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Based on the neo-classical elastic energy of liquid crystal elastomers, the opto-mechanical behavior is
modeled by considering the effect of photoisomerization on the nematic-isotropic transition of liquid
crystal phase. Linearized stress–strain relation is derived for infinitesimal deformations with a very unu-
sual shear stress that does not vanish identically as in the case of the soft behavior but is proportional to
the rotation of directors. In other words, the shear stress depends on both the shear strain and the skew
symmetric part of the displacement gradient with the shear modulus induced by the effect of photoiso-
merization. Finite element implementation for plane stress problems is obtained through a self-defined
material subroutine in ABAQUS FEA tool. Numerical simulations show that the light induced deforma-
tions of two dimensional specimens consist of contractions, expansions and bending in different direc-
tions. The stress distributions indicate that the driving force for the light induced bending is produced
by the bending moment of the normal stress along the director, while the other stress components are
much smaller for two dimensional beam shaped specimens. However, the shear stress of the soft LCE
is generally nonzero under light illumination due to the inhomogeneity of the opto-mechanical effect.
It can be concluded from the strain distributions that the transversal plane cross section could remain
plane after deformation if the light intensity or the decay distance is not too small and the sample is
in the deep nematic phase. However, the shear strain and in plane rotation are of the same order as
the other strain components, and thus should not be neglected. This indicates that the classical simple
bending assumptions such as the Euler–Bernoulli beam theory should not be directly applied to model
the light induced bending of neo-classical liquid crystal elastomers due to the soft behavior of the
materials.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Liquid crystal elastomers (LCEs) are cross-linked polymers with
liquid crystalline molecules. Thus they combine the elasticity with
the liquid crystalline properties (Warner and Terentjev, 2003).
When the temperature decreases to a critical value, the LCE
changes from the isotropic phase to an anisotropic phase with li-
quid crystalline molecules aligning orderly along a specific direc-
tion, named as the director n. This critical temperature is called
the nematic-isotropic (NI) phase transition temperature Tni (de
Gennes and Prost, 1994). After the phase transition, the LCEs will
elongate in the direction n, and its elongation at temperature T
can be well fitted by the following formula

ki!n ¼ 1þ aðTni � TÞf; ð1Þ
ll rights reserved.

: +86 21 65642742.
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where a and f are positive constants. ki?n is a function of the differ-
ence between Tni and T. Thus LCEs can be deformed not only by
changing the temperature, but also by manipulating the NI transi-
tion temperature Tni. The latter can indeed be achieved by photoiso-
merization of certain photochromic LCEs (Ikeda, 2003). Finkelmann
et al. (2001) first introduced certain photochromic liquid crystal
molecules into the LCEs. When photochromic liquid crystal mole-
cules, e.g., azobenzenes, are added into LCEs, their photoisomeriza-
tion under the light of a certain frequency will convert from the rod-
like shape (called trans) to the kinked shape (called cis). The kinked
liquid crystalline molecules will disturb the whole nematic order,
decrease the NI transition temperature Tni and finally lead to the
macroscopic contraction of the stress-free samples (Finkelmann
et al., 2001; Hogan et al., 2002) and accumulation of stress in the
clamped ones (Cviklinski et al., 2002). This new kind of smart mate-
rials has a potential application in light controllable sensors and
actuators.

When a light goes through a material, it will be absorbed. Clas-
sically, the Beer’s exponential decay formula I(y) = I0exp (�y/d) was
often used with I0 the light intensity distribution on the surface
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and y the distance to the surface. The positive constant d is the
characteristic distance of light decay due to absorption. Recently,
a non-classical light absorption model was proposed by Corbett
and Warner (2007) and Corbett and Warner (2008) for photochro-
mic LCEs. The steady state light intensity is modified by ln[I(y)/
I0] + sCI0(I(y)/I0 � 1)) = �y/d (Eq. (2) in Corbett and Warner
(2007) with slightly different notations). s is the cis state lifetime
and C is the absorption constant. I(y) cannot be solved by elemen-
tary function but can be solved formally by using the Lambert W
function WL(y) (called ProductLog function in Mathematica) as
pointed out in Corbett and Warner (2008),

IðyÞ ¼ 1
sC

WL sCI0 exp sCI0 �
y
d

� �h i
; ð2Þ

In any case, the light-induced strain in the LCE varies along the light
propagation direction, which leads to the bending of the LCEs (Cam-
acho-Lopez et al., 2004;Yu et al., 2003). Moreover, this light-induced
heterogeneous configuration can result in other inhomogeneous
material properties, such as stiffness (Jin et al., 2006).

So far, the research on the light-induced deformation of the li-
quid crystal elastomers has drawn wide attention. The light in-
duced bending behavior of LCE thin films has been studied by
several authors mostly with beam or plate models based on simple
bending assumptions (Warner and Mahadevan, 2004; van Oosten
et al., 2007; Jin et al., 2006; Jin et al., 2010a; Jin et al., 2010b; Zeng
et al., 2010; Dunn, 2007; Dunn and Maute, 2009; Chen and He,
2008; He, 2007; Modes et al., 2010; Warner et al., 2010a,). How-
ever, the behavior of LCEs is in general very unusual due to the cou-
pling between the elastomer and the liquid crystal moieties. In
particular, the rotation of the LC director can have very strong ef-
fects on the mechanical response of the materials (Warner,
1999). Many studies have been conducted (Cesana and DeSimone,
2011; Jin et al., 2010b;Warner, 1999; Warner and Terentjev, 2003)
to investigate the unusual soft or semi-soft behavior of LCEs. It is
thus natural to ask whether the opto-mechanical behavior of LCEs
will also be very unusual and may be affected strongly by the soft
behavior. Consequently, it should be expected that some of the
classical simple bending assumptions of Euler–Bernoulli beam the-
ory (EBBT) or Kirchhoff–Love plate theory (KLPT) may fail to be sat-
isfied. In addition, the papers (Conti et al., 2002a,b) represent some
of the very first attempts to use FEA as a tool to understand the
physics of LCEs. Due to the unusual material behaviors, it will ben-
efit from using FEA to study the light induced bending behavior of
LCEs.

