Cartilage mechanics in the guinea pig model of osteoarthritis studied with an osmotic loading method

Charlene M. Flahiff†, Virginia B. Kraus‡, Janet L. Huebner† and Lori A. Setton†*

†Department of Biomedical Engineering, Duke University, Durham, NC, USA
‡Department of Medicine, Division of Rheumatology, Allergy, & Clinical Immunology, Duke University Medical Center, Durham, NC, USA

Summary

Objective: To determine the material properties of articular cartilage in the Hartley guinea pig model of spontaneous osteoarthritis.

Methods: Cartilage-bone samples from the medial femoral condyle and tibial plateau of 12 month-old guinea pig knees were subjected to osmotic loading. Site-matched swelling strains and fixed charge density values were used in a triphasic theoretical model for cartilage swelling to determine the modulus of the cartilage solid matrix. The degree of cartilage degeneration was assessed in adjacent tissue sections using a semi-quantitative histological grading scheme.

Results: Decreased values for both moduli and surface zone fixed charge density were associated with increasing grades of cartilage degeneration. Decreases in moduli reflect damage to the collagen matrix, which give rise to greater swelling strains.

Conclusion: Histological evidence of cartilage degeneration was associated with impaired cartilage mechanics in the aging Hartley guinea pig.

© 2004 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Samples were equilibrated in a hypotonic solution for 1 h. High resolution planar images of the NaCl. Samples were equilibrated in the hypertonic reference configuration was chosen at 2 M NaCl. Samples were fluorescently labeled and visualized using confocal laser scanning microscopy as described previously. The bone nuclei served as fixed markers, while cartilage nuclei served as strain markers. Since swelling effects in cartilage depend upon the proteoglycan-associated fixed charge density of the tissue. A semi-quantitative histochemical technique was used to determine the non-uniform fixed charge density of the cartilage matrix from the red intensity of safranin O, a stain shown to correlate highly with fixed charge density. For our calibration procedure in this study, human patellar cartilage samples (n=48) were used to correlate biochemical measures of fixed charge density with red intensity of safranin O stain using methods described previously. All samples were routinely prepared for histology, sectioned to a thickness of 5 µm, and stained with safranin O. High resolution RGB images of the histological sections were obtained using a slide scanner (Polaroid, SprintScan 35 Plus, 2700 dpi resolution) with the same settings used for all image acquisitions. The intensity of safranin O (red content) was determined throughout the depth of the cartilage layer from the digitized images pixel-by-pixel, based on a modification of methods developed by Martin et al. Red intensity values, \(R_c \), for human cartilage were plotted against measured fixed charge density (c0) in site-matched samples, and a single exponential term was numerically fit to the data to obtain calibration constants, A and B, from the equation, \(c_F = A(\exp(B R_c) - 1) \text{ mEq/ml tissue water} \). Fitted values yielded a high correlation between biochemical data and digitized image data (Fig. 3, A=0.00269 mEq/ml tissue water, B=0.0821; n=0.87). This equation and calibration constants were then used to convert red intensity values (Rc) for guinea pig cartilage, stained with safranin O and analyzed as described above, to reference fixed charge density (c0) as a function of depth. The depth-dependent fixed charge density values obtained for each guinea pig sample were grouped by zone to correspond to the surface (upper 25%), middle (33–75%), and deep zones (lower 33%) of articular cartilage. In addition, a thickness-averaged fixed charge density was calculated. Repeated tests on adjacent samples has shown the precision error in this technique to be 0.016 mEq/ml tissue water (n=22).
Fig. 3. Non-linear regression of biochemical data for human cartilage on corresponding digitized image data (Rc) using the equation, $c_0 = A(\exp(B*Rc) - 1) \text{ mEq/ml tissue water}$ ($A=0.00269$, $B=0.0821$; $r^2=0.75$).

