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1. INTRODUCTION 

In classical potential theory, the fine topology provides a useful and 
natural way to give sharp statements of many results. The same is true for 
the case of the potential theory associated with plurisubharmonic (psh) 
functions. In Section 2 we give a short discussion of the (pluri-) fine 
topology of psh functions. Almost all the results are the same as for the 
classical fine topology, even with the same proof, so we have omitted all 
proofs in this section. However, there is one crucial difference-the notions 
of “thin set” and “polar set” are not equivalent in psh potential theory. 

The use of the fine topology allows us to give sharp statements of some 
convergence theorems proved in [BT]. For example, if ui is a uniformly 
bounded sequence of psh functions which converges monotonically a.e. to a 
psh function U, then (MU;)” + (d&u)” weak* in the line topology. That is, 
if $ is a bounded, tine continuous function with compact support, then 
j Ij/(d&u,)” + j Ijl(dd’u)“. A more relined version of this result is given in 
Section 3, where it is also shown that a version of “balayage” is possible for 
fine closed sets (Corollary 3.4). 

In Section 4, we discuss the definition of (dd”)“. The operator (dd’)” con- 
verges for monotone limits of bounded, psh functions, and this may be 
used to justify the extension of (dd”)” from smooth, psh functions 
(cf. [BT]). (We note that (dd”)” does not behave well under nonmonotone 
limits, as was shown by Cegrell [Ce] and Lelong CL].) For bounded, psh 
U, Oberguggenberger [0] has shown that if one computes the exterior 
product d&u A ... A dd’u, using the algebra of distributions of Colom- 
beau, one obtains the same (dd’)” as before. Here we shown that this coin- 
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tides also with the definition proposed by Kiselman [K]. For unbounded 
psh U, (dd’u)” may put infinite mass on a single point. Let us note. 
however, that Sibony [Sb] has shown that under certain hypotheses on the 
set (U = --GO 1, (d&u)” will be a regular Bore1 measure. With the line 
topology, it is natural to define the “nonpolar part” of (rid’)“, which 
extends the definition for bounded functions. For c( = n - 1 + E there is also 
the operator 

lib = ( - u) ~~ “(Lkfu)“, 

which is shown to be well defined for all negative, psh functions. Finally, it 
is shown that the nonpolar part of (dd”o)” is the same as ( -u)‘I@(u). 

The fine topology also enters in the study of the Domination Principle 
for envelopes of psh functions. Let E be a subset of a bounded, strictly 
pseudoconvex domain Q in C, and define 

where 
U,(z) = sup{ u(z): u psh, v < 0 on 52, u < - 1 on E}. 

We showed in [BT] that the nonnegative Bore1 measure 1,= (dd”U$)” is 
supported on E and is, in many ways, an analogue of the equilibrium 
measure in classical potential theory. The associated relative (or condenser) 
capacity is given by 

C(E, Q)= j (dd’U,*)” 

(see [BT]). In Section 5 we consider the question of when two sets 
Fc E c Q have the same capacity. The main result, Theorem 5.1, is that 
the capacities are the same if and only if 

l&Y-F’) = 0: 

where Ef denotes the tine closure of E. This then expresses the principle 
that, in terms of the equilibrium measure “full measure implies full 
capacity.” 

In Section 6, we obtain corresponding results for the generalized Green 
function in C=“, which is closely related to the study of polynomials in C”. 
We give a necessary and sufficient condition for a family of polynomials to 
satisfy the “Leja polynomial condition.” 

Section 7 concerns the problem of characterizing the support and the line 
support of the measure A, for a subset E c 0. From Section 5, it follows 
that if E is compact, then the support of 1, is the Shilov boundary of the 
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function algebra A,(Q) (defined in Sect. 7). For fine closed E, the line sup- 
port of i, is shown to be the line Shilov boundary of the base of E. 

We wish to thank Professor Siciak for helpful comments on the material 
in Section 6. 

2. THE (PLURI-) FINE TOPOLOGY 

The pluri-fine topology on an open set D in C” is the smallest topology 
on Q for which all the psh functions are continuous. The fine closure of a 
set A c Sz will be denoted by A ‘1 We will omit the adjective “pluri-” unless 
some other tine topology is also being discussed. In this section we will out- 
line a few basic facts, usually without proof. Doob has pointed out [D, 
p. 8001 that for several years the line topology in classical potential theory 
was “merely a tool for phrasing results elegantly.” 

Almost all the facts we give about the fine topology can be proved 
exactly as in the case of classical potential theory. We shall omit all such 
proofs. An excellent discussion of the classical case is given in [D, 
Chap. 1 XI], and also in [B]. 

We first discuss the notion of thinness and give the analogues of Cartan’s 
theorems relating thinness and the line topology. It is with the notion of 
thinness where the difference between the pluri-fine and line topologies 
arise. Namely, in the classical case the thin sets coincide with the polar sets. 
But, that is not the case here. Thin sets are polar, but not conversely. The 
study of thin sets appears to be very delicate. Sadullaev [SA] has given a 
discussion of thinness and provided many very interesting examples and 
open questions concerning this notion. 

DEFINITION 2.1. A subset E of Q is thin at PE Q if and only if either 
p 4 E or there is an open set IS E p and a psh function u on 0 such that 

lim sup U(Z) < u(p). 
z-p,;EE 

(2.1) 

A subset E is thin if it is thin at every point p E 52. 

As in the classical case, a basic fact is that the “jump” in (2.1) can be 
infinite if E is thin at p. 

PROPOSITION 2.2. The set E is thin at p if and only if there exists a psh 
function v on C”, locally bounded outside a neighborhood of p, such that 
v(p)> -co and 

lim sup V(Z) = -co. 
z - p.z E E 
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This is Proposition 10.2 of [BT], except for the observation that v can 
be a global psh function, However, the proof given there easily shows that 
v can be a global function, even with v(z) = O(log Jzj ) as z --f cc. 

Since polar sets are not necessarily thin, it is not possible to give a 
necessary and sufficient criterion for thinness in terms of capacity. The 
unregularized functions U,, however, may be used to give something 
analogous to the Wiener Criterion (cf. [D, p. 249]), where the specific 
values ri = GI’ are used, for some a E (0, 1). 

