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1. Introduction

Constacyclic codes constitute a remarkable generalization of cyclic codes, hence form an important
class of linear codes in the coding theory. And, constacyclic codes also have practical applications as
they can be encoded with shift registers.

In [3], for any positive integer a and any odd integer n, Blackford used the discrete Fourier trans-
form to show that Z4[X]/〈X2an + 1〉 is a principal ideal ring, where Z4 denotes the residue ring of
integers modulo 4, and to establish a concatenated structure of negacyclic codes of length 2an over Z4.
In [1] Abualrub and Oehmke classified the cyclic codes of length 2k over Z4 by their generators. Gen-
eralizing the result of [1], Dougherty and Ling in [7] classified the cyclic codes of length 2k over the
Galois ring GR(4,m).
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Let Fq be a finite field with q = pm elements where p is a prime, and let λ ∈ F ∗
q where F ∗

q de-
notes the multiplicative group consisting of all non-zero elements of Fq . Any λ-constacyclic code C of
length n over Fq is identified with an ideal of the quotient algebra Fq[X]/〈Xn − λ〉 where 〈Xn − λ〉
denotes the ideal generated by Xn − λ of the polynomial algebra Fq[X], hence C is generated by a
factor polynomial of Xn − λ, called the polynomial generator of the λ-constacyclic code C . In order to
obtain all λ-constacyclic codes of length n over Fq , we need to determine all the irreducible factors
of Xn − λ over Fq . It is remarkable that, though all irreducible binomials over Fq have been explicitly
characterized by Serret early in 1866 (e.g. see [11, Theorem 3.75] or [12, Theorem 10.7]), no effective
method were found to characterize the irreducible factors of Xn − λ over Fq so far. It is a challenge
to determine explicitly the polynomial generators of all constacyclic codes over finite fields.

It is well known that Xn − λ is a factor of X N − 1 for a suitable integer N , and the irreducible
factors of X N − 1 over Fq with q = pm as above can be described by the q-cyclotomic cosets. Recently,
assuming that p is odd and the order of λ in the multiplicative group F ∗

q is a power of 2, Bakshi
and Raka in [2] described the polynomial generators of λ-constacyclic codes of length 2t over Fq by
means of recognizing the q-cyclotomic cosets which are corresponding to the irreducible factors of
X2t − λ. In the same paper [2], Bakshi and Raka determined the polynomial generators of all the
λ-constacyclic codes of length 2t ps over Fq , q = pm , for any non-zero λ in Fq . Almost the same time
but in another approach, assuming that p is odd, Dinh in [6] determined the polynomial generators
of all constacyclic codes of length 2ps over Fq in a very explicit form: the irreducible factors of the
polynomial generators are all binomials of degree 1 or 2.

In this paper, we are concerned with the constacyclic codes of length �t ps over Fq , where q = pm

as before and � is a prime different from p. We introduce a concept “isometry” for the non-zero
elements of Fq to classify constacyclic codes over Fq such that the constacyclic codes belonging to
the same isometry class have the same distance structures and the same algebraic structures. Then
we characterize in an explicit way the polynomial generators of constacyclic codes of length �t ps over
Fq according to the isometry classes. It is notable that, except for the constacyclic codes which are
isometric to cyclic codes, the irreducible factors of the polynomial generator of any constacyclic code
of length �t ps over Fq are either all binomials or all trinomials.

The plan of this paper is as follows. The necessary notations and some known results to be used
are provided in Section 2. In Section 3, we introduce precisely the concept of isometry, which is
an equivalence relation on F ∗

q ; and some necessary and sufficient conditions for any two elements
of F ∗

q isometric to each other are established; as a consequence, the constacyclic codes isometric to
cyclic codes are described. In Section 4, we classify the constacyclic codes of length �t ps over Fq into
isometry classes, characterize explicitly the polynomial generators of the constacyclic codes of each
isometry class, and derive some consequences, including the main result of [6]. In Section 5, with
the help of the GAP [8], the polynomial generators of all constacyclic codes of length 6 over F24 ,
all constacyclic codes of length 175 over F52 and all constacyclic codes of length 20 over F52 are
computed.

2. Preliminaries

Throughout this paper Fq denotes a finite field with q elements where q = pm is a power of a
prime p. Let F ∗

q denote the multiplicative group of Fq consisting of all non-zero elements of Fq; and
for β ∈ F ∗

q , let ord(β) denote the order of β in the group F ∗
q ; then ord(β) is a divisor of q − 1, and β

is called a primitive ord(β)th root of unity. It is well known that F ∗
q is a cyclic group of order q − 1, i.e.

F ∗
q is generated by a primitive (q − 1)th root ξ of unity, we denote it by F ∗

q = 〈ξ〉. For any integer k,

it is known that ord(ξk) = q−1
gcd(k,q−1)

, where gcd(k,q − 1) denotes the greatest common divisor of k
and q − 1.

Assume that n is a positive integer and λ is a non-zero element of Fq . A linear code C of
length n over Fq is said to be λ-constacyclic if for any code word (c0, c1, . . . , cn−1) ∈ C we have that
(λcn−1, c0, c1, . . . , cn−2) ∈ C . We denote by Fq[X], the polynomial algebra over Fq , and denote by
〈Xn −λ〉, the ideal of Fq[X] generated by Xn −λ. Any element of the quotient algebra Fq[X]/〈Xn −λ〉
is uniquely represented by a polynomial a0 + a1 X + · · · + an−1 Xn−1 of degree less than n, hence is
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identified with a word (a0,a1, . . . ,an−1) of length n over Fq; so we have the corresponding Hamming
weight and the Hamming distance on the algebra Fq[X]/〈Xn − λ〉.

In this way, any λ-constacyclic code C of length n over Fq is identified with exactly one ideal of
the quotient algebra Fq[X]/〈Xn − λ〉, which is generated by a divisor g(X) of Xn − λ, and the divisor
g(X) is determined by C uniquely up to a scale; in that case, g(X) is called a polynomial generator of
C and write it as C = 〈g(X)〉. Specifically, the irreducible factorization of Xn − λ in Fq[X] determines
all λ-constacyclic codes of length n over Fq .