To determine the uniaxial modulus, a triphasic model for cartilage swelling was used to predict the magnitude and distribution of swelling-induced strains for each sample. Free-swelling of the cartilage layer was modeled for equilibration against an external hypotonic bath (0.015 M NaCl), and the components of infinitesimal strain due to swelling were predicted relative to the hypertonic reference configuration (2 M NaCl). In this model, the cartilage solid matrix was assumed to have homogeneous material properties (i.e. uniaxial modulus) and spatially-varying fixed charge density, which were obtained using histochemical analysis as described above. Constant values for reference water volume fraction (0.8, hypertonic reference state), thickness to radius of curvature (1:7), and Poisson’s ratio (0.25) were chosen as described previously. Thus, predictions for swelling-induced strain reduced to a dependence on one parameter, the uniaxial modulus. Model predictions for swelling were matched to experimental measures of the principal swelling strains to obtain the uniaxial modulus.

For histological grading, sections from each sample were stained with safranin O/fast green and were independently graded by two blinded investigators to assess cartilage degeneration in the same region studied in the swelling test. A modified semi-quantitative grading scheme was used, based on the work of Mankin and co-workers and Carlson and co-workers, but adapted for the guinea pig. This grading scheme consisted of gross assessment of the cartilage structure (scale=0–8: 0=normal, smooth cartilage surface; 8=clefts extending throughout the deep zone) and proteoglycan staining (scale=0–6: 0=uniform, staining throughout the cartilage; 6=over 50% reduced staining in all three zones). Thus, the minimum score in each category corresponded to normal cartilage, while the maximum score reflected severe degeneration. The two scores for each sample were also added together to obtain a total histological grade representing chondropathy (scale=0–14). This grading scheme has been shown to accurately reflect histological changes in the knee joints of the guinea pig that correlate significantly to biomarkers of osteoarthritic disease.

A one-factor analysis of variance (ANOVA) was used to detect a difference in the uniaxial modulus and thickness-averaged fixed charge density between femoral and tibial cartilage. A one-factor ANOVA and Student-Newman-Keuls (SNK) post-hoc test using repeated measures were performed to test for a difference in fixed charge density values among cartilage zones. Non-parametric methods (Mann-Whitney) were used to compare histological grades of femur and tibia to calculate the correlation coefficients (Spearman) for histological grade against both uniaxial modulus and zonal fixed charge density. Results at a level of $P<0.05$ were considered significant.

Results

Insufficient strain measurements prevented moduli determination for one tibial sample, and insufficient sample size for safranin O staining prevented fixed charge density measurements in two femoral samples. The uniaxial modulus and thickness-averaged fixed charge density values were similar for tibial and femoral cartilage with average values of 10.1±6.7 MPa and 0.106±0.041 mEq/ml tissue water for all samples (Table 1). The fixed charge density values were lowest in the surface zone of cartilage, while the maximum charge density values were highest in the surface zone of cartilage for both the tibia and the femur. For the guinea pig, the surface zone was the most sensitive to changes in the degree of degeneration.

Cartilage from both the femurs and tibiae of 12 month-old guinea pig knee joints exhibited varying states of degeneration, characterized by dark, uniform staining and mild surface irregularities, while a tibial section (right) shows severe cartilage degeneration, characterized by substantially reduced staining and extensive cartilage fibrillation.

Table 1

<table>
<thead>
<tr>
<th>Cartilage Type</th>
<th>Uniaxial Modulus (MPa)</th>
<th>Thickness-Averaged Fixed Charge Density (c0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femoral condyle</td>
<td>10.2±4.4, n=3</td>
<td>0.083±0.032, n=3</td>
</tr>
<tr>
<td>Tibial plateau</td>
<td>10.1±7.1, n=19</td>
<td>0.101±0.040, n=20</td>
</tr>
</tbody>
</table>

