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SUMMARY

In the bacterial genetic-code system, the codon
AUA is decoded as isoleucine by tRNAIle

2 with
the lysidine residue at the wobble position. Lysi-
dine is derived from cytidine, with ATP and
L-lysine, by tRNAIle lysidine synthetase (TilS),
which is an N-type ATP pyrophosphatase. In
this study, we determined the crystal structure
of Aquifex aeolicus TilS, complexed with ATP,
Mg2+, and L-lysine, at 2.5 Å resolution. The pres-
ence of the TilS-specific subdomain causes the
active site to have two separate gateways,
a large hole and a narrow tunnel on the opposite
side. ATP is bound inside the hole, and L-lysine
is bound at the entrance of the tunnel. The
conserved Asp36 in the PP-motif coordinates
Mg2+. In these initial binding modes, the ATP,
Mg2+, and L-lysine are held far apart from each
other, but they seem to be brought together
for the reaction upon cytidine binding, with
putative structural changes of the complex.

INTRODUCTION

The first base of the tRNA anticodon (position 34 or the

wobble position) base pairs with the third base of the

codon and plays a pivotal role in translation. Numerous

posttranscriptional modifications are present at position

34, and these maintain precise decoding by fine tuning

the base pairing properties (Agris et al., 2007; Bjork and

Hagervall, 2005; Crick, 1966; Marck and Grosjean, 2002;

Suzuki, 2005; Yokoyama and Nishimura, 1995). Lysidine

(2-lysyl cytidine; abbreviated as L or k2C) is a modified

cytidine present at position 34 of the bacterial AUA codon

specific tRNAIle
2, and it pairs with adenosine instead of

guanosine (Muramatsu et al., 1988a, 1988b). Lysidine is

introduced by tRNAIle lysidine synthetase (TilS) (Soma

et al., 2003) in all bacteria harboring tRNAIle (CAT) genes.
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An exception is found in Mycoplasma mobile, which has

a tRNAIle (TAT) gene instead (Silva et al., 2006). tRNAIle
2

bearing unmodified cytidine at position 34 is charged

with methionine by methionyl-tRNA synthetase (MetRS)

and deciphers the AUG methionine codon (Muramatsu

et al., 1988a; Soma et al., 2003). Lysidine introduction to

tRNAIle
2 prevents the MetRS binding while it accepts iso-

leucine attachment by isoleucyl-tRNA synthetase (IleRS).

Thus, the lysidine modification converts the base-pairing

property as well as the amino acid specificity of tRNAIle
2,

which is necessary for the translation of the isoleucine

AUA codon to maintain the bacterial genetic code (Mura-

matsu et al., 1988a; Soma et al., 2003). On the other hand,

eukaryotes use tRNAIle (IAU) for reading the isoleucine

AUA codon (Gerber and Keller, 1999; Marck and Gros-

jean, 2002), and thus a new antibiotic could be developed

by inhibiting lysidine formation.

Lysidine formation proceeds in two consecutive reac-

tions (Ikeuchi et al., 2005). The a phosphate of ATP is first

attached to the cytidine residue to form an intermediate

adenylated cytidine and a pyrophosphate (Figure 1), and

the subsequent nucleophilic attack by L-lysine on the

adenylated cytidine completes the reaction (Figure 1).

TilS belongs to the N-type ATP pyrophosphatase family,

which commonly utilizes ATP and a nitrogen nucleophile,

and has the signature PP-motif (SGGxDS) (Bork and Koo-

nin, 1994). The PP-motif is involved in binding to the b and

g phosphates of ATP (Lemke and Howell, 2001; Tesmer

et al., 1996). In addition, a second weakly conserved motif

of TilS (PLxxxxK/R) was proposed to be involved in the g

phosphate recognition (Ikeuchi et al., 2005).

The structures of the ligand-free form of TilS from

Escherichia coli (PDB code: 1NI5) and Aquifex aeolicus

(PDB code: 1WY5) (Nakanishi et al., 2005) were deter-

mined. However, no structure in a complex with its ligand

has been solved. On the other hand, the structure(s) of

other N-type ATP pyrophosphatases, containing ATP,

AMPPNP, and/or AMP, are available for argininosuccinate

synthetase (Goto et al., 2002, 2003; Lemke and Howell,

2001, 2002), NAD+ synthetase (Rizzi et al., 1998), and

GMP synthetase (Tesmer et al., 1996). A docking model
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Figure 1. Two-Step Reaction of the Lysidine Synthesis

In the first reaction (A and B), the cytidine residue and ATP react each other to form an intermediate adenylated cytidine and a pyrophosphate. In the

second reaction (C and D), L-lysine attacks the adenylated cytidine to produce lysidine and AMP.
and mutational studies of TilS revealed several amino acid

residues essential for catalysis (Nakanishi et al., 2005).