Note that the 1-constacyclic codes are just the usual cyclic codes, and there is a lot of literature
to deal with the cyclic codes. In particular, the irreducible factorization of Xn − 1 in Fq[X] can be
described as follows. As usual, we adopt the notations: k | n means that the integer k divides n; and,
for a prime integer �, �e ‖ n means that �e | n but �e+1 � n.

Remark 2.1. Assume that n = n′ ps with s � 0 and p � n′ . For an integer r with 0 � r � n′ − 1, the
q-cyclotomic coset of r modulo n′ is defined by

Cr = {
r · q j (

mod n′) ∣∣ j = 0,1, . . .
}
.

A subset {r1, r2, . . . , rρ} of {0,1, . . . ,n′ − 1} is called a complete set of representatives of all q-cyclotomic
cosets modulo n′ if Cr1 , Cr2 , . . . , Crρ are distinct and

⋃ρ
i=1 Cri = {0,1, . . . ,n′ − 1}. Take η to be a prim-

itive n′th root of unity (maybe in an extension of Fq), and denote by Mη(X), the minimal polynomial
of η over Fq . It is well known that (e.g. see [10, Theorem 4.1.1]):

Xn′ − 1 = Mηr1 (X)Mηr2 (X) · · · Mηrρ (X) (2.1)

with

Mηri (X) =
∏
j∈Cri

(
X − η j), i = 1, . . . , ρ,

all being irreducible in Fq[X], hence

Xn − 1 = (
Xn′ − 1

)ps = Mηr1 (X)ps
Mηr2 (X)ps · · · Mηrρ (X)ps

(2.2)

is the irreducible decomposition of Xn − 1 in Fq[X].

In a very special case the irreducible factorization of Xn − λ in Fq[X] has been characterized
precisely, we quote it as the following remark.

Remark 2.2. Assume that q ≡ 3 (mod 4) (in particular, q is a power of an odd prime), equivalently,
2 ‖ (q − 1). Then X2t + 1 is factorized into irreducible polynomials over Fq in [4, Theorem 1]. We
should mention that, though [4, Theorem 1] is proved for a prime p with p ≡ 3 (mod 4), one can
check in the same way as in [4] that it also holds for the present case when q is a power of a prime
and q ≡ 3 (mod 4). We reformulate the result as follows. Note that 4 | (q + 1) in the present case,
hence there is an integer e � 2 such that 2e ‖ (q + 1). Set H1 = {0}; recursively define

Hi =
{
±

(
h + 1

2

) q+1
4 ∣∣∣ h ∈ Hi−1

}
,
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for i = 2,3, . . . , e − 1; and set

He =
{
±

(
h − 1

2

) q+1
4 ∣∣∣ h ∈ He−1

}
= He+1 = He+2 = · · · .

Let t � 1. Set b = t and c = 0 if 1 � t � e − 1; while set b = e and c = 1 if t � e. Then (see [4,
Theorem 1] or [12, Theorem 10.13]):

X2t + 1 =
∏

h∈Ht

(
X2t−b+1 − 2h X2t−b + (−1)c) (2.3)

with all the factors in the right-hand side being irreducible over Fq .

Return to our general case. As we mentioned before, the irreducible non-linear binomials over Fq

have been determined by Serret early in 1866 (see [11, Theorem 3.75] or [12, Theorem 10.7]), we
restate it as a remark for later quotations.

Remark 2.3. Assume that n � 2. For any a ∈ F ∗
q with ord(a) = k, the binomial Xn − a is irreducible

over Fq if and only if both the following two conditions are satisfied:

(i) Every prime divisor of n divides k, but does not divide (q − 1)/k;
(ii) If 4 | n, then 4 | (q − 1).

3. Isometries between constacyclic codes

Let Fq be a finite field of order q = pm and F ∗
q = 〈ξ〉 as before, where ξ is a primitive (q − 1)th

root of unity. Let n be a positive integer.
Generalizing the usual equivalence between codes, we consider a kind of equivalences between

the λ-constacyclic codes and the μ-constacyclic codes which preserve the algebraic structures of the
constacyclic codes.

Definition 3.1. Let λ,μ ∈ F ∗
q . We say that an Fq-algebra isomorphism

ϕ : Fq[X]/〈Xn − μ
〉 → Fq[X]/〈Xn − λ

〉
is an isometry if it preserves the Hamming distances on the algebras, i.e.

dH
(
ϕ(a),ϕ

(
a′)) = dH

(
a,a′), ∀a,a′ ∈ Fq[X]/〈Xn − μ

〉
.

And, if there is an isometry between Fq[X]/〈Xn − λ〉 and Fq[X]/〈Xn − μ〉, then we say that λ is
n-isometric to μ in Fq , and denote it λ ∼=n μ.

Obviously, the n-isometry “∼=n” is an equivalence relation on F ∗
q , hence F ∗

q is partitioned into
n-isometry classes. If λ ∼=n μ, then all the λ-constacyclic codes of length n are one-to-one corre-
sponding to all the μ-constacyclic codes of length n such that the corresponding constacyclic codes
have the same dimension and the same distance distribution, specifically, have the same minimum
distance; at that case we say that, for convenience, the λ-constacyclic codes of length n are isometric
to the μ-constacyclic codes of length n. So, it is enough to study the n-isometry classes of constacyclic
codes.
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Theorem 3.2. For any λ,μ ∈ F ∗
q , the following three statements are equivalent to each other:

(i) λ ∼=n μ.
(ii) 〈λ, ξn〉 = 〈μ,ξn〉, where 〈λ, ξn〉 denotes the subgroup of F ∗

q generated by λ and ξn.

(iii) There is a positive integer k < n with gcd(k,n) = 1 and an element a ∈ F ∗
q such that anλ = μk and the

following map

ϕa : Fq[X]/〈Xn − μk〉 → Fq[X]/〈Xn − λ
〉
, (3.1)

which maps any element f (X) + 〈Xn − μk〉 of Fq[X]/〈Xn − μk〉 to the element f (aX) + 〈Xn − λ〉 of
Fq[X]/〈Xn − λ〉, is an isometry.

