsequence between s and s′ is at least 2E[|Br |]. Passing to the limit we observe that for any r = o(n),

D(p)� lim
n→∞

2E[|Br |]
n

�2p(1 − p).
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s’ 01 01 01 01 01

1010 1010s

Fig. 7. Pairing patterns 01 and 10 from s and s′, respectively, in order to form two matchings (or base pairs). As a result, we obtain four blocks.

s’

s 00010000111100000111100110000001111110011

00011111001011111100111101011100111001101

Fig. 8. There are 10 matchings arising from the five blocks. Further matchings can be obtained by considering 011k and 0k01 in s, and 100k and
1k10 in s′, respectively.

Next we improve the lower bound by considering substrings in s of the form 011k and 0k01 for 1�k�r �n. First
consider the set Cr of all substrings in s of the form 011k where 1�k�r , the leading 01 is in a block b ∈ Br , and 100k

is the substring of s′ with leading 10 in the block b. Obviously, for each 011k ∈ Cr , we can add one matching (that
has not been added yet) into the dual-common subsequence determined by Br . In particular we can match the last 1 in
011k ∈ s with the last 0 in the corresponding 100k ∈ s′; see Fig. 8.

Consider the indicator random variables I k
i , r + 1� i�n − r − 2, 1�k�r , where I k

i = 1, if 011k ∈ Cr and it starts
in position i, and is 0 otherwise. Obviously,

|Cr | =
r∑

k=1

n−r−2∑
i=r+1

I k
i .

To estimate the probabilities Pr[I k
i = 1], call an ordered pair (t, t ′) of two binary strings of equal length “good” if

t has at most as many 01’s as t ′ has 10’s. If a pair (t, t ′) is “bad”, i.e. t has more 01’s as t’ has 10’s, then the pair
(reverse(t ′), reverse(t)) is “good”. Thus, for each bad pair there is a unique good pair. Note that there are pairs that
have equal number of 01 and 10, respectively, and these are good pairs. Thus, Pr[(t, t ′) is good] > 1

2 .
Let A be the event that (s, s′) is good. Now,

Pr[I k
i = 1]� Pr[I k

i = 1 AND A] = Pr[A] · Pr[I k
i = 1 |A] >

pk+1(1 − p)k+1

2
.

The last inequality follows from conditioning on A since then each substring 01 of s is in a block and thus the first 10
in 100k in s′ is guaranteed by the event A.

Therefore,

E[|Cr |] =
r∑

k=1

n−r−2∑
i=r+1

E[I k
i ] >

r∑
k=1

(n − 2r − 2)pk+1(1 − p)k+1/2

� (n − 2r − 2)

2

[
p2 p2 − 2p + 1

p2 − p + 1
− p(1 − p)(p − p2)r

p2 − p + 1

]
. (9)

Second consider the set Dr of all substrings in s of the form 0k01 where 1�k�r , the ending 01 is in a block b ∈ Br ,
and 1k10 is the substring of s′ with ending 10 in the block b. Obviously, for each 0k01 ∈ Dr , we can add one matching
(that has not been added yet) into the dual-common subsequence determined by Br ∪ Cr . (Notice that Cr

∧
Dr ⊆ Br ,
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(1−a)n

an
0

1

0 1

0 1 1 00 1

100

Fig. 9. An optimal matching between two arrays one of size an and the other of size (1 − a)n.

where
∧

returns substrings of s that appear in both Cr and Dr .) In particular we can match the first 0 in 0k01 ∈ s with
the first 1 in the corresponding 1k10 ∈ s′; see Fig. 8. One can show that

E[|Dr |] >
(n − 2r − 2)

2

[
p2 p2 − 2p + 1

p2 − p + 1
− p(1 − p)(p − p2)r

p2 − p + 1

]
. (10)

Therefore all together there will be at least 2|Br | + |Cr | + |Dr | matchings (base pairs) between s and s′.
Using (8)–(10), and the linearity of expectation, the average number of matchings between two random strings will

be

M = 2E[|Br |] + E[|Cr |] + E[|Dr |]

> 2

(
1 −

√
2 ln(n − 2r)

(n − 2r)p(1 − p)

)
(n − 2r − 1)p(1 − p)

(
1 − 2

n − 2r

)2

+ (n − 2r − 2)

[
p2 p2 − 2p + 1

p2 − p + 1
− p(1 − p)(p − p2)r

p2 − p + 1

]
.