In the present study, we determined two crystal struc-

tures of A. aeolicus TilS, complexed with ATP, Mg2+, and

L-lysine and with AMPPNP alone. During the structure

determination, we unexpectedly revealed the presence

of a disulfide bond in A. aeolicus TilS. Conventionally,

disulfide bonds in a reducing cytosolic environment

were considered to be only marginally stable. However,

in some thermophilic organisms, evidence for the pres-

ence of disulfide bonds in cytosolic proteins is becoming

more and more solid. A survey of the PDB entries revealed

that disulfide bonds are rich in the proteins from several

thermophilic organisms, as compared to those from mes-

ophilic organisms, which is also supported by compari-

sons of the cysteine content in the proteins (Beeby et al.,

2005; Mallick et al., 2002; Vieille and Zeikus, 2001). More-

over, the disulfide-rich thermophilic organisms contain

unique PDO proteins, which would work as a cytosolic di-

sulfide isomerase (Beeby et al., 2005; Pedone et al., 2006).

The structural role of the disulfide bond in protein stabiliza-

tion was verified biochemically, by using an A. aeolicus

protein (Meyer et al., 2002) as well as archaeal proteins

(DeDecker et al., 1996; Karlstrom et al., 2005; Toth et al.,

2000). A. aeolicus is an aerobic thermophilic bacterium

with growth-temperature maxima near 95�C (Deckert

et al., 1998), and it has a PDO protein, indicating that di-

sulfide bonds are maintained in the endogenous cytosolic

proteins. Therefore, we quantified how this disulfide bond
Structure 15, 1642–165
stabilizes the A. aeolicus TilS protein by differential scan-

ning calorimetry (DSC). We report here the initial binding

mode of TilS with ATP, Mg2+, and L-lysine, as well as the

anticipated conformational changes accompanying

lysidine synthesis, based on structural comparisons with

the substrate-free forms of TilS and with other N-type

ATP pyrophosphatases.

RESULTS

Structure Determination
At first, we determined the structure of A. aeolicus TilS

complexed with AMPPNP (Figure 2A), an ATP analog, at

2.7 Å resolution, with final R and Rfree factors of 22.6%

and 29.4%, respectively (Table 1). The crystal of TilS/

AMPPNP contains two homodimers, A-B and C-D, in the

asymmetric unit, and two AMPPNP in molecules A and

C. However, no electron densities were observed for

AMPPNP in molecules B and D.

Next, by increasing the concentrations of ATP and L-

lysine during crystallization, we made a cocrystal and

determined the structure of A. aeolicus TilS complexed

with ATP (Figure 2B) and L-lysine (Figure 2C) at 2.5 Å res-

olution, with final R and Rfree factors of 22.9% and 27.4%,

respectively (Table 1). The crystal contains two homo-

dimers, A-B and C-D, in the asymmetric unit (Figure 2D).

Molecule A includes all residues (1–317), whereas mole-

cules B–D lack three or four residues at the C terminus.

A strong spherical electron density, corresponding to
3, December 2007 ª2007 Elsevier Ltd All rights reserved 1643
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Figure 2. Overall Structure

(A–C) jFoj � jFcj simulated annealing omit maps. (A) The electron density of the AMPPNP (blue, contoured at 4s). (B) The electron densities of the

ATP (blue, 5.5s) and the Mg2+ (brown, 4s). The continuity of the electron densities of the Mg2+, Asp36, and Asp137 is shown by omitting these three

molecules (yellow, 3s). (C) The electron densities of the L-lysine (blue, 3.5s).

(D) Ribbon model of the TilS dimer. Two subunits (molecules A and B of TilS/ATP/Mg/Lys) are colored pink and cyan, respectively. The ATP and L-

lysine molecules are shown by stick models.

(E) A stereoview of the TilS monomer (molecule B of TilS/ATP/Mg/Lys). The N-terminal domain (NTD), the TilS-specific subdomain (TSD), the linker,

and the C-terminal domain (CTD1) are colored pink, yellow, green, and cyan, respectively. The graphic figures in this paper were prepared with Cue-

Mol (http://cuemol.sourceforge.jp/en/) and were rendered with POVRAY (http://www.povray.org/).
one Mg2+, was located between the two negatively charged

aspartic acid residues (Figure 2B). The asymmetric unit

contains four ATP molecules, one Mg2+ (Figure 2B), and

one L-lysine (Figure 2C) in the TilS/ATP/Mg/Lys structure.

The amino and carboxyl atoms of the L-lysine interact with

the side chains of the other dimer, which is considered to

be due to the crystal packing. The structures of TilS/

AMPPNP and TilS/ATP/Mg/Lys are considered to be

essentially identical, with an average root mean square

deviation of 0.67 Å over 1258 Ca atoms. The biological dis-

coveries mainly rely on the structure of TilS/ATP/Mg/Lys,

since the resolution is superior, but the TilS/AMPPNP

structure revealed that the conformations between ATP

and AMPPNP slightly differ, with varied hydrogen bonds

with TilS, due to the substitution of the oxygen atom,

between the Pb and Pg atoms in the ATP, by the nitrogen

atom in the AMPPNP.