In this paper, a stress–strain relation obtained by some of the
present authors for soft LCEs (Jin et al., 2010b) will be applied to
study the light induced bending behavior of photochromic LCEs.
In Section 2, we shall first modify the constitutive equations ob-
tained previously to include the effect of the photoisomerization.
To simplify the analysis, linearized stress–strain relations are fur-
ther obtained for infinitesimal deformations. The results indicate
that although the shear stress in the plane perpendicular to the
director vanishes identically for LCEs without light illuminations
due to the soft behavior of the materials, it is proportional to the
rotation of the director when the material is under light illumina-
tion. The proportional factor is the light induced changes of the
effective length ratio of the polymer backbone and is generally
rather small comparing to the other elastic moduli. Finite element
analysis is then carried out for two dimensional specimens under
the plane stress assumptions in Section 3. It is necessary to rescale
the displacements and to input the unusual stress–strain relations
by user defined material subroutine when we use the commer-
cially available finite element software ABAQUS. Detailed analyses
of the stress and strain states are given in Section 4. The kinematic
hypotheses of EBBT will be tested in some details. The plane cross
section assumption is generally valid for light induced bending ex-
cept some extreme situations such as very weak light, very small
decay distance and in the vicinity of the nematic-isotropic transi-
tion temperature. However, the normal plane cross section is no
longer normal after deformations and the shear strain is not negli-
gible even for very slender beam shaped specimen. The conclu-
sions are summarized in Section 5.
2. Linearized stress–strain relation for LCEs under light
illumination

2.1. Opto-mechanical constitutive relation

In this subsection, the effect of light is introduced into the non-
linear constitutive relations of photochromic LCEs obtained in Jin
et al. (2010b). Let us make a brief review of it.

Choose the total free energy as the sum of the neo-classical elas-
tic free energy fel and the Landau de Gennes LC order free energy
fnem. The neo-classical elastic free energy per unit volume is

q0fel ¼
l
2

Trðg�1kg0k
TÞ ¼ l

2
Trðg�1BÞ with B ¼ kg0k

T ; ð3Þ

where l is the effective shear modulus and Tr (�) calculates the trace
of the tensor inside. k is the deformation gradient and B = kg0k

T is
called the effective left Cauchy-Green tensor. g and g0 are called
the metric tensors in the current and reference states, respectively.
g defined there coincides with the commonly used shape tensor l
but scaled to make it have unit determinant, i.e. g = ldet(l)�1/3 with
det(g) = det(g0) = 1. In this paper, we only consider the case that
det(l) = det(l0). More general cases can be referred to Warner and
Terentjev (2003). In fact, it can be identified as the left Cauchy-
Green tensor from the isotropic phase to the current nematic phase
as shown in Jin et al. (2010b). It was found in Jin et al. (2010b) that
the metric tensor g in the present configuration must be coaxial
with the tensor B in order to minimize the free energy. Namely,
when a deformation gradient k is imposed on a LCE sample with
the initial shape of the LC polymer backbone chains described by
g0, the LC polymer chains will adjust their shape to make the cur-
rent metric tensor g have the same eigenvector as the tensor
B = kg0k

T so to minimize the elastic energy. Moreover, if B1,2,3 are
the eigenvalues of B corresponding to the eigenvectors e1,2,3 with
the order B1 6 B2 6 B3, the eigenvalues of g, g1,2,3 corresponding to
the same eigenvectors must have the same order, i.e. g1 6 g2 6 g3.
Thus, we have

B :¼ kg0k
T ¼

X3

i¼1

Biei � ei and g :¼ ldefðlÞ�1=3

¼
X3

i¼1

giei � ei: ð4Þ

The Cauchy stress r is found to be coaxial with the effective left
Cauchy-Green tensor as well and has the following expression for
incompressible LCEs,

r ¼ �pIþ lg�1B ¼ �pIþ
X3

i¼1

g�1
i Biei � ei; ð5Þ

where p is the hydrostatic pressure and I is the unit tensor.
Without considering the biaxiality of LCEs, the metric tensor g

should be

g ¼ g?Iþ ðg== � g?Þn� n ¼ r�1=3Iþ ðr2=3 � r�1=3Þn� n; ð6Þ

with r = g///g\ = (R///R\)2 the ratio of the effective length in the
direction parallel and perpendicular to the director. R//,\ are the
radius of gyration of the polymer backbone. In fact, detðgÞ ¼
g===g2

? ¼ 1 is used to obtain the second equality in (6). Insert (6) into
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(5), we obtain the stress-stretch relation for LCEs without biaxiality
as,

r ¼ �pIþ lr
1
3 B� 1� 1

r

� �
bmn� n

� �
; ð7Þ

where the current director n must be coincide with the eigenvector
of the effective left Cauchy-Green tensor B with the largest eigen-
value, i.e.

n ¼ e3; bm ¼ B3 and Bn ¼ bmn: ð8Þ

Since g is the left Cauchy-Green tensor from the isotropic phase to
the current nematic phase, we can relate its component along the
director to ki?n by r2=3 ¼ k2

i!n. According to Eq. (1), we obtain the
effective length ratio as

r ¼ ð1þ aðTni � TÞfÞ3; for T 6 Tni;

1; Otherwise

(
ð9Þ

Experimental and theoretical studies (Cviklinski et al., 2002;
Finkelmann et al., 2001; Hogan et al., 2002; Ikeda, 2003) have
shown that the shift of Tni induced by light illumination can be cal-
culated as

Tni ¼ T0
ni � bnc; ð10Þ

where T0
ni is the NI phase transition temperature without illumina-

tion, b is a positive constant and nc is the fraction of the cis isomers
appeared due to photoisomerization process. It has been shown
that under the illumination of light with suitable wavelength, the
azo dyes will transform from the trans state to the cis state. Thus,
nc will increase under light illumination and approach a saturated
value after long time irradiation,

ncðIÞ ¼
sCI

1þ sCI
: ð11Þ

In this paper, the saturated case is considered for simplicity.
When the LCEs are illuminated, since Tni is a decreasing function
of the light intensity I, the photoisomerization decreases the phase
transition temperature Tni. From Eq. (9), the effective length ratio r
will be changed and thus produce a light induced deformation.
Then by inserting Eq. (9) into the metric tensor (6), and inserting
them all into the constitutive relation (7), we have introduced
the light intensity into the nonlinear constitutive relations.

There can also be a temperature raise due to the light illumina-
tion (Dawson et al., 2011; Jiang et al., 2010). The effective length
ratio (9) will be reduced as well and the following analysis can
be applied in the same way.

2.2. Linearization of the stress–strain relation under light illuminations

The implementation of the neo-classical elastic energy of LCEs
and its linearized version (DeSimone and Teresi, 2009; Agostiniani
and DeSimone, 2011; Warner and Terentjev, 2003; de Gennes,
1982) for infinitesimal deformations into numerical calculations
such as the finite element simulations is rather complicated. One
major difficulty is the so-called soft behavior, the vanishing of cer-
tain shear modulus due to the free rotation of the directors (War-
ner et al., 1994; Olmsted, 1994). Thus, it is generally believed that
in order to have nonsingular stiffness matrix, it is necessary either
to use the modified semi-soft elastic energy (Verwey and Warner,
1995; Cesana and DeSimone, 2011) or to add higher order deriva-
tives into the total energy such as the director gradient dependent
Frank energy (de Gennes and Prost, 1994).

