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We examined qualitatively and quantitatively in adult rat retinas the temporal degeneration of the nerve
fibre layer after intra-orbital optic nerve transection (IONT) or crush (IONC). Retinal ganglion cell (RGC)
axons were identified by their heavy neurofilament subunit phosphorylated isoform (pNFH) expression.
Optic nerve injury induces a progressive axonal degeneration which after IONT proceeds mainly with
abnormal pNFH-accumulations in RCG axons and after IONC in RGCs somas and dendrites. Importantly,
this aberrant pNFH-expression pattern starts earlier and is more dramatic after IONT than after IONC,
highlighting the importance that the type of injury has on the time-course of RGC degeneration.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A classic and commonly used model to study the effects of cen-
tral nervous system neuronal injury is axotomy of the adult mam-
malian optic nerve (Leoz y Arcuate, 1914; Ramón & Cajal, 1914;
Tello, 1907, chap. 5). This model has allowed a number of investi-
gations to study: (i) injury-induced loss of retinal ganglion cells
(RGCs) (Lafuente et al., 2002; Lindqvist, Peinado-Ramon, Vidal-
Sanz, & Hallbook, 2004; Lindqvist, Vidal-Sanz, & Hallbook, 2002;
Marco-Gomariz, Hurtado-Montalban, Vidal-Sanz, Lund, & Ville-
gas-Pérez, 2006; Nadal-Nicolás et al., 2009; Parrilla-Reverter
et al., 2009; Villegas-Pérez, Lawrence, Vidal-Sanz, Lavail, & Lund,
1998; Villegas-Pérez, Vidal-Sanz, & Lund, 1996; Villegas-Pérez,
Vidal-Sanz, Rasminsky, Bray, & Aguayo, 1993; Wang et al., 2003;
Wang, Villegas-Pérez, Vidal-Sanz, & Lund, 2000); (ii) the preven-
tion of such a loss using neuroprotective substances (Aviles-Trigu-
eros et al., 2003, Lafuente Lopez-Herrera, Mayor-Torroglosa,
Miralles d, Villegas-Pérez, & Vidal-Sanz, 2002; Lafuente et al.,
2002; Mayor-Torroglosa et al., 2005; Parrilla-Reverter et al.,
ll rights reserved.
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2009; Peinado-Ramon, Salvador, Villegas-Pérez, & Vidal-Sanz,
1996; Vidal-Sanz, Aviles-Trigueros, Whiteley, Sauve, & Lund,
2002; Vidal-Sanz et al., 2007; Vidal-Sanz, Lafuente, Mayor, de
Imperial, & Villegas-Pérez, 2001), (iii) the molecular and functional
changes associated to RGC injury (Agudo et al., 2008; Agudo et al.,
2009; Chidlow, Casson, Sobrado-Calvo, Vidal-Sanz, & Osborne,
2005; Nadal-Nicolás et al. 2009, Salvador-Silva, Vidal-Sanz, &
Villegas-Pérez, 2000; Sobrado-Calvo, Vidal-Sanz, & Villegas-Pérez,
2007) and; (iv) the capacity of these injured neurons to regenerate
their axons, reinnervate their targets and form synapses (Aviles-
Trigueros, Sauve, Lund, & Vidal-Sanz, 2000; Bahr, Eschweiler, &
Wolburg, 1992; Cho & So, 1989; Robinson, 1994; Sasaki et al.,
1996; Thanos & Vanselow, 1989; Vidal-Sanz, Bray, & Aguayo,
1991; Vidal-Sanz, Bray, Villegas-Pérez, Thanos, & Aguayo, 1987;
Vidal-Sanz et al., 2002; Watanabe, Sawai, & Fukuda, 1991; White-
ley, Sauve, Aviles-Trigueros, Vidal-Sanz, & Lund, 1998).

These studies have shown that injury to retinal ganglion cell
axons [i.e. to the optic nerve (ON)] induces the death of the parent
neurons, the RGCs (Villegas-Pérez, Vidal-Sanz, Bray, & Aguayo,
1988; Villegas-Pérez et al., 1993), and that the severity of this loss
depends on a number of variables, such as the quantity of axons
affected by the lesion, which may vary from a partial compression
of the ON (Yoles & Schwartz, 1998) to a complete crush or transec-
tion (Burke, Cottee, Garvey, Kumarasinghe, & Kyriacou, 1986;
Villegas-Pérez et al., 1988), the distance from the cell soma where
the lesion is performed, as the longer the distance from the cell soma
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at which the lesion is inflicted, the slower the rate of RGC loss is
(Berkelaar, Clarke, Wang, Bray, & Aguayo, 1994; Villegas-Pérez
et al., 1993), and the type of injury (for review see Parrilla-Reverter
et al., 2009), because axotomy-induced RGC degeneration is quicker
and more severe after optic nerve transection (Mansour-Robbaey
et al., 1994; Nadal-Nicolás et al., 2009; Peinado-Ramon et al.,
1996; Villegas-Pérez et al., 1993) than after optic nerve crush (Berke-
laar et al., 1994; Nadal-Nicolás et al., 2009; Parrilla-Reverter et al.,
2009). The relative importance of the type of injury caused upon
the retinofugal pathway has been underscored by a recent study in
which the retinal transcriptome profile from IONC and IONT retinas
was examined and compared to naïve retinas using affymetrix
RAE230.2 arrays (Agudo et al., 2008), and by a detailed analysis of
the pattern and temporal course of RGC loss induced by such injuries
(Nadal-Nicolás et al., 2009; Parrilla-Reverter et al., 2009; Peinado-
Ramon et al., 1996). In the present studies we have further investi-
gated the effects that the type of injury; whether axotomy is
performed by ON transection or crush, have on the degenerative
events that take place in the nerve fibre layer of the retina.

Axonal degeneration after optic nerve injury is a progressive
alteration that was described by Ramón y Cajal (1914, chap. 5)
and his collaborators (Leoz y Arcuate, 1914; Tello, 1907) using
the neurofibrilar silver nitrate staining. Neurofilaments (NF) repre-
sent the main cytoskeletal proteins in mature neurons and are
responsible for maintaining the calibre of myelinated axons and
consequently their conduction velocity. NFs are assembled from
three subunits, classified according to their molecular weight into
high (H), medium (M) and low (L). These proteins are modified by
post-translational changes, wherein the most significant is phos-
phorylation that regulates their assembly and interactions. Phos-
phorylation of NF, in particular NFH, has long been considered to
decrease their transport rate (for review see Perrot, Berges, Boc-
quet, & Eyer, 2008). In fact, highly phosphorylated isoforms of
NFH (pNFH) are present only in mature axons whilst dephospho-
rylated isoforms are found in the neuronal soma and dendrites
(Perrot et al., 2008; Sternberger, Sternberger, & Ulrich, 1985).
Abnormal organisation and/or metabolism of NF are associated
with several human neurodegenerative diseases and experimen-
tally damaged neurons (Buckingham et al., 2008; Dieterich et al.,
2002; Soto et al., 2008, for review see Al Chalabi & Miller, 2003;
Perrot et al., 2008; Petzold, 2005; Salinas-Navarro et al., submitted
for publication). In these paradigms highly phosphorylated NFH
are often accumulated in the neuronal body. After different types
of retinal injuries such as ischemia, excitotoxicity and optic nerve
axotomy there is a decrease in the mRNA levels of NFs (Agudo
et al., 2008; Chidlow et al., 2005; Hoffman, Pollock, & Striph,
1993; McKerracher, Vidal-Sanz, Essagian, & Aguayo, 1990) which,
in the case of ON injury, correlates with an impairment of their ax-
onal transport if the RGCs are committed to death (McKerracher,
Vidal-Sanz, & Aguayo, 1990) but not if RGCs are allowed to regen-
erate along segments of peripheral nerve grafted to the ocular
stump of the intraorbitally transected optic nerve (McKerracher,
Vidal-Sanz, Aguayo, 1990; Vidal-Sanz, Villegas-Pérez, Bray, &
Aguayo, 1993; Vidal-Sanz et al., 2002).