Besides identifying the residues that interact with the

substrates, our substrate-bound TilS/ATP/Mg/Lys struc-
1644 Structure 15, 1642–1653, December 2007 ª2007 Elsevie
ture has two other differences as compared to the sub-

strate-free form (1WY5) (Nakanishi et al., 2005). One is

that our structure include six residues at the C terminus

(312CFSPEV317) (Figure 3), which are absent in 1WY5.

These residues revealed that each molecule contains

one disulfide bond between Cys253 and Cys312. The sec-

ond difference is the conformation of residues 190–200,

which are unique to TilS among the N-type ATP pyrophos-

phatases, and are located near the active site.

Monomer Architecture
The A. aeolicus TilS monomer (Figure 2E) consists of the

conserved N-terminal domain (NTD; residues 1–217), a he-

lix linker, and a C-terminal domain (CTD1; residues 249–

317). The A. aeolicus TilS contains only CTD1, whereas

those from E. coli and other species consist of two C-

terminal domains, CTD1 and CTD2. The NTD is globular,

comprising ten a helices and six b strands, and shares

similarities with several ATP pyrophosphatases, including
r Ltd All rights reserved
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NAD+ synthetase (Rizzi et al., 1998), ThiI (Waterman et al.,

2006), ATP sulfurylase (Mougous et al., 2006), GMP syn-

thetase (Tesmer et al., 1996), and argininosuccinate

synthetase (Goto et al., 2002, 2003; Lemke and Howell,

2001, 2002). Especially, residues 27–185, including the

PP-motif (32SGGVDS37) (Figure 3), share high sequence

similarities and form a similar overall three-dimensional

structure with those of other N-type ATP pyrophospha-

tases, whereas residues 186–217 are unique to TilS and

Table 1. Data Collection and Refinement Statistics

Data Collection

Statistics TilS/AMPPNP TilS/ATP/Mg/Lys

Wavelength (Å) 1.0000 1.0000

Resolution (Å) 50�2.7

(2.8�2.7)

50�2.5

(2.59�2.5)

Unique Reflections 46,600 52,465

Redundancy 4.1 (3.8) 2.6 (1.7)

Completeness (%) 99.4 (96.5) 91.8 (78.0)

I/s (I) 13.3 (1.8) 12.3 (2.3)

Rsym (%) 8.8 (44.2) 8.4 (22.1)

Refinement Statistics

Resolution (Å) 2.7 2.5

Reflections (s (F) > 0) 46,266 52.457

Number of protein

atoms

10,447 10,442

Water atoms 180 65

AMPPNP molecules 2

ATP molecules 4

Magnesium ion 1

L-lysine 1

Rwork factor (%) 22.6 22.9

Rfree factor (%) 29.4 27.4

Rmsd bond
length (Å)

0.009 0.014

Rmsd bond

angles (deg)

1.4 1.7

Average B factor (Å2)

Protein atoms 53.4 54.3

Water atoms 34.0 38.0

Ramachandran Plot

Most favored (%) 85.6 86.1

Additional allowed (%) 13.2 12.5

Generously allowed (%) 1.2 1.4

Rsym = Shkl Sj j Ij (hkl)� < Ij (hkl) > j/ShklSjI (hkl), where Ij (hkl) and
< Ij (hkl) > are the intensity of measurement j and the mean

intensity for the reflection with indices hkl, respectively. R

factor = SjFobs � kFcalcj/ShklFobs, where k is a scale factor

and Rfree is the R factor for the test set of reflections not
used during refinement (5% of the data set).
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are designated as the TSD (TilS-specific subdomain),

which consists of three helices (h1, a9, and a10) (Figure 3).

A structural comparison of the NTDs between the ATP-

bound and substrate-free (1WY5) forms of TilS (Nakanishi

et al., 2005) shows that residues 1–189 superposed well,

with an average root mean square deviation of 0.7 Å over

189 Ca atoms, while the conformations of the residues

190–202 in the TSD are quite different (Figure 4A), including

Asp191, Thr193, and Asn194 around the 310 helix h1 (Fig-

ure 3). The 310 helix h1 of the substrate-free form is closer

to the active site by 7 Å, as compared to the ATP-bound

form (Figure 4B). The distance between the a phosphate

of ATP and the methyl group of Thr193 in the ATP-bound

form is 5.8 Å, whereas when superposed, the methyl group

of Thr193 in the substrate-free form is within 2.5 Å of the

a phosphate of ATP, which disturbs ATP incorporation

(Figure 4B). The NTDs of the E. coli (1NI5) and the ATP-

bound A. aeolicus TilSs share 62 identical residues (39%

identity), including those involved in ATP binding (Figure 3),

and superposed on each other with an average root mean

square deviation of 2.1 Å over 158 corresponding Ca

atoms. The TSD conformation of the E. coli TilS was almost

the same as that of the ATP-bound A. aeolicus TilS.