However, as shown very clearly by the following linearized
stress–strain relations, the shear modulus will not vanish if the
sample is under light illuminations. Thus, we can still use the sim-
ple neo-classical elastic energy to calculate the light induced bend-
ing behavior of LCEs. In addition to the consideration of the effect
of light illumination, the main difference between the following
linearization and the existing ones is that we are working directly
on the stress–strain relation (7) obtained after the minimization of
the total free energy.

For the anisotropic liquid crystal elastomers, the stress–strain
relation (7) is linearized at the initial state (at r0) : no light illumi-
nation and no deformation. It is easy to obtain the effective left
Cauchy-Green tensor as defined in (3) in terms of the displacement
gradient H = k � I =ru as

B ¼ g0 þHg0 þ g0HT þHg0HT ; ð12Þ

Thus, B = g0 when H = 0 and for infinitesimal H, the last term on the
right, Hg0HT is of the second order. Therefore, it seems natural de-
fine the effective infinitesimal strain tensor as

eg ¼
1
2

Hg0 þ g0HT
� �

¼ 1
2
ðeg0 þ g0eÞ þ

1
2
ðxg0 � g0xÞ; ð13Þ

where e = (H + HT)/2 is the Cauchy strain and x = (H � HT)/2 is the
skew symmetric part of the displacement gradient H =ru, which is
related to the infinitesimal rotation. So we can linearize the effec-
tive left Cauchy-Green tensor (12) by

B � g0 þ 2eg : ð14Þ

Note that the above effective strain eg and effective B can depend on
both the symmetric part and the skew symmetric part of the dis-
placement gradient if the initial metric tensor g0 is not the identical
tensor, i.e. the initial configuration is not isotropic.

Suppose that the director in the current configuration changes
from the initial configuration by an infinitesimal amount as well,

n ¼ n0 þ dn; ð15Þ

only considering the linear terms, and we have 1 = n � n = 1 +
n0 � dn, so n0 � dn = 0. Substitute Eqs. (14), (15) into the third
formula of Eq. (8) and inner product both sides by n0, we have

n0 � g0n0 þ 2n0 � egn0 þ n0 � g0dnþ 2n0 � egdn

¼ bmðn0 � n0 þ n0 � dnÞ

Since g0 ¼ r�1=3
0 Iþ r2=3

0 � r�1=3
0

� �
n0 � n0 for initially nematic state,

n0 � n0 = 1, n0 � dn = 0 and neglect the second order term n0 � egdn0,
we can obtain

bm ¼ r
2
3
0 þ 2n0 � eg � n0: ð16Þ

Inserting the above equation and (14) and (15) back to the third
formula of Eq. (8) and neglect the second order term egdn, we can
obtain the director rotation as

dn ¼ 2r
1
3
0

r0 � 1
ðeg � n0 � ðn0 � eg � n0Þn0Þ: ð17Þ

We substitute Eq. (17) into Eq. (15) and insert it into (7) together
with (14) and (16) to obtain the following linearized stress–strain
relation

r ¼ � ~pIþ l r0

r

� �2=3 r0 � r
r0

n0 � n0

þ 2lr1=3 eg þ
r � 1
r0 � 1

1þ r0

r
n0 � eg � n0
� 	

n0




� n0 �
r0

r
r � 1
r0 � 1

n0 � ðeg � n0Þ þ ðeg � n0Þ � n0
� �

: ð18Þ

Note that second order terms in eg and d n are all neglected, the
expression for g0 is inserted and the constant ~p ¼ p� lðr=r0Þ

1
3.
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By using Eq. (13), we can rewrite the above stress–strain rela-
tion in terms of the Cauchy strains (symmetric part) e and the rota-
tion (skew symmetric part) x as

r ¼ � pIþ 2l r
r0

� �1=3

e� 1� r0 þ 1
2ðr0 � 1Þ

r0 � r
r

� �
½n0




� e � n0Þ þ ðe � n0Þ � n0� þ
2r0

r
r � 1
r0 � 1

ðn0 � e � n0Þn0

�

� n0 þ
r0 � r

2r
½n0 � n0 þ n0 � ðx � n0Þ þ ðx � n0Þ � n0�

o
: ð19Þ

The last term that is proportional to the light induced contraction
r0-r will produce a non-vanishing shear modulus as shown clearly
in the following plane stress case. We close this subsection by
pointing out that the shear stress on the surface with the director
n0 as the normal is not zero but proportional to r0-r and the rotation
of the director dn of (17) as

sn0 ¼ l r
r0

� �1=3 r0 � r
r

dn

¼ 2lr�2=3 r0 � r
r0 � 1

½eg � n0 � ðn0 � eg � n0Þn0�

¼ l r
r0

� �1=3

� r0 � r
r

x � n0 þ
r0 þ 1
r0 � 1

½e � n0 � ðn0 � e � n0Þn0�

 

: ð20Þ

Thus, the material behavior is rather different under light illumina-
tion. Namely, the shear stress vanishes identically when there is no
light, i.e. r � r0. This is often referred as the soft behavior (Cesana
and DeSimone, 2011; Jin et al., 2010b; Warner, 1999; Warner and
Terentjev, 2003) as predicted by the neo-classical elastic energy.
However, the light induced change of the effective length ratio
r – r0 will produce a nonzero shear stress as indicated by (20).
The first equation in (20) implies also that the rotation of director
is free when r � r0 but will be proportional to the shear stress if
r – r0.

2.3. Constitutive equations for plane stress problem

The above stress–strain relation (19) for infinitesimal deforma-
tions is still rather complex. In order to demonstrate how to imple-
ment it into finite element calculations, we shall consider in this
paper only plane problems for simplification. The full three dimen-
sional solutions are under construction.

As shown in Fig. 1, we consider a LCE beam, with length 2L,
height h and width w. The director is parallel with x direction,
i.e., n0 = (1,0,0)T and it is illuminated by unpolarized light along
the y direction from the bottom. The decayed light intensity (2)
causes the inhomogeneous light-induced contraction along the
director, the x-axis, which induces the bending in the x-y plane.
Due to the Poisson effect, an inhomogeneous extension will appear
along the z-axis, which further causes the bending in the y-z
plane as discussed by Warner et al. (2010a,Warner et al. (2010).
Fig. 1. The schematic of the beam shaped specimen under the upward unpolarized
light, with the LC director parallel with x direction.
However, if the specimen is very thin (w	 h and L) and we are
concerned with the deflection in the x-y plane at z = 0, a plane
stress assumption should be a reasonable approximation.