In particular, the number of n-isometry classes of F ∗
q is equal to the number of positive divisors of gcd(n,q −1).

Proof. (i) ⇒ (ii). By (i) we have an isometry ϕ between the algebras:

ϕ : Fq[X]/〈Xn − μ
〉 → Fq[X]/〈Xn − λ

〉
.

Since ϕ preserves the Hamming distance, it must map X of weight 1 of the algebra Fq[X]/〈Xn − μ〉
to an element of the algebra Fq[X]/〈Xn −λ〉 of weight 1, so there is an element b ∈ F ∗

q and an integer
j with 0 � j < n such that

ϕ(X) = b X j. (3.2)

Consider ϕ(Xi) = (b X j)i = bi X ji (mod Xn − λ) for i = 0,1, . . . ,n − 1; since ϕ is a bijection, we see
that any index e with 0 � e � n − 1 must appear in the following sequence:

ji (mod n), i = 0,1, . . . ,n − 1;
hence j (mod n) must be invertible, i.e. 0 < j < n and gcd( j,n) = 1. Note that Xn = λ (mod Xn − λ);
further, note that ϕ is an algebra isomorphism and μ ∈ Fq , we see that ϕ(μ) = μ, and can make the
following calculation in Fq[X]/〈Xn − λ〉 (or equivalently, modulo Xn − λ):

μ = ϕ(μ) = ϕ
(

Xn) = ϕ(X)n = (
b X j)n = bn X jn = bnλ j; (3.3)

i.e. as elements of Fq we have μ = λ jbn . Obviously, 〈ξn〉 = {an | a ∈ F ∗
q }. We have μ ∈ 〈λ, ξn〉, and

hence 〈μ,ξn〉 ⊆ 〈λ, ξn〉. On the other hand, since gcd( j,n) = 1, there are integers k,h such that jk +
nh = 1; so

μk = λ jkbnk = λ jk+nhλ−nhbnk = λ
(
λ−hbk)n;

i.e. λ = μk(λhb−k)n ∈ 〈μ,ξn〉; and we have that 〈λ, ξn〉 ⊆ 〈μ,ξn〉. Thus, we get the desired conclusion:
〈λ, ξn〉 = 〈μ,ξn〉.

(ii) ⇒ (iii). Denote d = gcd(n,q − 1). Then the subgroup 〈ξn〉 = 〈ξd〉, and the quotient group

F ∗
q /

〈
ξn〉 = F ∗

q /
〈
ξd〉 = 〈ξ〉/〈ξd〉

is a cyclic group of order d. From the statement (ii) we have that

〈
λ, ξn〉

/
〈
ξd〉 = 〈

μ,ξn〉/〈ξd〉;
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which implies that, in the cyclic group F ∗
q /〈ξd〉 of order d, λ and μ generate the one and the same

subgroup, in particular, they have the same order in the quotient group F ∗
q /〈ξd〉. Thus there are

integers k′,h′ such that λ = μk′
ξdh′

and gcd(k′,d) = 1. Since d | n, it is known that the natural map

Z∗
n → Z∗

d, z (mod n) �→ z (mod d),

is a surjective homomorphism, where Z∗
n denotes the multiplicative group consisting of all reduced

residue classes modulo n. We can take a positive integer k < n with gcd(k,n) = 1 and k ≡ k′ (mod d).
Then there is an integer h such that k′ = k + dh. So

λ = μk′
ξdh′ = μk+dhξdh′ = μk(μhξh′)d

.

As (μhξh′
)d ∈ 〈ξd〉 = 〈ξn〉, we have an a ∈ F ∗

q such that (μhξh′
)d = a−n . In a word, we have an integer

k coprime to n and an a ∈ F ∗
q such that anλ = μk . Now we define an algebra homomorphism:

ϕ̂a : Fq[X] → Fq[X]/〈Xn − λ
〉
,

by mapping f (X) ∈ Fq[X] to ϕ̂a( f (X)) = f (aX) (mod Xn − λ); since a is non-zero, ϕ̂a is obviously
surjective. Noting that Xn = λ (mod Xn − λ), we have

ϕ̂a
(

Xn − μk) = (aX)n − μk = an Xn − μk = anλ − μk = 0
(
mod Xn − λ

)
.

So the surjective algebra homomorphism ϕ̂a induces an algebra isomorphism

ϕa : Fq[X]/〈Xn − μk〉 → Fq[X]/〈Xn − λ
〉
,

which maps any element f (X) + 〈Xn − μk〉 of Fq[X]/〈Xn − μk〉 to the element f (aX) + 〈Xn − λ〉 of
Fq[X]/〈Xn −λ〉; since ϕa maps any element Xi of weight 1 to an element ai Xi of weight 1, the algebra
isomorphism ϕa preserves Hamming distances of the algebras. We are done for the statement (iii).

(iii) ⇒ (i). Since the map (3.1) in the statement (iii) is an algebra isomorphism, we have that

0 = ϕa
(

Xn − μk) = (aX)n − μk = anλ − μk (
mod Xn − λ

);
that is, λan = μk . By (iii) it is assumed that gcd(k,n) = 1, i.e. there are integers j,h such that
kj + nh = 1, which also implies that gcd( j,n) = 1; so

μ = μkj+nh = (
μk) j

μnh = (
λan) j

μhn = λ j(a jμh)n
.

Set b = a jμh , then b ∈ F ∗
q and bnλ j = μ. Since Fq[X] is a free Fq-algebra with X as a free generator,

by mapping X to b X j , we can define an algebra homomorphism:

ϕ̂ : Fq[X] → Fq[X]/〈Xn − λ
〉
,

which maps any f (X) ∈ Fq[X] to ϕ̂( f (X)) = f (b X j) (mod Xn − λ). Since j is coprime to n, the
following

ϕ̂
(

Xi) = bi X ji (
mod Xn − λ

)
, i = 0,1, . . . ,n − 1,
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form a basis of the algebra Fq[X]/〈Xn − λ〉; so ϕ̂ is a surjective algebra homomorphism. Further, we
have

ϕ̂
(

Xn − μ
) = (

b X j)n − μ = bn Xnj − μ = bnλ j − μ = 0
(
mod Xn − λ

)
.