The CTD1 of the A. aeolicus TilS is composed of a two-

layered a/b sheet (Figure 4C) and shares weak homology

with Foxp2 (PDB code: 2A07), which binds specifically to

DNA, according to the DALI server. The surface electro-

static distribution (Figure 4D) revealed that the CTD1 is ba-

sic and seems to be suitable for tRNA binding. The central

b sheet consists of the former two b strands (b7, b8) and

the latter three b strands (b9–b11) (Figure 4C). The two

halves of the b sheet are connected by four hydrogen

bonds between the main-chain atoms of the b8 and b11

strands, as well as by a disulfide bond between Cys253

and Cys312 (Figure 4C). The distance between the two

Sg atoms is 2.06 Å, consistent with the disulfide bond

lengths of other A. aeolicus proteins (PDB codes: 1M1G,

1M1H, 1NPP, 1Q77, 1XM7, 2AYT, and 2DI4) (Knowlton

et al., 2003; Pedone et al., 2006; Steiner et al., 2002;

Suno et al., 2006), which range between 2.02 and 2.12 Å.

We measured the melting temperatures of the A. aeolicus

TilS wild-type as well as its C312A and C312S mutants by

using differential scanning calorimetry (DSC), in 10 mM

Tris-HCl buffer (pH 7.0) containing 300 mM NaCl. The

midpoints of the melting temperatures of the wild-type

and the C312A and C312S mutants are 114.2�C, 96.3�C,

and 96.0�C, respectively (Figure 5). Both mutations

decreased the melting temperature by 18�C.

The Active-Site Architecture
The active site is formed in the NTD of each subunit and is

surrounded by the b sheet (b1–b6), and helices a5, a6, and

a7 (Figure 6A). The PP-motif (32SGGVDS37) participates in

active-site formation, whereas the second conserved mo-

tif (168PLYYVKR174) is located a bit farther from the active

site (Figure 6A). The side chain of Arg174 is 8 Å away from

the triphosphate group and is fixed by a salt bridge with

Glu140, and thus it contributes to structural stabilization

in the present conformation.
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Figure 3. Sequence Alignments of TilS

The TilS sequences were aligned with ClustalX (Thompson et al., 1997), and the figure was generated with ESPript (Gouet et al., 1999, 2003). Abbre-

viations: AquAe, Aquifex aeolicus; TheMa, Thermotoga maritima; LacLa, Lactococcus lactis; BacCe, Bacillus cereus; TheTh, Thermus thermophilus

HB27; HaeIn, Haemophilus influenzae; StaAu, Staphylococcus aureus; EColi, Escherichia coli. The secondary structures of TilS from the A. aeolicus

and the E. coli are shown at the top and the bottom, respectively. The a helices and b sheets are colored according to the domain classification in

Figure 2E (NTD, pink; TSD, yellow; Linker, green; and CTD1, blue). The PP-motif and the other conserved residues are white within purple- and

red-filled rectangles, respectively. The highly conserved residues are colored red. The residues involved in ATP binding are enclosed in blue boxes.

Cysteine residues within a disulfide bond are colored green.
The presence of the TSD causes the TilS active site to

have two separate gateways: a large hole and a narrow

tunnel. The large hole accommodates the ATP molecule.

The adenosine moiety is buried deeply within the active

site (Figures 6B and 6C), whereas the b and g phosphate

groups are located at the entrance of the hole. The size of

this hole is 10 Å wide and 20 Å long, which is sufficiently

large for the cytidine residue, and its periphery is positively
1646 Structure 15, 1642–1653, December 2007 ª2007 Elsevier
charged (Figure 6C), which seems to be favorable to

attract the negatively charged tRNA.

The shape of the second gateway into the active site is

like a tunnel (Figure 6D). The L-lysine molecule is located

at the entrance of the tunnel, and the distance between

the a phosphate of ATP and the Nz atom of L-lysine is

over 11 Å (Figures 4B and 6D). The L-lysine is bound

weakly to the Val35, Trp188, and Asp191 side chains by
Ltd All rights reserved
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Figure 4. N- and C-Terminal Domains

The NTD superposition of the ATP-bound and the ATP-free forms of TilS, colored cyan and pink, respectively. The overall view is shown in (A), and the

TSD moiety is highlighted in (B). (B) Residues 189–199 are shown in a tube model and are colored yellow (ATP-bound) and pink (ATP-free). The surface

of the ATP-bound TilS without TSD is colored cyan. ATP, L-lysine, and the conserved residues are shown by stick models. (C) Ribbon representation

of the CTD1. The disulfide bond is shown as a green stick model. (D) The surface of the CTD1, color coded according to the electrostatic potential (red,

�10 kT/e; blue, +10 kT/e). The figure on the left is depicted in the same direction as (C), and that on the right is viewed from the opposite, as indicated

by the arrow.
hydrophobic interactions, which is consistent with the

report that the W188A mutant binds L-lysine weakly (Na-

kanishi et al., 2005). In the A. aeolicus TilS, Val35 in the

PP-motif should be important for structural maintenance

of the gateway for L-lysine. The acidic electrostatic distri-

bution on the wall of this tunnel (Figure 6E), is achieved

with several conserved residues, including Asp137,

Glu140, and Asp191 (Figure 3). Asp191 is essential for

the catalysis (Nakanishi et al., 2005) and would participate

in the L-lysine incorporation and activation.