Axons were identified by immunodetection of pNHF using the
RT97 monoclonal antibody. This antibody recognizes the phosphor-
ylated isoform of the heavy subunit of neurofilaments (Drager & Hof-
bauer, 1984; Veeranna et al., 2008) which, in healthy neurons, is
expressed in mature axons. In fact, the medium and heavy neurofil-
ament subunits are poorly or not at all phosphorylated in the soma-
to-dendritic neuronal compartment whereas they are highly
phosphorylated in the axonal one (Gotow, Tanaka, & Takeda, 1995;
Lewis & Nixon, 1988; Petzold, 2005). Furthermore, it has been shown
that after axonal damage, certain cells have an abnormal pNFH dis-
tribution in their soma and dendrites (Drager & Hofbauer, 1984)
and this aberrant distribution has been demonstrated as well in a
variety of human and experimental neuronal disorders (for review
see Al Chalabi & Miller, 2003; Perrot et al., 2008; Petzold, 2005),
including RGC axonal injury (Marco-Gomariz et al., 2006; Salinas-
Navarro et al., submitted for publication; Vidal-Sanz et al., 1987;
Villegas-Pérez et al., 1988; Villegas-Pérez et al., 1996; Villegas-Pérez
et al., 1998; Wang et al., 2000; Wang et al., 2003).

In the present studies using the RT97 antibody, we have analyzed
qualitative and quantitatively, the abnormal expression of pNFH, in
particular their distribution within the RGCs axons, somas and pro-
cesses, as well as its time-course and topological distribution within
the retina. Although similar events were found in both situations,
there were some differences in the pattern and course of axonal
degeneration among both injuries. In general, the number of RGCs
with abnormal expression of pNFH (RT97+RGCs) was greater after
IONC than after IONT. Their distribution throughout the retina
tended to be random, although they first appeared within the
periphery and middle retina evolving to include the central retina.
Overall, the present results about the aberrant expression of pNFH,
plus our recent studies about the time-course of RGC loss induced
by axotomy, (Nadal-Nicolás et al., 2009; Parrilla-Reverter et al.,
2009) together with the different gene regulation response induced
by these injuries (Agudo et al., 2008; Agudo et al., 2009) highlight the
importance that the type of injury inflicted to the ON has on severity
and the speed of axotomy–induced RGC loss and on the molecular
events leading to their degeneration [Short accounts of this work
were presented in abstract form (Parrilla-Reverter et al., 2006)].
2. Materials and methods

2.1. Animal handling

Adult female Sprague–Dawley rats (180–220 g body weight)
were obtained from the University of Murcia breeding colony.
For anaesthesia a mixture of xylazine (10 mg/kg body weight;
Rompun�; Bayer, Kiel, Germany) and ketamine (60 mg/kg body
weight; Ketolar�; Pfizer, Alcobendas, Madrid, Spain) was used
intraperitoneally (i.p.). All experimental procedures were carried
out in accordance with our institutional rules, European Union reg-
ulations and the Association for Research in Vision and Ophthal-
mology guidelines for the use of animals in research. Right after
the surgical manipulation and during recovery from anaesthesia
an ointment containing neomycin and prednisone (Oftalmolosa
Cusí Prednisona-Neomicina�; Alcon S.A., Barcelona, Sapin) was ap-
plied on the cornea to prevent corneal desiccation. Additional mea-
sures were taken to minimize pain or discomfort. Animals were
sacrificed with an i.p. injection of an overdose of pentobarbital
(Dolethal Vetoquinol�; Especialidades Veterinarias, S.A., Alcoben-
das, Madrid, Spain).
2.2. Optic nerve injury

The left optic nerve (ON) was injured intraorbitally according to
procedures that are commonly used in our laboratory (Lafuente Lo-
pez-Herrera et al., 2002, for review see Vidal-Sanz et al., 1993). In
the group of rats undergoing intra-orbital optic nerve transection
(IONT), the ON was severed at approximately 3 mm from the optic
disk. To access the ON at the back of the eye, an incision was made
in the skin overlying the superior orbital rim, the supero-external
orbital contents were dissected, and the superior and external rec-
tus muscles were sectioned. The duramater of the ON was opened
longitudinally, and the ON was completely transected. Care was ta-
ken not to damage the retinal blood supply, which enters the eye
separately in the inferonasal aspect of the ON sheath (Morrison,
Johnson, Cepurna, & Funk, 1999). In the group of rats undergoing in-
tra-orbital optic nerve crush (IONC) the ON was accessed as before
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but without opening the duramater, then it was completely crushed
during 10 s at 3 mm from the optic disk using watchmaker’s forceps
as recently described (Parrilla-Reverter et al., 2009). We did not
control the pressure applied in this study. However, the validation
of the methodology employed to induce complete optic nerve crush
was previously reported in our parallel study (Parrilla-Reverter
et al., 2009), in which several control experiments using orthograde
as well as retrograde tracers demonstrated that our crush injury
methodology involved axotomy of the entire population of RGCs.
Finally, before and after either of the surgical procedures, the eye
fundus was observed through the operating microscope to assess
the integrity of the retinal blood flow.

For our qualitative study, animals undergoing IONC or IONT
were sacrificed at 3, 7, 10, 12, 15, 21, 30 or 90 (n = 8 retinas per
group and time-point except at 3 days that was n = 4) days post-in-
jury. In addition to the right (contralateral) retinas of the injured
animals, four naïve retinas from intact animals were used as
controls.

For our quantitative study, the number of analyzed retinas
were: naïve (n = 4); right eyes (n = 8); IONT: 3 d (n = 4), 7 d
(n = 8); 14 d (n = 8), 21 d (n = 5); 30 d (n = 5); IONC: 3 d (n = 4),
7 d (n = 4), 14 d (n = 8), 21 d (n = 6), 30 d (n = 8).

2.3. Identification of rgcs: retrograde tracing with dtmr or fluorogold

To study whether the RT97 immunofluorescence cells that ap-
peared after ON injury were RGCs and not other retinal neurons,
two additional groups were prepared following previously de-
scribed methods (Lafuente, Villegas-Pérez, Mayor, et al., 2002;
Lafuente, Villegas-Pérez, Selles-Navarro, 2002; Salinas-Navarro,
Mayor-Torroglosa, et al., 2009). The passively transported retro-
grade tracer dextran tetramethylrhodamine (DTMR; 3000 MW;
Molecular Probes, Inc., Eugene, OR, USA) was applied to the optic
nerve stump in six rats processed 30 days after IONC and 2 days prior
to sacrifice. The actively transported retrograde tracer, fluorogold
(FG, 3% diluted in 10% DMSO-saline, Fluorochrome, LLC, USA) was
applied to the optic nerve stump of seven rats 14 days after IONC
and 3 days prior to sacrifice. In brief, small crystals of DMTR or small
pieces of gel-foam soaked in FG; were applied to the ocular stump of
the left ON, which had been intraorbitally re-transected, this time at
approximately 0.5 mm from the eye. Both tracers diffuse through the
axon towards the cell soma producing an intense labelling (Salinas-
Navarro et al., 2009; WoldeMussie, Ruiz, Wijono, & Wheeler, 2001).
These tracers would identify those RGCs that survive the lesion.