Thus the surjective algebra homomorphism ϕ̂ induces an algebra isomorphism:

ϕ : Fq[X]/〈Xn − μ
〉 → Fq[X]/〈Xn − λ

〉
,

which maps any element f (X) + 〈Xn − μ〉 of Fq[X]/〈Xn − μ〉 to the element f (b X j) + 〈Xn − λ〉 of
Fq[X]/〈Xn − λ〉; in particular, ϕ maps any element Xi of weight 1 to an element bi X ji (mod Xn − λ)

of weight 1, hence ϕ preserves the Hamming distances. That is, (i) holds.
Finally, by the equivalence of (i) and (ii), the number of the n-isometry classes of F ∗

q is equal to

the number of the subgroups of the quotient group F ∗
q /〈ξd〉 where d = gcd(n,q − 1). The quotient

F ∗
q /〈ξd〉 is a cyclic group of order d, so, for any divisor d′ | d it has a unique subgroup of order d′ .

Then the number of the subgroups of F ∗
q /〈ξd〉 is equal to the number of the positive divisors of d. In

conclusion, the number of the n-isometry classes of F ∗
q is equal to the number of the positive divisors

of gcd(n,q − 1). �
Remark 3.3. Though the statement (i) of Theorem 3.2 states that there is an isometry ϕ : Fq[X]/
〈Xn − μ〉 → Fq[X]/〈Xn − λ〉, the statement (iii) of Theorem 3.2 exhibits a specific isometry ϕa such
that ϕa(X) = aX , which outperforms ϕ in (3.2) and provides an easy way to connect the polynomial
generators of the λ-constacyclic codes with those of the μk-constacyclic codes.

In particular, taking μ = 1, we see that λ ∼=n 1 implies that there is an isometry ϕa : Fq[X]/
〈Xn − 1〉 → Fq[X]/〈Xn − λ〉 such that ϕ(X) = aX . Thus for the constacyclic codes n-isometric to the
cyclic codes, we have the following consequence which is closely related to [9, Lemma 3.1].

Corollary 3.4. Let n be a positive integer, and λ ∈ F ∗
q . The λ-constacyclic codes of length n are isometric to the

cyclic codes of length n if and only if anλ = 1 for an element a ∈ F ∗
q ; further, in that case the map

ϕa : Fq[X]/〈Xn − 1
〉 → Fq[X]/〈Xn − λ

〉
, (3.4)

which maps f (X) to f (aX), is an isometry, and

Xn − λ = λ · Mηr1 (aX)ps
Mηr2 (aX)ps · · · Mηrρ (aX)ps

(3.5)

is an irreducible factorization of Xn − λ in Fq[X], where n = n′ ps with s � 0 and p � n′ , Mηi (X) and
{r1, . . . , rρ} are defined in the formula (2.2); in particular, any λ-constacyclic code C has a polynomial gener-
ator as follows:

ρ∏
i=1

Mηri (aX)ei , 0 � ei � ps, ∀i = 1, . . . , ρ. (3.6)

Proof. By Theorem 3.2, λ ∼=n 1 if and only if 〈λ, ξn〉 = 〈1, ξn〉 = 〈ξn〉; i.e. λ ∼=n 1 if and only if λ ∈ 〈ξn〉.
However, 〈ξn〉 = {an | a ∈ F ∗

q }; so λ ∼=n 1 if and only if λ = bn for an element b ∈ F ∗
q .

Assume that it is the case, i.e. anλ = 1. By the statement (iii) of Theorem 3.2, the map (3.4) is an
isometry between the algebras. And, as in the formula (2.2), we have the irreducible decomposition
of Xn − 1 in Fq[X]:
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Xn − 1 = Mηr1 (X)ps
Mηr2 (X)ps · · · Mηrρ (X)ps ;

hence the following is an irreducible decomposition of (aX)n − 1 in Fq[X]:

(aX)n − 1 = Mηr1 (aX)ps
Mηr2 (aX)ps · · · Mηrρ (aX)ps

.

However, since an = λ−1, we have that (aX)n = an Xn = λ−1 Xn; thus we get the irreducible decompo-
sition of Xn − λ in Fq[X] in the formula (3.5). Finally, the polynomial generator of any λ-constacyclic
code is a divisor of Xn − λ, hence has the form in (3.6). �
Corollary 3.5. If n is a positive integer coprime to q − 1, then there is only one n-isometry class in F ∗

q ; in
particular, for any λ ∈ F ∗

q the λ-constacyclic codes of length n are isometric to the cyclic codes of length n, i.e.
anλ = 1 for an a ∈ F ∗

q and all the (3.4), (3.5) and (3.6) hold.

Proof. Since gcd(n,q − 1) = 1, the conclusion is obtained immediately. It is an automorphism of the
group F ∗

q which maps any a ∈ F ∗
q to an ∈ F ∗

q ; thus there is a b ∈ F ∗
q such that λ = bn . �

Let n = n′ ps as in Corollary 3.4. If n′ = 1, then n = ps is coprime to q − 1 and X ps − 1 = (X − 1)ps
,

and we get the following result at once.

Corollary 3.6. For any λ ∈ F ∗
q the λ-constacyclic codes of length ps are isometric to the cyclic codes of

length ps; in particular, there is an a ∈ F ∗
q such that aps

λ = 1 and X ps −λ = λ(aX − 1)ps
is an irreducible fac-

torization in Fq[X]; in particular, any λ-constacyclic code C of length ps has a polynomial generator (X −a−1)i

with 0 � i � ps.

Remark 3.7. Taking λ = −1, Corollary 3.6 implies that negacyclic codes of length ps are isometric to
cyclic codes of length ps . This generalizes [5, Theorem 3.3] which showed that, in our terminology,
λ-constacyclic codes of length ps over F pm are isometric to the negacyclic codes of length ps over F pm .