THINNESS CRITERION. Let A c Q c c C” be given, and let zO be a point 
of An 52. Then A is thin at z,, if and only if there exist rl > r2 > r3 > . ‘. , 
such that 

where A, = A n { r, > JzI 2 rj+ , }, and U,, = Uz, is the relative (unregularized) 
extremal function. 

Proof: If (2.2) holds, then there exist 4 E P(Q), u, < 0, with vj-< -1 on 
Aj and 

u,(z(J > U,,(z,) - 2 -‘- ‘. 

It follows, then, that VJ = Cj’FFJ I/, E P(Q), and 2 J + C;: J UA,(zO) < V,(z,). 
If J is chosen large enough, then V,(z,) > -1 but 

lip+sy v,(C) 6 - 1, 

,ta 

and so A is thin at zO. 
Conversely, if A is thin at z,,, we let v E P(Q) be the function given by 

Proposition 2.2. Without loss of generality, we may assume that v < 0. Now 
let us choose r, > rZ > r3 > ... , such that 

sup v(i) < -2’. 
irir<r,l~A 

It follows, then, that 

v4,h) 3 2 -‘44 

and so (2.2) holds. 
An important consequence of Proposition 2.2 is the following description 

of a basis for the fine topology on Q. Thus a line open set must have 
positive Lebesgue measure, although it need not have Euclidean interior. 
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THEOREM 2.3. If p E 0, a neighborhood base for the fine topology at p is 
given by those sets containing p whose complement is thin at p, i.e., by sets of 
the form {z: (z -pI <E, u(z) > 0). 

See, e.g., [D, p. 166-1691 or [B, p. 31 for the proof of similar facts. Also, 
one can find there proofs of Cartan’s theorem relating line limits and 
ordinary limits (Theorem 2.4). 

One consequence of Theorem 2.3 is that the definition of the fine-open 
sets is independent of Q. That is, if YY(sZ) is the tine topology on Q, then 
a subset S of 52 belongs to Y,(Q) if and only if S = Tn Q for some 
T E Yf (Cn). Further, S is a line-open subset of Sz if and only if it is locally 
tine-open. 

THEOREM 2.4. Zf a real valued function f on a subset E of Q has a fine 
limit ,I at p, then there is a fine neighborhood V of p such that the ordinary 
limit 

lim f(z)=A 
z - p 

:tVnt 

exists at p. 

A slight variation on Theorem 2.3 is that we can also use a 
neighborhood base of the tine topology of the form 

{z: Iz-pi GE, u(z)>,O}. 

Since these sets are compact, we may argue as on p. 167 of [ID] to obtain 
the Baire property for the fine topology: if 0,) Co,,..., are fine-open and fine- 
dense, then n 0, is fine-dense. 

We now consider more global properties oi the fine topology. The resuls 
depend, for the most part, on the equivalence of negligible sets and 
pluripolar sets. 

DEFINITION 2.5. A subset E of Q is said to be (pluri-) polar if for each 
p E E, there is a neighborhood 0 of p and a psh function u on 0, not iden- 
tically - co, such that 0 n E c (U = -cc }. The set E is (pluri-) negfigible if 
there is a locally bounded family {U a : CI E A $ of psh functions such that 
E c {u* > u>, where U(Z) = sup{u,(z): DL E A} is the upper envelope’of the 
family and u*(z) = lim supr ‘i u(i) is the upper semicontinous 
regularization of U. 

It is a basic theorem, due to Josefson [J], that polar sets can be given by 
global functions. That is, if E is polar, then there exists u psh on C”, not 
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= - =c’, such that E c {U = -cc 1. Another basic fact for the study of the 
fine topology is given by Theorem 7.1 and Proposition 6.3 of [BT]. 

THEOREM 2.6. A set E c 52 is negligible if und only !f it is polur. 

A direct consequence of this Theorem is the following property of the 
fine topology (see [D, p. 1811 for the proof). 

THEOREM 2.7 (Quasi-Lindeliif property). An arbitrary union of fine- 
open subsets d$fers from a countable subunion by ut most a polar set. 

For any Ec @“, we may define the base of E to be 

b(E)= {zEE: E-P is not thin at z for any polar P}. 

It may also be seen that 

b(E) = fl(s: E’ isfklosed and E\E’ is polar}. (2.3) 

It follows easily that b(E) is f-closed, and from Theorems 2.6 and 2.7 it 
follows that E\b(E) is polar. Thus =, holds in (2.3). The inequality G 
follows from Theorem 2.4. 

Let C(E) denote the capacity used in Section 3. 

DEFINITION 2.8. A function f on 52 is called quasi-continuous if for each 
E > 0, there is an open subset 0 of 52 such that C(0) < E and f is continuous 
on a\0 (for the Euclidean topology). 

An important property of the capacity is the following analogue of 
Cartan’s theorem for subharmonic functions (Theorem 3.5 of [BT]). 

THEOREM 4.9. Plurisubharmonic .functions are quasi-continuous. 

3. FINE CONVERGENCE OF (dd”)” 

We want to discuss integrals such as SE (dd’u)” where E is a fine open or 
closed set, but not all line-open or closed sets are Bore1 sets. However, it is 
clear that the Bore1 measure (Mu)” associated to a bounded psh function 
u has a natural extension to the g-algebra of “quasi-Borel” sets 

QB = a-algebra generated by the Bore1 sets 
and the pluripolar sets 

since the measure (d#u)” puts zero mass on each pluripolar set. Thus, QB 
is contained in the a-algebra associated with the completion of the 
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measure. It can be verified that QB consists exactly of sets of the form B\E 
where B is a Bore1 set and E is a polar set. 

PROPOSITION 3.1. The o-algebra QB contains the fine-Bore1 sets; i.e., the 
o-algebra generated by the fine open sets. 

Proof By the quasi-Lindelof property, each open set 0 can be written, 
up to a polar set, as a countable subunion of such sets. Bn {u > O}. 
However, each of the basic open sets is a Bore1 set. Thus, all line-open sets 
are in QB. 

THEOREM 3.2. Let {T,} denote a sequence of positive currents of bidegree 
(k, k) such that Tj+ T on Q c C”, in the weak topology on the space qf 
currents. Then the following are equivalent (where convergence is in the sense 
of currents of order 0). 