Thus, under the plane stress assumption, we would have
rzz = rxz = ryz = 0 and the in-plane displacements as (u(x,y),v(x,y)).
Due to the incompressibility tr(e) = 0, we have ezz = �(exx + eyy) with
exx = u,x, eyy = v,y and ezz = w,z the geometric equations for the Cau-
chy strain.

By Eq. (19), we can obtain p = �2l(r/r0)1/3(exx + eyy). Thus, we
can obtain the following stress–strain relation for plane stress
problems

rxx ¼
E==

1�sm2 exx � er
xx

� 	
þ sm eyy � er

yy

� �� �
ryy ¼ E?

1�sm2 eyy � er
yy

� �
þ m exx � er

xx

� 	� �
rxy ¼ ryx ¼ 2Geff eg

xy ¼ 2Gexy � 2Gxxy

8>>><
>>>:

; ð21Þ

where the effective shear strain is eg
xy ¼ r�1=3

0 u;y þ r2=3
0 v ;x

� �
=2 as

shown in Eq. (13). The Cauchy shear strain and in plane rotation
are defined as exy = (u,y + v,x)/2 and xxy = (u,y � v,x)/2, respectively.
The light induced strains are

er
xx ¼ �

r0 � r
2r0 þ r

and er
yy ¼ �mer

xx: ð22Þ

The elastic constants are

E== ¼ l r
r0

� �1=3 r þ 2r0

r
; E? ¼ 2l r

r0

� �1=3 r þ 2r0

r þ r0
; m

¼ 1
2
; s ¼ E?

E==
¼ 2r

r þ r0
Geff ¼ lr�2=3 r0 � r

r0 � 1
; 2G

¼ r2=3
0 þ r�1=3

0

� �
Geff ; 2G ¼ r2=3

0 � r�1=3
0

� �
Geff : ð23Þ

The first two stress–strain relations in (21) for the normal stress
components look very similar to the linearly thermoelastic Hooke’s
law with the thermal strain replaced by the anisotropic opto
strains given by (22). However, the constitutive relation for the
shear stress is very unusual. Firstly, the effective shear modulus Geff

together with G and G are only nonzero under light illuminations.
At the first order, all the three moduli and the light induced strain
are proportional to the difference of the effective length ratio r0 � r,
which is induced by the light irradiation. Secondly, the Cauchy
shear stress is not proportional to the Cauchy shear strain, but de-
pends on the in plane rotation as well. This very special constitu-
tive equation for the shear stress is due to the ability of free
rotation of the liquid crystal director (17) and will have very strong
effect on the opto-mechanical behavior of LCEs as will be shown
next.

The effective Young’s moduli E//,\ depend on the effective
length ratio r and are affected by the light illuminations as well.
Therefore, the LCE material under light illumination becomes a
functional gradient material since the light induced change of the
effective length ratio r0 � r (Eqs. (9)–(11)) depends on the space
varying light intensity (Eq. (2)). More discussions can be found in
(Jin et al., 2006). Moreover, the light induced decrease of the effec-
tive length ratio r implies that E// > E\, the light induced anisot-
ropy. As observed in experiments and discussed in several
theoretical works (Zeng et al., 2010), the elastic moduli of single
domain LCEs are anisotropic and depend strongly on the tempera-
ture. However, it is necessary to take into consideration that the
stress induces biaxiality of the liquid crystal molecules in order
to obtain this anisotropy. In the present paper, the biaxiality is ne-
glected for simplicity. Thus, the elastic moduli are taken as isotro-
pic under mechanical loading and the anisotropy is induced by the
light illumination.



Fig. 2. The schematic of the finite element model of the specimen and the
symmetric boundary condition.
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3. Finite element simulations of light-induced bending of free-
standing LCE specimen

3.1. Finite element implementation of the plane stress problem under
light

We can obtain the governing equations for the displacements
(u(x,y),v(x,y)) by inserting the geometric equation and the consti-
tutive Eq. (21) of the plane stress problem into the stress equilib-
rium equations. The weak form of the governing equations can
be obtained through the standard procedures as well. However, be-
cause the constitutive Eq. (21) is nonstandard due to the presence
of the skew symmetric part of the displacement gradient, the in
plane rotation xxy, the finite element implementation is not so
straightforward. We have found that the following scaling of the
displacement fields and the corresponding strains for an initially
homogeneous LCE sample with constant r0 will give a standard
stress–strain relation,

�uðx;yÞ ¼ r�1=3
0 uðx;yÞ; �vðx;yÞ ¼ r2=3

0 vðx;yÞ
�exx ¼ r�1=3

0 exx; �eyy ¼ r2=3
0 eyy; �exy ¼ r�1=3

0 ððr0 þ 1Þexy � ðr0 � 1ÞxxyÞ:
ð24Þ

It is worthwhile to point out that the above scaled shear strain
�exy is identical to the effective shear strain eg

xy obtained from (13).
The constitutive Eq. (21) can then be rewritten into the following
matrix form

frg ¼ ½D�f�eg � frrg; ð25Þ

where the stress and scaled strain vectors are

frgT ¼ frxx;ryy;rxyg and f�egT ¼ f�exx; �eyy;2�exyg

¼ @�u
@x
;
@�v
@y

;
@�u
@y
þ @

�v
@x


 
: ð26Þ

The effective stiffness matrix and the opto stress are

½D� ¼ r1=3
0 E==

1� sm2

1 sm=r0 0
sm s=r0 0

0 0 sG=r1=3
0

2
64

3
75 and frrg ¼

�E==er
xx

0
0

8><
>:

9>=
>;;
ð27Þ

with sG = Geff/(E///(1 � sm2)). Note that the effective stiffness matrix
D is generally not symmetric when LCE is in the liquid crystal phase
with r0 > 1. Moreover, since we have assumed that the ratio of the
light induced strain mr ¼ �er

yy=er
xx is the same as the elastic Poison

ratio m = 1/2, the opto stress in the y-axis, which is perpendicular
to the director n0, is identically zero. There are some evidences that
for heavily cross-linked liquid crystal polymers in the glassy phase,
the two ratios may not be the same (Warner et al., 2010a,). Then, it
is possible that there is an opto stress component in the directions
perpendicular to n0.