ATP Recognition
In order to form hydrogen-bonds with the N1 and N6

atoms of adenine, TilS uses the main-chain nitrogen and

oxygen atoms of Phe61 (Figure 7A), in the same way as

other N-type ATP pyrophosphatases (Rizzi et al., 1998;

Tesmer et al., 1996). The adenine ring is stacked with

the side chains of Arg113 and Ser32 (Figure 7A). The dis-

tances between the C5 and C6 atoms of adenine and the

Ca and Cb atoms of Ser32 are 3.2 and 3.4 Å, respectively.

The side chain of Ser32 is fixed by a hydrogen bond with

Gly34. This sharp turn within the PP-motif is already

formed in the ATP-free form and plays a structural role
Structure 15, 1642–165
(Nakanishi et al., 2005). The two hydroxyl groups of the ri-

bose hydrogen bond with the Ala30 O and Ala132 N atoms

(Figure 7A). The a phosphate of ATP is 10 Å away from the

PP-motif, and the b and g phosphates point outward (Fig-

ure 7A). Arg113 hydrogen bonds with the b and g phos-

phate groups. His133 binds to the g phosphate directly

in TilS/ATP/Mg/Lys (Figure 7A), whereas in TilS/AMPPNP,

it binds to the g phosphate via a water molecule (Fig-

ure 7B). This conformational difference might stem from

the substitution of the oxygen atom, between the Pb and

Pg atoms in the ATP, by the nitrogen atom in the AMPPNP.

The H133A mutant reportedly binds ATP 2.5-fold more

strongly, whereas the Kcat is subtly reduced by 1.2-fold,

as compared to the wild-type TilS (Nakanishi et al.,

2005). In the H133A mutant, the side chain of Arg201 or

Arg167 could take the place of His133 (Figure 7A), and it

could bind directly to the g phosphate. This possible inter-

action would enhance the affinity for ATP but would not

greatly affect the enzymatic efficiency.

Mg2+ Binding
In the structure of TilS/ATP/Mg/Lys, a strong spherical

density was observed between the side chains of the
3, December 2007 ª2007 Elsevier Ltd All rights reserved 1647
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Asp36 and Asp137 residues (Figure 2B). We considered it

to be a divalent metallo-cation since it is strong and is

located between two negatively charged aspartic acid

residues. Mg2+ was the only divalent cation present during

the crystallization, and thus we assigned one Mg2+ to this

electron density. The Mg2+ is mainly coordinated by the

carboxyl side chains of the conserved Asp36 (2.6 Å) and

Asp137 (2.8 Å) residues (Figure 2B), which explains why

the D36A and D137A mutants lack enzymatic activity (Na-

kanishi et al., 2005). In addition, the Ala132 O atom (3.4 Å),

the hydroxyl group of the ribose (3.0 Å), and a water mol-

ecule associated with His134 (2.6 Å) (Figure 7A) partici-

pate in the Mg2+ coordination. The coordination of Mg2+

by five ligands in proteins is less common than six coordi-

nation, but the octahedral distribution of the five oxygen

atoms (Figure 7A) satisfies the geometry of the Mg2+-

ligand interaction in proteins (Harding, 2001). We consider

that the Mg2+ binding by the negatively charged carboxyl

groups of two aspartic acid residues would be stronger, as

compared to the other ligands, and thus would compen-

sate for the lack of the sixth ligand. There are no significant

differences between the active site structures with and

without the Mg2+, indicating that the role of the Mg2+ is

not structural.

The role of the Mg2+ during ATP hydrolysis was investi-

gated extensively in aminoacyl-tRNA synthetase (aaRS),

which attaches amino acids to tRNA by using ATP (Ibba

etal., 2005).TheMg2+ usuallybridges the b and g phosphate

moieties of the ATP, so that the b phosphate group is fixed.