(1) T has zero mass on any polar set and UT, + UT for every locally 
bounded psh,function u on Q; 

(2) T has zero mass on any polar set and $T, -+ $Tfor every bounded, 
quasi-continuous function 4j on Q; 

(3) Ic/jT'+$T f or each untformly bounded sequence of quasi-con- 
tinuous functions { tjj} which converge monotonically, either increasing or 
decreasing, to $ quasi-everywhere; 

(4) the sequence Tj puts untformly small mass on sets of small 
capacity; i.e., if w c Q, then for any sequence 6; of open subsets of o, with 
limi _ xI C(Oj) = 0, we have 

lim sup(lTJ(@,), JT,I(t!$): k= 1, 2 ,...I =O. 
j-m 

Proof That (3) =S (2) = (1) is trivial. We will next show that (1) = (4). 
Assume not. Then we can find an open set CCB, open sets 0,, and a number 
6~0 such that ITjl(C$)=jO,fin+k A T, 3 6 > 0 and C( c”,) d 2 --j. Here flj = 
(4-j/j!) (ddClzj2)j. The assertions (1) and (4) are local, so it is no loss of 
generality to assume that o = { Izl < r 1 c { Izl < 1 } = 52. Consider the 
extremal functions uj= “2, for C!Jj relative to the unit ball 0. Since 
C(0,) + 0, the bounded functions u, -+ 0 almost everywhere in Sz. Replacing 
oj by u,, j 4 if necessary, we can assume that Lo,1 4 3 . . , so that 
u2 6 u2 < . . . Further, uj + 0 almost everywhere, hence also pointwise out- 
side a set E of capacity zero; i.e., a polar set. It then also follows that u, -+ 0 
locally in L’. Hence, we can further assume that C lull converges locally 
in L’. 

For each 1= 1, 2,..., let 6, = c,>, u, and v, = max(G, - 1). Then fir v, are 
psh on 52, v,dvz< ..., and v, -+ 0 locally in L’. It therefore follows that 
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V,(Z) + 0, except possibly on a set E of capacity zero (see, e.g., 
Theorem 7.2 of [BT]). Thus, if V = sup u, then VP, k A T= 0. But, from 
the bounded convergence theorem, u,fi+ /, A T= 0. Thus, since 
u,. 8, Pk A T is a negative Bore1 measure, we can choose I so large that 

For this fixed value of 1, we apply the hypothesis (1) to the psh function 
0,. Then 

6 
--< lim 

2 5 j+m 111 
v,/I,~ k A T, 6 lim s @-k A T, 

,-‘p c, 

which is a contradiction. Thus, (1) * (4) is proved. 
It remains to show that (4)* (3). The capacity is subadditive, 

C( UE,) < L’C(E,). Therefore, if the Iclj, $ are quasicontinuous and $ + 11, 
monotonically, quasi-everywhere, then for each E > 0, there exists an open 
set 0 with C(6) <E, $,, $ continuous on Q\0, and $, -+ II/ monotonically 
on Q\S. It then follows from Dini’s theorem that $, + II/ uniformly on 
compact subsets of Q\O. Thus we can write $, = $, + vi, rc/ = $ + ‘I, where 
6, $ are continuous on Sz, I$,\ ~supl$~l 6 M, q,, r] =0 on a\@, and 
$, + $ uniformly on a\@. Thus, if cp is any continuous (n -k, n -k) form 
with compact support in 52, then 

limsup cp A ($,T,-$T) 
I-= I j 

6 lim sup 
j-a: J ’ CP A (($j-$) Ti a 

Because qj+ $ uniformly on [Q\U] n [support cp], the first term in the 
last expression does not exceed 

lim sup 
j- c.2 cp A (3,-q) T, <C.limsuplT,I(Co), 

i 

where C is a constant depending on a maximum of $j, (I/, and cp. This term 
thus tends to zero as C(0) + 0, by hypothesis 4). The second term -+O, 
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because Tj + T weakly as currents on Q and cp, 9 are continuous on Sz. 
The integrand in the third term is uniformly bounded and equal to zero off 
of 0. Hence, the third term does not exceed const( IT,l(O) + 1 T\(O)), which 
also tends to zero as C(0) + 0. Thus we have $,T, + J/T, as asserted. This 
completes the proof. 

Let {UP} ,..., {24;},j= 1, 2 ,..., denote IZ + 1 sequences of psh functions on 
Q. In [BT], the following types of currents were considered. 

S,= d&u,! A ... A dd”u;, 

T, = ui” d&u,! A ... A d&u;=+,, 

i+=du,% d%; /-, .‘. A d&u;. 

(3.1) 

Suppose that the sequences u,” are uniformly bounded and converge 
monotonically almost everywhere, either increasing or decreasing, to psh 
functions uk, k = 0, l,..., . Let S, T, U denote the corresponding currents 
with ui replaced by uk. We then have the following corollary of 
Theorem 3.2. 

COROLLARY 3.3. Ler {X,}, X denote any of the 3 sequences of currents 
Si, S, etc. of (3.1). If uy 3 0, then we have: 

(a) for any-fine-open subset 0 of 0, 

i 
X < lim inf 

c s 1-x r 

(b) for any ,fine-closed subset F of Q, 

x /’ 

XV 

Proof. This follows directly from Theorem 3.2, since the characteristic 
function of a line-open (line-closed) set is finely lower semicontinuous 
(upper semicontinuous), the currents are all nonnegative, and satisfy (4) of 
Theorem 3.2. 

Remark. The convergence theorems for the complex Monge-Ampere 
operator proved in [BT] showed that the currents involved converged in a 
stronger sense than the usual weak topology. Theorem 3.2 shows, that the 
convergence yields “weak convergence in fine-topology,” and it results 
entirely from the fact that the currents involved satisfy condition (4); they 
put small mass on sets of small capacity. This also allows us to perform a 
“balayage” with respect to fine-closed sets. 
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COROLLARY 3.4. Let I! c !2 he a fine open set, und let II E P(Q) he locall? 
bounded. [f 

~7~-.- =(sup{uEP(Q):0<~ on Q-C))* 

then (dd”ii, (i,)” = 0 on 6. 

