Constacyclic codes over finite fields

Bocong Chen *, Yun Fan, Liren Lin, Hongwei Liu

School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei, 430079, China

A R T I C L E I N F O

Article history:
Received 3 May 2012
Revised 6 August 2012
Accepted 2 October 2012
Available online 10 October 2012
Communicated by W. Cary Huffman

MSC:
94B05
94B15

Keywords:
Finite field
Constacyclic code
Isometry
Polynomial generator

A B S T R A C T

An equivalence relation called isometry is introduced to classify constacyclic codes over a finite field; the polynomial generators of constacyclic codes of length $\ell^t p^s$ are characterized, where p is the characteristic of the finite field and ℓ is a prime different from p.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Constacyclic codes constitute a remarkable generalization of cyclic codes, hence form an important class of linear codes in the coding theory. And, constacyclic codes also have practical applications as they can be encoded with shift registers.

In [3], for any positive integer a and any odd integer n, Blackford used the discrete Fourier transform to show that $\mathbb{Z}_4[X]/\langle X^{2^n} + 1 \rangle$ is a principal ideal ring, where \mathbb{Z}_4 denotes the residue ring of integers modulo 4, and to establish a concatenated structure of negacyclic codes of length 2^n over \mathbb{Z}_4. In [1] Abualrub and Oehmke classified the cyclic codes of length 2^k over \mathbb{Z}_4 by their generators. Generalizing the result of [1], Dougherty and Ling in [7] classified the cyclic codes of length 2^k over the Galois ring $\text{GR}(4, m)$.

* Corresponding author.

E-mail addresses: b_c_chen@yahoo.com.cn (B.C. Chen), yunfan02@yahoo.com.cn (Y. Fan), xiaomi1985516@126.com (L.R. Lin), h_w_liu@yahoo.com.cn (H. Liu).

1071-5797/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ffa.2012.10.001
Let F_q be a finite field with $q = p^m$ elements where p is a prime, and let $\lambda \in F_q^*$, where F_q^* denotes the multiplicative group consisting of all non-zero elements of F_q. Any λ-constacyclic code C of length n over F_q is identified with an ideal of the quotient algebra $F_q[X]/(X^n - \lambda)$ where $(X^n - \lambda)$ denotes the ideal generated by $X^n - \lambda$ of the polynomial algebra $F_q[X]$, hence C is generated by a factor polynomial of $X^n - \lambda$, called the polynomial generator of the λ-constacyclic code C. In order to obtain all λ-constacyclic codes of length n over F_q, we need to determine all the irreducible factors of $X^n - \lambda$ over F_q. It is remarkable that, though all irreducible binomials over F_q have been explicitly characterized by Serret early in 1866 (e.g. see [11, Theorem 3.75] or [12, Theorem 10.7]), no effective method were found to characterize the irreducible factors of $X^n - \lambda$ over F_q so far. It is a challenge to determine explicitly the polynomial generators of all constacyclic codes over finite fields.

It is well known that $X^n - \lambda$ is a factor of $X^N - 1$ for a suitable integer N, and the irreducible factors of $X^N - 1$ over F_q with $q = p^m$ as above can be described by the q-cyclotomic cosets. Recently, assuming that p is odd and the order of λ in the multiplicative group F_q^* is a power of 2, Bakshi and Raka in [2] described the polynomial generators of λ-constacyclic codes of length 2^t over F_q by means of recognizing the q-cyclotomic cosets which are corresponding to the irreducible factors of $X^{2^t} - \lambda$. In the same paper [2], Bakshi and Raka determined the polynomial generators of all the λ-constacyclic codes of length 2^tp^s over F_q, $q = p^m$, for any non-zero λ in F_q. Almost the same time but in another approach, assuming that p is odd, Dinh in [6] determined the polynomial generators of all constacyclic codes of length $2p^s$ over F_q in a very explicit form: the irreducible factors of the polynomial generators are all binomials of degree 1 or 2.

In this paper, we are concerned with the constacyclic codes of length $\ell^t p^s$ over F_q, where $q = p^m$ as before and ℓ is a prime different from p. We introduce a concept “isometry” for the non-zero elements of F_q to classify constacyclic codes over F_q such that the constacyclic codes belonging to the same isometry class have the same distance structures and the same algebraic structures. Then we characterize in an explicit way the polynomial generators of constacyclic codes of length $\ell^t p^s$ over F_q according to the isometry classes. It is notable that, except for the constacyclic codes which are isometric to cyclic codes, the irreducible factors of the polynomial generator of any constacyclic code of length $\ell^t p^s$ over F_q are either all binomials or all trinomials.

The plan of this paper is as follows. The necessary notations and some known results to be used are provided in Section 2. In Section 3, we introduce precisely the concept of isometry, which is an equivalence relation on F_q^*; and some necessary and sufficient conditions for any two elements of F_q^* isometric to each other are established; as a consequence, the constacyclic codes isometric to cyclic codes are described. In Section 4, we classify the constacyclic codes of length $\ell^t p^s$ over F_q into isometry classes, characterize explicitly the polynomial generators of the constacyclic codes of each isometry class, and derive some consequences, including the main result of [6]. In Section 5, with the help of the GAP [8], the polynomial generators of all constacyclic codes of length 6 over F_{24}, all constacyclic codes of length 175 over F_{52} and all constacyclic codes of length 20 over F_{52} are computed.

2. Preliminaries

Throughout this paper F_q denotes a finite field with q elements where $q = p^m$ is a power of a prime p. Let F_q^* denote the multiplicative group of F_q consisting of all non-zero elements of F_q; and for $\beta \in F_q^*$, let $\text{ord}(\beta)$ denote the order of β in the group F_q^*; then $\text{ord}(\beta)$ is a divisor of $q - 1$, and β is called a primitive $\text{ord}(\beta)$th root of unity. It is well known that F_q^* is a cyclic group of order $q - 1$, i.e. F_q^* is generated by a primitive $(q - 1)$th root ξ of unity, we denote it by $F_q^* = \langle \xi \rangle$. For any integer k, it is known that $\text{ord}(\xi^k) = \frac{q - 1}{\text{gcd}(k,q - 1)}$, where $\text{gcd}(k,q - 1)$ denotes the greatest common divisor of k and $q - 1$.

Assume that n is a positive integer and λ is a non-zero element of F_q. A linear code C of length n over F_q is said to be λ-constacyclic if for any code word $(c_0, c_1, \ldots, c_{n-1}) \in C$ we have that $(\lambda c_{n-1}, c_0, c_1, \ldots, c_{n-2}) \in C$. We denote by $F_q[X]$, the polynomial algebra over F_q, and denote by $\langle X^n - \lambda \rangle$, the ideal of $F_q[X]$ generated by $X^n - \lambda$. Any element of the quotient algebra $F_q[X]/\langle X^n - \lambda \rangle$ is uniquely represented by a polynomial $a_0 + a_1 X + \cdots + a_{n-1} X^{n-1}$ of degree less than n, hence is
identified with a word \((a_0, a_1, \ldots, a_{n-1})\) of length \(n\) over \(F_q\); so we have the corresponding Hamming weight and the Hamming distance on the algebra \(F_q[X]/(X^n - \lambda)\).

In this way, any \(\lambda\)-constacyclic coset \(C\) of length \(n\) over \(F_q\) is identified with exactly one ideal of the quotient algebra \(F_q[X]/(X^n - \lambda)\), which is generated by a divisor \(g(X)\) of \(X^n - \lambda\), and the divisor \(g(X)\) is determined by \(C\) uniquely up to a scale; in that case, \(g(X)\) is called a polynomial generator of \(C\) and write it as \(C = \langle g(X) \rangle\). Specifically, the irreducible factorization of \(X^n - \lambda\) in \(F_q[X]\) determines all \(\lambda\)-constacyclic codes of length \(n\) over \(F_q\).

Note that the 1-constacyclic codes are just the usual cyclic codes, and there is a lot of literature to deal with the cyclic codes. In particular, the irreducible factorization of \(X^n - 1\) in \(F_q[X]\) can be described as follows. As usual, we adopt the notations: \(k \mid n\) means that the integer \(k\) divides \(n\); and, for a prime integer \(\ell\), \(\ell^e \parallel n\) means that \(\ell^e \mid n\) but \(\ell^{e+1} \nmid n\).

