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In isolated bovine adrenal medullary cells, the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA),
an activator of protein kinase C, stimulated ['“C]catecholamine synthesis from [*C]tyrosine, but not from
[“C]DOPA. This stimulatory effect of TPA on [**C]catecholamine synthesis was not dependent upon extra-
cellular Ca?*, and TPA did not affect the uptake of *5Ca2* or the release of catecholamine by the cells.
TPA also did not affect the intracellular cyclic AMP (cAMP) level. 4a-Phorbol 12,13-didecanoate, which
is not an activator of protein kinase C, did not stimulate the synthesis of ['*C]catecholamine from [C]ty-
rosine. The stimulatory effect of TPA on ['“C]catecholamine synthesis was additive with that of carbamyl-
choline, but not with that of dibutyryl cAMP (DB-cAMP). From these results, it was suggested that protein
kinase C is involved in the regulation of tyrosine hydroxylase activity and that this regulatory mechanism
might be similar to that involving cAMP.

Phorbol ester Protein kinase C

1. INTRODUCTION

The phorbol ester, 12-O-tetradecanoyl phorbol
13-acetate (TPA), which is an activator of protein
kinase C, is useful for studying the role of this en-
zyme in cellular responses [1-3]. TPA is reported
to stimulate catecholamine release from ‘per-
meable’ adrenal medullary cells caused by low con-
centrations of Ca>* [4-6], but to have no effect on
catecholamine release from the intact cells caused
by acetylcholine [4,7].

Here, we examined the effect of TPA on the syn-
thesis of catecholamine by isolated bovine adrenal
medullary cells, to determine the role of protein
kinase C in catecholamine biosynthesis.

2. MATERIALS AND METHODS

Bovine adrenal medullary cells were isolated by
sequential digestion of adrenal medullary slices
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with collagenase as in [8]. For most experiments,
the cells (~2 x 10° cells/ml) were incubated at
37°C with or without test compounds in 2 ml of
medium consisting of 154 mM NaCl, 5.6 mM KCI,
1.1 mM MgCl, 2.2 mM CaCl,, 10 mM Tris-HCI
(pH 7.4), 10 mM glucose and 5 mg/ml bovine
serum albumin. For some experiments, calcium-
free medium was prepared by adding 1 mM EGTA
to this medium instead of 2.2 mM CacCl,.

For determination of catecholamine synthesis,
isolated cells were incubated with ['*C]tyrosine
(final concentration, 2 x 1073 M, 175 x 10* cpm).
In some experiments, L-['*C]DOPA (2 x 107° M,
340 x 10* cpm) was used as substrate instead of
[**C)tyrosine. After incubation, the tubes were
rapidly chilled in ice, and the cells were separated
from the medium and homogenized in 5 ml of 0.4
N perchloric acid (PCA). The !C-labelled
catecholamine in the supernatant was measured by
ion-exchange chromatography on a Duolite C-25
column (H* form, 0.4 x 7.0 cm) as in [9].

For determination of cAMP, cells were in-
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cubated in the medium in the presence of
3-isobutyl-l-methylxanthine (IBMX, 0.5 mM). The
reaction was stopped by addition of 0.5 ml of ice-
cold 25% trichloroacetic acid, and the cAMP was
separated on an ion-exchange column (AG 500
WXS8, H-type 200-400 mesh) and measured by the
protein binding method [10].

For determination of 4°Ca** uptake, a suspen-
sion of the isolated celis was added to incubation
medium containing 3 #Ci **Ca®* in the presence or
absence of reagents. After incubation, the tubes
were immediately chilled on ice and then centri-
fuged and the precipitated cells were washed 3
times with Ca?*-free medium. The **Ca®* taken up
into the cells was extracted with 0.4 N PCA and
counted in a liquid scintillation counter.

For determination of catecholamine release, the
catecholamine content of the cells and medium was
determined by the fluorometrical method [9,11].
The results were expressed as percentages of the
total amount of cellular catecholamine.