Now, we can follow the standard procedure by using the above
scaled displacements and scaled strains (24) to obtain the weak
formulation of the stress equilibrium equations for a free standing
two dimensional specimen X under light illumination asZ

X
½D�f�eg � fd�egdxdy ¼

Z
X
frrg � fd�egdxdy; ð28Þ

where

fd�egT ¼ fd�exx; d�eyy;2d�exyg ¼
@d�u
@x

;
@d�v
@y

;
@d�u
@y
þ @d

�v
@x


 
: ð29Þ

Thus, (28) is the standard weak form of plane stress problem
with a special stress–strain relation defined in Eq. (25). Therefore,
any commercial finite element method (FEM) software can be used
to implement the above plane stress problem provided that it is
possible to input user defined material model. The finite element
tool ABAQUS will be utilized in the following simulation with a
self-defined material subroutine UMAT for the stress–strain rela-
tion Eq. (25).
3.2. Light induced contractions of a rectangular specimen

Based on the plane stress assumption and in view of the sym-
metry in the x direction of this specimen, only half of the beam
is considered here and the model has been simplified into a two
dimensional plane with z = 0 (the middle plane in the z direction).
The two dimensional rectangular specimen with symmetric
boundary condition on the left are shown in Fig. 2 together with
specified coordinate system x-y. The reason why we have set the
y-axis starting from the bottom surface is simply because we want
to use formula (2) for calculation the light absorption. Quadrilat-
eral meshes with Dx/Dy = 2 are chosen in order to prevent the
deformity of the elements.

The relevant parameters for the calculation of the effective
length ratio r of (9) are taken from the experiment in the paper
of Hogan et al. (2002) as

T
ni ¼ 340K; a ¼ 0:22; f ¼ 0:195; b ¼ 11:8K: ð30Þ

The parameters for the light absorption in (2) and (11) are scaled in
the dimensionless light intensity i0 = sCI0. In this section, the tem-
perature is fixed at the room temperature T = 298 K. Thus the mate-
rial is in the deep nematic phase.

Let us first consider an extreme case that the decay distance is
very large, d/h� 1. From (2), the light intensity will be approxi-
mately constant along the height, I(y) � I0. Thus, the cis isomer
fraction in Eq. (11) and the effective length ratio in Eqs. (9) and
(10) are constants as nc(i0) and r(i0), respectively, with the dimen-
sionless light intensity i0 = sCI0. Therefore, the light induced
strains in Eq. (22) and all the elastic moduli in Eq. (23) are con-
stants as well. For a free standing rectangular specimen as shown
in Fig. 2, the stress vanishes identically in the sample and the spec-
imen is subjected to a homogeneous contraction in the x direction
and a homogeneous expansion in the y direction as exx � er

xxði0Þ and
eyy � er

yyði0Þ ¼ �mer
xxði0Þ. The displacements are linear functions as

uðx; yÞ ¼ er
xxði0Þx and vðx; yÞ ¼ �ver

xxði0Þy: ð31Þ

The first report of opto mechanical effect (Finkelmann et al.,
2001) is exactly the homogeneous contraction induced by UV light
for LCEs with dilute azo dyes, thus very small light absorption and
very large decay distances are considered in this example. The time
evolution of the light induced contraction resulted from the
dynamics of the photoisomerization process as observed in the
experiments (Finkelmann et al., 2001; Hogan et al., 2002) could
be taken into account if we consider the dynamical equations pro-
posed in Corbett and Warner (2008) in place of the steady state
solutions (2) and (11). For simplicity, we confine ourselves in this
paper to study only the steady states and leave the dynamical ef-
fects to our future work.



Fig. 4. The variations of light induced deformation DL/L = u(L,h/2) and Dh/h = v(L/
2,h) for different initial light intensities.
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The FEM calculations in ABAQUS are performed with d/h = 100
and a mesh of 10 nodes in both directions for a sample with L/
h = 1. The deformed specimen and the contour maps of the dis-
placements are shown in Fig. 3.

It is obvious that the sample contracted in length and expanded
in heights. Moreover, the horizontal displacement u(x,y) is con-
stant at any given height (Fig. 3a), thus independent on y. And
the vertical displacement v(x,y) is constant along the horizontal
cross sections (Fig. 3b) and is independent on x. The linear depen-
dences of the displacements (u(x),v(y)) on the remaining variables
are shown by Fig. 3 as well with the dots from FEM calculations
and the continuous curves obtained by Matlab calculations from
the above analytical solutions of (31). They agree with each other
very well.

Due to the nonlinearity in (11) of the photoisomerization pro-
cess and in (1) and (9) of the nematic-isotropic transition process
of photochromic LCEs, the light induced contraction decreases
nonlinearly with the light intensity as shown in Fig. 4. Again, the
FEM results agree with the analytical solutions very well for both
the contractions in length and expansions in height.

3.3. Bending of beam shaped specimens under uniform light
illuminations

When the density of the photochromic dyes is large enough, the
decay distance d/h becomes small enough such that the light will
be absorbed strongly along the propagation. After a sufficiently
long illumination time, the photoisomerization process goes to a
steady state. Then, the decrease of the light intensity i(y) can be
calculated by (2) and the cis isomer density nc(y) is given by (11).
From (9) and (10), the effective length ratio r varies along the
height as well. As shown in Fig. 5(a) for d/h = 1, the light intensity
decays very strongly along the height. Fig. 5(b) depicts that the cis
Fig. 3. (a) The distribution of the horizontal displacement u(x,y = h/2) along the
length of the beam. (b) The distribution of the vertical displacement v(x = L/2,y)
along the height of the beam, with d/h = 100, L/h = 1. The deformation and the
contour maps of displacement for L/h = 1, i0 = 2 from FEM are attached in the
figures.

Fig. 5. The variations of (a) light intensity, (b) cis isomer density and (c) effective
length ratio through the height with d/h = 1, for different initial light intensities
i0 = 0.1, 0.75, 2.
isomer is larger for stronger light and decreases along the height
similarly as the light intensity of Fig. 5(a). The effective length ratio
r is lowered by the light illumination as shown in Fig. 5(c). The
reduction is larger at shorter distance and for stronger light. Thus,
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the effective length ratio r becomes space varying after the light
illumination. From Fig. 5 and the formula (2), we observe that very
weak light seems to decrease more closely to the classical Beer’s
exponential decay law, but stronger light will follow a more line-
arly decreasing function as observed in Corbett and Warner
(2008). It seems that the cis isomer density and the effective length
ratio follow the same trends.

To perform the FEM calculation, we need to test the conver-
gence of the mesh shown in Fig. 2. Fig. 6 shows how the maximal
Von Misses stress converges with the increase of the number of
nodes for a slender beam with L/h = 10. The result indicates that
the mesh is convergent and we should choose at least Ny = 200
nodes along the height direction and then Nx = 1000 nodes in the
x direction for L/h = 10 to maintain the ratio of the mesh Dx/D
y = 2. It is worthwhile to point out that the convergence is partic-
ularly slow for the case i0 = 0.75 due to its rather complex stress
distribution along the beam height as will be shown in the next
section.