Remark 2.1. Assume that \(n = n'p^s\) with \(s \geq 0\) and \(p \nmid n'\). For an integer \(r\) with \(0 \leq r \leq n' - 1\), the \(q\)-cyclotomic coset of \(r\) modulo \(n'\) is defined by

\[
C_r = \{ r \cdot q^j \pmod{n'} \mid j = 0, 1, \ldots \}.
\]

A subset \(\{r_1, r_2, \ldots, r_\rho\}\) of \(\{0, 1, \ldots, n' - 1\}\) is called a complete set of representatives of all \(q\)-cyclotomic cosets modulo \(n'\) if \(C_{r_1}, C_{r_2}, \ldots, C_{r_\rho}\) are distinct and \(\bigcup_{i=1}^\rho C_{r_i} = \{0, 1, \ldots, n' - 1\}\). Take \(\eta\) to be a primitive \(n'\)th root of unity (maybe in an extension of \(F_q\)), and denote by \(M_{\eta}(X)\), the minimal polynomial of \(\eta\) over \(F_q\). It is well known that (e.g. see [10, Theorem 4.1.1]):

\[
X^{n'} - 1 = M_{\eta^{r_1}}(X)M_{\eta^{r_2}}(X) \cdots M_{\eta^{r_\rho}}(X) \tag{2.1}
\]

with

\[
M_{\eta^{r_i}}(X) = \prod_{j \in C_{r_i}} (X - \eta^j), \quad i = 1, \ldots, \rho,
\]

all being irreducible in \(F_q[X]\), hence

\[
X^n - 1 = (X^{n'} - 1)^{p^s} = M_{\eta^{r_1}}(X)^{p^s}M_{\eta^{r_2}}(X)^{p^s} \cdots M_{\eta^{r_\rho}}(X)^{p^s} \tag{2.2}
\]

is the irreducible decomposition of \(X^n - 1\) in \(F_q[X]\).

In a very special case the irreducible factorization of \(X^n - \lambda\) in \(F_q[X]\) has been characterized precisely, we quote it as the following remark.

Remark 2.2. Assume that \(q \equiv 3 \pmod{4}\) (in particular, \(q\) is a power of an odd prime), equivalently, \(2 \parallel (q - 1)\). Then \(X^2 + 1\) is factorized into irreducible polynomials over \(F_q\) in [4, Theorem 1]. We should mention that, though [4, Theorem 1] is proved for a prime \(p\) with \(p \equiv 3 \pmod{4}\), one can check in the same way as in [4] that it also holds for the present case when \(q\) is a power of a prime and \(q \equiv 3 \pmod{4}\). We reformulate the result as follows. Note that \(4 \mid (q+1)\) in the present case, hence there is an integer \(e \geq 2\) such that \(2e \parallel (q+1)\). Set \(H_1 = \{0\}\); recursively define

\[
H_i = \left\{ \pm \left(\frac{h+1}{2} \right)^{q+1} \right\} \quad | h \in H_{i-1} \right\}.
\]
for \(i = 2, 3, \ldots, e - 1 \); and set

\[
H_e = \left\{ \pm \left(\frac{h - 1}{2} \right)^{\frac{q+1}{4}} \bigg| h \in H_{e-1} \right\} = H_{e+1} = H_{e+2} = \cdots.
\]

Let \(t \geq 1 \). Set \(b = t \) and \(c = 0 \) if \(1 \leq t \leq e - 1 \); while set \(b = e \) and \(c = 1 \) if \(t \geq e \). Then (see [4, Theorem 1] or [12, Theorem 10.13]):

\[
X^{2^t} + 1 = \prod_{h \in H_t} \left(X^{2^{t-b+1}} - 2hX^{2^{t-b}} + (-1)^c \right)
\]

with all the factors in the right-hand side being irreducible over \(F_q \).

Return to our general case. As we mentioned before, the irreducible non-linear binomials over \(F_q \) have been determined by Serret early in 1866 (see [11, Theorem 3.75] or [12, Theorem 10.7]), we restate it as a remark for later quotations.

Remark 2.3. Assume that \(n \geq 2 \). For any \(a \in F_q^* \) with \(\text{ord}(a) = k \), the binomial \(X^n - a \) is irreducible over \(F_q \) if and only if both the following two conditions are satisfied:

(i) Every prime divisor of \(n \) divides \(k \), but does not divide \((q-1)/k \);

(ii) If \(4 \mid n \), then \(4 \mid (q-1) \).

3. Isometries between constacyclic codes

Let \(F_q \) be a finite field of order \(q = p^m \) and \(F_q^* = \langle \xi \rangle \) as before, where \(\xi \) is a primitive \((q-1) \)th root of unity. Let \(n \) be a positive integer.

Generalizing the usual equivalence between codes, we consider a kind of equivalences between the \(\lambda \)-constacyclic codes and the \(\mu \)-constacyclic codes which preserve the algebraic structures of the constacyclic codes.

Definition 3.1. Let \(\lambda, \mu \in F_q^* \). We say that an \(F_q \)-algebra isomorphism

\[
\varphi : F_q[X]/\langle X^n - \mu \rangle \to F_q[X]/\langle X^n - \lambda \rangle
\]

is an isometry if it preserves the Hamming distances on the algebras, i.e.

\[
d_H(\varphi(a), \varphi(a')) = d_H(a, a'), \quad \forall a, a' \in F_q[X]/\langle X^n - \mu \rangle.
\]

And, if there is an isometry between \(F_q[X]/\langle X^n - \lambda \rangle \) and \(F_q[X]/\langle X^n - \mu \rangle \), then we say that \(\lambda \) is \(n \)-isometric to \(\mu \) in \(F_q \), and denote it \(\lambda \cong_n \mu \).

Obviously, the \(n \)-isometry \(\cong_n \) is an equivalence relation on \(F_q^* \), hence \(F_q^* \) is partitioned into \(n \)-isometry classes. If \(\lambda \cong_n \mu \), then all the \(\lambda \)-constacyclic codes of length \(n \) are one-to-one corresponding to all the \(\mu \)-constacyclic codes of length \(n \) such that the corresponding constacyclic codes have the same dimension and the same distance distribution, specifically, have the same minimum distance; at that case we say that, for convenience, the \(\lambda \)-constacyclic codes of length \(n \) are isometric to the \(\mu \)-constacyclic codes of length \(n \). So, it is enough to study the \(n \)-isometry classes of constacyclic codes.
Theorem 3.2. For any $\lambda, \mu \in F_q^*$, the following three statements are equivalent to each other:

(i) $\lambda \equiv \mu \mod n$.
(ii) $\langle \lambda, \xi^n \rangle = \langle \mu, \xi^n \rangle$, where $\langle \lambda, \xi^n \rangle$ denotes the subgroup of F_q^* generated by λ and ξ^n.
(iii) There is a positive integer $k < n$ with $\gcd(k, n) = 1$ and an element $a \in F_q^*$ such that $a^n \lambda = \mu^k$ and the following map

$$\varphi_a : F_q[X]/(X^n - \mu^k) \to F_q[X]/(X^n - \lambda), \tag{3.1}$$

which maps any element $f(X) + \langle X^n - \mu^k \rangle$ of $F_q[X]/(X^n - \mu^k)$ to the element $f(aX) + \langle X^n - \lambda \rangle$ of $F_q[X]/(X^n - \lambda)$, is an isometry.

In particular, the number of n-isometry classes of F_q^* is equal to the number of positive divisors of $\gcd(n, q - 1)$.

