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Abstract

We suggest an approximation for the zero-balanced Appell hypergeometric function F1 near the singular point (1,1). Our
approximation can be viewed as a generalization of Ramanujan’s approximation for zero-balanced 2F1 and is expressed in terms
of 3F2. We find an error bound and prove some basic properties of the suggested approximation which reproduce the similar
properties of the Appell function. Our approximation reduces to the approximation of Carlson–Gustafson when the Appell function
reduces to the first incomplete elliptic integral.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The generalized hypergeometric function is defined by [10, formula 4.1(1)]

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z
)

=
∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k! , (1)

where (a)0 = 1, (a)k = a(a +1) · · · (a +k −1), k = 1,2, . . . , is shifted factorial. This function is called zero-balanced
if p = q + 1 and

∑p

i=1 ai = ∑q

i=1 bi .
Ramanujan (see [3–5]) suggested the following approximations for zero-balanced 2F1 and 3F2:

B(a, b)2F1(a, b;a + b;x) = − ln(1 − x) + γ (a, b) + O
(
(1 − x) ln(1 − x)

)
, x → 1−, (2)

where

B(a, b) = �(a)�(b)

�(a + b)
(3)

is Euler’s beta function,

γ (a, b) = 2ψ(1) − ψ(a) − ψ(b), ψ(z) = �′(z)
�(z)

, (4)
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and

�(a1)�(a2)�(a3)

�(b1)�(b2)
3F2

(
a1, a2, a3
b1, b2

∣∣∣∣x
)

= − ln(1 − x) + L + O
(
(1 − x) ln(1 − x)

)
, x → 1−,

where �(a3) > 0 and

L = 2ψ(1) − ψ(a1) − ψ(a2) +
∞∑

k=1

(b2 − a3)k(b1 − a3)k

k(a1)k(a2)k
.

These formulas have been generalized to q+1Fq by Nørlund [17], Saigo and Srivastava in [18], Marichev and Kalla in
[15] and Bühring in [7], see details in the survey paper by Bühring and Srivastava [8].

The Appell function F1 generalizes 2F1 to two variables and is defined by [10]:

F1(α;β1, β2;ν; z1, z2) =
∞∑

k,n=0

(α)k+n(β1)k(β2)n

(ν)k+nk!n! zk
1z

n
2, (5)

for |z1| < 1, |z2| < 1 and by analytic continuation for other values of z1, z2. An asymptotic expansion for F1 in the
neighbourhood of infinity has been studied by Ferreira and López in [11]. Their expansion can be converted into an
approximation around (1,1) using the formula

F1(a;b, c;d;1 − xz,1 − yz) = z−b−cx−by−cF1

(
d − a;b, c;d;1 − 1

xz
,1 − 1

yz

)
.

It has been noticed by B.C. Carlson in [6] that the incomplete elliptic integral of the first kind F(λ, k) is a particular
case of F1:

F1
(
1/2;1/2,1/2;3/2;λ2, k2λ2) = 1

λ
F(λ, k). (6)

Carlson and Gustafson studied the asymptotic approximation for F(λ, k) in [9]. Their expansion can be shown to be
a particular case of the expansion for F1 given later in [11]. We will show below that both expansions (but not the
error bounds!) can be obtained by simple rearrangement of (5) and use of known transformation formulas for F1.
More precise approximations for F(λ, k) which cannot be reduced to expansions from [11] have been given recently
by S.M. Sitnik and the author in [13].

The purpose of this paper is to give an analogue of (2) for the “zero-balanced” Appell function F1 with ν =
α + β1 + β2. Important properties of F1 are permutation symmetry

F1(α;β1, β2;ν; z1, z2) = F1(α;β2, β1;ν; z2, z1), (7)

reduction formulas

F1(α;β1, β2;ν; z,1) = 2F1(α,β2;ν;1)2F1(α,β1;ν − β2; z), (8)

F1(α;β1, β2;ν; z, z) = 2F1(α,β1 + β2;ν; z), (9)

and reduction formula (6). Our approximation reproduces the permutation symmetry (7), reduces to Ramanujan ap-
proximation given in (2) in cases given by (8) and (9) and reproduces Carlson–Gustafson approximation for the values
of parameters given in (6).