Passing to the limit, we observe that for r = log(n),

D(p) > lim
n→∞

M

n
�2p(1 − p) + p2

(
1 − p

p2 − p + 1

)
.

This completes the proof of Theorem 16. �

4.2. Dual-common subsequences and single thresholds

We would like to relate the dual-common subsequence problem and the expected maximum number of base pairs in
secondary structures by showing that the number of base pairs is maximized when the threshold is at the centre of the
secondary structure.

Before providing the details of the proof we explain several ideas on optimal secondary structures. Consider a
sequence s = s1s2 · · · sn of 0s and 1s.

Definition 19. For a given rational number a, where 0�a�1, an a-matching for s is a matching without crossings
between the subsequences s = s1s2 · · · san (depicted as the top row in Fig. 9) and s = san+1san+2 · · · sn (depicted as
the bottom row in Fig. 9), where an edge between i (where 1� i�an) and j (where an + 1�j �n) may exist only if
si �= sj .

Definition 20. An a-matching is called optimal if the number of its edges is maximum. Let fa(s) be the number of
edges of an optimal a-matching for s.

Let s = s1s2 · · · sn be a sequence of independent and identically distributed {0, 1}-valued random variables, where
1s are generated with probability p and 0s with probability 1 − p, and 0�p� 1

2 . Let the expected size of an optimal
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(1−a)m

am an

(1−a)n

Fig. 10. a-matchings for two strings one of size m and another of size n.

a-matching of a random string s of length n be defined by

Ma(n, p) =
∑

s∈{0,1}n
fa(s)p

|s|1(1 − p)|s|0 ,

where |s|0, |s|1 is the number of 0s and 1s in s.

Lemma 21. For each rational number 0�a� 1
2 the limit

�a(p) := lim
n→∞

Ma(n, p)

n

exists. Moreover, �a(p) is maximized for a = 1
2 . In particular,

D(p) = 2 · �1/2(p).

Proof. The second identity D(p) = 2 · �1/2(p) is an immediate consequence of the definition of the dual-common
subsequence. So we concentrate on the rest of the lemma. The existence of the limit will follow from the superadditivity
of the function Ma(n). Indeed, we want to prove that for any m, n, Ma(m) + Ma(n)�Ma(m + n). Let s and s′ be two
strings of length m and n, respectively, and consider the two a-matchings depicted in Fig. 10. By superimposing the
two a-matchings a new a-matching is formed. The two arrays to the top form a new array of size a(m + n) and the two
arrays to the bottom a new array of size (1 − a)(m + n). Since the resulting a-matching includes all the edges of the
two previous a-matchings it follows that fa(ss

′) is at least fa(s) + fa(s
′), where ss′ is the concatenation of s and s′.

It follows that

Ma(m, p) + Ma(n, p) =
∑

s∈{0,1}m
fa(s)p

|s|1(1 − p)|s|0

+
∑

s′∈{0,1}n
fa(s

′)p|s′|1(1 − p)|s′|0

=
∑
ss′

fa(s)p
|ss′|1(1 − p)|ss′|0

+
∑
ss′

fa(s
′)p|ss′|1(1 − p)|ss′|0

=
∑

ss′∈{0,1}m+n

(fa(s) + fa(s
′))p|ss′|1(1 − p)|ss′|0

�
∑

ss′∈{0,1}m+n

fa(ss
′)p|ss′|1(1 − p)|ss′|0

= Ma(m + n, p).

The existence of the limit is now an immediate consequence of the superadditivity of the function Ma(n, p) just proved.
Next we prove that �a is monotone in a. Indeed, assume that a < b� 1

2 . We will show that �a ��b. In the sequel we
will provide a transformation s → s′ that transforms a sequence s into a new sequence s′ and an a-matching for s into
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A

(1−a)n

an

A’

B’

B
(1−b)n

bn
A

B B’

A’

Fig. 11. Transforming a-matching of type (a, 1 − a) into a-matching of type (b, 1 − b).

a b-matching for s′ (see Fig. 11). Consider a sequence s as depicted on the left side of Fig. 11. Since b� 1
2 we observe

that 1 − a� 1
2 �b. We are looking for a “cut” of the top and bottom rows of the leftmost sequence that forms pieces

A, B ′ on the top and pieces B, A′ on the bottom row, respectively, in such a way that |A| = xn , |B ′| = (a − x)n and
|B|= 1−a

a
xn, |A′|= (1 −a)n− 1−a

a
xn. We would like to “swap” the position of the pieces A′, B ′ in such a way that the

resulting top row (consisting of the pieces A, A′) has length bn while the bottom row (consisting of the pieces B, B ′)
has length (1 − b)n (see Fig. 11). The value of x that will achieve the desired cut is easy to determine by observing that
thelength of A plus the length of A′ must be equal to bn, i.e.

xn + (1 − a)n − 1 − a

a
xn = bn. (11)

Solving Eq. (11) for x, we derive that

x = a(1 − a − b)

1 − 2a
.