Proof By the quasi-Lindelof property, we may assume that G is a Bore1 
set (since no mass is put on a polar set). Thus we may take open sets 
0, I> 4 3 . . such that t7, ~ (, increases to ii, ( q.e. Since (d&ii, c )” puts 
no mass on C, the result follows from Corollary 3.3. 

COROLLARY 3.5. If E c Q, then (d&‘Uz)” puts zero mass on the fine 
interior of 52 -E, i.e., on “(E’). 

4. DEFINITION OF (d&)” 

Recall that the extension of dd” from smooth psh functions to the general 
case is made by continuity: if u, is any sequence of smooth psh functions 
which converge to a psh function u in some weak topology, say locally in 
L’, then d&u, + dd’u as currents. However for the case of the higher 
exterior powers, (dd”u)k, k > 1 the situation becomes more complicated for 
two reasons. First, the mass of the current (Ild’~)~ need not be locally 
bounded; the paper of Kiselman [K] gives an excellent discussion of this. 
In particular, a function can put infinite mass on a single point, e.g., if we 
set 

u(z, w)= f 2-“log(lzl2+ I@), 
,1 = 1 

then (dd”u)2 puts infinite mass at the origin. Second, the operator 
u -+ (dd”u)k is badly discontinuous for the usual topologies on the space of 
psh functions. This was proved by Cegrell [Ce]. And, by modifying 
Cegrell’s technique, Lelong [L] showed the following remarkable fact: 
Given u psh on IzI < I, 0 < u < 1, there exists a sequence of psh functions 
{u,) such that O<U,< 1, u, -+ u in L’, but (d&u,)’ = 0. 

On the other hand, for bounded psh functions, there is a good definition 
of (dd”u)k as a positive current of bidegree (k, k). The estimate of Chern, 
Levine, and Nirenberg [CLN] shows that the mass in (dd’~)~ is locally 
bounded by const.(suplul)k. And it was proved in [BT] that the operator 
(dd”)k is continuous under bounded, monotone limits. Sibony [Sb] has 
given conditions for (Mu)” to have finite mass, in which case (d&u)” may 
be defined by decreasing limits. 
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In this section, we show how we may define the nonpolar part of (dd’)“, 
i.e., what the measure (d&u)” must be when restricted to the set 
{u > -cc >. However, we do not mean for this terminology to imply that it 
is always possible to define (dd’u)” on the set (u= -co ). 

LEMMA 4.1. Let ~‘2 c @” be open, and let 0 c Sz be fine open. Let {uj> 
(resp. (II,}) be a sequence of bounded, psh functions converging 
monotonically to u~P(f2) A L”‘(f2,loc) (resp. v), If 

then 

i.e., the measures agree on measurable subsets of 0. 

ProoJ By the quasi-Lindenlof property, we may write 0 (modulo a 
polar set) as a countable union of sets of the form 

where B is an open ball, B c Q, and tj E P(B). Since polar sets have 
measure zero, it suffices to prove the result for c” = B n { \I/ > O}. Obviously 
there is a tine continuous function $ with compact support in Q such that 

By Theorem 3.1, 

lim 1 $(dd’uj)” = 1 &d&u)“. 
J-m 

This holds also if $ is replaced by f$ for any continuous .f: We conclude 
that 

I f$(dd”u)” = 
s 

f$(dd”v)” 

holds for all f E C(0). Thus (dd“u)” - (dd”u)” vanishes on (3 > 0}, which 
proves the lemma. 

PROPOSITION 4.2. Let u, UE P(Q) n L”(Q, lot) be given, and let 
8= {u>u}. Then 

(ddcmax(u, ~))“)~~=(dd”u)“l~, 

i.e., the measures coincide on subsets of 8. 
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Proof If 0 is open, then the Proposition is obvious. Let {uk) be a 
sequence of smooth, psh functions decreasing to u, and set 

cck = { Uk > v}. 

Since 0 = n I!!$ is tine open, and since (dd’ max(u,, u))” I(, = (d&u,)” 1 F the 
corollary follows from Lemma 4.1. 

COROLLARY 4.3. Let Q c C” be open, and let u, v E P(G) be localiy boun- 
ded. If 0 c s2 is fine open, and if u = v on 0, then 

(dd”u)“l, = (d&v)“/, 

Proof: Since u = max(u, V-E) holds on 0, we have 

(dd”u)“l, =(dd”max(u, v-.s))“lC. 

Thus the Corollary follows from Lemma 4.1. 

DEFINITION. If UE P(Q), the nonpolar part of (d&u)“, NP(d&u)“, is the 
measure which is zero on {u= -m}), and for a Bore1 set EC {u> -c/3}, 

s NP( dd”u)” = lim 
E ,- x i’ ~.~ (u, ~,j Wfmaxb, -A)“. 

Note that if E c {U > -k}, then by Lemma 4.2 

J E (dd” max(u, -j))” = j (d& max(u, -k))” 
E 

holds for j 2 k. 
In general NP(dCu)” is not locally finite. However, the following con- 

vergence property is a consequence of Lemma 4.1. 

PROPOSITION 4.4. Let u E P(Q) and a compact subset Kc {u > CO } be 
given. Zf {u,} c P(Q) n L”(Q, lot) is monotone decreasing to u, then 

lim j (d&u,)” = s NP(d&u)“. 
1-z K K 

Next we consider the extended definition of (dd’)” in terms of the 
Monge-Ampere measure carried by the finite graph. Let us summarize the 
approach of Kiselman [K]. For a domain Q c C”, we set 
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and for a function u E P(Q), we set 

fi(z, [) = (u(z) - Re 0’. 

If u E P(Q) is locally bounded, then 

where p: fi + Q is the projection p(z, [) = z. Further, if u is continuous, 
then (ME)” + r is supported on the finite graph r, = {(z, [) ~a: 
Re [=u(z)> -co} of u (Lemma 5.1 of [K]). 

Now by Lemma 4.1, we see that for locally bounded u E P(Q), the tine 
support of (dd’ii)” + ’ is in the (line closed) graph r,. For general u E P(Q) 
we may compute (d&ii)” + ’ in the following heuristic manner. 