4. Constacyclic codes of length �t ps

Let Fq be a finite field of order q = pm and F ∗
q = 〈ξ〉 be generated by a primitive (q − 1)th root ξ

of unity as before.
In this section, we consider constacyclic codes of length �t ps over Fq , where � is a prime integer

different from p and s, t are non-negative integers. We will show that any λ-constacyclic code of
length �t ps with λ ��t ps 1 has a polynomial generator with irreducible factors all being binomials
of degrees equal to powers of the prime � except for the case when � = 2, t � 2 and 2 ‖ (q − 1);
and in the exceptional case the polynomial generator with irreducible factors all being trinomials
corresponding to the factorization (2.3).

As we did in Remark 2.1, take a complete set {r1, . . . , rρ} of representatives of q-cyclotomic cosets
modulo �t ; take a primitive �t th root η of unity (maybe in an extension of Fq), and denote Mη(X)

the minimal polynomial of η over Fq; by the formula (2.2),

X�t ps − 1 = (
X�t − 1

)ps = Mηr1 (X)ps
Mηr2 (X)ps · · · Mηrρ (X)ps

(4.1)

is the irreducible factorization of X�t ps − 1 in Fq[X]. Further, assume that

�u ‖ (q − 1), ζ = ξ
q−1
�u , v = min{t, u}. (4.2)
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Theorem 4.1. With notations as above, for any λ ∈ F ∗
q there is an index j with 0 � j � v such that λ ∼=�t ps ζ � j

and one of the following two cases holds:

(i) j = v, then λ ∼=�t ps 1, a�t ps
λ = 1 for an a ∈ F ∗

q and X�t ps − λ = λ · ∏ρ
i=1 Mηri (aX)ps

with {r1, . . . , rρ}
and Mηri (X)’s defined in (4.1).

(ii) 0 � j � v − 1, then a�t ps
λ = ζ k� j

for an a ∈ F ∗
q and a positive integer k coprime to �t ps; there are two

subcases:
(ii.a) if � = 2, t � 2 and 2 ‖ (q − 1), then j = 0, a�t ps

λ = −1 and, setting Ht , b and c to be as in Re-
mark 2.2, we have that

X2t ps − λ = (−λ) ·
∏

h∈Ht

(
a2t−b+1

X2t−b+1 − 2a2t−b
h X2t−b + (−1)c)ps

(4.3)

with all the factors in the right-hand side being irreducible over Fq;
(ii.b) otherwise, taking an integer s′ with 0 � s′ < m and s′ ≡ s (mod m), we have that

X�t ps − λ =
� j−1∏
i=0

(
X�t− j − a−�t− j

ζ i�u− j+kpm−s′ )ps

(4.4)

with all the factors in the right-hand side being irreducible over Fq.

Proof. As q − 1 = pm − 1, it is clear that gcd(ps,q − 1) = 1. From the notation (4.2), we have:

• ζ ∈ Fq is a primitive �uth root of unity, 〈ζ 〉 is the Sylow �-subgroup of F ∗
q , and ζ �u− j

for 0 � j � u

is a primitive � j th root of unity;
• �v = gcd(�t ps,q − 1), so ord(ξ�t ps

) = q−1
gcd(�t ps,q−1)

= q−1
�v = ord(ξ�v

), hence in the multiplicative
group F ∗

q we have that 〈
ξ�t ps 〉 = 〈

ξ�t 〉 = 〈
ξ�v 〉

(4.5)

which is a subgroup of F ∗
q of order q−1

�v .

Thus the quotient group F ∗
q /〈ξ�v 〉 is a cyclic group of order �v ; and for each positive divisor �v− j

of �v , where j = 0,1, . . . , v , 〈ζ � j
, ξ�v 〉/〈ξ�v 〉 is the unique subgroup of order �v− j of the quotient

group F ∗
q /〈ξ�v 〉.

By the equivalence (i) ⇔ (ii) of Theorem 3.2, the number of the �t ps-isometry classes of F ∗
q is equal

to v + 1; precisely, for any λ ∈ F ∗
q there is exactly one index j with 0 � j � v such that λ ∼=�t ps ζ � j

.
We continue the discussion in two cases.

Case (i): j = v , i.e. λ ∼=�t ps ζ �v
; by the equality (4.5), we see that 〈λ, ξ�t ps 〉 = 〈ζ �v

, ξ�v 〉 = 〈1, ξ�t ps 〉,

in other words, λ ∼=�t ps 1. By Corollary 3.4, a�t ps
λ = 1k = 1 for an a ∈ F ∗

q , and from the irreducible

factorization (4.1) we get the irreducible factorization X�t ps − λ = λ · ∏ρ
i=1 Mηri (aX)ps

.
Case (ii): 0 � j � v − 1. Then by (4.2) we have

0 � j � v − 1 < v = min{t, u}, (4.6)

in particular, v � 1, i.e. � | (q − 1); further, since λ ∼=�t ps ζ � j
, by Theorem 3.2 (iii) there is an a ∈ F ∗

q
and a positive integer k such that

a�t ps
λ = ζ k� j

, gcd
(
k, �t ps) = 1. (4.7)

We discuss it in the two subcases (ii.a) and (ii.b) as described in the theorem.
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Subcase (ii.a). Since � = 2, t � 2 and 2 ‖ (q − 1), we have that q is odd, t > u = v = 1, ζ = −1 and
j = 0; and, from (4.7) we see that � = 2 � k and a2t ps

λ = (−1)k = −1. From the formula (2.3), we have
the following irreducible factorization in Fq[X]:

X2t ps + 1 =
∏

h∈Ht

(
X2t−b+1 − 2h X2t−b + (−1)c)ps ;

thus the following is an irreducible factorization of (aX)2t ps + 1 in Fq[X]:

(aX)2t ps + 1 =
∏

h∈Ht

(
a2t−b+1

X2t−b+1 − 2a2t−b
h X2t−b + (−1)c)ps

.

However, since a2t ps = −λ−1, we have that (aX)2t ps = a2t ps
X2t ps = −λ−1 X2t ps

; thus we get the irre-
ducible factorization (4.3) of X2t ps − λ in Fq[X].