Sequence s′ is formed by attaching A′ to A and B ′ to B.
Let s̄1 be formed from segments A and B and s̄2 be formed from segments B ′ and A′, where s = s̄1s̄2. Let s̄′

2 be
formed by swapping A′ and B ′. Clearly, s′ = s̄1s̄

′
2 and

fa(s̄1) + fa(s̄2)�fb(s̄1s̄
′
2) = fb(s

′). (12)

It follows from the definition of the expected value that

Ma

(x

a
n, p

)
=
∑
s̄1

fa(s̄1)p
|s̄1|1(1 − p)|s̄1|0

and

Ma

(
a − x

a
n, p

)
=
∑
s̄2

fa(s̄2)p
|s̄2|1(1 − p)|s̄2|0 .

Using these identities and inequality (12) we obtain

Ma

(x

a
n, p

)
+ Ma

(
a − x

a
n, p

)
=
∑
s̄1

fa(s̄1)p
|s̄1|1(1 − p)|s̄1|0

+
∑
s̄2

fa(s̄2)p
|s̄2|1(1 − p)|s̄2|0

=
∑
s̄1 s̄2

(fa(s̄1) + fa(s̄2))p
|s̄1 s̄2|1(1 − p)|s̄1 s̄2|0

�
∑
s̄1 s̄

′
2

fb(s̄1s̄
′
2)p

|s̄1 s̄
′
2|1(1 − p)|s̄1 s̄

′
2|0

=
∑
s′

fb(s
′)p|s′|1(1 − p)|s′|0

�Mb(n, p).
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Dividing both sides of the resulting inequality by n this implies that

Ma((x/a)n, p)

n
+ Ma(((a − x)/a)n, p)

n

= x

a
· Ma((x/a)n, p)

(x/a)n
+ a − x

a
· Ma(((a − x)/a)n, p)

((a − x)/a)n

� Mb(n, p)

n
.

Using the last inequality and passing to the limit as n → ∞ we obtain that

�a = x

a
· �a + a − x

a
· �a ��b.

This completes the proof of Lemma 21. �

Proof of Theorem 15. The upper bound

lim
n→∞

Ek,t (n, p)

n
� lim

n→∞
E0(n, p)

n
� min{p, 1 − p}

is an immediate consequence of Theorem 11. It remains to prove that

lim
n→∞

Ek,t (n, p)

n
�p(1 − p) + p2

(
1 − p

p2 − p + 1

)
.

Divide the secondary structure into k(n)pieces each of sizen/k(n). On each piece consider a string s(i) ∈ {0, 1}n/k(n), i=
1, 2, . . . , k(n). Observe that

N1,t (s
(1)) + N1,t (s

(2)) + · · · + N1,t (s
(k(n)))�Nk(n),t (s

(1)s(2) · · · s(k(n))),

where s(1)s(2) · · · s(k(n)) denotes string concatenation. It follows that

k(n)E1,t (n/k(n), p) =
k(n)∑
i=1

∑
s(i)

N1,t (s
(i))p|s(i)|1(1 − p)|s(i)|0

=
∑

s(1)···s(k(n))

(N1,t (s
(1)) + · · · + N1,t (s

(k(n))))

× p|s(1)···s(k(n))|1(1 − p)|s(1)···s(k(n))|0

�
∑

s(1)···s(k(n))

Nk(n),t (s
(1) · · · s(k(n)))

× p|s(1)···s(k(n))|1(1 − p)|s(1)···s(k(n))|0

= Ek,t (n, p).

Dividing by n we obtain that

E1,t (n/k(n), p)

n/k(n)
� Ek,t (n, p)

n
.

Clearly Ek,t (n,p)

n
� E1,t (n,p)

n
, so in passing to the limit as n → ∞, we have

lim
n→∞

E1,t (n, p)

n
= lim

n→∞
Ek,t (n, p)

n
, (13)

for any subadditive function k(n) satisfying k(n) = o(n).