This conformation is suitable for the nucleophilic attack on

the a phosphate, and the Mg2+ facilitates the release of

the pyrophosphate group. The Mg2+ also contributes to the

withdrawal of electrons from the phosphate groups, which

assists in the hydrolysis of the phosphodiester bond of

ATP. Thus, the Mg2+ located in the active site of TilS is con-

sidered to be involved in the formation of the adenylated

Figure 5. DSC Measurements of the A. aeolicus TilS Wild-

Type and Its Mutants

Typical excess heat capacity curves of the A. aeolicus TilS at a scan

rate of 90�C/hr. Curves 1, 2, and 3 represents those of the wild-type

and the C312A and C312S mutants, with their peak temperatures of

114.2�C, 96.3�C, and 96.0�C, respectively.
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cytidine. The Mg2+ coordination by the conserved aspartic

acid residue in the signature PP-motif would be common

among the N-type ATP pyrophosphatases.

DISCUSSION

We identified the TilS residues that interact with the ATP and

found that the triphosphate moiety is located opposite the

PP-motif (Figure 7A). Among the N-type ATP pyrophospha-

tases, the structure of GMP synthetase (1GPM), containing

AMP, Mg2+, and pyrophosphate, represents the state after

ATP hydrolysis (Figure 7C) (Tesmer et al., 1996). A structural

comparison suggested that a conformational change of the

phosphate moieties of ATP occurs during the formation of

the adenylated intermediate, but the positions of the Mg2+

ions do not differ greatly (Figures 7A and 7C). The Mg2+, co-

ordinated by Asp36 in the structure of TilS, seems to be

ready to interact with the phosphate moieties of the ATP.

When the Mg2+ interacts with ATP, the Asp36 side chain

would rotate outside, as observed in GMP synthetase

(Figure 7C). More information about the ATP conformational

change is available from the structures of E. coli arginino-

succinate synthetase, another N-type ATP pyrophospha-

tase. The present conformation of ATP in TilS is similar to

the extended conformation observed in E. coli argininosuc-

cinate synthetase (1KP2) (Lemke and Howell, 2002), which

binds to ATP, citrulline, and L-aspartate, to synthesize argi-

ninosuccinate. The b and g phosphate moieties of the ATP

occupy the aspartate binding site in the extended confor-

mation (Figure 7D). When the aspartate binding site is occu-

pied (1KP3) (Lemke and Howell, 2002), the b and g phos-

phates of the ATP adopt a U-shaped conformation and

associate with the PP-motif (Figure 7E). Similarly, we expect

that the binding of tRNAIle
2 to TilS would flip the b and g

phosphates of the ATP. This conformational change of the

ATP in A. aeolicus TilS appears to be more difficult to

achieve, as compared to that in the E. coli argininosuccinate

synthetase, because the hydrogen bonds with Arg113

tightly hold the ATP (Figure 7A). However, the negatively

charged tRNA should repel the ATP strongly enough to

induce its conformational change.

The role of the Mg2+ in TilS, as well as its mechanistic

implications, is discussed further based on a structural

comparison with that of lysyl-tRNA synthetase (LysU),

which catalyzes a similar reaction to TilS, in that it attaches

L-lysine to tRNA by using ATP. The ATP in LysU adopts the

U-shaped conformation, and the adenylation occurs by an

inline displacement mechanism (Desogus et al., 2000). The

position of the Mg2+ in TilS was compared to those of the

three Mn2+, an analog of Mg2+, which associate with the U-

shaped ATP in LysU (Desogus et al., 2000), by superposi-

tion based on the adenosine moieties of ATP (Figure 7F).

The present position of the Mg2+ in TilS is near the Mn1

in LysU, suggesting that the Mg2+ would interact with the

phosphates of the ATP. In this context, one Mn2+ ion that

interacts with the b and g phosphates in LysU is widely

shared among the class 1 and class 2 aaRSs, and the other

two Mn2+ ions are unique to the class 2 aaRSs (Ibba et al.,

2005). Therefore, it is possible that two (or more) Mg2+ ions
Ltd All rights reserved
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Figure 6. The Active-Site Architecture

(A) A stereoview of the active site. The ATP and L-lysine molecules are shown by stick models. The PP-motif (32SGGVDS37), the second conserved

motif (168PLYYVKR174), and the TilS-specific subdomain (TSD) are colored green, blue, and yellow, respectively. The other parts are colored pink.

(B and C) Surface models of the active site, viewed from the large hole. The surface of the protein moiety was calculated. The ligands are shown by

stick models. The PP-motif and the TSD are colored green and yellow, respectively in (B) and are color coded according to the electrostatic potential

in (C) (red, �10 kT/e; blue, +10 kT/e).

(D) The residues that constitute the wall of the narrow tunnel are shown in stick models.

(E) The surface of the narrow tunnel, depicted in the same direction as (D) and color coded according to the electrostatic potential (red, �10 kT/e;

blue, +10 kT/e).
are present within the active site of TilS in the transition

state and interact not only with the b and g phosphates,

but also with the a and b phosphates. In the active site of

TilS, the pocket into which the pyrophosphate group sits

after the conformational change is negatively charged

(Figures 6B and 6C). Thus, Mg2+ binding in the active site

of TilS counteracts the acidity, to reduce the destabilizing

effect of the electrostatic repulsion between TilS and the

pyrophosphate moiety of the ATP.