Subcase (ii.b). Remember that the conclusion in Remark 2.3 is applied in this subcase.
By the choice of s′ , m− s′ + s ≡ 0 (mod m), so (pm −1) | (pm−s′+s −1), i.e. pm−s′+s ≡ 1 (mod q−1);

in particular, β pm−s′+s = β for any β ∈ F ∗
q . Obviously, ζ �u− j

is a primitive � j th root of unity in Fq .
Therefore,

(
X�t− j

ζ kpm−s′

)� j

− 1 =
� j−1∏
i=0

(
X�t− j

ζ kpm−s′ − ζ i�u− j
)

,

hence

(
X�t− j

ζ kpm−s′

)� j ps

− 1 =
((

X�t− j

ζ kpm−s′

)� j

− 1

)ps

=
� j−1∏
i=0

(
X�t− j

ζ kpm−s′ − ζ i�u− j
)ps

.

Noting that ζ kpm−s′ ps = (ζ k)pm−s′+s = ζ k , we get that

X�t ps − ζ k� j =
� j−1∏
i=0

(
X�t− j − ζ i�u− j+kpm−s′ )ps

. (4.8)

From (4.7) and (4.6), we see that u > j, � | (pm − 1) and � � k; hence � | i�u− j but � � kpm−s′ . So

� � (i�u− j + kpm−s′ ), hence, in the multiplicative group F ∗
q we have that ord(ζ i�u− j+kpm−s′

) = �u . By
Remark 2.3, all the polynomials

X�t− j − ζ i�u− j+kpm−s′
, i = 0,1, . . . , � j − 1,

are irreducible polynomials in Fq[X], and (4.8) is an irreducible factorization of X�t ps − ζ k� j
in Fq[X].

Replacing X by aX , we get

(aX)�
t ps − ζ k� j =

� j−1∏ (
(aX)�

t− j − ζ i�u− j+kpm−s′ )ps

.

i=0
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But a�t ps
λ = ζ k� j

, i.e. a−�t ps
ζ k� j = λ. We get the irreducible factorization of X�t ps − λ in Fq[X] as

follows:

X�t ps − λ = a−�t ps
� j−1∏
i=0

(
(aX)�

t− j − ζ i�u− j+kpm−s′ )ps

.

Finally, noting that a−�t ps = ((a−�t− j
)ps

)�
j
, from the above we get the desired irreducible factorization

(4.4) of X�t ps − λ in Fq[X]. �
Remark 4.2. With the same notations as in Theorem 4.1, we can describe the polynomial generator
g(X) of any λ-constacyclic code C of length �t ps over Fq for the two cases as follows.

(i) j = v , then

g(X) =
ρ∏

i=1

Mηri (aX)ei , 0 � ei � ps, ∀i = 1, . . . , ρ.

By the way, we show an easy subcase of this case: if j = v = t , then ζ �u−t = ξ
q−1
�t ∈ Fq is a

primitive �t th root of unity, hence X�t − 1 = ∏�t−1
i=0 (X − ζ i�u−t

); thus the polynomial generator
g(X) looks simple:

g(X) =
�t−1∏
i=0

(
X − a−1ζ i�u−t )ei

, 0 � ei � ps, ∀i = 0, . . . , �t − 1. (4.9)

(ii) 0 � j < v � t , there are two subcases:
(ii.a) if � = 2, t � 2 and 2 ‖ (q − 1), then

g(X) =
∏

h∈Ht

(
a2t−b+1

X2t−b+1 − 2a2t−b
h X2t−b + (−1)c)ei

with 0 � ei � ps for i = 0,1, . . . ,2b−1 − 1;
(ii.b) otherwise,

g(X) =
� j−1∏
i=0

(
X�t− j − a−�t− j

ζ i�u− j+kpm−s′ )ei

with 0 � ei � ps for i = 0,1, . . . , � j − 1.

It is a special case for Theorem 4.1 that t = v = 1, i.e. � | (q − 1) and t = 1; at that case, as stated
in the following corollary, there are only two �ps-isometry classes in F ∗

q , and any constacyclic code of
length �ps over Fq has a polynomial generator with all irreducible factors being binomials.

Corollary 4.3. Assume that � is a prime such that �u ‖ (q − 1) with u � 1, ζ ∈ Fq is a primitive �uth root of
unity, and λ ∈ F ∗

q . Let C be a λ-constacyclic code of length �ps over Fq. Then:



1228 B.C. Chen et al. / Finite Fields and Their Applications 18 (2012) 1217–1231
Table 1
λ-Constacyclic codes of length 6 over F24 , λ ∼=6 1, a6λ = 1.

λ a λ-Constacyclic codes: 0 � j0, j1, j2 � 2 Sizes

1 1 〈(X − 1) j0 (X − ξ5) j1 (X − ξ10) j2 〉 166− jo− j1− j2

ξ3 ξ7 〈(ξ7 X − 1) j0 (ξ7 X − ξ5) j1 (ξ7 X − ξ10) j2 〉 166− jo− j1− j2

ξ6 ξ4 〈(ξ4 X − 1) j0 (ξ4 X − ξ5) j1 (ξ4 X − ξ10) j2 〉 166− jo− j1− j2

ξ9 ξ 〈(ξ X − 1) j0 (ξ X − ξ5) j1 (ξ X − ξ10) j2 〉 166− jo− j1− j2

ξ12 ξ3 〈(ξ3 X − 1) j0 (ξ3 X − ξ5) j1 (ξ3 X − ξ10) j2 〉 166− jo− j1− j2

• either λ ∈ 〈ξ�〉, a�ps
λ = 1 for an a ∈ Fq, and we have

C =
〈

�−1∏
i=0

(
X − a−1ζ i�u−1)ei

〉
, 0 � ei � ps, ∀i = 0,1, . . . , � − 1;

• or λ /∈ 〈ξ�〉, a�ps
λ = ζ k for an a ∈ F ∗

q and an integer k coprime to �ps, and, taking s′ such that 0 � s′ < m
and s′ ≡ s (mod m), we have

C = 〈(
X� − a−�ζ kpm−s′ )e〉

, 0 � e � ps.

