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Abstract. It is proposed that chaotic attractors incorporated in neural net models can represent 
classes of patterns in the same way in which a set of static attractors represent unrelated 

patterns. Therefore, chaotic states of neuron activity are associated with higher level cognitive 
processes such as generalization and abstraction. 

Chaotic activity in the human brain is a subject of discussion in many recent publica-tions.‘l* 
The interest in the problem was promoted by discovery of strange attractors. This discovery 
provided a phenomenological framework for understanding electroencephalogram data in 
regimes of multiperiodic and random signals generated by the brain. An understanding of 
the role of such chaotic states in the logical structure of the human brain activity would 
significantly contribute not only to the brain science, but also to theory of advance computing 
based upon artificial neural networks. In this note we propose a phenomenological approach 
to the problem: we demonstrate that a chaotic attractor incorporated in neural net models 
can represent a class of patterns, i.e., a collection of all those and only those patterns to 

which a certain concept applies. Formation of such a class is associated with higher level 

cognitive processes (generalization). This generalization is based upon a set of unrelated 
patterns represented by static attractors and associated with the domain of lower level 
of brain activity (perception, memory). Since a transition from a set of unrelated static 
attractors to the unique chaotic attractor releases many synaptic interconnections between 
the neurons, the formation of a class of patterns can be “motivated” by a tendency to 
minimize the number of such interconnections at the expense of omitting some insignificant 
features of individual patterns. 

Our approach exploits the phenomenology of dissipative nonlinear dynamical systems for 
computation and information processing performed by neural networks. These systems are 
modelled by coupled sets of first order differential equations of the form: 

Xi = Vi(Xj,Tij), i,j = 1,2,..Al 

in which xi is an n-dimensional vector function of time representing the neuron activity, 

and Tij is a constant matrix whose elements represent synaptic interconnections between 
the neurons. 

The most important characteristic of the neurodynamical systems(l) is that they are 
dissipative, i.e., their motions, on the average, contract phase space volumes onto attractors 
of lower dimensionality than the original space. 

So far only point attractors have been utilized in the logical structure of neural network 
performance: they represent stored vectors (patterns, computational objects, rules). The 
idea of storing patterns as point attractors of neurodynamics implies that initial configura- 
tions of neurons in some neighborhood of a memory state will be attracted to it. Hence, a 
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point attractor (or a set of point attractors) is a paradigm for neural net performance based 
upon the phenomenology of nonlinear dynamical systems. This performance is associated 
with the domain of lower level brain activity such as perception and memory. 

It is easily verifiable that a set of point attractors imposes certain constraints upon the 
synaptic coefficients Tij. Indeed, for a set of m fixed points 2:(k = 1,2,. . . m) one obtains 

m x n constraints following from Eq. (1): 

O=K(Zj, Zj), i,j=l,2 ,... n, rE=1,2 ,... m 

In order to provide stability of the fixed points $, the synaptic coefficients must also satisfy 
the following m x n inequalities: 

ReXf <O,i=1,2 ,... n, k= 1,2 ,... m (3) 

in which X5 are the eigenvalues of the matrices ][8~ii/8zjll at the tied points 2”. 
How can a neural network minimize the number of interconnections Tij without a signif- 

icant loss of the quality of a prescribed performance? 
Let us assume that the vectors Z$ have some characteristics in common, for instance, their 

ends are located on the same circle of a radius r,, i.e., (after proper choice of coordinates): 

=7-z, k=l,2,...m (4) 
i=l 

If for the patterns represented by the vectors 5’5 the property (4) is much more important 
then their angular coordinates B’(f?” # 0” if Jz~ # kz), then it is “reasonable” for the 
neural net to store the circle P = r, instead of storing m point attractors with at least 
2 x m synaptic coefficients Tij. Indeed, in this case the neural net can “afford” to eliminate 
unnecessary synaptic coefficients by reducing its structure to the simplest form: 

1: = r(r - ro)(r - 2r,) , i = w = Con& (5) 

Eqs. (5) have a periodic attractor 

r = ro, 8 =wt (6) 

which generates harmonic oscillations with frequency w. But what is the role of these 
oscillations in the logical structure of neural net performance? The transition to the form 
(5) can be interpreted as a generalization procedure in the course of which a collection of 
unrelated vectors 5” is united into a class of vectors whose lengths are equal to r,. Hence, 
in terms of symbolic logic, the circle r = P, is a logical form for the class of vectors to 

which the concept (4) applies. In other words, the oscillations (6) represent a higher level 
cognitive process associated with generalization and abstraction. During these processes, 
the point describing the motion of Eqs. (5) in the phase space will visit all those and only 
those vectors whose lengths are equal to r,; thereby the neural network “keeps in mind” all 
the members of the class. 

Suppose that a bounded set of isolated point attractors which can be united in a class 
occupies a more complex subspace of the phase space, i.e., instead of the circle (4) the 
concept defining the class is: 

O(Zf,ig ,... Zi)=r, k=1,2 ,... m (7) 

Then the formation of the class will be effected by storing a surface: 

Q(z1,22,. . . fn) = r (8) 
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as a limit set of the neurodynamics, while all the synaptic coefficients Tij which impose 
constraints on the velocities along the surface (8)) will be eliminated. 

The character of the motion on the limit set depends upon the properties of the surface 
(8). If (by proper choice of coordinates) this surface can be approximated by a topological 
product of (n - 1) circles (i.e., by an (n - l)-dimensional torus) then the motion is quasi- 
periodic: it generates oscillations with frequencies which are dense in the reals. If the surface 
(8) is more complex and is characterized by a fractal dimension, the motion on such a limit 
set must be chaotic: it generates oscillations with continuous spectrum. In both cases the 
motion is ergodic: the point describing the motion in the phase space sooner or later will 
visit all the points of the limit set, i.e., the neural net will “keep in mind” all the members 

of the class. 
Thus, it can be concluded that artificial neural networks are capable of performing high 

level cognitive processes such as formation of classes of patterns, i.e., formation of new logical 
forms based upon generalization procedures. In terms of the phenomenology of nonlinear 
dynamics these new logical forms are represented by limit sets which are more complex 
than point attractors, i.e., by periodic or chaotic attractors. It is shown that formation of 

classes is accompanied by elimination of a large number of extra synaptic interconnections. 
This means that these high level cognitive processes increase the capacity of the neural 
network. The procedure of formation of classes can be initiated by a tendency of the neural 
network to minimize the number (or the total strength) of the synaptic interconnections 
without a significant loss of the quality of prescribed performance; such a tendency can be 
incorporated into the learning dynamics which controls these interconnections3. In addition, 
the phenomenological approach presented above leads to a possible explanation of chaotic 
activity of the human brain; it suggests that this activity represents the high level cognitive 
processes such as generalization and abstraction. 
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