First we claim that (dd’ii)” + ’ zs supported on TU. For (z,, lo) $ I’,, we let 
0 be a line open set 0 n r, = @, (z,, lo) E 0. Now dd’ii = d&u holds on 0, 
and by reason of dimension we have (d&u)” + ’ = 0. (We obtain the same 
result also if we consider any sequence u, E P(Q) n Ccc(Q) decreasing to U; 
ii, decreases to u but (ddXj),+ ’ = 0 on 6$=0o{(iii#O} and g increases 
to LO.) 

Next we clam that 

(dd%)X+’ = NP(dd’G)“+‘. 

Since (d&ii) n + ’ is supported on r,, it suffices to check how much mass is 
put on a compact set Kc r,. But since Kc {ii > --oo } our claim follows 
from Proposition 4.4. 

To give a third approach to the nonpolar part of (dd”)“, we recall that 
Chern, Levine, and Nirenberg [CLN] showed that for negative u E 
C’(Q) n P(Q) the mass of 

(dd’u)” + du A d”u A (dd”u)” ’ 

t-u)” (-U)“+’ (4.1) 

is locally bounded by a constant independent of u. Although we could use 
(4.1) to extend the definition of (dd”)“, we prefer to use the following shar- 
per estimate. 

THEOREM 4.5. Zf u is a negative, C2 psh function on the unit ball 
{ IzI < 1 }, then for r < 1 there is a constant C such that 

1‘ (dd’u)“, + (n - 1) { Izl<r(-U)n- d” h dcr;~$~‘“-’ 6 C,u(O),. (4.2) 
I21 <r 
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Proof: Let b denote the Kahler form on c”, 

/l=(i/2)(dz, A d5, + ‘.’ +dz, A d?,,). 

Fix r, 0 < r < 1. Let x denote a C” function with compact support in 1zI < 1 
such that 0 d x 6 1 and x(z) = 1 for IzI 6 r. For 1 d k d n, set 

I. = X2(d&qk A pk 
h I (-24)” -’ 

and 

Jk=(k- l)j 
X2d# A d”l.4 A (dd”u)k-’ A p-k 

(-U)k 

We will prove by induction on k that 

1, + J, d c[ -U(o)]. (4.3) 

When k = n, the left hand side of (4.1) is less than or equal to Ik + Jk 
because x= 1 on IzI <r and 130. 

When k = 1, the integrand in Z, is x2 times the Laplacian of u and the 
estimate follows from Jensen’s formula. 

s R n(r) Cl2 -dr= -u(O)+1 u(Ra) da(a), 
0 r lZ= I 

where 

n(r) = 
s Au(z) 
121 <r 

is the mass of the Laplacian in the ball IzI <r, da is normalized surface 
area measure on the ball, and c, is a constant which depends only on n. To 
see this, note that because u is negative, the last term on the right-hand side 
of (4.4) is negative. Further, n(r) is increasing because 1.4 is subharmonic. 
Thus, we have for 0 < p < R, 

-u(O)> jpR-g dr> {f-A} n(p)Pn. 

If p and R < 1 are chosen so that the support of x is contained in the ball 
IzI <p, then the estimate (4.3) follows in the case k= 1. 
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Suppose now that k > 1. In the integrand for Ik, write 

X2wwk = d 
[ 

x2 d”u A (d&u)k -- ’ 

I 

d;r2 A d”u A (d&t@ - ’ 

( -14)k-1 (-u)k-l - (-ll)k-’ 

(k-l)X2du A &u A (dd”u)k-’ 

t-u)” 
so that 

Ik + Jk = - l 
dx2 A d’u A (dd‘u)kp’ A bnpk 

(-U)k-~’ (4.5) 

Write 

2dx I[ Jx-Ipi% 

~(+Wb~ * (-u)~” 1 
and apply the Cauchy-Schwarz inequality (recall that u is psh so 
(dd”u)k-’ A /YPk is positive) to obtain from (4.5) 

dx A d’~ A (dd”u)k ’ A b”~ k “2J,,2. 

(-u)” 2 
1 

k 

But AB < (A2 + B2)/2, so we conclude 

4 
Ik$JJ$d-- I 

dx A d”x A (dd‘u)kp’ A /?“~-k 

k-l (-U)k-2 ’ 

If x has support in Iz( d p < 1, then because (dd’u)k ’ is positive, we have 
that the last integral is dominated by a constant times 

I 

(dd”U)k-1 A fin-~k+l 

lzl s P 
(-U)k-’ . 

The integrand in this last expression is exactly of the same form as in the 
one for Z,, except that k has been replaced by (k - 1). This completes the 
inductive step of the proof. 

Remark. The estimate (4.2) has the best possible power of --u in the 
denominator. Kiselman [K] showed that the exponent n - 1 in the left- 
hand side of (4.2) cannot be sharpened to n - 1 -E. 

Let us define, for C2, negative, psh u and CI = n - 1 + c 

&i(u) = (-u)~ x(dd’u)“. 

It follows that fi extends to all negative, psh functions. 
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COROLLARY 4.6. Zf UEP(Q), U-CO and [f tlw sequrnce {u,} cP(Q)n 
C’(Q) decreases to u, then %‘u, converges weakly to a measure, called fiu. 

The proof of Corollary 4.6 follows from Theorems 3.2 and 4.5. As a con- 
sequence, we find that for negative psh U, J julp &?iiu < m, and so &U puts 
no mass on {U = --co 1. 

Our final characterization of NP(dd’u)“, is thus 

COROLLARY 4.7. If u E P(O), u < 0, then 

NP(dd‘u)“= (-u)-l i?(u). 

Remark. The function b(x) = --( -x)iln is increasing and convex for 
x ~0. Consequently, when u is a negative psh function, so is b(u). It is 
interesting to note that 

n”[dd”d(u)]“= ((yu;rl + (n- 1) 
du A d”u A (d&u)“- ’ 

t-u)” 

is the integrand on the left-hand side of (4.2). It seems to be an open 
problem to determine whether NP(dd%)” has locally finite mass when v is a 
psh function such that (locally) v 2 4(u) for some negative psh function U. 