Proof. (i) \Rightarrow (ii). By (i) we have an isometry φ between the algebras:

$$\varphi : F_q[X]/\langle X^n - \mu \rangle \to F_q[X]/\langle X^n - \lambda \rangle.$$

Since φ preserves the Hamming distance, it must map X of weight 1 of the algebra $F_q[X]/\langle X^n - \mu \rangle$ to an element of the algebra $F_q[X]/\langle X^n - \lambda \rangle$ of weight 1, so there is an element $b \in F_q^*$ and an integer j with $0 \leq j < n$ such that

$$\varphi(X) = bX^j. \tag{3.2}$$

Consider $\varphi(X^i) = (bX^j)^i = b^iX^{ji}$ (mod $X^n - \lambda$) for $i = 0, 1, \ldots, n - 1$; since φ is a bijection, we see that any index e with $0 \leq e \leq n - 1$ must appear in the following sequence:

$$ji \pmod{n}, \quad i = 0, 1, \ldots, n - 1;$$

hence j (mod n) must be invertible, i.e. $0 < j < n$ and $\gcd(j, n) = 1$. Note that $X^n = \lambda$ (mod $X^n - \lambda$); further, note that φ is an algebra isomorphism and $\mu \in F_q$, we see that $\varphi(\mu) = \mu$, and can make the following calculation in $F_q[X]/\langle X^n - \lambda \rangle$ (or equivalently, modulo $X^n - \lambda$):

$$\mu = \varphi(\mu) = \varphi(X) = \varphi(X^n) = (bX^j)^n = b^nX^{jn} = b^n\lambda^j; \tag{3.3}$$

i.e. as elements of F_q we have $\mu = \lambda^j b^n$. Obviously, $\langle \xi^n \rangle = \{a^n | a \in F_q^*\}$. We have $\mu \in \langle \lambda, \xi^n \rangle$, and hence $\langle \mu, \xi^n \rangle \subseteq \langle \lambda, \xi^n \rangle$. On the other hand, since $\gcd(j, n) = 1$, there are integers k, h such that $jk + nh = 1$; so

$$\mu^k = \lambda^{jk} b^{nk} = \lambda^{jk+nh} \lambda^{-nh} b^{nk} = \lambda \lambda^{-h} b^n;$$

i.e. $\lambda = \mu^k (\lambda b^{-h})^n \in \langle \mu, \xi^n \rangle$; and we have that $\langle \lambda, \xi^n \rangle \subseteq \langle \mu, \xi^n \rangle$. Thus, we get the desired conclusion:

$$\langle \lambda, \xi^n \rangle = \langle \mu, \xi^n \rangle.$$

(ii) \Rightarrow (iii). Denote $d = \gcd(n, q - 1)$. Then the subgroup $\langle \xi^n \rangle = \langle \xi^d \rangle$, and the quotient group

$$F_q^*/\langle \xi^n \rangle = F_q^*/\langle \xi^d \rangle = \langle \xi \rangle/\langle \xi^d \rangle$$

is a cyclic group of order d. From the statement (ii) we have that

$$\langle \lambda, \xi^n \rangle/\langle \xi^d \rangle = \langle \mu, \xi^n \rangle/\langle \xi^d \rangle;$$
which implies that, in the cyclic group $F_q^\ast/(\langle \xi^d \rangle)$ of order d, λ and μ generate the one and the same subgroup, in particular, they have the same order in the quotient group $F_q^\ast/(\langle \xi^d \rangle)$. Thus there are integers k', h' such that $\lambda = \mu^k \xi^{dh'}$ and gcd($k', d) = 1$. Since $d \mid n$, it is known that the natural map

$$Z_n^\ast \to Z_d^\ast, \quad z \mod n \mapsto z \mod d,$$

is a surjective homomorphism, where Z_n^\ast denotes the multiplicative group consisting of all reduced residue classes modulo n. We can take a positive integer $k < n$ with gcd($k, n) = 1$ and $k \equiv k' \mod d$. Then there is an integer h such that $k' = k + dh$. So

$$\lambda = \mu^k \xi^{dh'} = \mu^{k+dh} \xi^{dh'} = \mu^k (\mu^h \xi^{dh'})^d.$$

As $(\mu^h \xi^{dh'})^d \in (\langle \xi^d \rangle) = (\langle \xi \rangle)$, we have an $a \in F_q^\ast$ such that $(\mu^h \xi^{dh'})^d = a^{-n}$. In a word, we have an integer k coprime to n and an $a \in F_q^\ast$ such that $a^n \lambda = \mu^k$. Now we define an algebra homomorphism:

$$\hat{\phi}_a : F_q[X] \to F_q[X]/(X^n - \lambda),$$

by mapping $f(X) \in F_q[X]$ to $\hat{\phi}_a(f(X)) = f(aX) \mod (X^n - \lambda)$; since a is non-zero, $\hat{\phi}_a$ is obviously surjective. Noting that $X^n = \lambda \mod (X^n - \lambda)$, we have

$$\hat{\phi}_a(X^n - \mu^k) = (aX)^n - \mu^k = a^n X^n - \mu^k = a^n \lambda - \mu^k = 0 \mod (X^n - \lambda).$$

So the surjective algebra homomorphism $\hat{\phi}_a$ induces an algebra isomorphism

$$\varphi_a : F_q[X]/(X^n - \mu^k) \to F_q[X]/(X^n - \lambda),$$

which maps any element $f(X) + (X^n - \mu^k)$ of $F_q[X]/(X^n - \mu^k)$ to the element $f(aX) + (X^n - \lambda)$ of $F_q[X]/(X^n - \lambda)$; since φ_a maps any element X^j of weight 1 to an element $a^j X^j$ of weight 1, the algebra isomorphism φ_a preserves Hamming distances of the algebras. We are done for the statement (iii).

(iii) \Rightarrow (i). Since the map (3.1) in the statement (iii) is an algebra isomorphism, we have that

$$0 = \varphi_a(X^n - \mu^k) = (aX)^n - \mu^k = a^n \lambda - \mu^k \mod (X^n - \lambda);$$

that is, $\lambda a^n = \mu^k$. By (iii) it is assumed that gcd($k, n) = 1$, i.e. there are integers j, h such that $kj + nh = 1$, which also implies that gcd($j, n) = 1$; so

$$\mu = \mu^{kj+nh} = (\mu^k)^j \mu^{nh} = (\lambda a^n)^j \mu^{hn} = \lambda^j (a^j \mu^h)^n.$$

Set $b = a^j \mu^h$, then $b \in F_q^\ast$ and $b^n \lambda^j = \mu$. Since $F_q[X]$ is a free F_q-algebra with X as a free generator, by mapping X to bX^j, we can define an algebra homomorphism:

$$\hat{\phi} : F_q[X] \to F_q[X]/(X^n - \lambda),$$

which maps any $f(X) \in F_q[X]$ to $\hat{\phi}(f(X)) = f(bX^j) \mod (X^n - \lambda)$. Since j is coprime to n, the following

$$\hat{\phi}(X^i) = b^i X^{ji} \mod (X^n - \lambda), \quad i = 0, 1, \ldots, n - 1,$$
form a basis of the algebra $F_q[X]/(X^n - \lambda)$; so ϕ is a surjective algebra homomorphism. Further, we have

$$\phi(X^n - \mu) = (bX)^n - \mu = b^nX^{nj} - \mu = b^n\lambda^j - \mu = 0 \pmod{X^n - \lambda}.$$

Thus the surjective algebra homomorphism ϕ induces an algebra isomorphism:

$$\varphi : F_q[X]/(X^n - \mu) \rightarrow F_q[X]/(X^n - \lambda),$$

which maps any element $f(X) + \langle X^n - \mu \rangle$ of $F_q[X]/(X^n - \mu)$ to the element $f(bX) + \langle X^n - \lambda \rangle$ of $F_q[X]/(X^n - \lambda)$; in particular, φ maps any element X^i of weight 1 to an element $b^iX^{ji} \pmod{X^n - \lambda}$ of weight 1, hence φ preserves the Hamming distances. That is, (i) holds.

Finally, by the equivalence of (i) and (ii), the number of the n-isometry classes of $F_q^*\lambda$ is equal to the number of the subgroups of the quotient group $F_q^*/\langle \xi^d \rangle$ where $d = \gcd(n, q - 1)$. The quotient $F_q^*/\langle \xi^d \rangle$ is a cyclic group of order d, so, for any divisor $d' | d$ it has a unique subgroup of order d'. Then the number of the subgroups of $F_q^*/\langle \xi^d \rangle$ is equal to the number of the positive divisors of d. In conclusion, the number of the n-isometry classes of F_q^* is equal to the number of the positive divisors of $\gcd(n, q - 1)$. \hfill \square

Remark 3.3. Though the statement (i) of Theorem 3.2 states that there is an isometry $\varphi : F_q[X]/\langle X^n - \mu \rangle \rightarrow F_q[X]/\langle X^n - \lambda \rangle$, the statement (iii) of Theorem 3.2 exhibits a specific isometry φ_n such that $\varphi_n(X) = aX$, which outperforms φ in (3.2) and provides an easy way to connect the polynomial generators of the λ-constacyclic codes with those of the μ^k-constacyclic codes.