Some new reduction formulas for F1 have been discovered in [12].

2. Main results

To save space let us introduce the notation

fa,b1,b2(x, y) = B(a, b1 + b2)F1(a;b1, b2;a + b1 + b2;x, y). (10)

Our main approximation is given by

ga,b1,b2(x, y) = ln
1 + γ (a, b1 + b2) + b2(y − x)

3F2

(
1,1, b2 + 1
2, b + b + 1

∣∣∣∣ y − x
)

, (11)

1 − x (b1 + b2)(1 − x) 1 2 1 − x



1334 D. Karp / J. Math. Anal. Appl. 339 (2008) 1332–1341
where γ (a, b1 + b2) is defined in (4). The following theorem confirms that ga,b1,b2 is indeed a correct analogue of the
right-hand side of (2).

Theorem 1. For 0 � x < 1, 0 � y < 1, a, b1, b2 > 0:

fa,b1,b2(x, y) = ga,b1,b2(x, y) + Ra,b1,b2(x, y), (12)

with

0 < Ra,b1,b2(x, y) < r
(
1 + a − a ln(r)

) = O
(
r ln(r)

)
, (13)

where in the last formula x, y → 1, r = (1 − x)b1 + (1 − y)b2 → 0 is the “rhombic” distance to x = y = 1 which is
asymptotically equivalent to Euclidean distance, i.e.

r√
(1 − x)2 + (1 − y)2

→ b1 + Ab2√
1 + A2

as x, y → 1, where A = lim
x,y→1

1 − y

1 − x
.

Corollary 1.1. Formulas (12) and (13) imply, in particular, the inequality

fa,b1,b2(x, y) > ga,b1,b2(x, y) (14)

for all x, y ∈ (0,1).

Proof of Theorem 1. A simple rearrangement of (5) gives

F1(α;β1, β2;ν; z1, z2) =
∞∑

k=0

(α)k(β1)k

(ν)kk! 2F1(α + k,β2;ν + k; z2)z
k
1. (15)

Suppose ν = α + β2, then 2F1 in (15) is zero-balanced and we can apply [10, formula 2.10(12)]

�(η)�(β)

�(η + β)
2F1(η,β;η + β; z) =

∞∑
n=0

(η)n(β)n

(n!)2

[− log(1 − z) + 2ψ(n + 1) − ψ(η + n) − ψ(β + n)
]
(1 − z)n.

(16)

It gives

�(α)�(β2)

�(α + β2)
F1(α;β1, β2;α + β2; z1, z2)

=
∞∑

n,k=0

(α + k)n(β2)n(β1)kz
k
1

(n!)2k!
[− ln(1 − z2) + 2ψ(1 + n) − ψ(β2 + n) − ψ(α + k + n)

]
(1 − z2)

n. (17)

Taking account of

(α)k+n = (α)k(α + k)n = (α)n(α + n)k,

formula (3) for Euler’s beta function and the derivative formula

2F
′
1(a, b; c;x) ≡ ∂

∂a
2F1(a, b; c;x) =

∞∑
k=0

ψ(a + k)(a)k(b)kx
k

(c)kk! − ψ(a)2F1(a, b; c;x), (18)

identity (17) can be rewritten as

B(α,β2)F1(α;β1, β2;α + β2; z1, z2)

=
∞∑

n=0

(α)n(β2)n

(n!)2
(1 − z2)

n

× {[− ln(1 − z2) + 2ψ(1 + n) − ψ(α + n) − ψ(β2 + n)
]

2F1(α + n,β1;α; z1) − 2F
′
1(α + n,β1;α; z1)

}
.