782 P. Clote et al. / Discrete Applied Mathematics 155 (2007) 759–787

Consider now two random strings s, s′ ∈ {0, 1}n, generated by appending independently generated random bits, 1
with probability p and 0 with probability 1 − p, and let s′′ denote the string reversal of s′. For constant t , the expected
maximum number of base pairs in a secondary structure on a string of the form s0t s′, where the threshold spans the
inserted subword 0t , is clearly the expected maximum number of edges between s and s′′, hence equal to D(n, p).

Recall that by Theorem 16 we have D(p)�2p(1−p)+2p2(1− p

p2−p+1
), for any p, and that by Lemma 21 we have

D(p)=2·� 1
2
(p). It follows that � 1

2
(p)�p(1−p)+p2(1− p

p2−p+1
), for any p. It follows that D(n,p)

n
� E1,t (2n+t,p)

2n+t
· 2n+t

n
.

By taking the limit as n tends to infinity and applying Theorem 16, we have

p(1 − p) + p2
(

1 − p

p2 − p + 1

)
� D(p)

2
� lim

n→∞
E1,t (n, p)

n
.

This establishes the proof of Theorem 15. �

5. Conclusion

In this paper, we report results of various computer experiments concerned with random RNA; see the web supplement
http://clavius.bc.edu/∼clotelab/ for some of the code used and data obtained. These results suggest an
asymptotic limit phenomenon proved to exist in Theorem 9, for which we provide an exact numerical value in Theorem
11 for the case of binary sequences using threshold 0, and for which we give an upper and lower bound in Theorem
15 for the case of binary sequences using threshold t . As a tool, we investigate D(p), the “dual” of the well-known
constant L(p); here, n · L(p) is asymptotically the expected length of the longest common subsequence (LCS) of two
random sequences of length n, each generated by independently appending random bits, 1 with probability p and 0
with probability 1 − p. Our experiments suggest Conjecture 5, which asserts that under certain conditions the uniform
distribution for nucleotides A, C, G, U yields a minimum expected number of base pairs in random RNA. One might
wonder whether natural RNA tends roughly to have an equal mononucleotide frequency for each of A, C, G, U in order
to maximize instability? Most assuredly not, as illustrated in Table 2 and Fig. 2, which suggest that real RNA has more
base pairs than random RNA of the same mono- or dinucleotide frequency. In contrast to Table 6, Table 4 suggests that
natural RNA neither has the maximum nor minimum free energy over all possible compositional frequencies.
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Appendix. Asymptotic limits for subadditive functions

In this section, we prove a far-reaching extension of Theorem 9. Specifically, we prove the existence of an asymptotic
limit for the mean and standard deviation of the minimum free energy (mfe) per nucleotide, as computed either by the
Nussinov–Jacobson algorithm [5,24] or by Zuker’s algorithm mfold [34], for random RNA of any fixed compositional
frequency; additionally, we prove the existence of limits for all higher order moments.

Definition 22. A real-valued function on the integers is subadditive (respectively, superadditive) if for all u, v, f (u +
v)�f (u) + f (v) (respectively, f (u + v)�f (u) + f (v)).

Lemma 23. Consider a real-valued function f on the integers. If f �0 (respectively, f �0) and f is subadditive

(respectively, f is superadditive) then so is the function f k(n)

nk−1 , for all integers k�1.

Proof. If f is subadditive and f �0 then −f is superadditive and −f �0. Therefore it is enough to prove the result
when f is subadditive and f �0. The proof is by induction on k. Clearly the result is true for k = 1. Assuming it is true

http://clavius.bc.edu/clotelab/?
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for k, we will show that the function f k+1(n)

nk is subadditive. Indeed, from the induction hypothesis we have that for
1�u, v,

f k+1(u + v)

(u + v)k
= f k(u + v)

(u + v)k−1
· f (u + v)

u + v

�
(

f k(u)

(u + v)k−1
+ f k(v)

(u + v)k−1

)

· f (u) + f (v)

u + v
(induction hypothesis)

�
(

f k(u)

uk−1
+ f k(v)

vk−1

)
· f (u) + f (v)

u + v

(as u�(u + v), v�(u + v), f �0)

= u

u + v

f k+1(u)

uk
+ v

u + v

f k+1(v)

vk
+ u

u + v

f k(u)f (v)

uk

+ v

u + v

f k(v)f (u)

vk
.

