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1. INTRODUCTION

In classical potential theory, the fine topology provides a useful and
natural way to give sharp statements of many results. The same is true for

the case of the potential theory associated with plurisubharmonic (psh)

functions. In Section 2 we give a short discussion of the (pluri-) fine
topology of psh functions. Almost all the results are the same as for the

classical fine topology, even with the same proof, so we have omitted all

proofs in this section. However, there is one crucial difference—the notions
of “thin set” and “polar set” are not equivalent in psh potential theory.

The use of the fine topology allows us to give sharp statements of some
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convergence theorems proved in [BT]. For example, if u; is a uniformly

bounded sequence of psh functions which converges monotonically a.e. to a
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if ¥ is a bounded, fine contmuous functlon with compact support, then
§ ¥ (ddu)) —>f¢/(dd‘u)" A more refined version of this result is gwen in

Section 3 where it is also shown that a version of “balayage” i

fine closed sets (Corollary 3.4).
In Section 4, we discuss the definition of (dd®)”. The operator (dd°)” con-

rerges for monotone limits of bounded, psh functions, and this may be

used to justify the extension of (dd‘)” from smooth, psh functions

(cf. [BT]). (We note that (dd‘)” does not behave well under nonmonotone
“m’fc ag ‘Xlau hn\‘lln l‘\" FP(T"F']I er1 anr‘l I P]r\nn r] 1 \ Fnr l’\r\"nr‘lpr‘ I"IQI’I

LIIILS, AS VY SLUWIL Uy SoUlgilu U ) Qul A aVlhg 4O OUuluUlG, psil

u, Oberguggenberger [O] has shown that if one computes the exterior
product dd‘u n -+ A dd‘u, using the algebra of distributions of Colom-
bea

ne obtains the same (dd)” as before. Here we shown that this coin-
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cides also with the definition proposed by Kiselman [K]. For unbounded
psh u, (dd‘u)" may put infinite mass on a single point. Let us note,
however, that Sibony [Sb] has shown that under certain hypotheses on the
set {u= —o0}, (dd‘u)” will be a regular Borel measure. With the fine
topology, it is natural to define the “nonpolar part” of (dd‘)”, which
extends the definition for bounded functions. For « = n — 1 + ¢ there is also
the operator

Mo =(—v) *(ddv)",

which is shown to be well defined for all negative, psh functions. Finally, it
is shown that the nonpolar part of (dd‘v)" is the same as (—v)*M(v).

The fine topology also enters in the study of the Domination Principle
for envelopes of psh functions. Let E be a subset of a bounded, strictly
pseudoconvex domain £ in C”, and define

UE(z)=lim sup U({),
[

where
U, (z)=sup{v(z):vpsh,v<OonR,v< —1lonE}.

We showed in [BT] that the nonnegative Borel measure A, = (dd‘U¥)" is
supported on E and is, in many ways, an analogue of the equilibrium
measure in classical potential theory. The associated relative (or condenser)
capacity is given by

C(E, @)= (dd Uty

(see [BT]). In Section 5 we consider the question of when two sets
Fc E<Q have the same capacity. The main result, Theorem 5.1, is that
the capacities are the same if and only if

A(Ef— Fy=0,

where E/ denotes the fine closure of E. This then expresses the principle
that, in terms of the equilibrium measure “full measure implies full
capacity.”

In Section 6, we obtain corresponding results for the generalized Green
function in C”, which is closely related to the study of polynomials in C".
We give a necessary and sufficient condition for a family of polynomials to
satisfy the “Leja polynomial condition.”

Section 7 concerns the problem of characterizing the support and the fine
support of the measure A, for a subset E< Q. From Section 5, it follows
that if £ is compact, then the support of A, is the Shilov boundary of the
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function algebra A (£2) (defined in Sect. 7). For fine closed E, the fine sup-
port of A is shown to be the fine Shilov boundary of the base of E.

We wish to thank Professor Siciak for helpful comments on the material
in Section 6.

2. THE (PLURI-) FINE TOPOLOGY

The pluri-fine topology on an open set  in C” is the smallest topology
on Q for which all the psh functions are continuous. The fine closure of a
set 4 = Q will be denoted by 47. We wiil omit the adjective “pluri-” unless
some other fine topology is also being discussed. In this section we will out-
line a few basic facts, usually without proof. Doob has pointed out [D,
p. 800] that for several years the fine topology in classical potential theory
was “merely a tool for phrasing results elegantly.”

Almost all the facts we give about the fine topology can be proved
exactly as in the case of classical potential theory. We shall omit all such
proofs. An excellent discussion of the classical case is given in [D,
Chap. 1 X1], and also in [B].

We first discuss the notion of thinness and give the analogues of Cartan’s
theorems relating thinness and the fine topology. It is with the notion of
thinness where the difference between the pluri-fine and fine topologies
arise. Namely, in the classical case the thin sets coincide with the polar sets.
But, that is not the case here. Thin sets are polar, but not conversely. The
study of thin sets appears to be very delicate. Sadullaev [SAT has given a
discussion of thinness and provided many very interesting examples and
open questions concerning this notion.

DerFINITION 2.1, A subset E of Q is thin at pe Q if and only if either
p¢ E or there is an open set o € p and a psh function u on ¢ such that

lim sup u(z) < u(p). (2.1)

z—oprekE
A subset E is thin if it is thin at every point pe Q.
As in the classical case, a basic fact is that the “jump” in (2.1) can be
infinite if E is thin at p.

PROPOSITION 2.2.  The set E is thin at p if and only if there exists a psh
Junction v on C”, locally bounded outside a neighborhood of p, such that
v(p)> —o0 and

lim sup v(z)= —o0.

z—+pzeE
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This is Proposition 10.2 of [BT], except for the observation that v can
be a global psh function. However, the proof given there easily shows that
v can be a global function, even with v(z) = O(log |z|) as z — 0.