(19)
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Applying the transformation

F1(a;b1, b2;a + b1 + b2;x, y) =
(

1 − y

1 − x

)b1

F1

(
b1 + b2;b1, a;a + b1 + b2; y − x

1 − x
, y

)
to (17) and (19) in view of (10) gives

fa,b1,b2(x, y)

=
(

1 − y

1 − x

)b1 ∞∑
k,n=0

(b1)k(b1 + b2 + k)n(a)n(− ln(1 − y) + 2ψ(1 + n) − ψ(a + n) − ψ(b1 + b2 + k + n))

k!(n!)2(1 − y)−n

×
(

y − x

1 − x

)k

=
(

1 − y

1 − x

)b1
{ ∞∑

n=0

(a)n(b1 + b2)n

(n!)2

[
ln

1

1 − y
+ 2ψ(1 + n) − ψ(a + n) − ψ(b1 + b2 + n)

]

× 2F1

(
b1 + b2 + n,b1;b1 + b2; y − x

1 − x

)
(1 − y)n

−
∞∑

n=0

(a)n(b1 + b2)n

(n!)2 2F
′
1

(
b1 + b2 + n,b1;b1 + b2; y − x

1 − x

)
(1 − y)n

}
. (20)

Taking n = 0 in the above formula and applying

2F1

(
b1 + b2, b1;b1 + b2; y − x

1 − x

)
=

(
1 − y

1 − x

)−b1

we get

fa,b1,b2(x, y) = ln
1

1 − y
+ 2ψ(1) − ψ(a) − ψ(b1 + b2) −

[
1 − y

1 − x

]b1

2F
′
1

[
b1 + b2, b1
b1 + b2

∣∣∣∣ y − x

1 − x

]
+ Ra,b1,b2(x, y), (21)

where it is clear from (20) that

Ra,b1,b2(x, y) = O
(
(1 − y) ln(1 − y)

)
,

which is equivalent to the second formula in (13). Formula (21) can be easily put into a different form by differentiating
the identity

2F1(a, b; c;x) = (1 − x)c−a−b
2F1(c − a, c − b; c;x)

with respect to a:

2F
′
1(a, b; c;x) = − ln(1 − x)(1 − x)c−a−b

2F1(c − a, c − b; c;x) − (1 − x)c−a−b
2F

′
1(c − a, c − b; c;x).

Hence:

2F
′
1

[
b1 + b2, b1
b1 + b2

∣∣∣∣ y − x

1 − x

]
=

(
1 − x

1 − y

)b1

ln
1 − x

1 − y
−

(
1 − x

1 − y

)b1

2F
′
1

[
0, b2
b1 + b2

∣∣∣∣ y − x

1 − x

]
.

Since

F ′(a, b; c; z)|a=0 =
∞∑

k=1

d

da
(a)k

(b)kz
k

(c)kk! |a=0

=
∞∑

k=1

(b)k(k − 1)!
(c)kk! zk = bz

c
3F2

(
1,1, b + 1
2, c + 1

∣∣∣∣z
)

, (22)

we will have

2F
′
1

[
0, b2
b + b

∣∣∣∣y − x
]

= b2(y − x)
3F2

(
1,1, b2 + 1
2, b + b + 1

∣∣∣∣y − x
)

.

1 2 1 − x (b1 + b2)(1 − x) 1 2 1 − x
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In view of definition (11) of ga,b1,b2(x, y) formula (21) transforms into (12).
To estimate the remainder term we will use the ideas from [14]. First, define the Mellin transform M[g; z] of g

as the integral
∫ ∞

0 tz−1g(t) dt when it exists or its analytic continuation in z if it fails to exist. Particular cases of
Theorems 2.10 and 2.12 from [14] combined and adopted for our situation read

Theorem A. (See López [14].) Let the locally integrable functions f and h defined on (0,∞) have the following
asymptotic expansions:

f (t) =
n−1∑
k=0

Bk

tk+1
+ fn(t), n = 1,2,3, . . . , fn(t) = O

(
t−n−1) as t → ∞;

f (t) = O
(
ta−1) as t → 0, a > 0;

h(t) =
n−1∑
k=0

Akt
k + hn(t), n = 1,2,3, . . . , hn(t) = O

(
tn

)
as t → 0;

h(t) = O
(
t−b

)
as t → ∞, b > 0, (23)

with some complex constants Ak , Bk . Then

∞∫
0

f (t)h(εt) dt =
n−1∑
k=0

εk
{
−BkAk log ε + lim

z→0

(
BkM[h; z − k] + AkM[f ; z + k + 1])} +

∞∫
0

fn(t)hn(εt) dt

(24)

and
∞∫

0

fn(t)hn(εt) dt = O
(
εn+1 log ε

)
as ε → 0.