TPA and 4a-phorbol 12,13-didecancate were
dissolved in dimethyl sulfoxide (DMSO). All solu-
tions contained 0.5% (v/v) DMSO. The sources of
the materials used were as follows: L-[U-"*C]-
tyrosine, L-["*C]DOPA, **CaCl, and [*H]JcAMP
(Radiochemical Centre, Amersham, England);
TPA, 4a-phorbol 12,13-didecanoate, DB-cAMP,
IBMX(Sigma); carbamylcholine (Nakarai Chemi-
cal Co.) and forskolin (Calbiochem-Behring).

3. RESULTS AND DISCUSSION

Fig.1 shows the effect of the phorbol ester TPA
at concentrations of 10~° to 107®* M on the syn-
thesis of [1*C]catecholamine from [**C]tyrosine in
isolated bovine adrenal medullary cells on incuba-
tion for 15 min. Stimulation of ['*C]catecholamine
synthesis was detectable at a TPA concentration as
low as 10~® M, and maximal at 10~7 M. The time
courses of ['“C]catecholamine synthesis with or
without TPA (1077 M) are shown in fig.2. Basal
and TPA-stimulated ['*C]catecholamine synthesis
were linear during incubation for at least 45 min.
TPA did not stimulate ['“C]catecholamine syn-
thesis when ['*C]JDOPA was used as substrate in-
stead of ["*C]tyrosine (not shown), indicating that
TPA stimulated catecholamine synthesis through
an effect on the hydroxylation of tyrosine to
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Fig.1. Dose-response curve for TPA-induced formation

of [**C]catecholamine from [**C]tyrosine. Cells were in-

cubated for 15 min with TPA(107° - 10~® M) in the nor-

mal medium. Values are means =+ SD for 4-6
experiments.

DOPA, the rate-limiting step in catecholamine
synthesis.

Next we determined whether the stimulatory ef-
fect of TPA on catecholamine synthesis was
dependent on extracellular Ca**. As shown in table
1, the increase in ['*C]catecholamine synthesis
caused by TPA was not affected by omission of
Ca’* from the medium. The increase in the syn-
thesis of [**C]catecholamine by carbamylcholine
was dependent on extracellular Ca?*, but that by
DB-cAMP was not.
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Fig.2. Time course for TPA-induced formation of ['*C]

catecholamine from [*Cltyrosine. Cells were incubated

for various periods with (e—e) or without (0—o0)

TPA(10™7 M) in the normal medium. Values are means
+ SD for 4-6 experiments.
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Increase in Ca’* uptake into adrenal medullary
cells is known to stimulate the synthesis and release
of catecholamine. Therefore, we examined wheth-
er TPA stimulates the uptake of Ca’>* by the cells.
The effects of TPA and carbamylcholine on
“5Ca** uptake and catecholamine release are
shown in table 2. TPA did not stimulate **Ca** up-
take or catecholamine release by the cells.
Moreover, it did not affect the increases in **Ca’*
uptake and catecholamine release caused by car-
bamylcholine. Thus the increase in catecholamine
synthesis caused by TPA did not seem to be due to
increased uptake of Ca?* by the cells.

The synthesis of [**C]catecholamine from
[*“C]tyrosine is also known to be stimulated by

CAMP [12]. Therefore, the effect of TPA on the °

cAMP level in the cells was examined. As shown in
table 3, TPA did not increase the intracellular
cAMP level. On the other hand, forskolin, an ac-
tivator of adenylate cyclase, increased the cAMP
level, and stimulated ['*C]catecholamine synthesis
from [“Cltyrosine in the isolated cells [13].
Therefore, the stimulation of catecholamine syn-
thesis by TPA was apparently not mediated by for-
mation of intracellular cAMP.

It is reported that phorbol esters, such as TPA,
activate protein kinase C, but that 4a-phorbol
12,13-didecanoate does not [1]. The synthesis of
[**C]catecholamine from ['*C]tyrosine was not
increased by 4a-phorbol 12,13-didecanoate
(107°-10"7 M) (not shown). Therefore, provided
that TPA is specific for protein kinase C, the syn-
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Table 2

Effects of TPA and carbamylcholine on *°Ca®* uptake
and catecholamine release by isolated cells

“Ca’* uptake Catecholamine
(nmol/10° cells)  release (%)
Control 1.2 + 0.1 0.5 £ 0.1
TPA 1.3 + 0.1 0.7 + 0.1
Carbamylcholine 152 = 1.7 11.4 + 1.1
Carbamylcholine
+ TPA 155 + 1.9 11.2 + 1.0

Cells were incubated for 15 min with or without TPA
(10"7 M) and carbamylcholine (10~ M) in the normal
medium. Values are means + SD for 4-6 experiments

thesis of catecholamine from tyrosine is likely to be
regulated by protein kinase C activity.