Therefore it is enough to show that this last term is less than or equal to f k+1(u)

uk + f k+1(v)

vk . If we simplify we obtain
that it is enough to prove that

u

u + v

f k(u)f (v)

uk
+ v

u + v

f k(v)f (u)

vk
� v

u + v

f k+1(u)

uk
+ u

u + v

f k+1(v)

vk
. (14)

In turn, if we multiply out Inequality (14) by (u + v)ukvk we obtain the equivalent Inequality (15).

uvkf k(u)f (v) + vukf k(v)f (u)�vvkf k+1(u) + uukf k+1(v). (15)

After factorization, Inequality (15) becomes equivalent to Inequality (16).(
f k(u)

uk
− f k(v)

vk

)
·
(

f (u)

u
− f (v)

v

)
�0, (16)

which is always true since f �0. To see that Inequality (10) is always valid observe that if we put a := f (u)
u

, b := f (v)
v

then the inequality becomes equivalent to

(a − b)2(ak−1 + ak−2b + · · · + abk−2 + bk−1)�0,

which is always true since a, b�0. This completes the proof of Lemma 23. �

As a corollary of this lemma we also obtain the following result.

Lemma 24. Consider a real-valued function f on the integers. If for some constant B �0 we have that f (n)� − Bn

(respectively, f �Bn) and f is subadditive (respectively, f is superadditive) then for all integers k�0 the limit of f k(n)

nk

exists as n → ∞.

Proof. As before, without loss of generality we consider only the case when f is subadditive. The proof is by induction

on k. Clearly, the result is trivial for k = 0. By induction hypothesis the limit of f i(n)

ni , exists as n → ∞, for all integers
0� i�k − 1.
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Next consider the function g(n) := f (n) + Bn. Since f is subadditive so is g. It follows from Lemma 14 that for all

integers k�1, the function gk(n)

nk−1 is subadditive. By Fakete’s Lemma the limit of gk(n)

nk exists as n → ∞. However,

gk(n)

nk
= (f (n) + Bn)k

nk

=
k∑

i=0

(
k

i

)
f i(n)(Bn)k−i

nk

=
k∑

i=0

(
k

i

)
Bk−i f

i(n)

ni
.

It follows that

gk(n)

nk
= f k(n)

nk
+

k−1∑
i=0

(
k

i

)
Bk−i f

i(n)

ni
. (17)

However, by induction hypothesis, the limits of all the terms in the sum occurring in Eq. (17) exist. Consequently, since

the limit of gk(n)

nk exists as n → ∞ so does the limit of f k(n)

nk as n → ∞, and the proof of Lemma 24 is complete. �

We now apply Lemma 23 to the kth moment of a random variable X. In our case we have a subadditive random
variable X measuring the minimum free energy of a random RNA structure. For such a random variable we know that
there is a constant B > 0 such that inequality

X� − Bn (18)

is valid. We can prove the following lemma.

Theorem 25. Consider a subadditive random variable X satisfying Inequality (18). Then the limit of E[Xk]
nk exists as

n → ∞.

Proof. We imitate the proof of Lemma 24. Consider the random variable Y := X + Bn. Since X is subadditive so is

Y. It follows from Lemma 23 that for all integers k�1, the function Y k

nk−1 is subadditive and therefore so is its expected

value E[Y k]
nk−1 . By Fakete’s Lemma the limit of E[Y k]

nk exists as n → ∞. It is easy to see that

E[Y k]
nk

= E[(X + Bn)k]
nk

= 1

nk

k∑
i=0

(
k

i

)
(nB)k−iE[Xi]. (19)

Now repeating the argument in the proof of Lemma 24, we can easily see that since the limit of E[Y k]
nk exists as n → ∞

so does the limit of E[Xk]
nk as n → ∞. This completes the proof of Theorem 25. �

We can also apply this lemma to show that for the standard deviation of a subadditive random variable X satisfying
Inequality (18) the limit of

√
V ar(X)

n

exists, as n → ∞.
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Theorem 26. Let X be a subadditive random variable X satisfying Inequality (18). Then the limit of

V ar(X)

n2
= E[X2] − E[X]2

n2

exists, as n → ∞.

Proof. Indeed, by Fakete’s lemma since X is subadditive the limit of E[X]
n

exists, as n → ∞. As a consequence, also

the limit of E[X]2

n2 exists, as n → ∞. By Theorem 25, the limit of E[X2]
n2 must exist as n → ∞. This completes the

proof of Theorem 26. �

In Theorem 9, we established the existence of an asymptotic limit of the expected maximum number of base pairs
in a secondary structure of random RNA, which is generated by Algorithm 1 to have a given expected mononucleotide
frequency. Given the generality of the theorems we have just established, we can lift the asymptotic limit result of
Theorem 9 in two directions: (i) to consider a more realistic energy model for secondary structure formation, (ii)
to consider random RNA generated by Algorithm 2 (resp. by any kth order Markov process). The latter condition
ensures that the random RNA which is generated has a given expected dinucleotide frequency (resp. k-tuple fre-
quency). As earlier mentioned, Workman and Krogh [32] have pointed out the importance of conserving dinucleotide
frequency when computing Z-scores for minimum free energy of random RNA, so this is a practical concern in
applications.