2.4. Immunohistofluorescence analysis

All animals were deeply anaesthetized with an overdose of so-
dium penthobarbital and perfused transcardially with 4% parafor-
maldehyde in 0.1 M phosphate buffer after a saline rinse. Retinas
from both eyes were dissected as flattened whole-mounts as pre-
viously reported (Nadal-Nicolás et al., 2009; Salinas-Navarro
et al., 2009; Salinas-Navarro, Mayor-Torroglosa, et al., 2009; Wang
et al., 2000; Wang et al., 2003). All retinas were immunostained
using the monoclonal antibody RT97. The RT97 antibody devel-
oped by John Wood (Wood & Anderton, 1981) was obtained from
the Developmental Studies Hybridoma Bank developed under the
auspices of the NICHD and maintained by the University of Iowa,
Department of Biological Sciences, Iowa City, IA 52242). RT97 is a
monoclonal IgG1, raised in mouse against Wistar rat neurofila-
ments, that recognizes, in Western blots, the phosphorylated iso-
forms of the 200 and 145 kDa neurofilament subunits (Anderton
et al., 1982; Veeranna et al., 2008; Wood & Anderton, 1981), and
also phosphorylated epitopes of Tau and MAP 1B (Anderton
et al., 1982; Cairns et al., 1997; Coleman & Anderton, 1990; John-
stone, Goold, Fischer, & Gordon-Weeks, 1997; Ksiezak-Reding,
Dickson, Davies, & Yen, 1987; for review see Marco-Gomariz
et al., 2006). This antibody in the mammalian retina labels retinal
ganglion cell axons, photoreceptor outer segments, and horizontal
cells (Balkema & Drager, 1985; Drager & Hofbauer, 1984). We have
a long experience with the commercial RT97 antibody which, in
our hands, labels intensely RGC axons and some injured
RGC bodies and occasionally faintly the horizontal cell plexus
(Marco-Gomariz et al., 2006; Salinas-Navarro et al., submitted for
publication; Vidal-Sanz et al., 1987; Villegas-Pérez et al., 1988;
Villegas-Pérez et al., 1996; Villegas-Pérez et al., 1998).

Immunodetection was done using protocols that are standard in
our laboratory (Marco-Gomariz et al., 2006; Villegas-Pérez et al.,
1988, 1996, 1998; Wang et al., 2000, 2003). In brief: retinas were
incubated 1 h at room temperature (RT) in blocking buffer (Triton
2% and 2.5% bovine serum albumin in phosphate buffered saline-
PBS) followed by overnight incubation at 4 �C with the primary
antibody diluted 1:1000 in the same blocking buffer. The following
day retinas were washed in PBS (3 � 10 min at RT) and secondary
detection was carried out by 1 h incubation at room temperature
with goat anti-mouse-FITC antibody (F-4018, Sigma–Aldrich, St.
Louis, Missouri, USA) diluted 1:50 in blocking buffer. After that,
retinas were washed in PBS, mounted vitreal side up on gelatin-
coated slides, with antifading mounting media containing 50%
glycerol and 0.04% p-phenylenediamine in 0.1 M sodium carbonate
buffer (pH 9).

2.5. Retinal imaging and analysis

All whole-mounted retinas (left and right eyes) were analyzed
for RT97 signal. DTMR or FG signal were also acquired in those ret-
inas labelled with either tracer. Individual and magnified images
were taken with an epifluorescence microscope (Axioscop 2 Plus;
Zeiss Mikroskopie, Jena, Germany) using the Image Pro Plus soft-
ware, (IPP 5.1 for Windows�; Media Cybernetics, Silver Spring,
MD, USA), as previously described (Marco-Gomariz et al., 2006;
Nadal-Nicolás et al., 2009; Salinas-Navarro, Mayor-Torroglosa,
et al., 2009). Briefly: to make reconstructions of retinal whole-
mounts, retinal multiframe acquisitions were photographed in a
raster scan pattern where the frames were captured contiguously
side-by-side with no gap or overlap between them using an 10�
objective (Plan-Neofluar, 10�/0.30; Zeiss Mikroskopie, Jena, Ger-
many). Single frames were focused manually prior to the capture
of the digitized images which were then fed into the image analy-
sis program. The plane of focusing was between the RGC and the
nerve fibre layer of the retina. Depending of the retina size and ori-
entation on the slide a scan area is defined to cover completely the
whole retina. This scan area consists of a matrix of m frames in col-
umns and n frames in rows, where the total number of frames in
the scan area is indicated by frames in columns times frames in
rows (m � n). The frame size is 840 � 623 pixels and usually, 140
images had to be taken for each retina. The capture calibration is
1 pixel equals to 0.0011 mm. All images were captured at a resolu-
tion of 300 dpi.

The images taken for each retina were saved in a folder as a set
of 24-bit color image pictures. Later, these images can be combined
automatically into a single tiled high resolution composite image
of the whole retina using IPP� for Windows�. Reconstructed
images were further processed with an image-editing computer
software (Adobe Photoshop� CS; ver 8.0.1, Adobe Systems, Inc.,
San Jose, CA) when correct orientation of the retina was needed.

2.6. Quantitative retinal analysis

2.6.1. pNFH fluorescence area
Whole-mount images from each retina were processed by a

specific subroutine developed to automate repetitive tasks. In brief,
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the IPP macro language was used to apply a sequence of filters and
transformations in order to obtain the fluorescent area as well as
the total area of the central, medial, and peripheral parts of the ret-
ina. In a first step, the contour of the retina was outlined on the
whole-mount image, creating a new area of interest, the flatten fil-
ter was applied just on that area of interest, reducing the variations
on background intensity, the total area of the retina (mm2) was
also obtained and saved into an excel sheet (Microsoft� Office Ex-
cel 2003, Microsoft Corporation, Redmond, WA, USA). The next
step was to situate five points on the retina, the first one on the op-
tic nerve disk, and the other four on the edge of each retinal quad-
rant, in order to calculate the minimum distance between the optic
nerve and those points. The optic nerve area was deleted and the
minimum distance was used to create three equidistant rings,
one for each retinal area: central, medial, and peripheral (see
Fig. 9D). For each ring two processes were launched: one to calcu-
late the area occupied by fluorescence and the other to calculate its
total area (both in mm2). To calculate the fluorescent area, the im-
age of each retinal ring (central, medial or peripheral) was con-
verted into a grey scale, and the user carried out an histogram
segmentation selecting all the objects that were fluorescent, the
area of that selection was exported to the same excel sheet. To cal-
culate the total area of each ring, the user performed an histogram
segmentation on the original ring image to select and obtain its
whole area, which was exported to the excel sheet. The percentage
of each ring occupied by RT97 fluorescence was calculated using
the fluorescent area in each ring referred to its whole area which
was arbitrarily considered 100%.

2.6.2. pNFH-positive RGCs localization and spatial distribution in the
retina

The numbers of RGCs expressing aberrant RT97 staining of their
soma were counted in a masked fashion in experimental as well as
in control retinas. At first the retinal whole-mount images were
edited using Adobe Photoshop, the whole retina was examined at
high magnification frame by frame, and every RT97+RGC was
marked with a dot of different color to distinguish faint or intense
RT97 immunofluorescence (Fig. 8C shows an example of both
intensities). For the two types of cells, a counting routine devel-
oped into Image Pro Plus macro language was launched: the user
is first asked to point the optic nerve disk, in order to perform a
translation of that point to the origin of the cartesian coordinate
system; then the counting routine obtained the total number of
blue or red dots in the image, evaluated their spatial position,
and translated it in relation to the origin. The information (number
of dots and their coordinates) was exported into an excel sheet.

The spatial distribution of FG+RGCs in every analyzed retina was
evident from the whole-mount images edited with Adobe Photo-
shop and marked with dots to indicate the location of these neu-
rons. To illustrate this matter more graphically, we chose three
representative retinas from each experimental group and time-
point and their RT97+RGCs were pooled into a single diagram con-
structed with the aid of SigmaPlot 9 software (SigmaPlot� 9.0 for
Windows�, Systat Software, Inc., Richmond, CA) (See below, Fig. 7).

2.6.3. Quantification of RT97 positive neurons that were also
retrogradely labelled with Fluorogold

Our quantitative analysis (see below) indicated that abnormal
RT97 immunofluorescence within injured RGCs peaked around
14 days, thus we examined in a masked fashion a group of rats
in which FG was applied to the ON head stump three days prior
to sacrifice and 14 days after IONC. In these retinas (n = 7), ran-
domly selected images (n = 8 per retina) spanning the entire retina
were obtained under the UV (for FG fluorescence) and the FITC (for
RT97 immunofluorescence) filter. FG and RT97 images were cou-
pled using the Adobe Photoshop program and the numbers of
RT97+RGCs as well as those that were also positive for FG were
counted.