5. COMPARISON OF CAPACITIES 

Let Q be a strictly pseudoconvex domain in C” with smooth boundary; 
the capacity of a Bore1 subset E of 52 is given by 

C(E) = C(E, i2) = sup !” (d&u)“: u psh on Q, 0 < u < 1 , 
E 

and the outer capacity of an arbitrary set by 

C*(E) = inf{ C(0): 0 3 E, 0 open}. 

The capacity C is a Choquet capacity. It follows from Choquet’s 
capacitability theorem that 

C*(E)=C,(E):=sup{C(K): KcE,Kcompactf 

holds for all X-analytic sets and thus for all Bore1 sets. See [BT] for 
proofs of these results. 
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THEOREM 5.1. Let K be a compact subset of Q of positive capacity. For a 
capacitable subset F of K (i.e., C,(F) = C*(F)) the following are equivalent. 

(~1 C(F) = C(K) 
(fi) u;(z) = u:(z) for all z E Q, 

(Y) jK\Ff (dd’G)” = 0. 

For the proof, we will need the following technical result (Lemma 5.2) 
and an inequality (Lemma 5.3). 

LEMMA 5.2. Let Q be a bounded strongly pseudoconvex domain in @“. 
Let uo, ul,..., u,,~l’(Q,)n Lm(Q,, lot), where Sz, 20, andsuppose also that 

Then 

uo(z) = /ez uo(<) = 0 for all z E as2. 

(a) -la u. d&u, /, .‘. A ddu, = jn du, A d”u, A ddu, A . . . A 
d&u, and 

(b) ja duo A d’u, A dd”uz A ... A d&u, = In du, A d’u, A dd’u, A 

ddu, A .‘. A ddu,,. 

The lemma is, formally, an integration by parts, the boundary term 
vanishing because u. =0 and duo = 0 when restricted to as2. The only 
problem is to justify the integration by parts. This may be done by using 
the standard smoothings 

u; = uj*x, 

and making an approximation argument (cf. [BT] ). 

LEMMA 5.3. Let F be a compact subset of K. Then 

s - U;(dd”U,*)“< - U;(dd’U;lr)” 
R s R 

andfor j=O, l,..., n- 1, 

dU; A d’lJF A (d&U;)’ A (dd“U;)“-’ -‘6 C(K). 

Proof. For convenience of notation, let u = U;li and v = U,*. Both u, v 
have extensions to be plurisubharmonic and bounded on a neighborhood 
of 6. For, if p is a strictly plurisubharmonic defining function for 
Q = {p < 0} on a neighborhood of 0, then U, v > Ap for some constant 
A > 0. Hence, we can set u = v = Ap outside of 9. In particular, u and v 
satisfy the hypotheses of Lemma 5.2 which justifies the integrations by 
parts we will make in the following arguments. 
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Define, for ,j= 0, l,..., n, 

B,= j (-u)(dd”u)’ A (d&c)” ’ 
$2 

and note that we have the following relationship: 

O<Ai<Bi, j = 0, I ,..., 12; (5.1) 

B,=A,, 11 j=o, l,...,n- 1; (5.2) 

44WL j=O, 1 )...) n - 1; (5.3) 

B,, = C(K); (5.4) 

B, = A, = C(F). (5.5) 

The proof of (5.1) is obvious, since -U b -u. To prove (5.2), one 
integrates by parts twice: 

B,= 
I 

du A A”u A (d&u)’ A (dd%)“-’ ’ 
0 

= s du A d’u A (dd’u)’ A (dci’u)” ‘-I R 
= Q(-u)(ddk)i+’ A (dd%)“-’ ‘=A.i+,. 

I 

The proof of (5.3) is also easy, since 

Bj= 
s 

du A d’v A (d&u)’ A (d&u)” -’ I 
R 

1 
112 

Q du A d’u A (d&u)’ A (dd”u)“m’-l 

I 
112 

X du A d’u A (d&u)’ A (d&u)“-‘-’ 

where the inequality is the Cauchy-Schwarz inequality (see, e.g., [BT, 
Sect. 31). Integrating by parts one more time in each integral shows the last 
term is & J A,, which proves (5.3). Finally, the fact that B, = C(K) is 
because u = Uz = -1 on K, except on a set of capacity zero. Hence, 
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because (d&k)” is supported on K, B, = SK (d&u)” = C(K), by 
Proposition 5.3 of [BT]. Similarly, A0 = C(F) = I?,. 

Now, the first assertion of the lemma is that B, <A,, which follows 
trivially from repeated application of (5.1) and (5.2). For we have B, = 
A,<B,=A,GI?~< ... <B,-,=A,. But note also that 

log Bj is a convex, increasing sequence in j for j = 0, l,..., n. (5.6) 

Because, by (5.3) and (5.2), B,<fi &=& 6, j= 
1, 2,..., n - 1. Since B, = C(F) and B, = C(K), this actually gives a stronger 
estimate than that asserted in the lemma, namely, 

B,6 C(F)” -j’“’ C(K)““. 

We now prove the Main Theorem. 

(5.7) 

Proof that (a) = (p). Since Fc K, we have that UF B 17:. We claim 
that {Z E K: U:(Z) > U;(z)} has (dd(‘Ug)n measure zero. If this is true, then 
U;(z)= U:(z) by the Domination Principle, Corollary 4.5, of [BT]. 
Choose a sequence F, of compact subsets of F such that F, c F, c . . . , and 
sup, C( F,) = C(K). Such a sequence exists because C,(F) = C(K). If 
ui= Ut, then u, >u2> .... So, we have by the first inequality of 
Lemma 5.3 and the fact that Ug = -1 on Fj, except on a set of capacity 
zero, that 

C(Fj)=J 
f:, 

(-U~)(dti~~)“<J (-~j)(dd”UX)” 
K 

< s - U;(z)(dd”U;)” < C(K). 
K 

Letting j-+ co, we see that we must have 

i 
- U;(dd’U$)” = C(K). 

K 

Because 0 b UF > - 1, we must therefore have Ug = -1 except on a set of 
(dd”Uz)” measure zero. It follows that Uz d Ug holds (d&U,)“-almost 
everywhere, and so by the Domination Principle we have U,* d U;. Thus 
U: = U;lr, as asserted. 

Proof that (/I)* (a). From Proposition 6.5 of [BT], we have for an 
arbitrary subset F c 52, 

C*(F) = IQ (MU:)“. 