As shown in Fig. 7, the straight beam becomes obviously short-
er, thicker and is bended towards the light incoming direction after
the light illumination. The light induced contraction is still rather
large for the sample with d/h = 1. However, the light induced bend-
ing is visible unlike the previous examples with very large decay
distances. It is a little surprising that the transversal cross lines
seem to remain straight after deformation, but not normal to the
deformed middle line any more. This means that there should be
a relatively large shear effect and EBBT cannot be applied directly.
More discussions will be given in the next section.

Here, we shall first study the light induced deflections, namely,
the deflection curve of the middle line of the beam with y = h/2,
v(x,h/2). The scaled deflection curves v̂ðxÞ ¼ hvðx;h=2Þ=L2 of the
middle line y = h/2 are shown in Fig. 8(a) for slender beam L/
h = 10 and very short beam L/h = 1. They seem identical and can
be well fitted by the following quadratic function which is also
shown in Fig. 8(a) by continuous curves.

v̂0ðxÞ ¼ �
1
2

keff
x
L

� �2
¼ �1

2
h

Reff

x
L

� �2
; ð32Þ

where keff = h/Reff is the effective curvature of the deflection and is
listed in Table 1.

It is obvious from Table 1 that the bending curvature for
i0 = 0.75 is larger than i0 = 2. Thus, a stronger light does not neces-
sarily produce a larger deflection. This non-monotonic dependence
of the bending curvature on the light intensity is shown more
clearly in Fig. 8(b). Namely, keff increases firstly with the light
intensity and decreases after arriving at a maximal value kM

eff at cer-
tain critical light intensity iM

0 . The maximal curvature and the crit-
Fig. 6. The maximum von Misses stress versus different node numbers in y
direction, which shows the convergence trend of the mesh in the slender beam with
L/h = 10.
ical intensity are the same for different length L/h, but they depend
strongly on the decay distance d/h as indicated by Fig. 8(b). Similar
behavior is also observed in light induced bending models using
simple beam theory (Jin et al., 2010a). As discussed in some details
there, the reason for the non-monotonicity is because the bending
magnitude does not depend directly on the magnitude of the light-
induced strains, but depends on the gradient of the light-induced
strain distributions along the beam height. While the light-induced
strain magnitude does increase with the light intensity, the gradi-
ent does not. This is also confirmed by the present FEM calculation
as will be shown more clearly by the strain distributions in the
next section.

3.4. Bending of the specimen under non-uniform light illuminations

The finite element model developed here can be used to simu-
late the bending of the 2D beam illuminated by light with a distrib-
uted light intensity I0(x). Some examples will be shown in the
following. In fact, even a time varying light intensity I0(t,x) can
be applied as well, provided that the dynamical equation of the
photoisomerization process must be considered in place of the
steady state Eq. (11) for the cis fraction density.

Consider a laser spot with a Gaussian distributed intensity (Jin
et al., 2011; Saleh and Teich, 1991)

I0ðxÞ ¼ Im exp �2ðx� bÞ2

a2

 !
; ð33Þ

where Im is the intensity at the center x = b with -L < b < L and the
positive constant a is the half width of the distribution of the elec-
tric field on the surface. Fig. 9 depicts the bending of a slender spec-
imen with L/h = 10 under the distributed light illuminations from
the bottom with I01 (x)(b1 = 0,a1/h = 1) and from the top with
I02(x)(jb2j = 0,a2 = 1)

Fig. 9(a) depicts that the whole beam contracts in length. The
light induced expansions in height occur in the portions that are
illuminated by I01(x) and I02(x). The beam remains quite straight
for large x > (jb2j + a2), where the light intensity is very small.
Therefore, bending shape can be designed by suitable direction
and distribution of light illumination.

4. Characteristics of the stress and strain distributions under
uniform light illumination

The above FEM results indicate that due to the very special con-
stitutive relations of photochromic LCEs, light illumination can in-
duce deformations of the sample. For slender beam shaped
specimen with the LC director along the length direction, the light
illumination of the beam surface will induce a contraction in the
length direction. In the other direction, the specimen will expand
and bend toward the light incoming direction. The deflection curve
of a free standing beam seems to be a quadratic function in accor-
dance to the prediction of the simple beam theory. However, the
deformation of the specimen indicates that the classical simple
beam theory is violated, since the transversal normal cross section
does not remain normal after the deformation. In order to better
understand the above unusual opto-mechanical behavior of LCEs,
we shall consider the stresses and strains of the sample in some de-
tails. Only uniform illumination of free standing samples will be
considered in this section.

4.1. The stress distributions in 2-dimensional specimen bended under
light

As shown in Fig. 10, the magnitude of the normal stress in the
length direction rxx is at least one magnitude larger than all the



Fig. 7. The result of the vertical displacement v(x,y) for L/h = 10, i0 = 2.

Fig. 8. (a) Normalized vertical displacement of the middle line versus different
initial light intensities for L/h = 10 and 1. (b) The effective curvature with respect to
various initial light intensities for different decay distances.

Table 1
The effective curvatures, slopes and contractions for different light intensities.

i0 keff(10�4) ke(10�4) e0
xx (%)

0.1 2.9848 9.2110 �0.1054
0.75 8.8723 27.362 �0.6376
2 5.6878 17.551 �1.1577

Fig. 9. (a) The bending shape and the contour plot of the vertical displacement of
the whole beam under the upward laser I01 and the downward laser I02, with im = 2.
(b) Vertical displacement of the middle line with different initial light intensities.
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other stress components even for very short beam with L/h = 1.
Moreover, the maximal values for the other two stress components
ryy and rxy are achieved near the free end at x = L, mainly due to
the boundary effect while rxx is large in the middle portion and
zero at x = L as shown by Fig. 11. Comparing the slender and short
beams, we find that the magnitudes of the stresses are generally
smaller in shorter beam due to the free boundary effect.

Thus, we may conclude that rxx is the main driving stress for the
light induced bending of the beam shaped specimen. The distribu-
tion of rxx along the height direction is shown in Fig. 12. It is clear
that rxx varies non-monotonically along the height. Depending on
the light intensity i0, there are three very different types of stress
distributions. Type I: tension near the lower and upper surface,
but compression in the middle as shown by Fig. 12(a). Thus, there
are two zero stress positions. Type II: two tension regions and two
compression regions spaced in between. There are three zero stress
positions. Type III: one tension region and two compression re-
gions with two zero stress positions.

In the classical EBBT, the stress rxx is assumed to be linear in the
height direction. There is only one zero stress plane and is often
called neutral plane. Thus, the stress distribution of the light in-
duced bending of LCEs is very different from the classical bending.
This phenomenon was already noticed by using extended EBBT (Jin
et al., 2010a; Warner et al., 2010a; Warner et al., 2010b; Warner
et al., 2011). Which one of the above three types should appear
is determined by the light intensity i0 and the decay distance d/h
as discussed in details in Jin et al. (2010a). Roughly speaking, weak
light will induce Type I and strong light induces Type III. Type II is
produced by some intermediate light intensities.