2.6.4. Statistical analysis
Data is shown as mean ± SEM. Statistical analysis of the differ-

ences between groups of retinas or groups of animals was done
using non-parametric ANOVA tests using Sigma Stats� 3.5 for Win-
dows� (Systat Software, Inc., Richmond, CA) software. Differences
were considered significant when p < 0.05.
3. Results

In the present work we have studied qualitative and quantita-
tively, in whole-mounted retinas the time-course of axotomy-in-
duced RGC axonal degeneration and compared the effects that
IONT and IONC have on it. Our data show that optic nerve injury
results in abnormal expression of pNFH within axons, cell bodies
and primary dendrites of RGCs. Abnormal signal of RT97 immuno-
reactivity appears as early as 3 days post-injury near the cell body
and spreads somatofugally along the nerve fibres. Abnormal pNFH-
expression patterns range from intra-axonal deposits shaped like
rosary-beads and small varicosities to accumulations within the
RGCs bodies, the former being more frequently found in IONT-in-
jured retinas and the latter in IONC-injured ones. Axonal loss ap-
pears in the centre of the retina earlier after IONT than IONC,
interestingly, after both lesions pNFH+ axons reach the medial
and peripheral retina, an abnormal expression pattern that is not
found in control retinas. pNFH+RGCs first appear mainly in the
peripheral and middle retina spreading towards the central retina,
peaking at 14 days after axotomy and there were greater numbers
in IONC than in IONT retinas. We also provide additional evidence
documenting that abnormal expression of pNFH only occurs in in-
jured retinal ganglion cells and not in other retinal neurons. Final-
ly, this works demonstrates that these changes in pNFH-expression
pattern are early events of axotomy-induced RGC degeneration
that last, at least, up to 90 days post-injury.

3.1. Qualitative analysis

3.1.1. Neurofilament staining in control retinas
RGC axons were detected by their RT97 immunoreactivity and

thus by their expression of the phosphorylated isoform of the neu-
rofilament heavy subunit (pNFH). A representative photomontage
of a control retina (Fig. 1A) shows the typical RT97 immunoreactiv-
ity present in bundles of RGC axons. The signal is usually intense at
the centre of the retina, where RGC axons running from the periph-
ery towards the centre, converge radially into tightly packed bun-
dles (Fig. 1B–D) to form the optic disk (Fig. 1B). These axons are
uniformly labelled and their morphology is rectilinear. It is worth
noting that in control retinas (naïve or contralateral to injured ret-
inas) pNFH-signal did not reach the periphery of the retina (Fig. 1A
and E) nor was observed in the cell bodies or dendrites of RGCs.

3.1.2. Neurofilament staining after IONT or IONC
The pattern of pNFH-expression in retinas whose ON had been

injured with either IONT or IONC was analyzed at 3, 7, 10, 12, 14,
21, 30 or 90 days after injury. In general, there were abnormal dis-
tributions of pNFH within the intraretinal aspect of the axon as well
as within the cell bodies and dendrites of some RGCs.

At three and seven days post-IONT or IONC there were no notice-
ably changes on pNFH-expression when the retinas were examined
at low magnification (Fig. 2C and D); indeed RT97 signal in the cen-
tral retina of these damaged retinas does not differ from that ob-
served in control ones. Higher magnification examination three
days post-IONT and IONC, showed aberrant pNFH-signal was al-



Fig. 1. Expression pattern of RT97 immunoreactivity in control retinas. (A) Whole-mounted retina immunostained for pNFH. (B) pNFH-expression pattern in the central area
of a control retina, notice all immunostained RGC axons radially converging towards the optic disk. (C and D) pNFH-expression pattern in the middle region of a control retina.
(E) pNFH-expression pattern at the periphery of a control retina. Note that few axons are pNFH-positive. Abbreviations: pNFH: phosphorylated neurofilament heavy subunit,
Bars: A: 1 mm, B–E: 200 lm. Right: temporal, top: superior except in A and B where the superior pole is situated at 1 o’clock.
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ready observed at the peripheral retina (Fig. 2A and B) and in addi-
tion faintly stained RGCs appear mainly within the peripheral and
middle retina (see below). At seven days post-injury, inspection of
the retinal periphery disclosed that after IONT, some RGC axons



Fig. 2. Changes of the expression pattern of RT97 immunoreactivity 3, 7 or 10 days after IONT or IONC. Three days after IONT (A) or IONC (B) RT97 aberrant signal in the
peripheral retina is already observed. The pNFH-expression pattern in the centre of the retina seven days after IONT (C) or IONC (D) does not differ from control retinas.
However pNFH-aberrant accumulations are observed in the peripheral areas. At this time-point there are already some differences between both injuries with many axonal
accumulations of pNFH after IONT (E) whereas many cell bodies exhibit pNFH-signal after IONC (F). Ten days after IONT, intra-axonal pNFH-accumulations are more evident,
and some cell bodies start to show RT97 immunoreactivity (G). However after IONC (H) there are few pNFH-accumulations but a higher number of pNFH-positive cell bodies
are observed. Top: superior, right: temporal. Abbreviations: IONT: intra-orbital nerve transection, IONC: intra-orbital nerve crush, d: days post-lesion. pNFH: phosphorylated
neurofilament heavy subunit. Bars: A, C: 200 lm, B, D, E, F: 50 lm.
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showed a varicose morphology with bead-like structures highly
positive for RT97 on the portion of the axon located at the retinal
periphery (Fig. 2E). Moreover, some RGC bodies and their proximal
dendrites also appeared stained with RT97 and occasionally it was
possible to appreciate simultaneously RT97 labelling in the cell
soma, its primary dendrites and its axon. After IONC, a thorough
analysis of the periphery also showed some abnormalities in axo-
nal morphology and the aberrant pNFH-expression in cell bodies
was more abundant than after IONT (Fig. 2F). The degree of RT97
labelling within the cell soma and their primary dendrites varied
from a faint but clear staining to a very intense labelling through-
out the soma and dendrites. All these changes progressed with
time and were more evident by 10 dayspost-injury (Fig. 2G and H).

At day 12 post-IONT the centre of the retina shows signs of ax-
onal degeneration; there are fewer axons present (Fig. 3A) and var-
icosities appear in these axons all throughout their extension, from
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the retinal periphery to the optic disk (Fig. 3B). The peripheral ret-
ina shows intense RT97 stained axons that instead of arising from
normal looking RGC bodies, emerge from a cell soma RT97 immu-
nopositive with a club- flare- or bulb-like morphology (Fig. 3C and
D). At this time-point after IONC, injured retinas showed no signs
of axonal degeneration close to the optic disk (Fig. 3E), but in the
peripheral retina there were numerous cell bodies exhibiting vari-
ous degrees of RT97 staining (Fig. 3F) as well as frequent intra-ax-
onal accumulations of pNFH (Fig. 3G and H).

At 14 and 21 days post-injury, the abovementioned changes in
the expression pattern of pNFH had evolved further and ap-
peared more generalized throughout the retina. IONT caused a
decrease in the size of the axonal bundles converging toward
the optic disk to leave the retina, but such a decrease was not
obvious to the naked eye after IONC. Fig. 4 shows representative
examples of the central retina after IONT (Fig. 4A and B) or IONC
(Fig. 4E and F) at 14 days post-injury. Representative examples
of the central retina at 21 days post-injury, after IONT or IONC
are shown in Fig. 5A and C respectively. These images show that
after IONC, pNFH-positive cell bodies start to appear closer to
Fig. 3. Changes of the expression pattern of RT97 immunoreactivity 12 days after IONT or
retinas has diminished (A), but this decrease is not obvious after IONC (E). In the periphe
club-like axonal terminals heavily stained with RT97 after IONT (B–D) while after IONC, in
pNFH start to appear (H; arrow). Abbreviations: IONT: intra-orbital nerve transection, IO
Bars: A, E: 200 lm, B–D, F–H: 50 lm. Top: superior, right: temporal.
the centre of the retina (Figs. 4F and 5D). After either lesion,
there are clear aberrant pNFH patterns (Fig. 4B–D, F–H) ranging
from highly positive cell bodies whose dendrites appear to be
shrinking (Fig. 4C–H), to intra-axonal pNFH-accumulations
(Fig. 4B–D) or cell bodies and dendrites clearly labelled (Figs.
5B, 4F and D). It was possible to follow single axons stained with
RT97 from the optic disk towards the retinal periphery
where the parent cell somata often showed also intense label-
ling. Some of these pNFH-positive RGCs had the appearance of
a rounded RGC body with very few or none dendritic ramifica-
tions (Fig. 4G and H), probably representing a prelude of what
would later become into a club or a bulb-shaped cell body
structure.