Next, we examined the effects of TPA on the
stimulation by carbamylcholine and DB-cAMP of
[**C]catecholamine synthesis from [*C]tyrosine.
The stimulation of catecholamine synthesis by
acetylcholine (carbamylcholine) is known to de-
pend on the presence of Ca** in the medium (table
1) and is thought to be mediated by
Ca®*-calmodulin-dependent protein kinase
[14-16], while cAMP-induced stimulation of
catecholamine synthesis is thought to be mediated
by cAMP-dependent protein kinase [15,17,18]. As
shown in table 4, the increase in synthesis of
[**C]catecholamine by TPA was additive with that
by carbamylcholine, but not with that by

Table 1 Table 3

Effect of extracellular Ca** on TPA-, carbamylcholine- Effects of TPA and forskolin on the intracellular cAMP

and DB-cAMP-induced catecholamine formation level

Control  TPA Carbamyl- DB-cAMP cAMP
choline (pmol/10° cells)

Ca?* 80 + 5 170 £ 10 176 + 10 181 = 10 Control 36 + 0.4

(2.2 mM) TPA 38 + 04
Ca?* Forskolin 324 + 3.1

(0 mM) 76 +4 168+ 9 78+ 5 184 + 11

Cells were incubated for 15 min with or without

TPA(107 M), carbamylcholine (10~* M) and DB-cAMP

(7 mM) in normal and Ca*-free media. The formation

of ["*C]catecholamine from ['*C]-tyrosine is expressed

in pmol/15 min per 106 cells. Values are means + SD for
4-6 experiments

Cells were incubated for 15 min with or without TPA

(1077 M) and forskolin (10~ M) in the normal medium

containing 0.5 mM IBMX. Values are means + SD for

4-6 experiments. The increase in the cAMP level caused

by forskolin (107> M) reached a maximum after 5-10 in-

cubation, and then decreased slowly. The level of cAMP
was still high after 15 min
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Table 4

Effect of TPA on carbamylcholine- and DB-cAMP-
induced catecholamine formation

Formation of [**C]catecho-
lamine from [**C]tyrosine
(pmol/15 min per 10°

cells)

Control 80 + 5
TPA 170 + 10
Carbamylcholine 176 + 10
DB-cAMP 181 + 10
TPA + carbamylcholine 254 + 12
TPA + DB-cAMP 184 + 11
Carbamylcholine +

DB-cAMP 281 + 14
TPA + carbamyicholine

+ DB-cAMP 283 + 14

Cells were incubated for 15 min with or without TPA
(1077 M), carbamylcholine (10~* M) and DB-cAMP (7
mM) in the normal medium. The concentrations of these
agents were the lowest that produced maximal increase
in [“*CJcatecholamine synthesis from [“C]tyrosine.
Values are means + SD for 4-6 experiments

DB-cAMP. The increase in synthesis of
[**C]catecholamine by carbamylcholine was also
additive with that by DB-cAMP. Moreover, the in-
crease in the synthesis of [**C]catecholamine pro-
duced by carbamylcholine plus DB-cAMP was not
affected by the addition of TPA. These results sug-
gested that the stimulation of catecholamine syn-
thesis by TPA might be mediated by a similar
mechanism to that involving cAMP. In this
respect, a recent report showing that tyrosine
hydroxylase purified from rat pheochromocytoma
was phosphorylated by protein kinase C and that
the phosphorylated site was identical to that by
cAMP-dependent protein kinase [19] is of great
interest.

To summarize, the present results suggest that
protein kinase C plays a role in the regulation of
tyrosine hydroxylase activity, probably by a
similar mechanism to that cAMP is involved. The
physiological significance of this regulatory
mechanism requires further investigation.
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