4.2. The normal strain distributions

The normal strains exx and eyy inside the sample are shown in
Fig. 13 for L/h = 1 with i0 = 2. It seems that they are both homoge-
neous along the beam length.

Their distributions along the height direction are shown in
Fig. 13 for three different light intensities. It seems from
Fig. 13(a) that the contraction strain exx are identical for long (L/
h = 10) and short (L/h = 1) beams and can be well fitted by a linear
function

exx ¼ e0
xx þ keðy=h� 1=2Þ: ð34Þ

This linearity is consistent with the observation from Fig. 7 that
the transversal cross lines remained straight after deformation. The
fitted values of e0

xx and ke are listed in Table 1.
As shown by Table 1, while the average contraction of the beam

e0
xx is larger in magnitude for stronger light, the slope ke is obvi-

ously not monotonic. Moreover, according to EBBT, the slope ke



Fig. 12. The distribution of rxxalong the x direction with different L/h = 10, 5, 1. (a)
i0 = 0.1; (b) i0 = 0.75; (c) i0 = 2.

Fig. 10. Contour plots of rxx, ryy and rxy of the beam with the initial light intensity i0 = 0.75.

Fig. 11. The distribution of rxx along the x direction at different height, with
i0 = 0.75. (a) L/h = 10; (b) L/h = 1.
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of the strain distribution should equal the effective curvature keff

obtained from the deflection curve in Fig. 8(a) by using (32). How-
ever, Table 1 shows that ke is much bigger than keff. This is again in
agreement with the fact observable in Fig. 7 that the transversal
cross lines do not remain normal after deformation. Rather, the
shear strain is generally not very small as will be shown next. Com-
paring Fig. 13(a) and (b), we find that eyy = �mexx is approximately
satisfied. Thus, the expansion in height is mainly a Poisson’s effect.

4.3. Shears, in plane rotations and quasi-soft behavior

The Cauchy shear stress rxy was identically zero if the opto-
mechanical effect would be homogeneous in the sample as shown



Fig. 13. The distribution of (a) exxand (b) eyy at x/L = 1/2 along the height, with
i0 = 0.1, 0.75, 2. The contour maps of the strain for L/h = 1, i0 = 2 from FEM are
attached in the figures.
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by the example in Section 3.2 and Fig. 3. This is often expected for
soft LCEs that cannot support shear stresses. However, under the
linearization assumption and the condition of plane stress prob-
lem, we find that rxy is generally not zero but very small for bend-
ed samples under light illuminations, as shown in Fig. 10. This
might be due to the fact that the light intensity will decay along
the propagation such that the opto-mechanical effect is generally
inhomogeneous. Whether the conclusion is true in a general case
requires further study.

As shown by the third formula of Eq. (21) in Section 2.3, the
Cauchy shear stress rxy is not only dependent on the Cauchy shear
strain exy but also the in plane rotation xxy. They are shown in
Fig. 14 together with the effective shear strain eg

xy for samples
under uniform light illuminations.
Fig. 14. Contour plots of exy, xxy and eg
xy of the
It is obvious from Fig. 14 that the in plane rotation xxy is of the
same order as the Cauchy shear strain exy and both of them are of
the same order as the normal strains in Fig. 13. But the effective
shear strain eg

xy is at least one magnitude smaller. This is in consis-
tent with the observation from Fig. 10 that the shear stress rxy is
much smaller than the normal stresses, since it is proportional to
eg

xy by (21), not to exy. The distribution of the effective shear strain
eg

xy is also very similar to the shear stress rxy, and namely eg
xy is big

near the two free corners at the free end and is very small in the
middle portion of the slender beam with L/h = 10. On the other
hand, the distributions of the Cauchy shear strain exy and the in
plane rotation xxy shown in Fig. 14 are similar to each other but
very different from the shear stress rxy in Fig. 10. As shown more
clearly in Fig. 15, both exy and xxy are approximately linear func-
tions in the length direction but may vary nonlinearly along the
height. It seems that the nonlinear variation in y-direction is par-
ticularly strong for weak light. This may come from the fact that
the decay of the light intensity (2) is closer to the exponential de-
cay thus less linear for weak light as shown by Fig. 5(a).

The above results indicate that the behavior of a LCE specimen
under light illuminations is very different from the classical EBBT,
namely the shear strain cannot be neglected even for very small
deflections of very slender beams. Fig. 16 depicts schematically
the light induced bending behavior of LCEs. The middle line of
the beam is shown with a bending angle hv together with the trans-
versal cross line and the rotated director n.

For infinitesimal deformations considered here, the angle hv and
the rotation angle of the transversal cross line, hc can be calculated
as

hv ¼ �v ;x and hc ¼ u;y ¼ hv þ 2exy: ð35Þ

As shown in Fig. 17, they are not equal and seem linear in x
direction. According to the approximations of (32) and (34), we
can have

hv � keff x=h and hc � kex=h: ð36Þ

From Fig. 17, these relations seem to hold and hc > hv in agree-
ment with the fact ke > keff from Table 1. Thus, the deformed trans-
versal cross line has rotated much more than the middle line such
that it does not remain normal any more as indicated in Figs. 7 and
16.

In summary, we have demonstrated that during the light in-
duced bending of beam shaped photochromic LCE samples, the
shear stress is generally nonzero but very small; the shear strain
is much larger together with rather large in-plane rotation strains.
Consequently, the rotation of the transversal cross line after bend-
beam with the initial light intensity i0 = 2.



Fig. 15. The variations of (a) exy and (b) xxy along the length. The variation of (c) exy

for L/h = 10 and (d) exy for L/h = 1 along the height, i0 = 0.1, 0.75, 2.

Fig. 16. Schematic representation of the rotations of middle line hv, cross line hc and
director n.