An application of the integral representation [10, formula 5.8(5)] and a change of variable give (u = 1 − x, v =
1 − y):

F1(a;b1, b2;a + b1 + b2;1 − u,1 − v)

= u−b1v−b2F1

(
b1 + b2;b1, b2;a + b1 + b2;1 − 1

u
,1 − 1

v

)

= �(a + b1 + b2)

�(a)�(b1 + b2)

∞∫
0

ta−1(1 + t)−adt

(1 + ut)b1(1 + vt)b2
= �(a + b1 + b2)

�(a)�(b1 + b2)

∞∫
0

fa(t)hb1,b2(u, v; t) dt, (25)

where

fa(t) = ta−1(1 + t)−a =
n−1∑
k=0

(−1)k
(a)k

k!tk+1
+ fa,n(t) as t → ∞; (26)

fa(t) = O
(
ta−1) as t → 0, (27)

and

hb1,b2(u, v; t) = 1

(1 + tu)b1(1 + tv)b2
=

n−1∑
k=0

(−1)ktk
k∑

m=0

(b1)m(b2)k−m

m!(k − m)! umvk−m + hb1,b2,n(t), t → 0; (28)

hb ,b (u, v; t) = O
(
t−b1−b2

)
, t → ∞. (29)
1 2
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Representation (25) is not precisely a Mellin convolution. However, if we approach the point u = v = 0 (i.e. x = y = 1)
along straight lines we can put u = γ1ε, v = γ2ε, where γ1 and γ2 are non-negative constants at least one of them is
strictly positive and ε → 0. It this case

hb1,b2(u, v; t) = hb1,b2,γ1,γ2(εt), ε = 1

γ1
(1 − x) = 1

γ2
(1 − y),

and (25) takes the form of the Mellin convolution on the left-hand side of (24). Since every point (u, v) lies on some
straight line segment with endpoint (1,1) and all our further speculations assume sufficiently small but fixed u, v

there are always γ1, γ2 and ε (of course non-unique) which are implied. Hence, Theorem A is applicable to the
integral representation (25). It is not difficult to compute the Mellin transforms of fa(t) and hb1,b2(t) and the limit
in (24). Then, some manipulations with hypergeometric functions similar to those from Remark 4 below show that
the expansion (24) applied to (25) and (truncated) expansion (20) are, in fact, the same. However, we do not need
these computations since it is sufficient to note that both expansion (24) and (truncated) expansion (20) use the same
asymptotic sequences (1 − y)k , (1 − y)k log(1 − y) (or (1 − x)k , (1 − x)k log(1 − x) if y = 1) and hence are identical.
It remains to take n = 1 in (24) to see that the remainder term defined by (21) can be expressed by the formula

Ra,b1,b2(u, v) =
∞∫

0

fa,1(t)hb1,b2,1(u, v; t) dt =
∞∫

0

[
ta−1

(1 + t)a
− 1

t

][
1

(1 + ut)b1(1 + vt)b2
− 1

]
dt. (30)

The bound for Ra,b1,b2(u, v) is based on the following lemma whose proof we postpone until the end of the proof of
the theorem.

Lemma 1. For all t ∈ (0,∞) the inequalities

−a/t2 < fa,1(t) < 0, (31)

−1/t < fa,1(t) < 0, (32)

−1 < hb1,b2,1(u, v; t) < 0, (33)

−t (ub1 + vb2) < hb1,b2,1(u, v; t) < 0 (34)

hold true.