But, if U: = Uz, then, clearly, C*(F) = C(K). 
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Proof that (j) = (y). We can assume that F is line-closed, because the 
extremal function of a set is clearly the same as the extremal function of the 
line closure of the set. From the fact that (/?) * (c() and F is capacitable, we 
can choose a sequence F, of compact subsets of F such that F, c F2 c . , 
andC(Fj)~C(F)=C(K).Ifuj=U~,thenu,~u,~~~~,u,~U,*=U~on 
Q, so also (d&u,) + (dd’Ug)n in the sense of Theorem 3.2. Therefore, by 
Corollary 3.3, 

C(K) = 1 (ddcU,*)n 2 lim sup J*, (d&u,)” 
F I 

= lim sup 
i i 

(d&u,)” = lim C(F,) = C(K). 
5 I 

Since (dd”Ug)n is concentrated on KI F and SK (d&U;)” = C(K), it follows 
that K\F has (MU;)“-measure zero. 

Proof that (y) j (p). If u is a plurisubharmonic function on Q, u < 0 on 
Q, and u < -1 on F, then also u < -1 on the line closure F*, because u is 
line-continuous. Then, because K\F’ has (dd”U]t)” measure zero, we have 
u < -1 for (dd’Uz)“-almost all z E K. It follows from the Domination Prin- 
ciple (Corollary 4.5) of [BT] ) that u 6 Ug. Thus, U,* 6 17:. But, Fc K, so 
ug=u;. 

6. APPLICATION TO POLYNOMIAL ENVELOPES. 

We consider the family of psh functions on @” with minimal growth 

9 = {u psh on @“: u(z) < log( 1 + (zI ) + C,}. 

For E c C”, we define 

LB(z) = 1iyyJ LEtI), 

where 

LE(z) = sup{u(z): u E 9, u < 0 on E}, 

which is the generalized Green function on @” with logarithmic pole at 
infinity. We will define 1, = (dd“Lz)” to be the complex equilibrium measure 
of E. 

We will be able to apply the results of Section 5 to LB and 1, because of 
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the following two facts relating the relative extremal function IJg global 
function Lg. The first of these (see Siciak [Sill) is that 

if Fc Kc B”, then iJ,*(z, B”) = Uz(z, B”) holds for all z if and 
only if LF* = Lz. (*I 

The second (due to Levenberg [L] ) is that 

~j- K is a compact subset of the bull B”, then 1, is bounded above 
and below by constant multiples of (dd’U~(B”))“. (**I 

The connection with polynomials arises since p is any polynomial, then 

1 

de&4 
(6.1) 

A compact set K is regular if L, is continuous. For K regular, (6.1) yields a 
Bernstein-Markov-type inequality 

for each I > 1, there is an open set % =) K such that for any 
polynomial p 1 p(z)1 < llpll KAdeg(p) for all z E %!. (6.2) 

(Note that in (6.2) we take U = {z: L:(z) <log A}, which is an open set 
containing K by the regularity assumption.) Siciak [Si2] has shown that 
(6.2) also holds with llp\lK replaced by a constant times the integral of (pi 
with respect to 1,. 

Now let B be an arbitrary family of polynomials. Given a compact set K 
in C”, we let 

F=F(P, K)={z~K:sup{Ip(z)J:p~9}<<} (6.3) 

be the set where the supremum is finite. We will consider the possibility of 
an estimate of the form 

for each 1> 1, there exists an open set 9 3 K and a constant 
A4 > 00 such that 1 p(z)! d MAdegCp) for all p E 9 and z E a!. (6.4) 

This is essentially the so-called Leja polynomial condition. Although (6.4) 
is related also to (6.2) it is possible for (6.4) to hold without { I(pIl K’: p E 9) 
being bounded. 

If we set 

F,= {ZG K: sup{ Ip(z)l:p~9) <j}, 
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then F, is compact, F, c Fz c ... , and u F, = F. It follows that 
lim ,- x LF;= Lj? (see, e.g., [BT, Proposition 8.11). Now we define 

lo = sup exp(L:(z)), 
:tK 

so that 3,” is a constant depending on 9. It is evident that we always have 
something weaker than (6.4) namely, 

for each 1> &, there exists an open set % I K and a constant 
M-c a3 such that Ip( < MAdeg(p) for all PEP and ZE@. (6.5) 

(Note that this follows from (6.2), since we may take j large enough that 
oi2 = {z: L;,(z) < log A} contains K, and then we set M=,j.) 

The main result of this section is a necessary and sufficient condition for 
(6.4) to hold. 

THEOREM 6.1. Let K be regular, let P be a family of polynomials, and let 
F be as in (6.3). Then 

(1) if the fine closure of F, Ft, satisfies JK,,,r, di,, = 0, then 9 has the 
property (6.4) 

(2) if F is a capacitable subset of K whose fine closure satisfies 
jK,>r-, d3,, > 0, then there exists a family of polynomials 9 with Fc F(.Y, K), 
and 9 fails to have the property (6.4). 

(3) Condition ( 1) holds when C(F) = C(K), and Condition (2) holds 
when C(F) < C(K). 

(4) Condition (1) holds when LJ: = Uz and Condition (2) holds when 
U,* > LJz at some point. 

Part (1) of this theorem was essentially observed by Nguyen and Zeriahi 
in [NZ]. The converse, part (2), gives an extension to C” of Ullman’s 
theorem on “determining sets” [U]. Levenberg [Le] has shown that (1) 
and (2) hold with the conditions on F replaced by U,* = Ug. However, by 
Theorem 5.1, this is equivalent to the stated conditions. 

For the proof of Theorem 6.1, it will suffice to prove just (1) and (2), for 
then (3) and (4) will follow by Theorem 5.1. We will give the proof of (2) 
only for the case when F is an F, - set. The proof when F is not F0 requires 
some additional work to handle an exceptional polar set of points. Siciak 
[private communication] has given a good treatment of this case. 

Proof of Theorem 6.1. (1) Taking Q = B” and using (*) and (**), we 
see that Theorem 5.1 yields LT = L,. * Since K is regular, we have (6.4). 
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(2) In the cuse that F is a F,-set. We write F= v F,, where 
F,cFzc ..., are compact. By a result of Siciak [Sill and Zaharjuta [Z], 

LF,(Z) = sup ;log,pdz)l: P,E.!q ) 
i i 

where 

9”2= {polynomials P, of degree 6d with 1 P,I,, 6 1 }. 