Fig. 17. The variations of the rotation along the length, with i0 = 0.1, 0.75, 2. (a) the
rotation of middle line hv; (b) the rotation of cross line hc.
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ing is much stronger than the middle line of the beam, so one of the
main assumptions of the classical simple beam theory (EBBT), that
the normal cross line remains normal, cannot be applied anymore.
Such unusual behavior is certainly resulted from the neo-classical
stress–strain relation (5) and (21). The physics underlying the phe-
nomenon is the presence of the liquid crystal phase in the elasto-
mers. In particular, the freedom of rotation of the director field n
is the main reason of soft behaviors in LCEs (DeSimone and Teresi,
2009; Cesana and DeSimone, 2011; Jin et al., 2010b; Warner,
1999;Warner and Terentjev, 2003). Thus, we may call it the qua-
si-soft opto-mechanical behavior. From Section 2.2, the director
is rotated from its original value n0 = (1,0)T to n = n0 + d n with
an angle hn. For the plane stress case, hn and dn given by (17) can
be obtained as

dn ¼ ð0; dnyÞT with dny ¼ hn ¼
4r1=3

0

r0 � 1
eg

xy: ð37Þ

Since the effective shear strain is generally much smaller than
the Cauchy strains, the rotation of the director should be very small
comparing to hv and hc. As shown in Fig. 18(a), hn is at least one
magnitude smaller than hv along the middle line y = h/2. Its maxi-
mum is achieved at the same places as the effective shear strain eg

xy

as shown by Fig. 14, namely near the two corners at the free end.
The variation of the director rotation along such maximum path
depicts that the magnitude of hn is increasing with the length be-
fore it reaches the maximum. Then it decays rapidly near x = L.

As we know from (20) that the driving force for the director
rotation is the shear stress. Since the shear stress is generally very
small for the above considered light induced bending of free stand-
ing LCE specimens, the director rotation is also very small. How-
ever, unlike the usual Hooke’s material, small shear stresses do



Fig. 18. The variation of hn along the length, with i0 = 0.1, 0.75, 2. (a) The path is
y = h/2; (b) The path is that hn reaches the maximum in the whole beam.

Fig. 19. (a) The variation of scaled normal strain along the height. (b) The variation
of intensity along the height, with i0 = 0.05, d/h = 1 and i0 = 2, d/h = 0.1.
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not necessarily imply small shear strains for LCEs. The unusual
constitutive behavior given by the third formula of Eq. (21) is
responsible for the above quasi-soft opto-mechanical behavior.
And even for very slender specimen and very small bending
magnitude, the classical EBBT is not applicable for light induced
bending of LCE materials. Rather, the effect of the shear strain must
be considered. This is rather surprising at the first glance and is in
contraction to most of the existing analysis of the light induced
bending of LCEs in the literatures (Corbett and Warner, 2007,
Corbett and Warner, 2008; Dunn, 2007; Dunn and Maute, 2009;
Jin et al., 2010a; Modes et al., 2010;Warner and Mahadevan,
2004; Warner et al., 2010a; Warner et al., 2010b; Warner et al.,
2011). More works should be done to modify the classical EBBT
to include such shear effects.

4.4. Two examples with non-planar deformed cross section

In all the above numerical simulations, the transversal cross
lines remain approximately straight after the light induced bend-
ing as indicated by the linearity of the normal strain exx as shown
in Fig. 13(a) given by Eq. (34). However, this is not always the case
even for very slender beam shaped specimen due to the special
opto-mechanical coupling in this material. Due to the length limi-
tation, we shall give just two examples here and leave the detailed
analysis to a forthcoming paper. Only slender beam shaped speci-
men L/h = 10 will be considered here.

As shown in Fig. 19(a), the specimen is under uniform light illu-
mination from the bottom. The normal strain exx are far from linear
for very weak light intensity i0 = 0.05 with d/h = 1 and for very
short decay distance d/h = 0.1 with i0 = 2. This is resulted from
the nonlinear light absorption given by (2), since the light intensi-
ties are quite far from linear inside the specimen for these two
cases as shown in Fig. 19(b).

5. Conclusions

In this paper, the light-induced constitutive relations are ob-
tained by introducing the photoisomerization and its effect on
the nematic-isotropic transitions into the nonlinear constitutive
equations of LCEs which are based on the neo-classical elastic free
energy. We linearize the stress–strain relation based on the
assumption of infinitesimal strains and ignore the effect of the
deformation on the light propagation and the effect of the stress
on the order parameters. The result shows that the Cauchy stress
tensor is a function of both the symmetric part of the displacement
gradient e and the asymmetric part x. The shear stress in the plane
perpendicular to the director is not zero but proportional to the
rotation of the director.

Plane stress problems are considered for simplicity. The re-
duced normal stress–strain relations have similar expressions as
the linear thermal elastic materials with the thermal strain re-
placed by an anisotropic opto strain which is a contraction along
the LC director and an expansion in the perpendicular direction.
However, the shear stress is not proportional to the Cauchy shear
strain any more but also depends on the in-plane rotation (the
asymmetric part of displacement gradient).

Although, the obtained constitutive relation is very unusual, it is
possible for us to rescale the displacements and use commercial
FEA software ABAQUS to carry out the numerical simulations of
light induced bending of two dimensional specimens. Of course,
secondary development with self-defined material subroutines is
inevitable.

The numerical results have shown that the light induced con-
traction and bending of two dimensional specimens can be simu-
lated by our model. It is found that if the decay distance of the
light due to the absorption is much large than the height of the
specimen, approximately homogeneous contraction in length and
expansion in height can be induced by uniform light illuminations.
If the ratio of decay distance vs. height, d/h is not too large, the
specimen will bend toward the incoming light in addition to a
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contraction in length and expansion in height. The bending seems
quite identical for long and short specimens but depend strongly
on the incoming light intensity. The dependence of the bending
magnitude on the light intensity is generally non-monotonic,
increasing firstly to a maximum and then decreasing to zero for
very large light.

The distributions of the stresses and strains are analyzed in
some details for specimens under uniform light illuminations.
The results indicate that the driving force for the light induced
bending is the normal stress component in the direction of the
LC director. The other stress components are generally much smal-
ler even for very short specimen. The distribution of the main
stress component along the height is highly nonlinear and depends
strongly on the light intensity, which is very similar to the results
obtained by using elementary beam theory (Jin et al., 2010a).

Although the shear stress is very small comparing to the main
stress component, it is generally not zero under light illuminations
in contrast to pure mechanical loading of soft LCEs. Moreover, the
Cauchy shear stain is generally not small but in the same order as
the other normal strain components. Thus, the deformed transver-
sal cross line does not remain normal any more, although it can re-
main straight after the light induced bending if the light intensity
or the decay distance is not too small and the LCE specimen is in
the deep nematic phase. Therefore, the classical Euler–Bernoulli
Beam Theory cannot be directly applied to model the light induced
bending of soft LCEs. Some shear effect must be considered.

The above unusual quasi-soft opto-mechanical behavior is cer-
tainly a consequence of the constitutive relations based on the neo-
classical elastic energy of LCEs. However, it is known that the real
behavior of LCE materials cannot be properly described by this free
energy alone. In particularly, the rotation of the LC director should
not be completely free in cross-linked solid materials. Thus, it is
worthwhile to carry out further calculations by using some modi-
fied constitutive equations such as the semi-soft elastic energy
(Cesana and DeSimone, 2011), phase field model (Oates and Wang,
2009), dynamical model (Zhu et al., 2011) etc.
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