Since polar sets are not necessarily thin, it is not possible to give a
necessary and sufficient criterion for thinness in terms of capacity. The
unregularized functions Ug, however, may be used to give something
analogous to the Wiener Criterion (cf. [D, p.249]), where the specific
values r;=a’ are used, for some « € (0, 1).

THINNESS CRITERION. Let A= Q< < C” be given, and let z, be a point
of AnQ. Then A is thin at z, if and only if there exist ry>r,>r;> -,
such that

C

> Ufz9)> —o0, (2.2)
j=1
where A;= A {r;>|z| 2 r;,,}, and U, = U% is the relative (unregularized)
extremal function. ‘
Proof. If (2.2) holds, then there exist v, e P(), v, <0, with v,< —1 on
A; and

vlzo)> U,yfz0) — 270,

It follows, then, that V, =37, V,e P(Q),and 2" '+ 32 , U, (z,) < V ,(2).
If J is chosen large enough, then V,(z,)> —1 but

limsup V,({)< —1,
YR
and so A is thin at z,.
Conversely, if A is thin at z,, we let ve P(2) be the function given by
Proposition 2.2. Without loss of generality, we may assume that v < 0. Now
let us choose r, >r,>r;> -+, such that

sup  v({)< =2/

{lll<rtnd

It follows, then, that
UA,-(ZO) >2""0(z0)

and so (2.2) holds.

An important consequence of Proposition 2.2 is the following description
of a basis for the fine topology on . Thus a fine open set must have
positive Lebesgue measure, although it need not have Euclidean interior.
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THEOREM 2.3. If pe Q, a neighborhood base for the fine topology at p is
given by those sets containing p whose complement is thin at p, i.e., by sets of
the form {z: |z —p| <&, u(z)>0}.

See, e.g., [D, p. 166-169] or [B, p. 3] for the proof of similar facts. Also,
one can find there proofs of Cartan’s theorem relating fine limits and
ordinary limits (Theorem 2.4).

One consequence of Theorem 2.3 is that the definition of the fine-open
sets is independent of Q. That is, if J,(Q) is the fine topology on £, then
a subset § of Q belongs to J,(R) if and only if S=TnQ for some
T'e 7;(C"). Further, S is a fine-open subset of Q if and only if it is locally
fine-open.

THEOREM 2.4. If a real valued function f on a subset E of Q has a fine
limit 4 at p, then there is a fine neighborhood V of p such that the ordinary
limit

lim f(z)=4

zp

zeVnE

exists at p.

A slight variation on Theorem 2.3 is that we can also use a
neighborhood base of the fine topology of the form

{z:)z—p| <& u(z) 2 0}.

Since these sets are compact, we may argue as on p. 167 of [D] to obtain
the Baire property for the fine topology: if O, (.,..., are fine-open and fine-
dense, then (\ O is fine-dense.

We now consider more global properties of the fine topology. The resuls
depend, for the most part, on the equivalence of negligible sets and
pluripolar sets.

DEerFINITION 2.5. A subset E of 2 is said to be (pluri-) polar if for each
p € E, there is a neighborhood @ of p and a psh function # on @, not iden-
tically — oo, such that ® " E< {u= —oo}. The set E is (pluri-) negligible if
there is a locally bounded family {u,:xe 4} of psh functions such that
Ec {u*>u}, where u(z)=sup{u,(z):a€ 4} is the upper envelope of the
family and wu*(z)=limsup,_.u({) 1is the wupper semicontinous
regularization of u.

1t is a basic theorem, due to Josefson [J], that polar sets can be given by
global functions. That is, if E is polar, then there exists u psh on C”, not
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= — 0, such that £< {¥= —oc}. Another basic fact for the study of the
fine topology is given by Theorem 7.1 and Proposition 6.3 of [BT].

THEOREM 2.6. A set Ec Q is negligible if and only if it is polar.

A direct consequence of this Theorem is the following property of the
fine topology (see [D, p. 181] for the proof).

THEOREM 2.7 (Quasi-Lindelof property). An arbitrary union of fine-
open subsets differs from a countable subunion by at most a polar set.

For any E = C", we may define the base of E to be
b(E)= {ze E: E— P is not thin at z for any polar P}.
It may also be seen that
b(E)=({E": Eis f-closed and E\E' is polar}. (2.3)

It follows easily that b(E) is f-closed, and from Theorems 2.6 and 2.7 it
follows that E\b(E) is polar. Thus = holds in (2.3). The inequality <
follows from Theorem 2.4.

Let C(E) denote the capacity used in Section 3.

DEerFINITION 2.8. A function fon £ is called guasi-continuous if for each
£>0, there is an open subset ¢ of Q such that C(0) <¢ and f'is continuous
on Q\ 0O (for the Euclidean topology).

An important property of the capacity is the following analogue of
Cartan’s theorem for subharmonic functions (Theorem 3.5 of [BT]).

THEOREM 4.9. Plurisubharmonic functions are quasi-continuous.

3. FINE CONVERGENCE OF (dd‘)"

We want to discuss integrals such as [, (dd‘u)” where E is a fine open or
closed set, but not all fine-open or closed sets are Borel sets. However, it is
clear that the Borel measure (dd“u)” associated to a bounded psh function
u has a natural extension to the g-algebra of “quasi-Borel” sets

QB = g-algebra generated by the Borel sets
and the pluripolar sets

since the measure (ddu)” puts zero mass on each pluripolar set. Thus, QB
is contained in the o-algebra associated with the completion of the
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measure. It can be verified that QB consists exactly of sets of the form B\ E
where B is a Borel set and E is a polar set,

PROPOSITION 3.1. The o-algebra QB contains the fine-Borel sets; i.e., the
g-algebra generated by the fine open sets.

Proof. By the quasi-Lindeldf property, each open set ¢ can be written,
up to a polar set, as a countable subunion of such sets. B {u>0}.
However, each of the basic open sets is a Borel set. Thus, all fine-open sets
are in QB.