To treat the Turner energy model [33,20], which is the current energy model used in Zuker’s algorithm, as implemented
in mfold and in Vienna RNA Package RNAfold, we here redefine (in a trivial manner) the Nussinov–Jacobson
energy of RNA sequence a1, . . . , an to be −1 times the maximum number of base pairs in any secondary structure on
a1, . . . , an.14 The properties for the energy function used in the proof of Theorem 9 (viewed from the standpoint of
the new version of the Nussinov–Jacobson energy model) are: (i) subadditivity and (ii) the existence of a lower bound
−Bn for the minimum free energy of random RNA of length n, i.e. Inequality (18). Clearly the Nussinov–Jacobson
energy model is subadditive and the Nussinov–Jacobson energy of an RNA sequence of length n is greater than or equal
to −n/2 (a sequence of length n can have at most n/2 base pairs). The Turner energy model [33,20] is subadditive and
the Turner energy of an RNA sequence of length n is greater than or equal to −3.42 · n/2 (a sequence of length n has
at most n/2 stacked base pairs, and the stacking free energy per base pair is at least −3.42).

Define random variable X by setting X(n) to equal the mfe (according to either the Nussinov–Jacobson or the Turner
energy model) of random RNA of length n, which is generated by Algorithm 1 and Algorithm 2 or by a kth order Markov
process. Given random RNA sequences a = a1, . . . , an and b = b1, . . . , bm, clearly the mfe of a concatenated with b is
at most the mfe of a plus the mfe of b; i.e. subadditivity X(n+m)�X(n)+X(m). If we apply Theorems 25 and 26 to
the random variable X, then we obtain the existence of an asymptotic limit for the expectation and standard deviation
(as well as higher moments) per nucleotide of random RNA. Here, random RNA can be generated by Algorithms 1
and 2, or even by a kth order Markov process.

The ability to compute mean and standard deviation of the mfe per nucleotide, according to the Turner energy
model, of random RNA generated by Algorithm 2 permits us to define the novel notion of asymptotic Z-score[8].15

Let �qxy = 〈qxy : x, y ∈ {A, C, G, U}〉 be any complete set of dinucleotide frequencies; i.e. 0�qxy �1 for all x, y ∈
{A, C, G, U} and

∑
x,y qxy = 1, where the sum is taken over all x, y ∈ {A, C, G, U}. Let �( �qxy) (resp. �( �qxy)) denote

the mean � (resp. standard deviation �) of mfe per nucleotide of random RNA, whose limit values �, � we have just
proved to exist and to depend only on the given dinucleotide frequencies �qxy . In practice, this can be approximated
by generating according to Algorithm 2 many random RNAs of length n (for n sufficiently large), then computing the
mean and standard deviation of the mfe of the random RNA, and finally dividing by n.

14 In the main body of the text, we had defined Nussinov–Jacobson energy to be the maximum number of base pairs in any secondary structure on
a1, . . . , an (a positive number). The trivial change made here entails that energy is negative, and that the Nussinov–Jacobson energy is the minimum
free energy according to the Nussinov–Jacobson energy model.

15 Following Workman and Krogh [32], in Z-score computations involving mfe of RNA secondary structures, also called folding energy, it is
important to generate random RNA so as to conserve given dinucleotide frequencies. This can be done by Algorithm 2, but not by Algorithm 1.
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Definition 27. Given RNA sequence s of length n0, compute the dinucleotide frequencies �qxy of s. Define

Z2(s) = mfe(s)/n0 − �( �qxy)

�( �qxy)
.

An alternative and more detailed proof, using Kingman’s ergodocity theorem for subadditive stochastic processes
[19], for the existence of an asymptotic limit for the mean and standard deviation of the mfe per nucleotide for
random RNA, generated by Algorithm 2, is given in [8]. The proofs given in this appendix are new and extend both
Theorem 9 and the limit theorem proved in [8]. See [8] for details concerning asymptotic Z-scores and applications
to RNA.
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