In particular, taking $\mu = 1$, we see that $\lambda \equiv_n 1$ implies that there is an isometry $\varphi_n : F_q[X]/\langle X^n - 1 \rangle \rightarrow F_q[X]/\langle X^n - \lambda \rangle$ such that $\varphi(X) = aX$. Thus for the constacyclic codes n-isometric to the cyclic codes, we have the following consequence which is closely related to [9, Lemma 3.1].

Corollary 3.4. Let n be a positive integer, and $\lambda \in F_q^*$. The λ-constacyclic codes of length n are isometric to the cyclic codes of length n if and only if $d^n\lambda = 1$ for an element $a \in F_q^*$; further, in that case the map

$$\varphi_n : F_q[X]/\langle X^n - 1 \rangle \rightarrow F_q[X]/\langle X^n - \lambda \rangle,$$

which maps $f(X)$ to $f(aX)$, is an isometry, and

$$X^n - \lambda = \lambda \cdot M_{\eta^1} (aX) p^i M_{\eta^2}(aX) p^i \cdots M_{\eta^\rho}(aX) p^i$$

is an irreducible factorization of $X^n - \lambda$ in $F_q[X]$, where $n = n'p^s$ with $s \geq 0$ and $p \nmid n'$, $M_{\eta}(X)$ and $\{r_1, \ldots, r_\rho\}$ are defined in the formula (2.2); in particular, any λ-constacyclic code C has a polynomial generator as follows:

$$\prod_{i=1}^{p^\rho} M_{\eta^i}(aX)^{e_i}, \quad 0 \leq e_i \leq p^s, \quad \forall i = 1, \ldots, \rho.$$

Proof. By Theorem 3.2, $\lambda \equiv_n 1$ if and only if $\langle \lambda, \xi^n \rangle = \langle 1, \xi^n \rangle = \langle \xi^n \rangle$; i.e. $\lambda \equiv_n 1$ if and only if $\lambda \in \langle \xi^n \rangle$. However, $\langle \xi^n \rangle = \{a^n | a \in F_q^*\}$; so $\lambda \equiv_n 1$ if and only if $\lambda = b^n$ for an element $b \in F_q^*$. Assume that it is the case, i.e. $d^\rho \lambda = 1$. By the statement (iii) of Theorem 3.2, the map (3.4) is an isometry between the algebras. And, as in the formula (2.2), we have the irreducible decomposition of $X^n - 1$ in $F_q[X]$.
\[X^n - 1 = M_{\eta_1}(X)^{p_1^r} M_{\eta_2}(X)^{p_2^r} \cdots M_{\eta_p}(X)^{p_p^r}; \]

hence the following is an irreducible decomposition of \((aX)^n - 1\) in \(F_q[X]\):

\[(aX)^n - 1 = M_{\eta_1}(aX)^{p_1^r} M_{\eta_2}(aX)^{p_2^r} \cdots M_{\eta_p}(aX)^{p_p^r}. \]

However, since \(a^n = \lambda^{-1}\), we have that \((aX)^n = a^n X^n = \lambda^{-1} X^n\); thus we get the irreducible decomposition of \(X^n - \lambda\) in \(F_q[X]\) in the formula (3.5). Finally, the polynomial generator of any \(\lambda\)-constacyclic code is a divisor of \(X^n - \lambda\), hence has the form in (3.6).

Corollary 3.5. If \(n\) is a positive integer coprime to \(q - 1\), then there is only one \(n\)-isometry class in \(F_q^n\); in particular, for any \(\lambda \in F_q^*\) the \(\lambda\)-constacyclic codes of length \(n\) are isometric to the cyclic codes of length \(n\), i.e. \(a^n \lambda = 1\) for an \(a \in F_q^*\) and all the (3.4), (3.5) and (3.6) hold.

Proof. Since \(\gcd(n, q - 1) = 1\), the conclusion is obtained immediately. It is an automorphism of the group \(F_q^*\) which maps any \(a \in F_q^*\) to \(a^\ell \in F_q^*\); thus there is a \(b \in F_q^*\) such that \(\lambda = b^\ell\).

Let \(n = n' p^s\) as in Corollary 3.4. If \(n' = 1\), then \(n = p^s\) is coprime to \(q - 1\) and \(X^{p^s} - 1 = (X - 1)^{p^s}\), and we get the following result at once.

Corollary 3.6. For any \(\lambda \in F_q^*\) the \(\lambda\)-constacyclic codes of length \(p^s\) are isometric to the cyclic codes of length \(p^s\); in particular, there is an \(a \in F_q^*\) such that \(a^p \lambda = 1\) and \(X^{p^s} - \lambda = \lambda (X - 1)^{p^s}\) is an irreducible factorization in \(F_q[X]\); in particular, any \(\lambda\)-constacyclic code \(C\) of length \(p^s\) has a polynomial generator \((X - a^{-1})^i\) with \(0 \leq i \leq p^s\).

Remark 3.7. Taking \(\lambda = -1\), Corollary 3.6 implies that negacyclic codes of length \(p^s\) are isometric to cyclic codes of length \(p^s\). This generalizes [5, Theorem 3.3] which showed that, in our terminology, \(\lambda\)-constacyclic codes of length \(p^s\) over \(F_{p^m}\) are isometric to the negacyclic codes of length \(p^s\) over \(F_{p^m}\).

4. Constacyclic codes of length \(\ell^t p^s\)

Let \(F_q\) be a finite field of order \(q = p^m\) and \(F_q^* = \langle \xi \rangle\) be generated by a primitive \((q - 1)\)th root \(\xi\) of unity as before.

In this section, we consider constacyclic codes of length \(\ell^t p^s\) over \(F_q\), where \(\ell\) is a prime integer different from \(p\) and \(s\), \(t\) are non-negative integers. We will show that any \(\lambda\)-constacyclic code of length \(\ell^t p^s\) with \(\lambda \not\equiv \ell^t p^s\) has a polynomial generator with irreducible factors all being binomials of degrees equal to powers of the prime \(\ell\) except for the case when \(\ell = 2\), \(t \geq 2\) and \(2 \parallel (q - 1)\); and in the exceptional case the polynomial generator with irreducible factors all being trinomials corresponding to the factorization (2.3).

As we did in Remark 2.1, take a complete set \(\{r_1, \ldots, r_p\}\) of representatives of \(q\)-cyclotomic cosets modulo \(\ell^t\); take a primitive \(\ell^t\)th root \(\eta\) of unity (maybe in an extension of \(F_q\)), and denote \(M_{\eta}(X)\) the minimal polynomial of \(\eta\) over \(F_q\); by the formula (2.2),

\[X^{\ell^t p^s} - 1 = (X^{\ell^t} - 1)^{p^s} = M_{\eta_1}(X)^{p_1^r} M_{\eta_2}(X)^{p_2^r} \cdots M_{\eta_p}(X)^{p_p^r} \] (4.1)

is the irreducible factorization of \(X^{\ell^t p^s} - 1\) in \(F_q[X]\). Further, assume that

\[\ell^u \parallel (q - 1), \quad \zeta = \xi^{\frac{q - 1}{\ell^u}}, \quad v = \min\{t, u\}. \] (4.2)
Theorem 4.1. With notations as above, for any \(\lambda \in F_q^* \) there is an index \(j \) with \(0 \leq j \leq v \) such that \(\lambda \equiv \xi^{\ell^j} \) and one of the following two cases holds:

(i) \(j = v \), then \(\lambda \equiv \xi^{\ell^v} \) for an \(a \in F_q^* \) and \(X^{\ell^v} p^j - \lambda = \lambda \cdot \prod_{i=1}^r M_{\eta_i}(aX)^{p^i} \) with \(\{ r_1, \ldots , r_p \} \).