THEOREM 3.2.  Let {T,} denote a sequence of positive currents of bidegree
(k, k) such that T,» T on Q< C", in the weak topology on the space of
currents. Then the following are equivalent (where convergence is in the sense
of currents of order 0).

(1) T has zero mass on any polar set and uT, — uT for every locally
bounded psh function u on £,

(2) T has zero mass on any polar set and yT; - YT for every bounded,
quasi-continuous function  on Q,

(3) ¥, T,—yT for each uniformly bounded sequence of quasi-con-
tinuous functions {;} which converge monotonically, either increasing or
decreasing, to  quasi-everywhere;

(4) the sequence T; puts uniformly small mass on sets of small
capacity; ie., if € Q, then for any sequence (; of open subsets of w, with
lim, ., ,, C(¢)=0, we have

lim sup{|THO), | T}(O): k=1,2,..} =0.

Proof. That (3)=(2)= (1) is trivial. We will next show that (1) = (4).
Assume not. Then we can find an open set €, open sets (), and a number
6> 0 such that |T|(¢) =, B, A T;>6>0 and C((9)<2 . Here g,=
(477/j") (dd|z)?)’. The assertions (1) and (4) are local, so it is no loss of
generality to assume that w={|z|<r}<{|z| <1} =0Q. Consider the
extremal functions u;= U} for () relative to the unit ball Q. Since
C(0) - 0, the bounded functlons u,— 0 almost everywhere in Q. Replacing
o by Uss; O, if necessary, we can assume that ¢, >0, > ---, so that
u, <u, < ---. Further, u; — 0 almost everywhere, hence also pointwise out-
side a set E of capacity zero; i.e., a polar set. It then also follows that u, — 0
locally in L'. Hence, we can further assume that ¥ |u;| converges locally
in L',

For each I=1, 2,., let #,=% ., u;, and v,=max(§, —1). Then 5,0, are
psh on Q, v, <v,< -+, and v;— 0 locally in L. It therefore follows that
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Vi(z)—0, except possibly on a set E of capacity zero (see, e.g.,
Theorem 7.2 of [BT]). Thus, if ¥=sup v, then Vf, . A T=0. But, from
the bounded convergence theorem, v,8, , A T=0. Thus, since
v,* B._« ~ T is a negative Borel measure, we can choose / so large that

o
—§<f B, A T<O.

o

For this fixed value of /, we apply the hypothesis (1) to the psh function
v,. Then

o .. .
_§< lim J 0B, AT, < lim '['/ up, AT,

J
J oo Yy j— oo Yy

< — lim f B AT.< -6,
('/

J
J—

which is a contradiction. Thus, (1)=>(4) is proved.

It remains to show that (4)=-(3). The capacity is subadditive,
C(UE;)< ZC(E)). Therefore, if the ¢, ¢ are quasicontinuous and ¥ — ¢
monotonically, quasi-everywhere, then for each ¢> 0, there exists an open
set ¢ with C(O) <e, ¥, ¥ continuous on £\, and ;- monotonically
on \@. It then follows from Dini’s theorem that ;- uniformly on
compact subsets of 2\ (. Thus we can write ;= x/7_,-+ n, Y= ¥ + 15, where
;, ¥ are continuous on 2, [{,| <suply,| <M, n;, n=0 on Q\C, and
W ¥ uniformly on Q\¢. Thus, if ¢ is any continuous (n—k, n— k) form
with compact support in £2, then

limsupU(p/\(w,TJ—l//T)‘

Jj—

< lim sup

J,or@,=0,

+|[ o n@@—1H|+|[ @A 0,T,-nT)]|
K2 Q

Because §f; — § uniformly on [2\0]n [support ¢], the first term in the
last expression does not exceed

lim sup

j—

[ 0~ @-0)1|<C limsupiT)(0),

where C is a constant depending on a maximum of , i, and ¢. This term
thus tends to zero as C(€®) » 0, by hypothesis 4). The second term —0,
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because T, — T weakly as currents on 2 and ¢, § are continuous on Q.
The integrand in the third term is uniformly bounded and equal to zero off
of 0. Hence, the third term does not exceed const(|7,|(0) + | T|(¢)), which
also tends to zero as C(0) — 0. Thus we have ¥, T, -y 7, as asserted. This
completes the proof.

Let {u?},... {uj'.'}, j=1,2,.., denote n+ 1 sequences of psh functions on
€. In [BT], the following types of currents were considered.

Sj=dd"u} A A ddur,
Ti=u)ddu} A -+ A ddul=us,, (3.1)

Uj:du]‘.’/\ dul A -+ A ad‘u].

Suppose that the sequences uf are uniformly bounded and converge
monotonically almost everywhere, either increasing or decreasing, to psh
functions u*, k=0, 1,..,. Let S, T, U denote the corresponding currents
with uf replaced by #*. We then have the following coroliary of
Theorem 3.2.

CoRrROLLARY 3.3. Let {X,}, X denote any of the 3 sequences of currents
S;, S, etc. of (3.1). If u? >0, then we have:

(a) for any fine-open subset O of Q,

L X <lim inf L X,

Jj—
(b) for any fine-closed subset F of (2,

LX)lim sup L X;.

j—x

Proof. This follows directly from Theorem 3.2, since the characteristic
function of a fine-open (fine-closed) set is finely lower semicontinuous
(upper semicontinuous}), the currents are all nonnegative, and satisfy (4) of
Theorem 3.2.

Remark. The convergence theorems for the complex Monge-Ampére
operator proved in [ BT ] showed that the currents involved converged in a
stronger sense than the usual weak topology. Theorem 3.2 shows that the
convergence yields “weak convergence in fine-topology,” and it results
entirely from the fact that the currents involved satisfy condition (4); they
put small mass on sets of small capacity. This also allows us to perform a
“balayage” with respect to fine-closed sets.
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CoOROLLARY 34. Let (0 < Q be a fine open set, and let ue P(Q) be locally
bounded. If

Ho_.=(suplveP(Q)v<uon Q—C})*

then (ddi, ,)"=0on C.