By day 30 post-IONT there were few pNFH-positive axons remain-
ing in the centre (Figs. 5E and 6B) and in the periphery of the retina
where these presented varicosities, bead-like formations and fre-
quent depositions of pNFH-positive material in the forms previously
described of bulbs or clubs (Fig. 5F and G). RGC bodies and dendrites
intensely labelled with RT97 were still present throughout the retina
but in smaller quantities than those observed at earlier intervals. At
IONC. Twelve days after IONT the density of RGC axons pNFH-positive in the central
ral retina axonal degeneration continues, appearing more pNFH-accumulations and
addition to numerous pNFH-positive cell bodies (F–H) also axonal accumulations of

NC: intra-orbital nerve crush, pNFH: phosphorylated neurofilament heavy subunit.



Fig. 4. Changes of the expression pattern of RT97 immunoreactivity 14 days after IONT or IONC. Fourteen days after IONT the axonal density in the centre of the retina has
further diminished (A), and pNFH-aberrant accumulations are obvious (B–D) spreading from the periphery towards the middle and centre of the retina. After IONC, axonal
density in the central retina has not decreased apparently (E), and in the periphery many pNFH-positive cells are observed (F), some of which had the appearance of a rounded
RGC body with very few (G) or none dendritic ramifications (H), probably representing a prelude of what would later become into a club or a bulb-shaped cell body structure.
Abbreviations: IONT: intra-orbital nerve transection, IONC: intra-orbital nerve crush, pNFH: phosphorylated neurofilament heavy subunit. Bars: A, E: 200 lm, B–D, F–H:
50 lm. Top: superior, right: temporal.

G. Parrilla-Reverter et al. / Vision Research 49 (2009) 2808–2825 2815
this time-point after IONC, the number of pNFH-positive axons ap-
pears to be reduced to the naked eye (Figs. 5H and 6E) and within
the midperipheral retina numerous cell bodies with varying inten-
sity of RT97 immunoreactivity as well as axons with intra-axonal
pNFH-accumulations were found (Fig. 5I).

Three months after IONT, there were very few axons remaining
in the centre and periphery of the retina (Fig. 6C), and most
appeared faintly stained with RT97 while some presented the
degenerative features described above (irregular morphology,
varicosities and bead-like processes). At this time-point after IONC,
there was a clear diminution in the density of axonal bundles in
the central (Fig. 6F) and peripheral retina. RT97 stained RGCs were
observed very seldom at this stage after either type of ON
injury.
3.2. Quantitative analysis

3.2.1. Time-course emergence of pNFH-positive RGC bodies
Our qualitative analysis suggested that: (i) The number of

pNFH+ cells increased with time post-lesion, peaking at between
7 and 21 days; (ii) These cells were more abundant after optic
nerve crush than after optic nerve transection, and; (iii) As survival
interval increased there appeared to be more pNFH+RGCs showing
a strong RT97 staining. We have further investigated these issues
by quantifying the total number of cells showing strong and faint
RT97 immunoreactivity in control retinas (naïve and right eyes)
and in retinas from both experimental groups at 3, 7, 14, 21 and
30 days post-IONC or IONT (graphs in Fig. 7A and B, and Table 1).
RT97 immunostained RGCs were not analyzed in detail and no at-



Fig. 5. Changes of the expression pattern of RT97 immunoreactivity 21 or 30 days after IONT or IONC. Twenty one days after IONT the number of RT97 positive axons in the
central retina continues diminishing and pNHF accumulations spread to the optic disk (A), whereas after IONC the pNFH-expression pattern in centre of the retina has a
normal looking appearance (C). Abnormal pNFH patterns after IONT are mainly axonal varicosities, although some RGC somas are also RT97 positive (B) whilst after IONC
pNFH are mainly accumulated in the neuronal perikaryon and dendrites (D). Thirty days after IONT the number of RT97 axons has decreased dramatically in the centre of the
retina (E) whilst at the periphery the most proximal aspects of the few remaining axons show intense RT97 staining (F), and along their length pNFH are accumulated in
rosary-like beads (G). At this time-point after IONC (H) there are more pNFH-positive axons than after IONT but by this time, the axonal density has decreased compared to
earlier time-points. In addition, the aberrant RT97 pattern has spread, and some pNFH-positive cells bodies are found closer to the retinal centre. In the retinal periphery
abnormal expression of pNFH in the cell somas and in the axons is still present (I). Abbreviations: IONT: intra-orbital nerve transection, IONC: intra-orbital nerve crush, d: days
post-lesion. pNFH: phosphorylated neurofilament heavy subunit. Bars: A, C, E, H: 200 lm, B, D, F, G, I: 50 lm. Top: superior, right: temporal.
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tempt was made to classify these neurons on the basis of their
soma size or dendritic appearance.

In the four naïve control retinas analyzed, there was a total of
only three pNFH+RGCs, a number that does not differ from that
found in the right eyes analyzed (n = 8) where five pNFH+RGCs were
found. However, at 3 days after axotomy the total mean num-
ber ± SEM of RT97+ cells was 217 ± 143 or 220 ± 126 after IONC or
IONT respectively, wherein most of them showed a faint RT97
immunostaining. These values were significantly higher than con-
trol ones (Mann Withney test p = 0.016 for IONC 3 d vs control
and p = 0.036 for IONT 3dpl vs control) (Fig. 7A and B, white vs black
bars). At 7 days the total mean number ± SEM of RT97+RGCs had in-
creased to 629 ± 196 or 391 ± 129 after IONC or IONT, respectively.
Fourteen days after both lesions, the total number of RT97+RGCs



Fig. 6. Axonal degeneration is quicker after IONT than after IONC. Schematic drawings depicting optic nerve injury at approximately 3 mm from the optic disk by IONT (A) or
IONC (D). B, E. Representative micrographs illustrating RT97 immunoreactivity in the central retina 30 days post-IONT (B) or IONC (E), respectively. C, F: Representative
micrographs illustrating RT97 immunoreactivity in the central retina 90 days post-IONT or IONC, respectively. Notice that at the same time-point after axotomy, there are less
RT97 positive axons after IONT than after IONC. Abbreviations: IONT: intra-orbital nerve transection, IONC: intra-orbital nerve crush, d: days post-lesion. Top: superior, right:
temporal.
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reached its peak, with an average of 961 ± 324 or 493 ± 188 cells
after IONC or IONT (Fig. 7B and D, black bars). At 21 and 30 days
post-lesion, there were approximately the same total mean number
of RT97+RGCs (381 ± 195 and 432 ± 152 after IONC or 242 ± 140 and
392 ± 123 after IONT, respectively). The number of pNFH+RGCs
counted at 14 days post-IONC is significantly higher than that at 3
or 30 dpl (Mann Withney test, IONC 3 d vs IONC 14 d p = 0.026;
IONC 14 d vs IONC 30 d p = 0.004). However, there is not a signifi-
cant difference for the number of cells counted after IONT at these
time-points.