(ii) \(0 \leq j < v - 1 \), then \(a^{\ell^j} p^j \lambda = \xi^{k_j} \) for an \(a \in F_q^* \) and a positive integer \(k \) coprime to \(\ell^j p^j \); there are two subcases:

(ii.a) if \(\ell = 2 \), \(t \geq 2 \) and \(2 \parallel (q - 1) \), then \(j = 0, a^{\ell^j} p^j \lambda = -1 \) and, setting \(H_t, b \) and \(c \) to be as in Remark 2.2, we have that

\[
X^{2^j p^j} - \lambda = (-\lambda) \cdot \prod_{h \in H_t} (a^{2^{j-b+1} \cdot 2^{2^j-b+1} - 2^{2^j-b} h X^{2^{j-b}} + (-1)^h})^{p^j}
\]

with all the factors in the right-hand side being irreducible over \(F_q \);

(ii.b) otherwise, taking an integer \(s' \) with \(0 \leq s' < m \) and \(s' \equiv s \pmod{m} \), we have that

\[
X^{\ell^j p^j} - \lambda = \prod_{i=0}^{\ell-1} (a^{\ell^j-\ell^i} - a^{\ell^j-\ell^i} \sigma_{\ell^j-\ell^i+j-kp^{s'-s}})^{p^i}
\]

with all the factors in the right-hand side being irreducible over \(F_q \).

Proof. As \(q - 1 = p^m - 1 \), it is clear that \(\gcd(p^2, q - 1) = 1 \). From the notation (4.2), we have:

- \(\xi \in F_q \) is a primitive \(\ell^j \)th root of unity, \(\langle \xi \rangle \) is the Sylow \(\ell \)-subgroup of \(F_q^* \), and \(\xi^{a-j} \) for \(0 \leq j \leq u \) is a primitive \(\ell^j \)th root of unity;
- \(\ell^v = \gcd(\ell^v p^j, q - 1) \), so \(\text{ord}(\xi^{\ell^v p^j}) = \frac{q-1}{\gcd(\ell^v p^j, q-1)} = \frac{q-1}{\ell^v} = \text{ord}(\xi^{\ell^v}) \), hence in the multiplicative group \(F_q^* \) we have that

\[
\langle \xi^{\ell^v} \rangle = \langle \xi \rangle
\]

which is a subgroup of \(F_q^* \) of order \(\frac{q-1}{\ell^v} \).

Thus the quotient group \(F_q^*/\langle \xi^{\ell^v} \rangle \) is a cyclic group of order \(\ell^v \); and for each positive divisor \(\ell^v - j \)

of \(\ell^v \), where \(j = 0, 1, \ldots , v \), \(\langle \xi^{\ell^v}, \xi^{\ell^v+j} \rangle / \langle \xi^{\ell^v} \rangle \) is the unique subgroup of order \(\ell^v - j \) of the quotient group \(F_q^*/\langle \xi^{\ell^v} \rangle \).

By the equivalence (i) \(\Leftrightarrow \) (ii) of Theorem 3.2, the number of the \(\ell^v p^j \)-isometry classes of \(F_q^* \) is equal to \(v + 1 \); precisely, for any \(\lambda \in F_q^* \) there is exactly one index \(j \) with \(0 \leq j \leq v \) such that \(\lambda \equiv \xi^{\ell^j} \). We continue the discussion in two cases.

Case (i): \(j = v \), i.e. \(\lambda \equiv \xi^{\ell^v} \); by the equality (4.5), we see that \(\langle \lambda, \xi^{\ell^v} \rangle = \langle \xi^{\ell^v}, \xi^{\ell^v} \rangle = \langle 1, \xi^{\ell^v} \rangle \), in other words, \(\lambda \equiv \xi^{\ell^v} \). By Corollary 3.4, \(a^{\ell^v} p^j \lambda = \xi^k = 1 \) for an \(a \in F_q^* \), and from the irreducible factorization (4.1) we get the irreducible factorization \(X^{\ell^v p^j} - \lambda = \lambda \cdot \prod_{i=1}^r M_{\eta^i}(aX)^{p^i} \).

Case (ii): \(0 \leq j \leq v - 1 \). Then by (4.2) we have

\[
0 \leq j \leq v - 1 < v = \min\{t, u\},
\]

in particular, \(v \geq 1 \), i.e. \(\ell \mid (q - 1) \); further, since \(\lambda \equiv \xi^{\ell^v} \), by Theorem 3.2 (iii) there is an \(a \in F_q^* \) and a positive integer \(k \) such that

\[
a^{\ell^v} p^j \lambda = \xi^{k_j}, \quad \gcd(k, \ell^v p^j) = 1.
\]

We discuss it in the two subcases (ii.a) and (ii.b) as described in the theorem.
Subcase (ii.a). Since $\ell = 2$, $t \geq 2$ and $2 \mid (q - 1)$, we have that q is odd, $t > u = v = 1$, $\zeta = -1$ and $j = 0$; and, from (4.7) we see that $\ell = 2 \mid k$ and $a^2p^s\lambda = (-1)^k = -1$. From the formula (2.3), we have the following irreducible factorization in $F_q[X]$:

$$X^{2^t p^s} + 1 = \prod_{h \in H_t} \left(X^{2^{r-b+1}} - 2hx^{2^{r-b}} + (-1)^c \right)^{p^s};$$

thus the following is an irreducible factorization of $(aX)^{2^t p^s} + 1$ in $F_q[X]$:

$$(aX)^{2^t p^s} + 1 = \prod_{h \in H_t} \left(a^{2^{r-b+1}} X^{2^{r-b+1}} - 2a^{2^{r-b}} hX^{2^{r-b}} + (-1)^c \right)^{p^s}.$$

However, since $a^2p^s = -\lambda^{-1}$, we have that $(aX)^{2^t p^s} = a^2p^s X^{2^t p^s} = -\lambda^{-1} X^{2^t p^s}$; thus we get the irreducible factorization (4.3) of $X^{2^t p^s} - \lambda$ in $F_q[X]$.

Subcase (ii.b). Remember that the conclusion in Remark 2.3 is applied in this subcase. By the choice of $s' = m - \ell i s' + s \equiv 0 \pmod{m}$, so $(p^m - 1) \mid (p^{m - \ell i s'} - 1)$, i.e. $p^{m - \ell i s'} \equiv 1 \pmod{q - 1}$; in particular, $\beta^{p^{m - \ell i s'}} = \beta$ for any $\beta \in F_q^*$. Obviously, $\zeta^{(\mu - j)}$ is a primitive ℓth root of unity in F_q.

Therefore,

$$\left(X^{\ell^{i-j}} \right)^{\ell^{j}p^s} - 1 = \prod_{i=0}^{\ell^{j}-1} \left(X^{\ell^{i-j}} - \zeta^{i\ell^{j}} \right)^{p^s} = \prod_{i=0}^{\ell^{j}-1} \left(X^{\ell^{i-j}} - \zeta^{i\ell^{j}} \right)^{p^s}.$$

Noting that $\zeta^{\ell^{i-j}} \equiv \zeta^{\ell^{j}} \pmod{\ell^{i-j} + kp^{m - \ell i s'}}$, we get that

$$X^{\ell^{i-j}} - \zeta^{\ell^{j}} = \prod_{i=0}^{\ell^{j}-1} \left(X^{\ell^{i-j}} - \zeta^{i\ell^{j} + kp^{m - \ell i s'}} \right)^{p^s}.$$

(4.8)

From (4.7) and (4.6), we see that $u > j$, $\ell \mid (p^m - 1)$ and $\ell \nmid k$; hence $\ell \nmid \ell^{i-j}$ but $\ell \mid kp^{m - \ell i s'}$. So $\ell \nmid (i\ell^{u-j} + kp^{m - \ell i s'})$, hence, in the multiplicative group F_q^* we have that $\text{ord}(\zeta^{i\ell^{u-j} + kp^{m - \ell i s'}}) = \ell^u$. By Remark 2.3, all the polynomials

$$X^{\ell^{i-j}} - \zeta^{i\ell^{u-j} + kp^{m - \ell i s'}}, \quad i = 0, 1, \ldots, \ell^{j} - 1,$$

are irreducible polynomials in $F_q[X]$, and (4.8) is an irreducible factorization of $X^{\ell^{i-j}} - \zeta^{i\ell^{j}}$ in $F_q[X]$.