Proof. By the quasi-Lindelof property, we may assume that ¢ is a Borel
set (since no mass is put on a polar set). Thus we may take open sets
0, >0, > - such that 4, . increases to #, . q.e. Since (dd‘é, . )" puts
no mass on (7, the resulit follows from Corollary 3.3.

CoROLLARY 3.5. If EcQ, then (dd‘UE)" puts zero mass on the fine
interior of Q — E, i.e., on “(E/).

4. DEFINITION OF (dd‘)"

Recall that the extension of dd from smooth psh functions to the general
case is made by continuity: if u; is any sequence of smooth psh functions
which converge to a psh function u in some weak topology, say locally in
L', then dd‘u;—ddu as currents. However for the case of the higher
exterior powers, (dd‘u), k > 1 the situation becomes more complicated for
two reasons. First, the mass of the current (dd‘u)* need not be locally
bounded; the paper of Kiselman [K] gives an excellent discussion of this.
In particular, a function can put infinite mass on a single point, e.g., if we
set

uzw)= Y 2 " log(lzl? + [w] ™),

n=1

then (dd‘u)® puts infinite mass at the origin. Second, the operator
u — (ddu)* is badly discontinuous for the usual topologies on the space of
psh functions. This was proved by Cegrell [Ce]. And, by modifying
Cegrell’s technique, Lelong [L] showed the following remarkable fact:
Given u psh on |z} <1, O <u< 1, there exists a sequence of psh functions
{u;} such that 0<u; <1, u;»u in L', but (ddu;)* =0.

On the other hand, for bounded psh functions, there is a good definition
of (dd‘u)* as a positive current of bidegree (k, k). The estimate of Chern,
Levine, and Nirenberg [CLN] shows that the mass in (dd“u)* is locally
bounded by const.(sup|u|)*. And it was proved in [BT] that the operator
(dd°)* is continuous under bounded, monotone limits. Sibony [Sb] has
given conditions for (dd‘u)" to have finite mass, in which case (ddu)" may
be defined by decreasing limits.
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In this section, we show how we may define the nonpolar part of (dd°)",
ie, what the measure (dd‘u)" must be when restricted to the set
{u> —oo}. However, we do not mean for this terminology to imply that it
is always possible to define (ddu)” on the set {u= —o0}.

LEMMA 4.1. Let Q< C" be open, and let O = Q be fine open. Let {u;}
(resp. {v;}) be a sequence of bounded, psh functions converging
monotonically to ue P(Q) n L*(£2, loc) (resp. v). If

(dd('uj)n le= (ddcvj)n le
then
(dd('u)") | (( — (dd('v)l'l |ﬂ R

i.e., the measures agree on measurable subsets of O.

Proof. By the quasi-Lindenlof property, we may write ¢ (modulo a
polar set) as a countable union of sets of the form

B {y>0},

where B is an open ball, B€ 2, and € P(B). Since polar sets have
measure zero, it suffices to prove the result for ¢ = B { > 0}. Obviously
there is a fine continuous function  with compact support in £ such that

(zeQ:§(z)>0}=0.
By Theorem 3.1,
fim j (dduy = j J(dduy.
j—oxc

This holds also if § is replaced by fi/ for any continuous /. We conclude
that

[ foadeuy = | f(dacvy

holds for all fe C(Q2). Thus (dd‘u)” — (dd‘v)” vanishes on {:/7>0}, which
proves the lemma.

PROPOSITION 4.2. Let u, ve P(Q)n L*(2,loc) be given, and let
O={u>v}. Then

(dd‘ max(u, v))"| o= (ddu)"|,

i.e., the measures coincide on subsets of 0.
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Proof. If ¢ is open, then the Proposition is obvious. Let {u,} be a
sequence of smooth, psh functions decreasing to u, and set

Go={u,>v}

Since (0 = N @, is fine open, and since (dd‘ max(uy, v))"|. = (dd‘u;)"|. the
corollary follows from Lemma 4.1.

CorOLLARY 4.3. Let Q< C" be open, and let u, ve P(Q) be locally boun-
ded. If O < is fine open, and if u=v on O, then

(dd‘u)'|, = (ddv)*|,.
Proof. Since u= max(u, v —¢) holds on ¢, we have
(ddu)"| . = (dd* max(u, v—¢))"| ..

Thus the Corollary follows from Lemma 4.1.

DErFINITION.  If u € P(Q2), the nonpolar part of (dd‘u)", NP(dd‘u)”", is the
measure which is zero on {u= —o0}, and for a Borel set Ec {u> —w0},

J NP(ddu)" = lim (dd‘ max(u, —j))".
E S X YEAu> )

Note that if Ec {u> —k}, then by Lemma 4.2
J {dd max(u, —j))":f {dd max{u, —k))"
E E

holds for j = k.
In general NP(dd‘u)" is not locally finite. However, the following con-
vergence property is a consequence of Lemma 4.1.

PROPOSITION 4.4. Let ue P(Q) and a compact subset K< {u> 0} be
given. If {u;} = P(Q)n L*(L, loc) is monotone decreasing 1o u, then

lim L (dd“u;)" = L NP(ddu)".

jo oo

Next we consider the extended definition of (dd‘)” in terms of the
Monge-Ampére measure carried by the finite graph. Let us summarize the
approach of Kiselman [K]. For a domain 2 c C", we set

G={(z,0)eQ@xC: |Im{| <1},
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and for a function u e P(Q), we set

i(z, )= (u(z) —Re {)™.
If ue P(R2) is locally bounded, then

(ddu)" = p ,(dd@)"™",

where p: @ - Q is the projection p(z, {)=z. Further, if » is continuous,
then (dd‘@)"*' is supported on the finite graph I, ={(z,{) e(:
Re {=u(z)> —oo} of u (Lemma 5.1 of [K]).