The docking model of TilS with AMP, tRNAIle
2, and L-

lysine was reported previously (Nakanishi et al., 2005).

Based on considerations of the conformational change of

the pyrophosphate moiety of ATP, we revised the model.

In our docking model of TilS with tRNAIle
2 (Figure 7G), the

cytidine residue satisfies the inline displacement mecha-

nism for the attack on the a phosphate, and the phosphate

of the tRNA backbone takes the place formerly occupied

by the g phosphate of ATP in the extended conformation,

which would drive the ATP to flip. If the ATP flips freely
Structure 15, 1642–165
so that the phosphate moieties can approach the Mg2+,

then the Mg2+ can facilitate the water-mediated cleavage

of the phosphodiester bond in the absence of tRNAIle
2.

Thus, keeping the triphosphate moieties of the ATP away

from the Mg2+ in the absence of tRNAIle
2 should be bene-

ficial for preventing wasteful ATP hydrolysis. Taken

together, the present ATP conformation (Figure 7A) repre-

sents the initial binding state, and the triphosphate moiety

would flip upon the incorporation of the cytidine residue of

tRNAIle
2 inside the active site.

In order to complete the second reaction, the adeny-

lated cytidine and L-lysine come close to each other.

Since the two hydrogen bonds with Phe61 and the stack-

ing interactions by Ser32 and Arg113 fix the adenine ring,

a large translocation of the adenosine moiety would be

unlikely to occur. Therefore, we expect that the L-lysine

would be carried over a long distance for lysidine forma-

tion (Figure 7G). We observed different conformations of

the TSD between the ATP-bound and -free forms (Figures
3, December 2007 ª2007 Elsevier Ltd All rights reserved 1649
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Figure 7. ATP Recognition

(A) The amino acid residues that recognize the ATP and Mg2+ (stereoview). The ATP is shown by a stick model. The Mg2+ and water molecules are

shown as gray and red spheres, respectively. Hydrogen bonds are shown as dotted lines.

(B) Recognition of the AMPPNP, shown as in (A). The nitrogen atom between the Pb and Pg atoms is colored blue.

(C) AMP and pyrophosphate binding by E. coli GMP synthetase, depicted as in (A).

(D and E) Extended (D) and U-shaped (E) ATP conformations in the structures of the E. coli argininosuccinate synthetase complexed with ATP (D) and

with both ATP and citrulline (E), respectively. The side chain of Asp22 in (D) is missing in the coordinates (1KP2).

(F) Comparison of the ATP conformation. The U-shaped ATP, with three manganese ions (Mn1, Mn2, and Mn3) in the structure of LysU (PDB code:

1E24) was superposed based on the adenine ring. The phosphate atoms are colored orange, and the manganese ions are colored magenta.

(G) Docking model of TilS and the cytidine residue of tRNAIle
2 (stereoview). The phosphate atoms of the ATP and the side chain of Asp36 were moved

manually. The L-lysine was moved manually, and the model structure is colored light gray and is indicated as (L-lysine).
4A and 4B), indicating that the TSD could be mobile during

lysidine synthesis. The D191A and N194A mutants report-

edly lack enzymatic activity (Nakanishi et al., 2005), and

these residues are located where they could interact

with the L-lysine (Figure 4B). The movement of the TSD

would carry the L-lysine into the active site, which could

be triggered by the tRNAIle
2 binding. The structure of
1650 Structure 15, 1642–1653, December 2007 ª2007 Elsevie
TilS complexed with tRNAIle
2 will reveal the precise con-

formational changes that occur during lysidine synthesis

and confirm the catalytic mechanism.

We have shown that a disulfide bond stabilizes the

structure of A. aeolicus TilS, which is considered to be

an adaptation to the thermophilic environment. TilS with-

out the disulfide bond (C312A and C312S mutants) starts
r Ltd All rights reserved
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to denature near 95�C, the maximal growth temperature of

A. aeolicus (Deckert et al., 1998), whereas the wild-type

protein is stable at 95�C (Figure 5). Even though the melt-

ing temperatures in vivo would not exactly agree with

those in vitro, due to the different concentrations of salt

and other compounds, the gap would be no more than

a couple of degrees, since the addition of 4 mM AMPPNP

increased them only by 1.1�C–1.6�C (data not shown).