Replacing X by aX, we get

$$(aX)^{\ell^{i-j}} - \zeta^{i\ell^{j}} = \prod_{i=0}^{\ell^{j}-1} \left((aX)^{\ell^{i-j}} - \zeta^{i\ell^{j} + kp^{m - \ell i s'}} \right)^{p^s}.$$
But $a^{\ell^t}p^\ell \lambda = \zeta^{k\ell^t}$, i.e. $a^{-\ell^t}p^\ell \zeta^{k\ell^t} = \lambda$. We get the irreducible factorization of $X^{\ell^t}p^s - \lambda$ in $F_q[X]$ as follows:

$$X^{\ell^t}p^s - \lambda = a^{-\ell^t}p^\ell \prod_{i=0}^{\ell^t-1} ((aX)^{\ell^t-j} - \zeta^{i\ell^t-j+kp^m-\ell^t})p^s.$$

Finally, noting that $a^{-\ell^t}p^s = ((a^{-\ell^t})p^s)^{\ell^t}$, from the above we get the desired irreducible factorization (4.4) of $X^{\ell^t}p^s - \lambda$ in $F_q[X]$. □

Remark 4.2. With the same notations as in Theorem 4.1, we can describe the polynomial generator $g(X)$ of any λ-constacyclic code C of length $\ell^t p^s$ over F_q for the two cases as follows.

(i) $j = v$, then

$$g(X) = \prod_{i=1}^\rho M_{D_1}(aX)^{e_i}, \quad 0 \leq e_i \leq p^s, \forall i = 1, \ldots, \rho.$$

By the way, we show an easy subcase of this case: if $j = v = t$, then $\zeta^{k\ell^t} = \zeta^{q-\ell^t} \in F_q$ is a primitive ℓ^tth root of unity, hence $X^{\ell^t} - 1 = \prod_{i=0}^{\ell^t-1} (X - \zeta^{i\ell^t})$; thus the polynomial generator $g(X)$ looks simple:

$$g(X) = \prod_{i=0}^{\ell^t-1} (X - a^{-1}\zeta^{i\ell^t})^{e_i}, \quad 0 \leq e_i \leq p^s, \forall i = 0, \ldots, \ell^t - 1. \quad (4.9)$$

(ii) $0 \leq j < v \leq t$, there are two subcases:

(ii.a) if $\ell = 2$, $t \geq 2$ and $2 \parallel (q - 1)$, then

$$g(X) = \prod_{h \in H_1} (a^{2^{t-b+1}}X^{2^{t-b+1}} - 2a^{2t-b-1}X^{2^{t-b}} + (-1)^c)^{e_i}$$

with $0 \leq e_i \leq p^s$ for $i = 0, 1, \ldots, 2^{b-1} - 1$;

(ii.b) otherwise,

$$g(X) = \prod_{i=0}^{\ell^t-j-1} (X^{\ell^t-j} - a^{-\ell^t-j}\zeta^{i\ell^t-j+kp^m-\ell^t})^{e_i}$$

with $0 \leq e_i \leq p^s$ for $i = 0, 1, \ldots, \ell^t - 1$.

It is a special case for Theorem 4.1 that $t = v = 1$, i.e. $\ell \parallel (q - 1)$ and $t = 1$; at that case, as stated in the following corollary, there are only two ℓp^s-isometry classes in F_q^*, and any constacyclic code of length ℓp^s over F_q has a polynomial generator with all irreducible factors being binomials.

Corollary 4.3. Assume that ℓ is a prime such that $\ell^u \parallel (q - 1)$ with $u \geq 1$, $\zeta \in F_q$ is a primitive ℓ^uth root of unity, and $\lambda \in F_q^*$. Let C be a λ-constacyclic code of length ℓp^s over F_q. Then:
\begin{table}[h]
\centering
\begin{tabular}{|llll|}
\hline
λ & a & λ-Constacyclic codes: $0 \leq J_0, J_1 \leq 2$ & Sizes \\
\hline
1 & 1 & $(X - 1)(X - \xi^5)(X - \xi^{10})$ & $16^{m-3} - l^{1-2}$ \\
ξ^3 & ξ^7 & $(\xi^7X - 1)h(\xi^7X - \xi^5)(\xi^7X - \xi^{10})$ & $16^{m-3} - l^{1-2}$ \\
ξ^6 & ξ^4 & $(\xi^4X - 1)h(\xi^4X - \xi^5)(\xi^4X - \xi^{10})$ & $16^{m-3} - l^{1-2}$ \\
ξ^9 & ξ & $(\xiX - 1)h(\xiX - \xi^5)(\xiX - \xi^{10})$ & $16^{m-3} - l^{1-2}$ \\
ξ^{12} & ξ^3 & $(\xi^3X - 1)h(\xi^3X - \xi^5)(\xi^3X - \xi^{10})$ & $16^{m-3} - l^{1-2}$ \\
\hline
\end{tabular}
\caption{λ-Constacyclic codes of length 6 over F_{2^s}, $\lambda \equiv 1 \mod 1$, $a^6\lambda = 1$.}
\end{table}

- either $\lambda \in \langle \xi^k \rangle$, $a^\ell p^s \lambda = 1$ for an $a \in F_q$, and we have

$$C = \left(\prod_{i=0}^{\ell-1} (X - a^{-1} \xi^i) \right), \quad 0 \leq e_i \leq p^s, \quad \forall i = 0, 1, \ldots, \ell - 1;$$

- or $\lambda \notin \langle \xi^k \rangle$, $a^\ell p^s \lambda = \xi^k$ for an $a \in F_q$ and an integer k coprime to ℓp^s, and, taking s' such that $0 \leq s' < m$ and $s' \equiv s \pmod{m}$, we have

$$C = \left((X^\ell - a^{-\ell} \xi^{kp^m-s'}) \right), \quad 0 \leq e \leq p^s.$$

Proof. It follows from Remark 4.2 immediately. We just remark that $\xi^{\ell u-1}$ is a primitive ℓth root of unity, while $\xi^{kp^{m-s'}}$ is a primitive ℓuth root of unity.

More specifically, if $\ell = 2$ in the above corollary, we reobtain the main result of [6], as stated below in our notation.

Corollary 4.4. Assume that $2^u \mid (q - 1)$ with $u \geq 1$, $\xi \in F_q$ is a primitive 2^uth root of unity, and $\lambda \in F_q^*$. Let C be a λ-constacyclic code of length $2p^s$ over F_q. Then:

- either $\lambda \in \langle \xi^2 \rangle$, $a^2p^s \lambda = 1$ for an $a \in F_q$, and we have

$$C = \left((X - a^{-1})^0 (X + a^{-1})^e \right), \quad 0 \leq e_i \leq p^s, \quad \forall i = 0, 1;$$

- or $\lambda \notin \langle \xi^2 \rangle$, $a^2p^s \lambda = \xi^k$ for an $a \in F_q$ and an integer k coprime to $2p^s$, and, taking an integer s' such that $0 \leq s' < m$ and $s' \equiv s \pmod{m}$, we have

$$C = \left((X^2 - a^{-2} \xi^{kp^{m-s'}}) \right), \quad 0 \leq e \leq p^s.$$

Proof. Just note that $\xi^{2^{u-1}}$ is a primitive square root, i.e. $\xi^{2^{u-1}} = -1$.

5. **Examples**

By Theorem 4.1, the polynomial generators of all constacyclic codes of length $\ell^t p^s$ over the finite field F_{2^m} are easy to be established, where ℓ, p are different primes and s, t are non-negative integers. In this section, some examples are given to illustrate the result.

Example 5.1. Consider all constacyclic codes of length $6 = 3 \cdot 2$ over F_{2^4}. Here, $\ell = 3$, $t = 1$, $p = 2$ and $s = 1$. Let ξ be a primitive 15th root of unity in F_{2^4}. Since $3 \mid (2^4 - 1)$, it follows that there exists
parts. The polynomial generators of all constacyclic codes are given in Table 1 and Table 2.