Now by Lemma 4.1, we see that for locally bounded ue P(Q2), the fine
support of (dd“@#)”*"' is in the (fine closed) graph I',. For general ue P(Q)
we may compute (ddéi)”*" in the following heuristic manner.

First we claim that (dd‘#)" ' is supported on I',. For (z,, (o) ¢ I, we let
O be a fine open set O NI, = &, (29, {o) € O. Now ddti = dd“u holds on 0,
and by reason of dimension we have (ddu)"*'=0. (We obtain the same
result also if we consider any sequence u; € P(2) N C*(£) decreasing to u;
ii; decreases to u but (dd‘@#;)"*'=0 on ;=0 {ii;#0} and ¢ increases
to 0.)

Next we clam that

(dda)y"* ' = NP(ddd)"* ",

Since (dd‘ti)"*" is supported on I',, it suffices to check how much mass is
put on a compact set K< I',. But since K< {##> —oo} our claim follows
from Proposition 4.4.

To give a third approach to the nonpolar part of (dd)”, we recall that
Chern, Levine, and Nirenberg [CLN] showed that for negative ue
C*(2)n P(R2) the mass of

(dduy'  du n du  (ddu)"!
(_u)n (_u)n+l

(41)

is locally bounded by a constant independent of u. Although we could use
(4.1) to extend the definition of (dd*)", we prefer to use the following shar-
per estimate.

THEOREM 4.5. If u is a negative, C* psh function on the unit ball
{Iz| < 1}, then for r <1 there is a constant C such that

f (dd°u)"
|

ztsr(_u)nil

(4 c, 31— 1
+(”“1)I du A du A (ddu)

21 <r (—u)" < Clu(0)l. (4.2)
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Proof. Let § denote the Kéhler form on C”,

pP=20dzy AdZ+ -+ +dz, A dZ,).

Fix r, 0 <r < 1. Let y denote a C™ function with compact support in |z| < 1
such that 0 <y <1 and y(z)=1 for |z]| <r. For 1 <k <n, set

ddl ﬁn -k
o= [

and

2du A dun (ddw)— " A Bk
Je=tk—1) [ ((_u)f) LA

We will prove by induction on & that

Lo+ J, < C[—u(0)]. (4.3)

When k=n, the left hand side of (4.1) is less than or equal to I, +J,
because y=1 on |z| <r and 3y =0.

When k =1, the integrand in I, is x? times the Laplacian of u and the
estimate follows from Jensen’s formula.

CHJR%(;,: _u(0)+J u(Ro) do(), (4.4)
o r

Ja] = 1

where

n(r)= JH ) Au(z)

is the mass of the Laplacian in the ball |z| <r, do is normalized surface
area measure on the ball, and ¢, is a constant which depends onily on n. To
see this, note that because u is negative, the last term on the right-hand side
of (4.4) is negative. Further, n(r) is increasing because u is subharmonic.
Thus, we have for 0<p <R,

% o1
_u(0)>j r"(’) dr >{p2n RZn}n(p y/2n.

If p and R <1 are chosen so that the support of y is contained in the ball
|z| < p, then the estimate (4.3) follows in the case k= 1.
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Suppose now that k> 1. In the integrand for I,, write

Y (ddu) d[xz du A (ddu)~ ‘]_ dy® A du A (ddu)* !

(—u) ' (—uy! (—uy!
_(k=1) y* du n dun (ddu)* !
(—u)
so that
Lo+ d, = —jdszd('" ?_(i‘j;lf)fl N (4.5)
Write

dy® A du _[ 2dy ] . [ fk—1y d"u]
(=) L k=1 (—u)w (—u)?

and apply the Cauchy-Schwarz inequality (recall that u is psh so
(ddu)*~' A B" ¥ is positive) to obtain from (4.5),

4 cdy adyaddu) A
k—lj (_u)k—z -/k'-

1k+Jk<[

But AB < (A% + B*)/2, so we conclude

4 jdx Ady A (ddu) = A BTk

Lo+ T2 < T

(—u
If ¥ has support in |z| < p <1, then because (dd“u)* '
that the last integral is dominated by a constant times

is positive, we have

J, (ddcu)k~l/\ﬁn~k+l.

)k—z

lzi<p (—u

The integrand in this last expression is exactly of the same form as in the
one for I,, except that k has been replaced by (k — 1). This completes the
inductive step of the proof.

Remark. The estimate (4.2) has the best possible power of —u in the
denominator. Kiselman [K] showed that the exponent n—1 in the left-
hand side of (4.2) cannot be sharpened to n—1 —e¢.

Let us define, for C? negative, psh w and a=n—1+¢

M(u)=(—u) *(ddu)".

It follows that A7 extends to all negative, psh functions.

580/72/2-3
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COROLLARY 4.6. If ue P(Q2), u<O0 and if the sequence {u;} < P(2)nN

C*(2) decreases to u, then Muj converges weakly to a measure, called Mu.

The proof of Corollary 4.6 follows from Theorems 3.2 and 4.5. As a con-
sequence, we find that for negative psh u, | |ul* Mu < o, and so Mu puts
no mass on {u= —oo}.

Our final characterization of NP(dd‘u)", is thus

COROLLARY 4.7. If ue P(Q), u<0, then

NP(ddu)" = (—u)* M(u).

Remark. The function ¢{x)= —(—x)"" is increasing and convex for
x < 0. Consequently, when u« is a negative psh function, so is ¢(u). It is
interesting to note that

(dd"u)j1 +n— 1)du Adun ((f"dt'u)nﬂ
(—u) (—u)

n"[dd‘¢(u)]" =

is the integrand on the left-hand side of (4.2). It seems to be an open
problem to determine whether NP(dd‘v)" has locally finite mass when v is a
psh function such that (locally) v = ¢(u) for some negative psh function wu.