The integral in (30) may be decomposed as follows

Ra,b1,b2(u, v) =
1∫

0

fa,1(t)hb1,b2,1(u, v; t) dt +
1/r∫
1

fa,1(t)hb1,b2,1(u, v; t) dt +
∞∫

1/r

fa,1(t)hb1,b2,1(u, v; t) dt,

where r can be any positive number (it is not needed that r < 1!). Set r = ub1 + vb2 and use estimates (32) and (34)
in the first integral, (31) and (34) in the second and (31) and (33) in the third. This gives the estimate (13). �
Remark 1. We could use Proposition 3.1 from [14] to give an estimate for the error term. However, in our specific
situation we are able to derive a much better bound based on Lemma 1 using the method of proof of this proposition
but not its statement.

Proof of Lemma 1. (a) Inequality (31). Write fa,1(t) = ga(t)/t2, where

ga(t) = ta+1

(1 + t)a
− t.

Then (31) is equivalent to −a < ga(t) < 0. Clearly, ga(0) = 0. It is an easy exercise to check that ga(∞) = −a. If we
prove that g′

a(t) < 0 we are done. Differentiating and multiplying both sides by (1 + t)a+1 we see that the required
inequality takes the form

(1 + a)(1 + t)ta < (1 + t)a+1 + ata+1 ⇔ (1 + t)a+1

a
> 1 ⇔ (1 + x)a+1 > 1 + (1 + a)x,
t (1 + a + t)
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where x = 1/t and the last inequality is the classical Bernoulli inequality valid for a > 0 and x > −1 [16, for-
mula III(1.2)].

(b) Inequality (32) is proved similarly but simpler.
(c) Inequality (33) is obvious from the definition (28) of hb1,b2(u, v; t).
(d) To prove (34) we again apply Bernoulli’s inequality [16, formula III(1.2)] in the form (b1, b2 > 0):

(1 + tu)−b1 > 1 − b1tu, (1 + tu)−b2 > 1 − b2tu.

Multiplying these two inequalities we get the estimate

1 − 1

(1 + tu)b1(1 + tv)b2
< t(ub1 + vb2) − t2uvb1b2 (35)

which is even stronger than (34). �
Remark 2. An application of (35) instead of (34) in the proof of Theorem 1 leads to a bound for the remainder
term which is better than (13). However, numerically it is only a very minor improvement, so we decided to keep the
simpler estimate (13) in the theorem.

Remark 3. Expansion [11, formula (53)] can be cast into the form

�(b1 + b2)�(a)

�(a + b1 + b2)
F1

(
a;b1, b2;a + b1 + b2;1 − γ1

z
,1 − γ2

z

)

=
n−1∑
k=0

[
Dk(a, b1, b2;γ1, γ2)

zk
+ log(z)

Ek(a, b1, b2;γ1, γ2)

zk

]
+ Rn(a, b1, b2, γ1, γ2; z). (36)

Substituting x = 1 − γ1/z, y = 1 − γ2/z into (20) we see that both (36) and (20) are asymptotic expansions for
|z| → ∞ in the same asymptotic sequences z−k , z−k log(z) and so their coefficients are the same. Hence, (20) can be
viewed as a simpler form of [11, formula (53)]. The appearance of the coefficients Dk and Ek is very different from
that of the coefficients of (20) and direct reduction is non-trivial. For instance, the first term of [11, formula (53)] reads
(after some simple manipulations) (F = 2F1, M = (1 − y)/(1 − x)):

B(a, b1 + b2)F1(a;b1, b2;a + b1 + b2;x, y)

= ψ(1) − ψ(a) + − ln(1 − v) + ln(M) + ψ(1) − ψ(b1 + b2)

b1 + b2

×
(

Mb2F

[
1, b2 + 1
b1 + b2 + 1

∣∣∣∣1 − M

]
+ b1F

[
1, b2
b1 + b2 + 1

∣∣∣∣1 − M

])

+ 1

b1 + b2

(
Mb2F

′
[

1, b2 + 1
b1 + b2 + 1

∣∣∣∣1 − M

]
+ b1F

′
[

1, b2
b1 + b2 + 1

∣∣∣∣1 − M

])
+ R1. (37)

Now using the relation [10, formula 2.8(36)]

(c − a − b)F (a, b; c; z) − (c − a)F (a − 1, b; c; z) + b(1 − z)F (a, b + 1; c; z) = 0 (38)

we immediately get

Mb2F

[
1, b2 + 1
b1 + b2 + 1

∣∣∣∣1 − M

]
+ b1F

[
1, b2
b1 + b2 + 1

∣∣∣∣1 − M

]
= b1 + b2.