Consider all constacyclic codes of length 175 over \mathbb{F}_{2^4}. $\lambda \equiv 6 \pmod{5}$, $a^6\lambda = \xi^{5k}$.

Table 2
λ-Constacyclic codes of length 6 over \mathbb{F}_{2^4}, $\lambda \equiv 6 \pmod{5}$, $a^6\lambda = \xi^{5k}$.

<table>
<thead>
<tr>
<th>λ</th>
<th>k</th>
<th>a</th>
<th>λ-Constacyclic codes: $0 \leq j \leq 2$</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ</td>
<td>5</td>
<td>ξ^4</td>
<td>$\langle (X^3 - \xi^8)X \rangle$</td>
<td>$16^6 - 3j$</td>
</tr>
<tr>
<td>ξ^4</td>
<td>5</td>
<td>ξ^6</td>
<td>$\langle (X^3 - \xi^5)X \rangle$</td>
<td>$16^6 - 3j$</td>
</tr>
<tr>
<td>ξ^7</td>
<td>5</td>
<td>ξ^8</td>
<td>$\langle (X^3 - \xi^{11})X \rangle$</td>
<td>$16^6 - 3j$</td>
</tr>
<tr>
<td>ξ^{10}</td>
<td>5</td>
<td>ξ^5</td>
<td>$\langle (X^3 - \xi^7)X \rangle$</td>
<td>$16^6 - 3j$</td>
</tr>
<tr>
<td>ξ^{13}</td>
<td>5</td>
<td>ξ^2</td>
<td>$\langle (X^3 - \xi^{14})X \rangle$</td>
<td>$16^6 - 3j$</td>
</tr>
<tr>
<td>ξ^2</td>
<td>1</td>
<td>ξ^3</td>
<td>$\langle (X^3 - \xi)X \rangle$</td>
<td>$16^6 - 3j$</td>
</tr>
<tr>
<td>ξ^5</td>
<td>1</td>
<td>1</td>
<td>$\langle (X^3 - \xi^{10})X \rangle$</td>
<td>$16^6 - 3j$</td>
</tr>
<tr>
<td>ξ^8</td>
<td>1</td>
<td>ξ^2</td>
<td>$\langle (X^3 - \xi^4)X \rangle$</td>
<td>$16^6 - 3j$</td>
</tr>
<tr>
<td>ξ^{11}</td>
<td>1</td>
<td>ξ^4</td>
<td>$\langle (X^3 - \xi^{13})X \rangle$</td>
<td>$16^6 - 3j$</td>
</tr>
<tr>
<td>ξ^{14}</td>
<td>1</td>
<td>ξ</td>
<td>$\langle (X^3 - \xi^7)X \rangle$</td>
<td>$16^6 - 3j$</td>
</tr>
</tbody>
</table>

Table 3
λ-Constacyclic codes of length 175 over \mathbb{F}_{2^4}, $\lambda \equiv 175 \pmod{1}$, $a^{175}\lambda = 1$.

<table>
<thead>
<tr>
<th>λ</th>
<th>a</th>
<th>λ-Constacyclic codes: $0 \leq i, j, k \leq 25$</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$\langle (X - 1)^i X^j h(X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ</td>
<td>ξ^{17}</td>
<td>$\langle (\xi^{17}X - 1)^i X^j h(\xi^{17}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^2</td>
<td>ξ^{10}</td>
<td>$\langle (\xi^{10}X - 1)^i X^j h(\xi^{10}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^3</td>
<td>ξ^3</td>
<td>$\langle (\xi^3X - 1)^i X^j h(\xi^3X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^4</td>
<td>ξ^{20}</td>
<td>$\langle (\xi^{20}X - 1)^i X^j h(\xi^{20}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^5</td>
<td>ξ^{13}</td>
<td>$\langle (\xi^{13}X - 1)^i X^j h(\xi^{13}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^6</td>
<td>ξ^6</td>
<td>$\langle (\xi^6X - 1)^i X^j h(\xi^6X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^7</td>
<td>ξ^{23}</td>
<td>$\langle (\xi^{23}X - 1)^i X^j h(\xi^{23}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^8</td>
<td>ξ^{16}</td>
<td>$\langle (\xi^{16}X - 1)^i X^j h(\xi^{16}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^9</td>
<td>ξ^9</td>
<td>$\langle (\xi^9X - 1)^i X^j h(\xi^9X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{10}</td>
<td>ξ^2</td>
<td>$\langle (\xi^2X - 1)^i X^j h(\xi^2X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{11}</td>
<td>ξ^{19}</td>
<td>$\langle (\xi^{19}X - 1)^i X^j h(\xi^{19}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{12}</td>
<td>ξ^{12}</td>
<td>$\langle (\xi^{12}X - 1)^i X^j h(\xi^{12}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{13}</td>
<td>ξ^{13}</td>
<td>$\langle (\xi^{13}X - 1)^i X^j h(\xi^{13}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{14}</td>
<td>ξ^{22}</td>
<td>$\langle (\xi^{22}X - 1)^i X^j h(\xi^{22}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{15}</td>
<td>ξ^{15}</td>
<td>$\langle (\xi^{15}X - 1)^i X^j h(\xi^{15}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{16}</td>
<td>ξ^8</td>
<td>$\langle (\xi^8X - 1)^i X^j h(\xi^8X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{17}</td>
<td>ξ</td>
<td>$\langle (\xiX - 1)^i X^j h(\xiX^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{18}</td>
<td>ξ^8</td>
<td>$\langle (\xi^8X - 1)^i X^j h(\xi^8X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{19}</td>
<td>ξ^{11}</td>
<td>$\langle (\xi^{11}X - 1)^i X^j h(\xi^{11}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{20}</td>
<td>ξ^4</td>
<td>$\langle (\xi^4X - 1)^i X^j h(\xi^4X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{21}</td>
<td>ξ^{21}</td>
<td>$\langle (\xi^{21}X - 1)^i X^j h(\xi^{21}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{22}</td>
<td>ξ^{14}</td>
<td>$\langle (\xi^{14}X - 1)^i X^j h(\xi^{14}X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
<tr>
<td>ξ^{23}</td>
<td>ξ^7</td>
<td>$\langle (\xi^7X - 1)^i X^j h(\xi^7X^k) \rangle$</td>
<td>$25^{175-i-j-k}$</td>
</tr>
</tbody>
</table>

primitive 3rd root of unity in \mathbb{F}_{2^4}. Therefore, $X^3 - 1 = (X - 1)(X - \xi^5)(X - \xi^{10})$. By Theorem 4.1, the number of the 6-isometry classes of \mathbb{F}_{2^4} is 2. Hence, all the constacyclic codes are divided into two parts. The polynomial generators of all constacyclic codes are given in Table 1 and Table 2.

Example 5.2. Consider all constacyclic codes of length 175 over \mathbb{F}_{2^4}. Here, $\ell = 7$, $t = 1$, $p = 5$ and $s = 2$. Let ξ be a primitive 24th root of unity in \mathbb{F}_{2^4}. Since gcd$(175, 5^2 - 1) = 1$, by Corollary 3.5,
and $s = 1$. Let ξ be a primitive 24th root of unity in F_{5^2}. Since $4 \mid (5^2 - 1)$, it follows that there exists a primitive 4th root of identity in F_{5^2}. Therefore, $X^4 - 1 = (X - 1)(X^3 + \xi X^2 + \xi^{17} X - 1)$ is the factorization of $X^7 - 1$ into irreducible factors over F_{5^2}. Let $g(X) = X^3 + \xi X^2 + \xi^{17} X - 1$ and $h(X) = x^3 + \xi^5 X^2 + \xi^{13} X - 1$. The polynomial generators of constacyclic codes are given in Table 3.

Example 5.3. Consider all constacyclic codes of length $20 = 2^2 \cdot 5$ over F_{5^2}. Here, $\ell = 2$, $t = 2$, $p = 5$ and $s = 1$. Let ξ be a primitive 24th root of unity in F_{5^2}. Since $4 \mid (5^2 - 1)$, it follows that there exists a primitive 4th root of identity in F_{5^2}. Therefore, $X^4 - 1 = (X - 1)(X^3 + \xi X^2 + \xi^{17} X - 1)$ is the factorization of $X^7 - 1$ into irreducible factors over F_{5^2}. Let $g(X) = X^3 + \xi X^2 + \xi^{17} X - 1$ and $h(X) = x^3 + \xi^5 X^2 + \xi^{13} X - 1$. The polynomial generators of constacyclic codes are given in Tables 4–6.