5. COMPARISON OF CAPACITIES

Let 2 be a strictly pseudoconvex domain in C” with smooth boundary;
the capacity of a Borel subset E of £ is given by

C(E) = C(E, Q) =sup {f (ddu)™: upshon 2, 0 <u< 1},
E

and the outer capacity of an arbitrary set by

C*(E)=inf{C(0): 0> E, O open}.

The capacity C is a Choquet capacity. It follows from Choquet’s
capacitability theorem that

C*(E)=C,(E) :=sup{C(K): K c E, K compact }

holds for all J -analytic sets and thus for all Borel sets. See [BT] for
proofs of these results.
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THEOREM 5.1.  Let K be a compact subset of Q of positive capacity. For a
capacitable subset F of K (i.e., C (F)= C*(F)) the following are equivalent.
() C(F)=C(K)
() UKz)=U%(z) for all ze Q,
() Jxwr (ddUE)" =0.
For the proof, we will need the following technical result (Lemma 5.2)
and an inequality (Lemma 5.3).

LeMMA 52. Let Q be a bounded strongly pseudoconvex domain in C".
Let ug, uy,..., 4, € P(Q,) " L*(Q,, loc), where Q, > Q, and suppose also that

ug(z)=1lim ug({)=0  for all ze 0Q.
{—z

Then

(@) —[o uo dduy A -+ Addu, = (o dug ndug ndduy n -+ A
dd‘u, and

(b) fqo dug A duy Adduy A -+ A ddu, = [, dug A duy A ddug A
ddus A - A ddu,.

The lemma is, formally, an integration by parts, the boundary term

vanishing because u,=0 and du,=0 when restricted to éQ2. The only

problem is to justify the integration by parts. This may be done by using
the standard smoothings

Ujp = Uj*Xs
and making an approximation argument (cf. [BT]).

LEMMA 5.3. Let F be a compact subset of K. Then

j —U;'g(dd"U:)"sj — UXddU%Y"
Q Q

and for j=0,1,.,n—1,

j AU A dU% A (ddUEY A (ddU%Y 17 < C(K).

Proof. For convenience of notation, let u= U¥ and v=U}. Both u, v
have extensions to be plurisubharmonic and bounded on a neighborhood
of Q. For, if p is a strictly plurisubharmonic defining function for
Q={p<0} on a neighborhood of Q, then u, v> Ap for some constant
A>0. Hence, we can set u=v= Ap outside of Q. In particular, # and v
satisfy the hypotheses of Lemma 5.2 which justifies the integrations by
parts we will make in the following arguments.
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Define, for j=0, 1...., n,

A= [ (—o)ddwy A ddvy
£

B=[ (—u)ddu) n (ddv)
’ Q

and note that we have the following relationship:

0<4,<B, Jj=0, 1,1 (5.1)
B=4,,,, j=0,1,.,n—1; (52)
B<JA, /B, j=01,,n—1; (5.3)
B, = C(K); (5.4)
By = A, = C(F). (5.5)

The proof of (5.1) is obvious, since —u> —v. To prove (5.2), one
integrates by parts twice:

B;:J du A dv A (ddu)’ A (ddv)" 7 !
Q

=f dv A du A (ddu) A (ddv)y T~

Q

:L (—0)(ddu)’* ' A (ddv)" 7 '=A,, .
The proof of (5.3) is also easy, since

B:f du A dv A (ddu)’ A (ddvy

J
Q

/2
SU du A du A (ddu)’ A (dd“v)"iIJ
Q2
) 12
* U dv A dv A (ddu)’ A (dd"v)”””}
Q

where the inequality is the Cauchy-Schwarz inequality (see, e.g., [BT,
Sect. 3]). Integrating by parts one more time in each integral shows the last
term is /B, , ﬂ, which proves (5.3). Finally, the fact that B, = C(K) is
because u=U¥%= —1 on K, except on a set of capacity zero. Hence,
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because (dd‘u)" is supported on K, B,=[,(ddu)"=C(K), by
Proposition 5.3 of [BT]. Similarly, 4,= C(F)= B,.

Now, the first assertion of the lemma is that B,< A,, which follows
trivially from repeated application of (5.1) and (5.2). For we have B, =
A, €<B,=4,<B,< - <B,_,=A4,. But note also that

log B; is a convex, increasing sequence in j for j=0,1,..,n.  (5.6)

Because, by (5.3) and (5.2), Bg\/— \//+1‘\/ 1 \/ 1

1,2,.,n—1. Since By= C(F) and B, = C(K), this actually gives a stronger
estimate than that asserted in the lemma, namely,

B, < C(F)!" /™ C(K)™. (5.7)
We now prove the Main Theorem.

Proof that (a)=(p). Since F< K, we have that U¥> U}¥. We claim
that {ze K: U¥(z)> U¥(z)} has (dd°U¥)" measure zero. If this is true, then
U¥(z)=U¥(z) by the Domination Principle, Corollary 4.5, of [BT].
Choose a sequence F; of compact subsets of F such that F, < F,< -+, and
sup, C(F;)=C(K). Such a sequence exists because C_(F)=C(K). If

u;= U}‘, then u,>u,> ---. So, we have by the ﬁrst inequality of
Lemma 5.3 and the fact that U¥= —1 on F,, except on a set of capacity
zero, that

C(F) = | (~Upddw) <[ (~u)dd Uy

K

<| —UNe)dd U < C(K).

K

Letting j — o0, we see that we must have

f —UHddUEY = C(K).

K

Because 0= Uk = —1, we must therefore have U} = —1 except on a set of
(dd“U¥)" measure zero. It follows that U} < U% holds (dd‘U ) -almost
everywhere, and so by the Domination Principle we have U} < U%. Thus
U¥=Ug, as asserted.