Differentiating (38) with respect to a and putting a = 0 we obtain:

(c − b − 1)F ′(1, b; c; z) + b(1 − z)F ′(1, b + 1; c; z) = F(1, b; c; z) + (c − 1)F ′(0, b; c; z) − 1.

Using (22) we see that

Mb2F
′
[

1, b2 + 1
b1 + b2 + 1

∣∣∣∣1 − M

]
+ b1F

′
[

1, b2
b1 + b2 + 1

∣∣∣∣1 − M

]

= F

[
1, b2
b + b + 1

∣∣∣∣1 − M

]
+ b2(b1 + b2)(1 − M)

3F2

[
1,1, b2 + 1
2, b + b + 2

∣∣∣∣1 − M

]
− 1
1 2 (b1 + b2 + 1) 1 2
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and

B(a, b1 + b2)F1(a;b1, b2;a + b1 + b2;x, y)

= ln
1

1 − x
+ 2ψ(1) − ψ(a) − ψ(b1 + b2) + 1

b1 + b2
F

[
1, b2
b1 + b2 + 1

∣∣∣∣1 − M

]

+ b2(1 − M)

(b1 + b2 + 1)
3F2

[
1,1, b2 + 1
2, b1 + b2 + 2

∣∣∣∣1 − M

]
− 1

b1 + b2
+ R1. (39)

Finally, (39) is reduced to (11) with the help of the following formula found at http://functions.wolfram.com/07.27.
17.0029.01:

3F2(a, b, c;a + 1, e; z) = 1

a − e + 1

[
a2F1(b, c; e; z) − (e − 1)3F2(a, b, c;a + 1, e − 1; z)].

Recalling that M = (1 − y)/(1 − x) we get (11). The direct reduction for further terms is even more complicated.

Theorem 2. The following properties are true:

1. The function g is permutation symmetric:

ga,b1,b2(x, y) = ga,b2,b1(y, x). (40)

2. For y = 1 (and x = 1 due to (40)) the function ga,b1,b2(x, y) reduces to Ramanujan’s approximation:

ga,b1,b2(x,1) = ln
1

1 − x
+ 2ψ(1) − ψ(a) − ψ(b1), (41a)

ga,b1,b2(1, y) = ln
1

1 − y
+ 2ψ(1) − ψ(a) − ψ(b2). (41b)

3. For x = y the function ga,b1,b2(x, y) again becomes Ramanujan’s approximation:

ga,b1,b2(x, x) = ln
1

1 − x
+ 2ψ(1) − ψ(a) − ψ(b1 + b2). (42)

4. For the values of parameters a = b1 = b2 = 1/2 we have

g1/2,1/2,1/2(x, y) = 2 ln
4√

1 − x + √
1 − y

, (43)

which is the approximation of Carlson–Gustafson [9].

Proof. To prove the first statement we need the following elementary lemma:

Lemma 2. For b 
= 1 the following relation holds true:

3F2

(
1, b, c

2, e

∣∣∣∣ z

z − 1

)
= (1 − z)b(c − e)

c − 1
3F2

(
1, b, e − c + 1
2, e

∣∣∣∣z
)

+ (e − 1)(1 − z)(1 − (1 − z)b−1)

(c − 1)(b − 1)z
. (44)

For b = 1 it reduces to

3F2

(
1,1, c

2, e

∣∣∣∣ z

z − 1

)
= (z − 1)(e − c)

c − 1
3F2

(
1,1, e − c + 1
2, e

∣∣∣∣z
)

+ (e − 1)(1 − z)

(c − 1)z
ln

1

1 − z
. (45)

Proof. The proof is based on the following easily verifiable relation (which can be also found at http://functions.
wolfram.com/07.27.03.0120.01):

3F2

(
1, b, c

2, e

∣∣∣∣z
)