There is a high variability among retinas regarding their total
number of RT97+RGCs, which is evident when looking at the
maximum and minimum number of these cells counted in
individual retinas (see Table 1). In spite of this variability,
three main conclusions can be reached: (i) there is a clear
trend towards more pNFH+RGCs after IONC than after IONT
and this is evidenced at its peak time-point, 14 dpl, when the
difference is significant (Mann Whitney test, p = 0.039), (ii)
pNFH+RGCs appear as early as 3 days post-lesion, their number
peaks at 14 days, diminishing by 21 and 30 dpl, and; (iii) At all
time-points examined, the vast majority of the pNFH+ cells
showed a low RT97 immunoreactivity. The number of intensely
labelled RGCs increased from 3 days onwards, peaking at
14 days.



Fig. 7. Number and spatial distribution of pNFH-positive RGCs after IONC or IONT. Histograms showing mean (±SEM) total numbers of pNFH-positive RGCs at different
survival intervals after IONC after IONC (A) and after IONT (B). �Mann Whitney test p < 0.05 (see text). Drawings depicting the location of pNFH-positive RGCs in the retina
after IONC (A) or IONT (B). These drawings where generated by representing the pooled number of pNFH RGCs in three representative retinas per lesion and time-point
analyzed (for details see material and methods). The retinal perimeters were manually drawn from the original analyzed retinas, adjusting them to encircle all the positive
cells. In agreement with the time-course graphs, the number of pNFH-positive RGCs increases with time, peaking at day 14 post-lesion. At day 3 post-lesion most pNFH+RGCs,
which are weakly stained (white bars and open circles), appear on the periphery and middle retina. As time evolves more pNFH+RGCs appear occupying the middle and
central retina, reaching its peak by 14dpl. At this time-point pNFH+RGCs strongly stained reach its maximum (black bars and black circles). From 14 days onward the number
of pNFH+RGCs decreases. Black bars and black circles correspond to pNFH+RGCs strongly stained (as that marked with an arrow in Fig. 7C) and white bars and open circles to
pNFH+RGCs weakly stained (as that marked with an asterisk in Fig. 7D). All retinas are orientated with the superior pole at 12 o’clock (as drawing in Fig. 9D).
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3.2.2. pNFH-positive cell bodies are degenerating axotomized RGCs
One of the characteristic features associated with optic nerve

injury is the presence of cells bodies and dendrites labelled with
RT97 and thus pNFH+. To assess whether these cells were in fact
degenerating RGCs and not other RGC layer neurons, we applied
two retrograde tracers DTMR or FG to the ocular stump of the op-



Fig. 8. pNFH-positive cells are degenerating retinal ganglion cells. Representative illustration of the inferior temporal quadrant of a retina examined 30 days after IONC
immunoreacted for RT97 (A). Forty eight hours prior to processing, surviving RGCs were identified with the fluorescent retrograde tracer dextran tetramethylrhodamine
(DTMR) applied to the optic nerve (B). Upon careful examination under the fluorescence microscope, every pNFH-positive cell (A) was also doubly labelled with DTMR (B),
indicating that axotomy-induced RGC degeneration courses with an abnormal pNFH-accumulation in the somata of RGCs but not in other retinal neurons. A magnified area
from the top-left square is shown in the bottom-right insert. In another group of animals 14 days after IONC fluorogold was applied to the optic nerve stump for three days. In
these retinas, there were many pNFH-positive somas (C) and these are RGCs, as all of them co-localize with fluorogold, (D, coupled in E). F: Graph showing the number of
pNFH somas that were also FG positive (black bars). In seven retinas we examined 520 retinal neurons that were pNFH+, and 516 were also retrogradely labelled with FG and
four were not (grey bar), which represents a 99.2% of co-localization. Abbreviations: IONT: intra-orbital nerve transection, IONC: intra-orbital nerve crush. Bars: 300 lm.
Arrow indicates an RGC showing strong pNFH-signal and asterisk a faint one.
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tic nerve. DTMR, once applied, diffuses retrogradely filling
axons and their RGC soma, whilst FG is actively transported. In
the DTMR labelled group of animals, a careful examination under
the fluorescence microscope with both filters revealed that every
RGC labelled with RT97 (Fig. 8A) was also doubly labelled with
DTMR (Fig. 8B), but not vice versa, thus documenting that RT97
labelled neurons observed in the RGC layer after IONC represent
RGCs and no other type of retinal neurons. As observed with
DTMR; fluorescence microscropy examination of the RT97 and
FG labelled retinas suggested that the vast majority of pNFH+ cells
were also FG+ (Fig. 8C–E) but again, not vice versa. To assess quan-
titatively whether the majority of pNFH+ cells were FG-traced
RGCs, we counted a total of 524 pNFH+ cells in individual frames
of 7 retinas (n = 8 frames per retina). Out of them, 520 were also
FG positive, thus demonstrating that 99.2% of the RT97 positive
somas are RGCs (Fig. 8F). These results provide additional direct
evidence to previous studies indicating that axotomy-induced
RGC degeneration courses with an abnormal pNFH-accumulation
in the RGC somata (Marco-Gomariz et al., 2006; Salinas-Navarro
et al., submitted for publication; Vidal-Sanz et al., 1987; Ville-
gas-Pérez et al., 1988; Villegas-Pérez et al., 1996; Villegas-Pérez
et al., 1998; Wang et al., 2000; Wang et al., 2003).



Fig. 9. pNFH-expression pattern changes after IONC and IONT. A-C Histograms showing the percentage of the central (A), medial (B) and peripheral (C) retinal area positive
for pNFH immunofluorescence. The analyzed retinal areas are shown in D and their total area was considered 100% (for details see material and methods). �Mann Whitney
test p < 0.05; ��Mann Whitney test, p < 0.001 (see text). In the central retina, pNFH immunofluorescence decreases with time after either lesion (A). In the medial retina, there
is an increase of pNFH immunofluorescence that peaks between 3 and 7 days post-IONC or IONT, decreasing afterwards after IONT (B, white bars) or IONC (B, black bars).
pNFH immunofluorescence in the peripheral retina is very low in control retinas (C, grey bar), however at 3 days after IONC (C, black bars) or IONT (C, white bars) there is a
clear increase of the RT97 immunofluorescence which remains above control values till 30 days post-lesion. Abbreviations: S: superior pole, T: temporal pole, I: inferior pole,
N: nasal pole.
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3.2.3. Spatial distribution of pNFH+RGCs after IONT and IONC
To assess the notion, observed in the qualitative studies, that

pNFH+RGCs spread centripetally, appearing first at the retinal
periphery and later closer to the optic disk, we examined their spa-
tial distribution for each of the counted retinas. Even though there
were some inter animal variability within each of the subgroup of
retinas, the conclusions can be drawn from a graphic representa-
tion of the pooled data from three representative retinas in each
group (Fig. 7A and B). Positive pNFH+RGCs were distinguished
according to their pNFH intensity into faint (open circles) or strong
(black circles). Examination of these graphics allows to draw at a
first glance three main conclusions: (i) There are more pNFH+RGCs
after IONC and IONT (compare Fig. 7A with B at any time-point);
(ii) The pNFH+RGCs are distributed throughout the whole retinal
surface, in what appears a random manner, i.e. there is not a spe-
cific retinal quadrant or retinal region with greater numbers, and;
(iii) The total numbers of pNFH+RGCs increases with increasing
survival intervals, reaching a maximum at 14 d post either injury;
this is very obvious after IONC where these cells heavily populate
the whole retina. A more detailed observation discloses that at
3 dpl these cells are more abundant in the medial and peripheral
retina but as time post-lesion increases, there are more RT97+RGCs
closer to the optic disk. Moreover, at our earliest time-point exam-
ined, which was 3 dpl, pNFH+RGCs show a faint RT97 staining
(open circles), and this grade of staining is the more abundant
throughout the study. At 7 dpl, some cells, mainly in the temporal
retina, start to show a strong RT97 staining (black circles). At day
14, heavily stained RGCs reach their maximum and are spread
thorough the retina, although there appears to be a certain trend
for strongly RT97 immunoreactive cells to be more abundant in
the temporal retina, as previously suggested for the axotomized
mice retina (Drager and Hofbauer, 1980). At 21 and 30 days,
pNFH+RGCs distribute themselves over the entire retinal surface,
but in lower numbers.