Proof that (f)=>(a). From Proposition 6.5 of [BT], we have for an
arbitrary subset F € (,

C*(F)=J (ddU¥)".
Q

But, if U= U}, then, clearly, C*(F)= C(K).
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Proof that ()= (y). We can assume that F is fine-closed, because the
extremal function of a set is clearly the same as the extremal function of the
fine closure of the set. From the fact that (ff) = («) and F is capacitable, we
can choose a sequence F; of compact subsets of F such that F, c F,c -,
and C(F)) » C(F)=C(K). If u;=Ug, then u, 2u, > -+, u;—» Uf =Ug on
Q, so also (dd‘u;) » (dd°U¥)" in the sense of Theorem 3.2. Therefore, by
Corollary 3.3,

C(K) = J; (ddCU;)" > hfn sup fF (dd(-uj)n
=lim sup | (dd‘u,)"=lim C(F,)= C(K)
j F ’ J :

Since (dd“U%)" is concentrated on K> F and (4 (dd“U})" = C(K), it follows
that K\ F has (dd°U})"-measure zero.

Proof that (y)= (). If uis a plurisubharmonic function on £, <0 on
Q, and u< —1 on F, then also u < —1 on the fine closure F”, because u is
fine-continuous. Then, because K\ F”/ has (dd°U¥)" measure zero, we have
u< —1 for (dd°U}¥)"-almost all ze K. It follows from the Domination Prin-
ciple (Corollary 4.5) of [BT]) that u < U¥. Thus, U< U¥. But, F< K, so

* __ *
F'—UK'

6. APPLICATION TO POLYNOMIAL ENVELOPES.
We consider the family of psh functions on C” with minimal growth
& = {upshon C" u(z)<log(l+|z|)+ C,}.
For E € C", we define
Li(z)= lir?jtlp LL),

where

L (z)=sup{u(z):ue L, u<0on E},

which is the generalized Green function on C” with logarithmic pole at
infinity. We will define 4, = (dd‘L})" to be the complex equilibrium measure
of E.

We will be able to apply the results of Section 5 to L} and A because of
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the following two facts relating the relative extremal function U} global
function L%. The first of these (see Siciak [Sil]) is that

if Fc K< B, then U¥(z, B")=U¥(z, B") holds for all z if and
only if L¥=L}. (*)

The second (due to Levenberg [L]) is that

if K is a compact subset of the ball B", then A is bounded above
and below by constant multiples of (ddU¥(B™))". (*x)

The connection with polynomials arises since p is any polynomial, then

1 [p(2)]
1
deg(p) * ( P

)SLE(Z). (6.1)

A compact set K is regular if L is continuous. For K regular, (6.1) yields a
Bernstein-Markov-type inequality

for each 4> 1, there is an open set % o K such that for any
polynomial p | p(z)| < || p|| xA%#? for all ze%. (6.2)

(Note that in (6.2), we take U= {z: L¥(z) <log A}, which is an open set
containing K by the regularity assumption.) Siciak [Si2] has shown that
(6.2) also holds with | p|| x replaced by a constant times the integral of |p|
with respect to 4.

Now let 2 be an arbitrary family of polynomials. Given a compact set K
in C", we let

F=F?,K)={ze K:sup{|p(z)|: pe P} < o0} (6.3)
be the set where the supremum is finite. We will consider the possibility of
an estimate of the form

for each A> 1, there exists an open set % > K and a constant

M > oo such that | p(z)] < MA*®) for all pe 2 and ze%. (6.4)

This is essentially the so-called Leja polynomial condition. Although (6.4)
is related also to (6.2), it is possible for (6.4) to hold without {||pllx:pe 2}
being bounded.

If we set

F,={zeK:sup{|p(z)l: pe P} <},
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then F, is compact, F,cF,c ---, and U F;=F It follows that
lim, ., , L} =L}¥ (see, e.g., [BT, Proposition 8.1]). Now we define

Ao =sup exp(LX(z)),
e K
so that 4, 1s a constant depending on . It is evident that we always have
something weaker than (6.4), namely,

for each 4> 4, there exists an open set % o K and a constant
M < oo such that |p(z)] < Mi%8" for all pe # and ze%. (6.5)

(Note that this follows from (6.2), since we may take j large enough that
U ={z LE(z)<log A} contains K, and then we set M =}.)

The main result of this section is a necessary and sufficient condition for
(6.4) to hold.

THEOREM 6.1. Let K be regular, let P be a family of polynomials, and let
F be as in (6.3). Then

(1) if the fine closure of F, F, satisfies |y psdix=0, then 2 has the
property (6.4)

(2) if F is a capacitable subset of K whose fine closure satisfies
| kg1 dAx >0, then there exists a family of polynomials # with F < F(#, K),
and P fails to have the property (6.4).

(3) Condition (1) holds when C(F)= C(K), and Condition (2) holds
when C(F)< C(K).

(4) Condition (1) holds when U¥ = U} and Condition (2) holds when
Uk > U} at some point.

Part (1) of this theorem was essentially observed by Nguyen and Zeriahi
in [NZ]. The converse, part (2), gives an extension to C” of Uliman’s
theorem on “determining sets” [U]. Levenberg [Le] has shown that (1)
and (2) hold with the conditions on F replaced by U = U¥. However, by
Theorem 5.1, this is equivalent to the stated conditions.

For the proof of Theorem 6.1, it will suffice to prove just (1) and (2), for
then (3) and (4) will follow by Theorem 5.1. We will give the proof of (2)
only for the case when F is an F, — set. The proof when F is not F, requires
some additional work to handle an exceptional polar set of points. Siciak
[private communication] has given a good treatment of this case.

Proof of Theorem 6.1. (1) Taking Q= B" and using (x) and (%), we
see that Theorem 5.1 yields L¥ = L%. Since K is regular, we have (6.4).