= e − 1

(b − 1)(c − 1)z

[
2F1

(
b − 1, c − 1
e − 1

∣∣∣∣z
)

− 1

]
. (46)

To prove (44) write this relation for z/(z − 1) in place of z, apply Pfaff’s transformation

2F1

(
b − 1, c − 1
e − 1

∣∣∣∣ z
)

= (1 − z)b−1
2F1

(
b − 1, e − c

e − 1

∣∣∣∣z
)

z − 1

http://functions.wolfram.com/07.27.17.0029.01
http://functions.wolfram.com/07.27.17.0029.01
http://functions.wolfram.com/07.27.03.0120.01
http://functions.wolfram.com/07.27.03.0120.01
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and substitute 2F1 from the right-hand side by 2F1 expressed from (46). To prove (45) let b tend to 1 and apply the
L’Hopital rule. �

Combining (45) with the definition (11) of ga,b1,b2(x, y) we immediately obtain (40).
Next we check the behavior of the function ga,b1,b2(x, y) on the sides of the square |x| < 1, |y| < 1. Writing (46)

for z = 1 and using the Gauss formula for 2F1(1) we get

3F2

(
1, b, c

2, e

∣∣∣∣1
)

= e − 1

(b − 1)(c − 1)

[
2F1

(
b − 1, c − 1
e − 1

∣∣∣∣1
)

− 1

]

= e − 1

(b − 1)(c − 1)

[
�(e − 1)�(e − b − c + 1)

�(e − b)�(e − c)
− 1

]
.

Now let b → 1 and use the L’Hopital rule:

3F2

(
1,1, c

2, e

∣∣∣∣1
)

= (e − 1)�(e − 1)

(c − 1)�(e − c)

d

db

�(e − b − c + 1)

�(e − b)

∣∣∣∣
b=1

= �(e)

(c − 1)�(e − c)

−�(e − c)ψ(e − c)�(e − 1) + �(e − 1)ψ(e − 1)�(e − c)

[�(e − 1)]2

= (e − 1)

(c − 1)

(
ψ(e − 1) − ψ(e − c)

)
.

Substituting e = b1 + b2 + 1, c = b2 + 1 gives (41).
Identity (42) is obvious from the definition (11) of ga,b1,b2(x, y).
Finally, formula (43) follows from the reduction formula

3F2

(
1,1,3/2
2,2

∣∣∣∣z
)

= −4

z
ln

(
1

2
+

√
1 − z

2

)
.

This completes the proof of the theorem. �
Corollary 2.1. For x, y → 1

fa,b1,b2(x, y) = ln
1

1 − xy
+ O(1). (47)

Proof. Assume first that x and y approach (1,1) in a way such that (1 − y)/(1 − x) remains bounded. We have

ln
1

1 − xy
= ln

1

1 − x + x − xy
= ln

1

(1 − x)(1 + x
1−y
1−x

)
= ln

1

1 − x
+ ln

1

1 + x
1−y
1−x

.

Hence,

ln
1

1 − xy
− ga,b1,b2(x, y)

= ln
1

1 + x
1−y
1−x

− γ (a, b1 + b2) − b2(y − x)

(b1 + b2)(1 − x)
3F2

(
1,1, b2 + 1
2, b1 + b2 + 1

∣∣∣∣y − x

1 − x

)
= O(1).

If (1 − y)/(1 − x) is unbounded, then exchange the roles of x and y and use (40). �
Remark 4. Finally, we remark that the authors of [1,2] consider monotonicity and ranges of the functions

1 − 2F1(a, b;a + b;x)

ln(1 − x)
,

x2F1(a, b;a + b;x)

ln(1/(1 − x))

and

B(a, b)2F1(a, b;a + b;x) + ln(1 − x)
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for x ∈ (0,1). Our Corollary 2.1 shows that similar problems can be considered for the combinations

1 − F1(α;β1, β2;α + β1 + β2;x, y)

ln(1 − xy)
,

and

fα,β1,β2(x, y) − ln
1

1 − xy

for x, y ∈ (0,1).
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