3.2.4. Temporal and spatial changes of axonal pNFH-expression
pattern after IONT and IONC

In naïve retinas from intact animals, as well as in the contralat-
eral fellow retinas of injured animals, pNFH axonal expression pat-
tern is mainly restricted to the centre of the retina. After IONT or
IONC this pattern changes and axons in the medial and peripheral
retina appear immunolabelled with RT97. We have quantified in
control and experimental retinas the area occupied by pNFH fluo-
rescence in these three retinal regions (Fig. 9). The data show that
in control naïve retinas pNFH+ axons occupy a 61 ± 3% of the cen-
tral area, in the medial area this surface drops to a 13 ± 3% and in
the periphery only a 0.37 ± 0.15% of the area is RT97+. These per-
centages do not differ from those found in the eight control right
eyes analyzed (61 ± 4%, 12 ± 4% and 0.36 ± 14% for the central,
medial and peripheral retina, respectively).

However, this pattern changes after both injuries, and so in the
centre of the retina (Fig. 9A) the pNFH+ area diminishes with time
post-lesion. There is a significant trend towards diminution, that
reaches its peak by 30 days after IONC or IONT, the longer survival
interval quantified in this study, when only 30 (Mann Withney
test, p 6 0.001) or 14% (Mann Withney test p 6 0.001) of the cen-
tral area, respectively, is RT97+.

This situation is very different in the middle and peripheral ret-
ina. For instance in the middle region pNFH+ immunoreactivity ac-
counts for 14% in the normal retina, but by 3 dpl there is an abrupt
and significant increase in pNFH immunoreactivity (24% and 30%
after IONC and IONT, respectively. Mann Withney test p 6 0.001
for both lesions). This immunoreactivity peaks at day 7, diminish-
ing then gradually up to day 30 below control values after IONT but
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not after IONC where this value is slightly higher than in control
retinas, an 18% (Fig. 9B), and significantly lower than at 3 or
7 dpl (Mann Withney p = 0.006 for IONC and p 6 0.001 for IONT).

In the periphery there is an evident and significant increase in
the area occupied by pNFH+ axons, where the highest values are
found at day 3 post-lesion, (9% and 10% after IONC and IONT,
respectively, Mann Withney test p 6 0.001 for both lesions). From
day 7 till 30 after IONT, the pNFH+ area decreases (7.9%, 5.7% and
4.9%, 4.3% at 7, 14, 21 and 30 dpl). This decrease is significantly
lower at 30 days than at 7 days (Mann–Whitney test p 6 0.001)
but is still significantly higher than in control retinas (Mann With-
ney p < 0.006 at 30 days post-IONT vs control) 7 days after IONC,
pNFH+ area is similar to the one at 3 dpl (8.5%), afterwards drops
and is constant till the latest time-point analyzed (5.9%, 5.6% and
5.7% at 14, 21 and 30 dpl), again theses values are significantly
lower at 30 days than at 7 (Mann Whitney test p = 0.009) but high-
er than control ones (Mann Withney test, p 6 0.003, 30 days post-
IONC vs control) (Fig. 9C). These data demonstrate that changes in
the expression pattern of pNFH are an early event associated with
optic nerve injury that is maintained up to 90 days post-lesion.
4. Discussion

Here we show, quantitative and quantitatively, that optic nerve
injury results in abnormal expression of pNFH within axons and
RGCs somas. Changes in pNFH-expression pattern are early events
of axotomy-induced RGC degeneration that last, at least, up to
90 days post-injury. Three pNFH-aberrant patterns were observed
upon optic nerve injury: (i) pNFH-expression in peripheral and med-
ial axons, while in the centre of the retina pNFH-signal decreases
with time earlier after IONT than IONC, thus evidencing that IONT
induces a quicker degeneration than IONC; (ii) pNFH intra-axonal
accumulations like varicosities, which are more abundant after IONT
than IONC, and; (iii) pNFH-expression in RGCs somas, an event that is
more abundant after IONC than IONT. We also demonstrate that
these pNFH+RGCs first appear in the peripheral and middle retina
spreading towards the optic disk and are not confined to any retinal
quadrant but rather spread throughout the retinal surface.
4.1. pNFH-expression in injured RGCs

In agreement with previous studies the pattern of pNFH-
expression in control uninjured retinas shows RT97 staining of
intrarretinal axons but not at their most proximal portion, neither
in the soma nor in dendrites of the RGCs (Drager & Hofbauer, 1984;
Nixon, Lewis, Dahl, Marotta, & Drager, 1989; Vidal-Sanz et al.,
1987; Villegas-Pérez et al., 1988, 1996, 1998; Wang et al., 2000,
2003). In contrast, injured retinas display an abnormal expression
of pNFH in the proximal portion of the intraretinal axon as well as
within a variable number of cell somata and dendrites. A common
feature of IONT- and IONC-induced axonal degeneration is that it
appears first in the retinal periphery spreading towards the optic
disk (see Figs. 7 and 9), and this is in agreement with the notion
that axotomy-induced axonal degeneration starts at or near the
cell body and progresses somatofugally, in a similar fashion to that
reported for sciatic nerve crushed lumbar sensory neurons (Hoff-
man et al., 1987) and for axotomized cat RGCs (Silveira, Russela-
kis-Carneiro, & Perry, 1994).

Neurons showing RT97 immunoreactivity within their soma and
dendrites were indeed injured RGCs and not other neurons in the
RGC layer. This was demonstrated in two experimental groups of
IONC-injured retinas with RGCs retrogradely labelled with DTMR
or FG, respectively. In both cases, practically all RT97+ cells were
also doubly labelled with DTMR or FG. Our quantitative study
shows some variability in the total number of RT97+RGCs within
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animals of specific group, but also documents that practically all
RT97+ stained retinal neurons are injured RGCs. Indeed the co-local-
ization of RT97 with FG in backlabelled RGCs is almost 100%. Be-
cause upon IONT or IONC, RGCs express pNFH in their cell somas,
RT97 immunostaining could be used as a marker for injured RGCs.
Indeed, a recent study in which ocular hypertension induced secto-
rial damage to the retina documented that pNFH-expression was
mainly observed within the damaged sectors while it was absent
from other regions of the retina (Salinas-Navarro et al., submitted
for publication). Another matter is how many of the original
82,818 RGCs present in a normal adult SD rat retina (Salinas-
Navarro, Mayor-Torroglosa, et al., 2009, Nadal-Nicolás, et al.
2009) show abnormal RT97 immunoreactity within their soma
after optic nerve lesion. In our best case, which was a retina exam-
ined at 14 days after IONC, there were a total of 2302 RT97+RGCs
and this represents little more than 2.8% of the original RGC popu-
lation. Thus, as previously suggested RT97 only identifies a small
subset of RGCs (Drager & Hofbauer, 1984) disconnected from their
targets (Dieterich et al., 2002; Salinas-Navarro et al., submitted for
publication; Soto et al., 2008). It remains to be further investigated
whether these RT97+RGCs belong to a specific type of RGCs.

pNFH-expression in the cell soma and dendrites displays a var-
iable degree of intensity, ranging from a faint but clear labelling to
a golgi-like staining (Figs. 3B and H, 4F, 7 and 8). The chronology of
our observations tempts us to speculate that faint and strong RT97
immunoreactivity within RGCs correspond to early and late stages
of RGC degeneration, respectively. This is clearly observed when
looking at their spatial distribution along the time (Fig. 7). At early
time-points after ON injury, most of the pNFH+RGCs show a low
RT97 staining and they are located in the peripheral and middle
retina, but as the survival interval progresses RGCs highly pNFH+

start to appear and both, high and low RT97+RGCs, are found closer
to the optic disk. Moreover, RGCs showing clear signs of degener-
ation, such as those illustrated in Figs. 3C and D or 4C, G and H
or 5F, are strongly immunoreactive.