Proof. It follows from Remark 4.2 immediately. We just remark that ζ �u−1
is a primitive �th root of

unity, while ζ kpm−s′
is a primitive �uth root of unity. �

More specifically, if � = 2 in the above corollary, we reobtain the main result of [6], as stated
below in our notation.

Corollary 4.4. Assume that 2u ‖ (q − 1) with u � 1, ζ ∈ Fq is a primitive 2uth root of unity, and λ ∈ F ∗
q . Let C

be a λ-constacyclic code of length 2ps over Fq. Then:

• either λ ∈ 〈ξ2〉, a2ps
λ = 1 for an a ∈ Fq, and we have

C = 〈(
X − a−1)e0(X + a−1)e1 〉

, 0 � ei � ps, ∀i = 0,1;

• or λ /∈ 〈ξ2〉, a2ps
λ = ζ k for an a ∈ F ∗

q and an integer k coprime to 2ps, and, taking an integer s′ such that
0 � s′ < m and s′ ≡ s (mod m), we have

C = 〈(
X2 − a−2ζ kpm−s′ )e〉

, 0 � e � ps.

Proof. Just note that ζ 2u−1
is a primitive square root, i.e. ζ 2u−1 = −1. �

5. Examples

By Theorem 4.1, the polynomial generators of all constacyclic codes of length �t ps over the finite
field F pm are easy to be established, where �, p are different primes and s, t are non-negative integers.
In this section, some examples are given to illustrate the result.

Example 5.1. Consider all constacyclic codes of length 6 = 3 · 2 over F24 . Here, � = 3, t = 1, p = 2 and
s = 1. Let ξ be a primitive 15th root of unity in F24 . Since 3 | (24 − 1), it follows that there exists
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Table 2
λ-Constacyclic codes of length 6 over F24 , λ ∼=6 ξ5, a6λ = ξ5k .

λ k a λ-Constacyclic codes: 0 � j � 2 Sizes

ξ 5 ξ4 〈(X3 − ξ8) j〉 166−3 j

ξ4 5 ξ6 〈(X3 − ξ2) j〉 166−3 j

ξ7 5 ξ8 〈(X3 − ξ11) j〉 166−3 j

ξ10 5 ξ5 〈(X3 − ξ5) j〉 166−3 j

ξ13 5 ξ2 〈(X3 − ξ14) j〉 166−3 j

ξ2 1 ξ3 〈(X3 − ξ) j〉 166−3 j

ξ5 1 1 〈(X3 − ξ10) j〉 166−3 j

ξ8 1 ξ2 〈(X3 − ξ4) j〉 166−3 j

ξ11 1 ξ4 〈(X3 − ξ13) j〉 166−3 j

ξ14 1 ξ 〈(X3 − ξ7) j〉 166−3 j

Table 3
λ-Constacyclic codes of length 175 over F52 , λ ∼=175 1, a175λ = 1.

λ a λ-Constacyclic codes: 0 � i, j,k � 25 Sizes

1 1 〈(X − 1)i g(X) jh(X)k〉 25175−i−3 j−3k

ξ ξ17 〈(ξ17 X − 1)i g(ξ17 X) jh(ξ17 X)k〉 25175−i−3 j−3k

ξ2 ξ10 〈(ξ10 X − 1)i g(ξ10 X) jh(ξ10 X)k〉 25175−i−3 j−3k

ξ3 ξ3 〈(ξ3 X − 1)i g(ξ3 X) jh(ξ3 X)k〉 25175−i−3 j−3k

ξ4 ξ20 〈(ξ20 X − 1)i g(ξ20 X) jh(ξ20 X)k〉 25175−i−3 j−3k

ξ5 ξ13 〈(ξ13 X − 1)i g(ξ13 X) jh(ξ13 X)k〉 25175−i−3 j−3k

ξ6 ξ6 〈(ξ6 X − 1)i g(ξ6 X) jh(ξ6 X)k〉 25175−i−3 j−3k

ξ7 ξ23 〈(ξ23 X − 1)i g(ξ23 X) jh(ξ23 X)k〉 25175−i−3 j−3k

ξ8 ξ16 〈(ξ16 X − 1)i g(ξ16 X) jh(ξ16 X)k〉 25175−i−3 j−3k

ξ9 ξ9 〈(ξ9 X − 1)i g(ξ9 X) jh(ξ9 X)k〉 25175−i−3 j−3k

ξ10 ξ2 〈(ξ2 X − 1)i g(ξ2 X) jh(ξ2 X)k〉 25175−i−3 j−3k

ξ11 ξ19 〈(ξ19 X − 1)i g(ξ19 X) jh(ξ19 X)k〉 25175−i−3 j−3k

ξ12 ξ12 〈(ξ12 X − 1)i g(ξ12 X) jh(ξ12 X)k〉 25175−i−3 j−3k

ξ13 ξ5 〈(ξ5 X − 1)i g(ξ5 X) jh(ξ5 X)k〉 25175−i−3 j−3k

ξ14 ξ22 〈(ξ22 X − 1)i g(ξ22 X) jh(ξ22 X)k〉 25175−i−3 j−3k

ξ15 ξ15 〈(ξ15 X − 1)i g(ξ15 X) jh(ξ15 X)k〉 25175−i−3 j−3k

ξ16 ξ8 〈(ξ8 X − 1)i g(ξ8 X) jh(ξ8 X)k〉 25175−i−3 j−3k

ξ17 ξ 〈(ξ X − 1)i g(ξ X) jh(ξ X)k〉 25175−i−3 j−3k

ξ18 ξ18 〈(ξ18 X − 1)i g(ξ18 X) jh(ξ18 X)k〉 25175−i−3 j−3k

ξ19 ξ11 〈(ξ11 X − 1)i g(ξ11 X) jh(ξ11 X)k〉 25175−i−3 j−3k

ξ20 ξ4 〈(ξ4 X − 1)i g(ξ4 X) jh(ξ4 X)k〉 25175−i−3 j−3k

ξ21 ξ21 〈(ξ21 X − 1)i g(ξ21 X) jh(ξ21 X)k〉 25175−i−3 j−3k

ξ22 ξ14 〈(ξ14 X − 1)i g(ξ14 X) jh(ξ14 X)k〉 25175−i−3 j−3k

ξ23 ξ7 〈(ξ7 X − 1)i g(ξ7 X) jh(ξ7 X)k〉 25175−i−3 j−3k

primitive 3rd root of unity in F24 . Therefore, X3 − 1 = (X − 1)(X − ξ5)(X − ξ10). By Theorem 4.1, the
number of the 6-isometry classes of F ∗

24 is 2. Hence, all the constacyclic codes are divided into two
parts. The polynomial generators of all constacyclic codes are given in Table 1 and Table 2.