Table 4

<table>
<thead>
<tr>
<th>λ</th>
<th>a</th>
<th>λ-Constacyclic codes: $0 \leq j_0, j_1, j_2, j_3 \leq 5$</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ξ^6</td>
<td>$(\xi^6 X - 1)^{j_0} (\xi^6 X - \xi^6)^{j_1} (\xi^6 X - \xi^{12})^{j_2} (\xi^6 X - \xi^{18})^{j_3}$</td>
<td>$25^{20} - j_0 - j_1 - j_2 - j_3$</td>
</tr>
<tr>
<td>ξ^4</td>
<td>ξ</td>
<td>$(\xi^4 X - 1)^{j_0} (\xi^4 X - \xi^4)^{j_1} (\xi^4 X - \xi^{12})^{j_2} (\xi^4 X - \xi^{18})^{j_3}$</td>
<td>$25^{20} - j_0 - j_1 - j_2 - j_3$</td>
</tr>
<tr>
<td>ξ^8</td>
<td>ξ^2</td>
<td>$(\xi^8 X - 1)^{j_0} (\xi^8 X - \xi^8)^{j_1} (\xi^8 X - \xi^{12})^{j_2} (\xi^8 X - \xi^{18})^{j_3}$</td>
<td>$25^{20} - j_0 - j_1 - j_2 - j_3$</td>
</tr>
<tr>
<td>ξ^{12}</td>
<td>ξ^3</td>
<td>$(\xi^{12} X - 1)^{j_0} (\xi^{12} X - \xi^{12})^{j_1} (\xi^{12} X - \xi^{18})^{j_2} (\xi^{12} X - \xi^{18})^{j_3}$</td>
<td>$25^{20} - j_0 - j_1 - j_2 - j_3$</td>
</tr>
<tr>
<td>ξ^{16}</td>
<td>ξ^4</td>
<td>$(\xi^{16} X - 1)^{j_0} (\xi^{16} X - \xi^{16})^{j_1} (\xi^{16} X - \xi^{18})^{j_2} (\xi^{16} X - \xi^{18})^{j_3}$</td>
<td>$25^{20} - j_0 - j_1 - j_2 - j_3$</td>
</tr>
<tr>
<td>ξ^{20}</td>
<td>ξ^5</td>
<td>$(\xi^{20} X - 1)^{j_0} (\xi^{20} X - \xi^{20})^{j_1} (\xi^{20} X - \xi^{18})^{j_2} (\xi^{20} X - \xi^{18})^{j_3}$</td>
<td>$25^{20} - j_0 - j_1 - j_2 - j_3$</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>λ</th>
<th>k</th>
<th>a</th>
<th>λ-Constacyclic codes: $0 \leq j \leq 5$</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ</td>
<td>3</td>
<td>ξ^4</td>
<td>$(\xi^4 X - \xi^4)^{j}$</td>
<td>25^{20-4j}</td>
</tr>
<tr>
<td>ξ^3</td>
<td>3</td>
<td>ξ^{23}</td>
<td>$(\xi^4 X - \xi^{23})^j$</td>
<td>25^{20-4j}</td>
</tr>
<tr>
<td>ξ^4</td>
<td>3</td>
<td>ξ^6</td>
<td>$(\xi^4 X - \xi^6)^{j}$</td>
<td>25^{20-4j}</td>
</tr>
<tr>
<td>ξ^5</td>
<td>3</td>
<td>ξ</td>
<td>$(\xi^4 X - \xi^5)^{j}$</td>
<td>25^{20-4j}</td>
</tr>
<tr>
<td>ξ^6</td>
<td>3</td>
<td>ξ^2</td>
<td>$(\xi^4 X - \xi^2)^{j}$</td>
<td>25^{20-4j}</td>
</tr>
<tr>
<td>ξ^7</td>
<td>3</td>
<td>ξ</td>
<td>$(\xi^4 X - \xi^7)^{j}$</td>
<td>25^{20-4j}</td>
</tr>
<tr>
<td>ξ^8</td>
<td>3</td>
<td>ξ^2</td>
<td>$(\xi^4 X - \xi^8)^{j}$</td>
<td>25^{20-4j}</td>
</tr>
<tr>
<td>ξ^9</td>
<td>3</td>
<td>ξ</td>
<td>$(\xi^4 X - \xi^9)^{j}$</td>
<td>25^{20-4j}</td>
</tr>
<tr>
<td>ξ^{10}</td>
<td>1</td>
<td>ξ^4</td>
<td>$(\xi^4 X - \xi^{23})^j$</td>
<td>25^{20-4j}</td>
</tr>
<tr>
<td>ξ^{11}</td>
<td>1</td>
<td>ξ^2</td>
<td>$(\xi^4 X - \xi^2)^j$</td>
<td>25^{20-4j}</td>
</tr>
<tr>
<td>ξ^{12}</td>
<td>1</td>
<td>ξ</td>
<td>$(\xi^4 X - \xi^{12})^j$</td>
<td>25^{20-4j}</td>
</tr>
<tr>
<td>ξ^{13}</td>
<td>1</td>
<td>ξ^5</td>
<td>$(\xi^4 X - \xi^{19})^j$</td>
<td>25^{20-4j}</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>λ</th>
<th>k</th>
<th>a</th>
<th>λ-Constacyclic codes: $0 \leq j_0, j_1 \leq 5$</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ^2</td>
<td>1</td>
<td>ξ^{23}</td>
<td>$(\xi^2 X - \xi^2)^{j_0} (\xi^2 X + \xi^2)^{j_1}$</td>
<td>$25^{20-2j_0-2j_1}$</td>
</tr>
<tr>
<td>ξ^6</td>
<td>1</td>
<td>ξ^6</td>
<td>$(\xi^2 X - \xi^6)^{j_0} (\xi^2 X + \xi^6)^{j_1}$</td>
<td>$25^{20-2j_0-2j_1}$</td>
</tr>
<tr>
<td>ξ^{10}</td>
<td>1</td>
<td>ξ</td>
<td>$(\xi^2 X - \xi^{10})^{j_0} (\xi^2 X + \xi^{10})^{j_1}$</td>
<td>$25^{20-2j_0-2j_1}$</td>
</tr>
<tr>
<td>ξ^{14}</td>
<td>1</td>
<td>ξ^2</td>
<td>$(\xi^2 X - \xi^{14})^{j_0} (\xi^2 X + \xi^{14})^{j_1}$</td>
<td>$25^{20-2j_0-2j_1}$</td>
</tr>
<tr>
<td>ξ^{18}</td>
<td>1</td>
<td>ξ^3</td>
<td>$(\xi^2 X - \xi^{18})^{j_0} (\xi^2 X + \xi^{18})^{j_1}$</td>
<td>$25^{20-2j_0-2j_1}$</td>
</tr>
<tr>
<td>ξ^{22}</td>
<td>1</td>
<td>ξ^4</td>
<td>$(\xi^2 X - \xi^{22})^{j_0} (\xi^2 X + \xi^{22})^{j_1}$</td>
<td>$25^{20-2j_0-2j_1}$</td>
</tr>
</tbody>
</table>

all the constacyclic codes of length 175 are isometric to the cyclic codes of length 175. By [8], it follows that $X^7 - 1 = (X - 1)(X^3 + \xi X^2 + \xi^{17} X - 1)(X^3 + \xi^5 X^2 + \xi^{13} X - 1)$ is the factorization of $X^7 - 1$ into irreducible factors over F_{5^2}. Let $g(X) = X^3 + \xi X^2 + \xi^{17} X - 1$ and $h(X) = x^3 + \xi^5 X^2 + \xi^{13} X - 1$. The polynomial generators of constacyclic codes are given in Table 3.
Acknowledgments

This work was supported by NSFC, Grant No. 11171370, and Research Funds of CCNU, Grant No. 11A02014. The authors would like to thank the anonymous referees for their many helpful comments.

References