By Theorem 5.1, there is a point Z~E K with L:(zO) = v >O. Now we 
choose polynomials P, E pi, with d, + co and 

I Pi( > e+‘*, 

and it follows that S = {P,, P2,... > fails to have (6.4). 

7. SUPPORTS AND BOUNDARIES 

In this section we show, as an application of Theorem 5.1 and Corollary 
3.5, how the support of the relative extremal measure (dd”uz)” is related to 
the Silov, Jensen, and line boundaries of K. For K compact in Q, let 
A(K) = A(K, Q) denote the subalgebra of the Banach algebra of continuous 
functions on K which is the closure of the functions holomorphic on 52. We 
denote by a,K the Silov boundary of A(K) and by spt AK the (closed) sup- 
port of the measure A,. We define 

K,= {~EK: U,*(z)= -1). 

THEOREM 7.1. Let K he compact in Q, a strictly pseudoconvex set in C”. 
Then spt 1, and the Shilov boundary of A(K) are related as follows. 

(1) spt J~=cY~K,,ccY~~K, where K,, is as above. 

(2) d,KL(K\K,)usptA, and thus a,K differs ,from sptE,, by at 
most a polar set. 

(3) If K is regular, then c7,K= spt %,. 

Proof of Theorem 7.1. (1) From the Domination Principle, it follows 
that if f E A(K), loglf I < 0 on Q, and log1 f I d -1 a.e. %K, then 
log1 f(z)1 d U;(z). Hence, by continuity, log1 f I d -1 on K,. It follows that 
the supremum off on K, is exactly the same as the supremum off on 
spt A, when f is a bounded analytic function on 52. But, functions 
holomorphic on a neighborhood of B are dense in A(K). Thus, spt AK is a 
boundary for A(K,), so spt A, 3 a,K,. 
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To prove the other inclusion we note that by [GS], (iz = iJ&,, and thus 
spt AK = spt A,,, c a,lY. 

Statement (2) follows from (1) since K\K, is polar. Case (3), follows 
from case ( 1) since K\K, is empty. 

Now we discuss the fine support of A,, f - spt A,, which is the intersec- 
tion of all line-closed sets whose complements have A=measure zero. Since 
E., puts no mass on any polar set, it is clear that the fine support of AK lies 
inside the base of the support 

,f- spt 1, c b(spt AK) 

(see (2.3) for the definition of the base). 
We will call a line-closed subset F of a line-closed set E a fine boundary 

for E if and only if 

sup * = sup * 
F E 

for all psh functions $ on Q. If there is a smallest line boundary for E, i.e., 
if the intersection of all line boundaries n F is again a line boundary for E, 
we will call it the fine Silou boundary of E and denote it by agE. 

It is possible to pose a generalized Dirichlet problem for a lower 
semicontinuous (1s~) function cp on a compact set K in 52. Namely, given cp 
lsc on K we let 

U,(z) = sup{u(z): v E P(Q), u < cp on K}. 

In general, U, will be lsc since the supremum may be taken in 
P(Q) n C(Q). When Q is strongly pseudoconvex, the supremum may be 
taken over functions u which are psh and continuous on a neighborhood 
of 0. 

By the boundary properties of asK, it follows that U, = cp on a dense 
subset of a,K. The Jensen boundary of K, denoted aJK, consists of the 
points z0 E K such that U,(z,) = cp(zO) for all cp E C(K). This is a special 
case of the Choquet boundary (see the discussions in [G, GS, DG]). The 
set of peak points for P(Q) 

a>K= {zO E K: there exists tj E P(Q) with ll/(zO) = 0 

and$(z)<OforzEK\{zO}}. 

is a subset of a,K. 

The Jensen and Silov boundaries are related as follows. 
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THEOREM 7.2. Let K be a compact subset of Sz (strongly pseudoconvex). 
Then 

(1) 8,K= a;K, 
(2) agK=(a;K)f. 

Part (1) of Theorem 7.2 is well known, and the same proof may be 
applied to part (2). Here we will need the analogous result for the base of a 
compact set. 

THEOREM 7.3. Let K be a compact subset of Q c C”. Then 

ad(K) = a,K 

and 

ag(b(K)) = (d;Kn b(K))-‘. 

The proof of Theorem 7.3 is similar to that of Theorem 7.2 and will be 
omitted. 

THEOREM 7.4. Let K be compact in Q (strictly pseudoconvex). Then 
f - spt A, has the following’ boundary properties: 

(1) The fine support of AI( is the fine Silov boundary of b(K), i.e., 

f - spt A, = a&b(K). 

(2) f - spt A, = n {F F is fine-closed and LJj! = Uz} 

(3) f-spt&=((f-sptA,)na;K)/ 

Proof: (1) Let us set 

E=aJ (b(K)). 

Since E is the tine boundary, we have U,= UhcK,. Thus 

U$ = u&Q= u:. 

By Corollary 3.4, we have 

Exf - spt(dd”U$)” = f - spt AK 

For the reverse inequality, we show that f - spt A, is a fine boundary for 
b(K). Let II/ E P(Q), $ < 0 be given, and suppose that $ < -1 on f - spt A,. 
Then by the Domination Principle, it follows that II/ Q Uz. On the other 
hand, Uz = - 1 on b(K), so tj d - 1 on b(K). Thus f - spt AK is a tine 
boundary. 
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(2) Let us set 

F= n ( F: F line closed, U: = iJz j. 

It is evident that Fc E, defined in (l), and so by (1 ) we must show that 
f’- spt A, c F. Now suppose F is line closed and U$ = U;t’:. By 
Corollary 3.4, the line support of (MU;)’ is contained in F. If U,* = Ug, 
thenf‘-spt %,=f‘-spt 1.,c F. 

(3) The inclusion 2 is trivial. For the reverse inclusion, we have, by ( 1) 
and Theorem 7.3, 

,f‘- spt 2, = d&(b(K)) 

= (d,Kn h(K))’ 

= (aan w4mY 

= (d,Kn (f- spt A,))‘. 
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