Fig. 4. Histological images (10x) showing varying states of cartilage degeneration. A femoral section (left) shows mild cartilage degeneration, characterized by dark, uniform staining and mild surface irregularities, while a tibial section (right) shows severe cartilage degeneration, characterized by substantially reduced staining and extensive cartilage fibrillation.
Osteoarthritic changes were more severe in the tibia than the femur, which is entirely consistent with previous studies showing that the medial tibial plateau is the site of OA initiation in the Hartley guinea pig model. Variability in the extent and location of cartilage degeneration clearly contributed to the variability seen in the values of material properties for guinea pig cartilage. Nevertheless, moduli values obtained here with the osmotic loading method are similar to those previously reported for human and canine cartilages, determined either in simple tension or with osmotic loading. Importantly, decreases in material moduli were observed with increasing grades of degeneration, exhibiting a pattern that is well-established for human OA cartilage. Decreases in the material moduli likely reflect damage to the collagen matrix, resulting in greater swelling strains and more compliant tissue. The noted association of cartilage moduli with degenerative grade demonstrates that this osmotic loading method can provide a way to detect changes in cartilage matrix integrity with cartilage damage and OA in small animal joints such as the guinea pig.

Mechanical testing of cartilage in the guinea pig is complicated by the small quantities of available tissue. Recently, investigators have developed methods to evaluate the compressive behavior of cartilage in small animal joints, such as rats and mice using an in situ indentation test. The material properties obtained for rat cartilage were shown to be consistent with those of larger animal joints. The mechanical behaviors of cartilage in compression, however, are believed to depend largely on the contents of proteoglycan and water and thus, are not likely to be sensitive to changes in the collagen molecular network. Osmotic loading provides a way to determine a modulus that reflects the tensile properties, as shown in our previous work comparing uniaxial moduli and tensile modulus of site-matched tissues. The advantages of osmotic loading include an ability to leave the cartilage on the subchondral bone and the absence of grips or platens to clamp the sample, which makes this technique particularly useful for studying cartilage mechanics when sample size is limiting, such as in rodent model systems. Use of the osmotic loading method depends on knowledge of the fixed charge density, however, which is challenging to obtain in small tissue samples using biochemical assays. Thus, it was necessary to develop a quantitative histochemical method to quantify fixed charge density in the guinea pig samples studied here. The full-thickness values for fixed charge density obtained here with this new method are consistent with reported values for other species obtained using biochemical measures.

In a previous study of human articular cartilage, increases in histological evidence of OA were coincident with loss of tensile stiffness at the surface zone and correlated strongly with depth of the surface zone region. These findings provided quantitative support for the hypothesis that impaired function associated with OA initiates at the surface zone, which may contribute to the progression of disease. In the current study of the guinea pig cartilage, although data were available for zonal variations in fixed charge density, the thin cartilage layer in the guinea pig precluded measures of the non-uniform swelling strain fields essential for determining zonally-varying material properties. Nevertheless, fixed charge density at the surface zone of cartilage was found to correlate with the extent and location of cartilage degeneration clearly. This finding suggests that the biochemical changes associated with OA may initiate at the surface zone. Modification of the method
to permit determinations of the moduli at the surface and deep zone will be pursued in future studies, in order to obtain the information necessary to assess the spatial progression of OA changes in this model.

In conclusion, this study presents the first available data for changes in cartilage mechanics in the Hartley guinea pig model of OA; measures of the moduli were obtained using an osmotic loading technique. These changes are likely associated with significant changes in cartilage load support and load distribution, consistent with increased matrix deformations upon loading and associated deleterious effects that may be involved in the progression of cartilage degenerative changes in the Hartley guinea pig. This characterization of material properties of cartilage in the guinea pig provides additional support for similarities in the pathogenesis of OA between this model and the human. Furthermore, these findings suggest that the osmotic loading method for material property determination may be a useful approach for quantifying cartilage function in small animal joints, such as the guinea pig, rat and mouse.

Acknowledgements

This study was supported by funds from the NIH (R01-AR45644 and R29-AG15108) and from Pfizer Central Research, Pfizer, Inc. The authors wish to acknowledge the contributions of Dr. Daria A. Narmoneva (Massachusetts Institute of Technology) and Robert A. Skinner (University of Arkansas for Medical Sciences).

References