FINE TOPOLOGY IN C” 247

(2) In the case that F is a F,set. We write F= UF;, where
F,cF,c -+, are compact. By a result of Siciak [Sil] and Zaharjuta [Z],

1 .
Lg(z)=sup {aloglPd(zN : Pde??{,},
where

P, = {polynomials P, of degree <d with [P, <1}.

By Theorem 5.1, there is a point zye K with L}¥(z,)=#5>0. Now we
choose polynomials Pjee@{;,j with d; » oo and

|Py(z0)| > €2,

and it follows that 2 = {P,, P,,...} fails to have (6.4).

7. SUPPORTS AND BOUNDARIES

In this section we show, as an application of Theorem 5.1 and Corollary
3.5, how the support of the relative extremal measure (dd‘u})" is related to
the Silov, Jensen, and fine boundaries of K. For K compact in Q, let
A(K) = A(K, 2) denote the subalgebra of the Banach algebra of continuous
functions on K which is the closure of the functions holomorphic on 2. We
denote by J,K the Silov boundary of 4(K) and by spt A, the (closed) sup-
port of the measure A,. We define

Koy={zeK: U¥z)= —1}.

THEOREM 7.1. Let K be compact in 82, a strictly pseudoconvex set in C".
Then spt Ay and the Shilov boundary of A(K) are related as follows.

(1) spt Ax=0,K,c 05K, where K, is as above.

(2} 5K (K\K,)uspt iy and thus 04K differs from spti, by at
most a polar set.

(3) If K is regular, then d K =spt A.

Proof of Theorem 7.1. (1) From the Domination Principle, it follows
that if feA(K), log|f|<0 on , and log|f|< —1 ae. A, then
log| f(z}| < U¥(z). Hence, by continuity, log| f| < —1 on K,. It follows that
the supremum of f on K, is exactly the same as the supremum of f on
spt Ax when f is a bounded analytic function on £. But, functions
holomorphic on a neighborhood of Q are dense in A(K). Thus, spt i, is a
boundary for A(K,), so spt 1, > d¢K,.
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To prove the other inclusion we note that by [GS], U¥ = U%, and thus
spt Ax=spt A, , = 05K

Statement (2) follows from (1) since K\ K|, is polar. Case (3), follows
from case (1) since K\ K, is empty.

Now we discuss the fine support of A, f—spt A5, which is the intersec-
tion of all fine-closed sets whose complements have A -measure zero. Since
A puts no mass on any polar set, it is clear that the fine support of A lies
inside the base of the support

f—spt Ay < b(spt 1)

(see (2.3) for the definition of the base).
We will call a fine-closed subset F of a fine-closed set E a fine boundary
for E if and only if

sup ¥ =sup ¥
F E

for all psh functions  on Q. If there is a smallest fine boundary for £, i.e.,
if the intersection of all fine boundaries n F is again a fine boundary for E,
we will call it the fine Silov boundary of E and denote it by 04E.

It is possible to pose a generalized Dirichlet problem for a lower
semicontinuous (Isc) function ¢ on a compact set K in 2. Namely, given ¢
Isc on K we let

U,(z)=sup{v(z):ve P(Q),v< ¢ on K}.

In general, U, will be Isc since the supremum may be taken in
P(2)n C(£2). When Q is strongly pseudoconvex, the supremum may be
taken over functions v which are psh and continuous on a neighborhood
of Q.

By the boundary properties of 05K, it follows that U,=¢ on a dense
subset of ;K. The Jensen boundary of K, denoted d,K, consists of the
points z,€ K such that U,(zo) = (z,) for all ¢ € C(K). This is a special
case of the Choquet boundary (see the discussions in [G, GS, DG]). The
set of peak points for P(£2)

07K = {z,€ K: there exists € P(Q) with Y(z,) =0
and y(z) <Oforze K\ {zy} }.

is a subset of J,K.

The Jensen and Silov boundaries are related as follows.
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THEOREM 7.2. Let K be a compact subset of Q (strongly pseudoconvex).
Then
(1) 3sK=0)K,
(2) 04K=(d;K).

Part (1) of Theorem 7.2 is well known, and the same proof may be
applied to part (2). Here we will need the analogous result for the base of a
compact set.

THEOREM 7.3. Let K be a compact subset of Q € C". Then

0,b(K)< 04K,
and
OL(b(K)) = (07K N b(K)Y.

The proof of Theorem 7.3 is similar to that of Theorem 7.2 and will be
omitted.

THEOREM 74. Let K be compact in Q (strictly pseudoconvex). Then
f—spt Ag has the following boundary properties:

(1) The fine support of Ay is the fine Silov boundary of b(K), ie.,
f—spt A, =0Lb(K).
(2) f—sptix= n{F: Fis fine-closed and U} = U}}
(3) f—sptAx=((f—sptix)nd;K)/
Proof. (1) Let us set
E =04 (b(K)).
Since E is the fine boundary, we have U= U,,. Thus
Uk=U}x,=U%.
By Corollary 3.4, we have
Eof—spt(ddU¥)" = f—spt Ax.

For the reverse inequality, we show that f—spt A4 is a fine boundary for
b(K). Let i € P(82), ¥ <0 be given, and suppose that y < —1 on f—spt A,.
Then by the Domination Principle, it follows that < U%. On the other
hand, U¥= —1 on b(K), so ¢ < —1 on h(K). Thus f—spt i, is a fine
boundary.
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(2) Let us set
F= n{F: Ffine closed, Uf=U%}.

It is evident that F < E, defined in (1), and so by (1) we must show that
f—spti,cF. Now suppose F is fine closed and U¥=U}. By
Corollary 3.4, the fine support of (dd‘U}¥)" is contained in F. If U} = U},
then f—spt Ay =f—spti,cF.

(3) The inclusion 2 is trivial. For the reverse inclusion, we have, by (1)
and Theorem 7.3,

f—spt A =04(b(K))
(0,Knb(K)Y
(0,Kna4(b(K))’
(@,Kn (f—sptix)).
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