Example 5.2. Consider all constacyclic codes of length 175 = 7 · 52 over F52 . Here, � = 7, t = 1, p = 5
and s = 2. Let ξ be a primitive 24th root of unity in F52 . Since gcd(175,52 − 1) = 1, by Corollary 3.5,
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Table 4
λ-Constacyclic codes of length 20 over F52 , λ ∼=20 1, a20λ = 1.

λ a λ-Constacyclic codes: 0 � j0, j1, j2, j3 � 5 Sizes

1 ξ6 〈(ξ6 X − 1) j0 (ξ6 X − ξ6) j1 (ξ6 X − ξ12) j2 (ξ6 X − ξ18) j3 〉 2520− jo− j1− j2− j3

ξ4 ξ 〈(ξ X − 1) j0 (ξ X − ξ6) j1 (ξ X − ξ12) j2 (ξ X − ξ18) j3 〉 2520− jo− j1− j2− j3

ξ8 ξ2 〈(ξ2 X − 1) j0 (ξ2 X − ξ6) j1 (ξ2 X − ξ12) j2 (ξ2 X − ξ18) j3 〉 2520− jo− j1− j2− j3

ξ12 ξ3 〈(ξ3 X − 1) j0 (ξ3 X − ξ6) j1 (ξ3 X − ξ12) j2 (ξ3 X − ξ18) j3 〉 2520− jo− j1− j2− j3

ξ16 ξ4 〈(ξ4 X − 1) j0 (ξ4 X − ξ6) j1 (ξ4 X − ξ12) j2 (ξ4 X − ξ18) j3 〉 2520− jo− j1− j2− j3

ξ20 ξ5 〈(ξ5 X − 1) j0 (ξ5 X − ξ6) j1 (ξ5 X − ξ12) j2 (ξ5 X − ξ18) j3 〉 2520− jo− j1− j2− j3

Table 5
λ-Constacyclic codes of length 20 over F52 , λ ∼=20 ξ3, a20λ = ξ3k .

λ k a λ-Constacyclic codes: 0 � j � 5 Sizes

ξ 3 ξ4 〈(X4 − ξ5) j〉 2520−4 j

ξ5 3 ξ23 〈(X4 − ξ5) j〉 2520−4 j

ξ9 3 ξ6 〈(X4 − ξ21) j〉 2520−4 j

ξ13 3 ξ 〈(X4 − ξ14) j〉 2520−4 j

ξ17 3 ξ2 〈(X4 − ξ13) j〉 2520−4 j

ξ21 3 ξ3 〈(X4 − ξ9) j〉 2520−4 j

ξ3 1 1 〈(X4 − ξ15) j〉 2520−4 j

ξ7 1 ξ 〈(X4 − ξ11) j〉 2520−4 j

ξ11 1 ξ2 〈(X4 − ξ7) j〉 2520−4 j

ξ15 1 ξ3 〈(X4 − ξ3) j〉 2520−4 j

ξ19 1 ξ4 〈(X4 − ξ23) j〉 2520−4 j

ξ23 1 ξ5 〈(X4 − ξ19) j〉 2520−4 j

Table 6
λ-Constacyclic codes of length 20 over F52 , λ ∼=20 ξ6, a20λ = ξ6k .

λ k a λ-Constacyclic codes: 0 � j0, j1 � 5 Sizes

ξ2 1 ξ23 〈(X2 − ξ5) j0 (X2 + ξ5) j1 〉 2520−2 jo−2 j1

ξ6 1 ξ6 〈(X2 − ξ15) j0 (X2 + ξ15) j1 〉 2520−2 jo−2 j1

ξ10 1 ξ 〈(X2 − ξ) j0 (X2 + ξ) j1 〉 2520−2 jo−2 j1

ξ14 1 ξ2 〈(X2 − ξ23) j0 (X2 + ξ23) j1 〉 2520−2 jo−2 j1

ξ18 1 ξ3 〈(X2 − ξ18) j0 (X2 + ξ18) j1 〉 2520−2 jo−2 j1

ξ22 1 ξ4 〈(X2 − ξ11) j0 (X2 + ξ11) j1 〉 2520−2 jo−2 j1

all the constacyclic codes of length 175 are isometric to the cyclic codes of length 175. By [8], it
follows that X7 −1 = (X −1)(X3 +ξ X2 +ξ17 X −1)(x3 +ξ5 X2 +ξ13 X −1) is the factorization of X7 −1
into irreducible factors over F52 . Let g(X) = X3 + ξ X2 + ξ17 X − 1 and h(X) = x3 + ξ5 X2 + ξ13 X − 1.
The polynomial generators of constacyclic codes are given in Table 3.

Example 5.3. Consider all constacyclic codes of length 20 = 22 · 5 over F52 . Here, � = 2, t = 2, p = 5
and s = 1. Let ξ be a primitive 24th root of unity in F52 . Since 4 | (52 − 1), it follows that there
exists a primitive 4th root of identity in F52 . Therefore, X4 − 1 = (X − 1)(X − ξ6)(X − ξ12)(X − ξ18).
By Theorem 4.1, the number of the 20-isometry classes of F ∗

24 is 3. The polynomial generators of
constacyclic codes are given in Tables 4–6.
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