This study shows that these cells are not spatially confined to
any retinal quadrant but they rather appear on the periphery and
middle retina, quickly distributing over the whole retinal surface
including the central retina (see Fig. 7). These findings might ap-
pear to be at odds with a general rule in the primary visual path-
way that says that the closer the site of axotomy to the RGC
somata, the most severe the RGC loss is (Villegas-Pérez et al.,
1993). While the latter is true, the assertion is based on counts of
the RGC population as a whole, which as mentioned earlier it is
Table 2
Summary of the changes of pNFH-expression occurring after IONC and IONT. Expression of
pNFH-signal (axonal expression of pNFH in the central, medial or peripheral retina) or num
injured retinas along time post-lesion.
several orders of magnitude greater than the population of injured
RGCs that become stained with RT97. Nevertheless, the observa-
tion that RT97+RGCs are distributed throughout the retina is also
in agreement with our recent spatial analysis of RGC loss after
IONT or IONC (Nadal-Nicolás et al., 2009) indicating that ON axot-
omy-induced RGC death is diffuse and affects the whole retina.

4.2. Different pattern and time-course of abnormal pNFH-expression
after IONT or IONC

We have described in the RGC fibre layer the degenerative
changes induced by two types of complete optic nerve injury, tran-
section or crush, performed at approximately the same distance
from the eye. Abnormal pNFH-expression is associated with a
number of degenerative events that take place in the RGC soma,
its primary dendrites and intraretinal axons, eventually leading
to degeneration of these neurons. Although similar events can be
found in both situations, there were some differences in the pat-
tern and time-course of axonal degeneration among both injuries
(summarized in Table 2): (i) accumulations of pNFH in the cell
soma and dendrites were more frequently observed after IONC
than IONT (Fig. 7) and conversely, intra-axonal varicosities were
more frequently observed after IONT than IONC; (ii) the abnormal
intra-axonal accumulations of pNFH appear quicker after IONT
than after IONC, and; (iii) after IONT the number of RGC axons
identified by RT97 immunoreactivity decreases quicker than after
IONC (Figs. 6 and 9). In other words, the severity and time-course
of axonal degeneration within the nerve fibre layer of the retina is
greater and quicker after IONT than after IONC, and this is in agree-
ment with previous reports showing that IONT induces a quicker
and more severe RGC degeneration than IONC (Agudo et al.,
2008, 2009).

Abnormal pNFH patterns were observed at high magnification
as early as 3 dpl when pNFH+ axons were observed in the medial
and peripheral retina (Figs. 2 and 9). After IONT, RGC axons exhibit
a varicose morphology, with the apparition of rosary-like beads
along them. Often, the most proximal portion of the axon ended
in club- or bulb-like shaped bodies, which most likely represent
an advanced stage of RGC degeneration. After IONC however,
pNFH-aberrant signal was mainly observed in RGC bodies and den-
drites and this pattern also progressed with time to RGCs highly
pNFH-positive with shrinking dendrites (see Figs. 4G and H, and
7) also suggesting an evolving state of RGC degeneration. These
observations are in agreement with previous reports (Dieterich
pNFH is ranged from highest (+++++) to lowest (�) in terms of retinal area occupied by
ber of axonal varicosities or pNFH+RGCs found in control (0 days) and in IONC or IONT-
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et al., 2002) describing pNFH-accumulation in the cytoplasm of
RGCs that have undergone complete axotomy.

Regarding the time-course of axonal degeneration, axonal loss
appears earlier after IONT than IONC. At low magnification axonal
loss was not evident until day 12 after IONT or until day 30 after
IONC, in agreement with our quantitative analysis (Fig. 9) that
shows that RT97 immunoreactivity in the central retina decreases
earlier and more severely after IONT than IONC. This is further sup-
ported in the study of injured retinas at three months post-lesion,
where it is observed that after IONT, but not after IONC, very few ax-
ons remain in the retina (Fig. 6C and F). This is consistent with re-
cent studies in which it was demonstrated that RGC degeneration
is quicker when the ON is transected than when is crushed (Na-
dal-Nicolás et al., 2009; Parrilla-Reverter et al., 2009; Peinado-Ra-
mon et al., 1996), and might be a reflection of the different
transcriptional regulation that has been reported in retinas under-
going either type of injury (Agudo et al., 2008; Agudo et al., 2009).
The different number of pNFH+RGCs observed after IONC or IONT, at
similar survival intervals, might be explained because IONT induces
a more severe and rapid RGC loss than IONC. Alternatively, IONC or
IONT may elicit a different pNFH-expression in individual RGCs. In-
deed, the expression of NF mRNAs is quickly down-regulated in the
retina after IONT or IONC (Agudo et al., 2008; Hoffman et al., 1993;
McKerracher, Essagian, & Aguayo, 1993). This reduction in NF
expression, which is considered a general neuronal response to ax-
onal injury (Hoffman et al., 1993) correlates as well, with a slowed
down axonal transport of cytoskeletal proteins and a decrease in
the amount of NF protein transported (McKerracher, Vidal-Sanz,
Aguayo, 1990; McKerracher, Vidal-Sanz, Essagian, et al., 1990).

4.3. Mismatch between RGC fibre layer appearance and number of
surviving RGCs

The present studies utilize qualitative and quantitative tech-
niques to identify the RGC axons in the nerve fibre layer of the ret-
ina. Our results highlight the difficulties in assessing the degree of
RGC survival based on observations of the RGC fibre layer, because
the loss of RGC axons in the fibre layer only appears evident at
stages in which the neurodegenerative process of the RGC popula-
tion is very advanced. In other words, axonal loss is only apparent
at 12 or 14 days after IONT (see Figs. 3C, 4A and 9), a time when
quantitative studies have documented that approximately less
than 20% of the RGC population survive in the retina (Parrilla-Re-
verter et al., 2009; Peinado-Ramon et al., 1996; Villegas-Pérez
et al., 1993). In the case of IONC, it was not until 21–30 days after
the injury (Figs. 5H and 6D) that examination of the RGC fibre layer
denoted a clear diminution in the number of axons, a time when
quantitative studies have estimated that approximately less than
20% of the RGC population survive in the retina (Berkelaar et al.,
1994; Parrilla-Reverter et al., 2009). Thus, as previously suggested
(Salinas-Navarro et al., 2008), these observations indicate that
imaging the retinal nerve fibre layer with neurofilament staining
is not a reliable index of the amount of RGC survival. Indeed, our
quantitative analysis indicates that 30 days after lesion, within
the central retina RT97 immunoreactivity diminishes from 61% in
control to 30% in IONC retinas and to 14% in IONT retinas. In other
words, the immunofluorescence elicited by RGC axons in the cen-
tral retina diminished to one half or to one quarter, for IONT or
IONC, respectively, and these do not match the corresponding dim-
inutions in the RGC population to approximately less than 10% or
20% after IONT or IONC, respectively.

4.4. Final comments

Altogether, the present study indicates that RT97 immunoreac-
tivity is a good technique to assess, even at early time-points,
whether a given retina is undergoing a pathological process associ-
ated with axonal injury by looking at its pNFH abnormal axonal or
cellular expression (Salina-Navarro et al., submitted for publica-
tion). Furthermore, our quantitative analysis provides for the first
time, the maximum, minimum and mean number of pNFH+RGCs
after IONT or IONC, and these data might be useful to correlate dif-
ferent retinal diseases with a crush or transection-like temporal
course of degeneration. Finally, our results further strengthen the
different biological responses elicited on RGCs after two types of
ON injury. In this work both IONC and IONC were performed at
the same distance from the optic disk, thus being comparable in
terms of disconnection of the cell soma from its main target terri-
tories in the brain. These two injuries however, trigger different re-
sponses in the RGC population which are already present shortly
after the insult at the molecular level (Agudo et al., 2008; Agudo
et al., 2009), result in different rates of RGC loss (Nadal-Nicolás
et al., 2009; Parrilla-Reverter et al., 2009; Peinado-Ramon et al.,
1996) and may be also responsible for the different intensity and
cadence of these degenerative events, as visualized with a neurofi-
brillar staining.
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