Thus, the disulfide bond formation is considered to be vital

for the stabilization of the A. aeolicus TilS in vivo. We ana-

lyzed the TilS sequences from other thermophilic bacteria

to determine whether they could form disulfide bonds. The

TilS sequences from Thermotoga maritima and Thermus

thermophilus have two and four cysteine residues, re-

spectively. Cys61 and Cys137 in the T. maritima TilS cor-

respond to Ala80 and Gly157 in the A. aeolicus TilS

(Figure 3), which are over 20 Å apart from each other, indi-

cating that the T. maritima TilS has no disulfide bond. On

the other hand, the four cysteine residues in the T. thermo-

philus TilS are clustered in the TadA domain, which is

fused to the C terminus of TilS. TadA generates inosine

on tRNAArg
2 (Wolf et al., 2002), and the two cysteine resi-

dues are required for the coordination of a zinc ion (Kura-

tani et al., 2005). This TilS-TadA fusion protein might be

stabilized, as compared to when the proteins exist sepa-

rately, or it may catalyze the tRNA modification reactions

efficiently, which might represent another adaptation by

T. thermophilus to the thermophilic environment.

Another example is the tRNA adenosine N1 methyl-

transferase from Pyrococcus abyssi, which is a tetrameric

enzyme containing four intersubunit disulfide bonds, while

its homologs from T. thermophilus and Saccharomyces

cerevisiae lack disulfide bonds (Roovers et al., 2004).

Systematic structural studies will establish the notion

that structural disulfide bonds are prevalent in certain

thermophilic organisms.

EXPERIMENTAL PROCEDURES

Purification of the A. aeolicus TilS

The A. aeolicus TilS gene was cloned into the pET15b vector (Novagen)

at the NcoI and BamHI sites, and the recombinant protein was ex-

pressed in E. coli strain BL21 (DE3) codonplus RIL (Stratagene) by

induction with 1 mM IPTG overnight at 37�C. The E. coli cells were son-

icated in 20 mM Tris-HCl buffer (pH 8.5) containing 500 mM NaCl, 5 mM

MgCl2, and 10 mM 2-mercaptoethanol, and the lysate was centrifuged

at 30,000 3 g for 10 min. The protein solution was heated at 80�C for 20

min to denature the E. coli proteins. After the centrifugation, an ammo-

nium sulfate solution was added to the supernatant to a final concentra-

tion of 1.1 M, and then the protein solution was applied to a Butyl Toyo-

pearl column (Tosoh), which was eluted by linearly decreasing the

ammonium sulfate concentration. The protein was collected and dia-

lyzed against 20 mM Tris-HCl buffer (pH 7.0) containing 50 mM NaCl

and 10 mM 2-mercaptoethanol. It was applied to a Resource S (Amer-

sham Biosciences) column by using the AKTA system and was eluted

by a linear gradient of NaCl from 50 mM to 1 M in 20 mM Tris-HCl buffer

(pH 7.0) containing 10 mM 2-mercaptoethanol. The purified protein was

concentrated to 7 mg/ml in 10 mM Tris-HCl buffer (pH 7.0) containing

300 mM NaCl. The plasmids encoding the C312A and C312S mutants

were prepared by PCR. The mutant proteins were expressed and puri-

fied in the same way as the wild-type, and were concentrated to

0.8 mg/ml in 10 mM Tris-HCl buffer (pH 7.0) containing 300 mM NaCl.
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The gene encoding A. aeolicus tRNAIle2 was PCR-amplified and

cloned into the pUC19 plasmid (Takara). A. aeolicus tRNAIle2 was tran-

scribed in vitro with T7 RNA polymerase and purified in the same

condition as described for P. horikoshii tRNAVal (Ishitani et al., 2003).

Crystallization, Data Collection, Structure Determination,

and Refinement

The crystallization was performed by the hanging vapor diffusion

method at 20�C. At first, crystallization was performed with a pro-

tein-tRNA solution containing 7 mg/ml TilS with a 1:1.1 molar ratio of

TilS:tRNAIle
2 in 50 mM HEPES-Na buffer (pH 7.6), containing 300

mM NaCl, 5 mM MgCl2, 1 mM DTT, 2 mM AMPPNP, and 2 mM L-

lysine. We used AMPPNP, an analog of ATP, expecting that AMPPNP

would not react with tRNA at 20�C, in order to capture the state just be-

fore the reaction. Crystals were grown in a drop composed of 1 ml so-

lution and an equal volume of the reservoir solution (0.1 M citrate-Na

buffer [pH 5.8] containing 0.2 M ammonium acetate and 20% PEG

4,000). The crystal was transferred into reservoir solution containing

15% glycerol, and the diffraction data set was collected on beamline

BL41XU at the SPring8 (Japan). The data were processed with the pro-

gram HKL2000 (Otwinowski and Minor, 1997). As described below,

this crystal contained AMPPNP but neither tRNA nor L-lysine. There-

fore, we refer to this sample as TilS/AMPPNP. The TilS/AMPPNP crys-

tal belongs to the space group P21, with unit cell parameters of

a = 94.5 Å, b = 82.2 Å, c = 109.4 Å, and b = 105.9�.

We determined the structure of TilS/AMPPNP by molecular replace-

ment with the program MOLREP (Vagin and Teplyakov, 1997) by using

the coordinates of the substrate-free form of A. aeolicus TilS (1WY5)

comprising residues 1–311. Four molecules (A–D) were found in the

asymmetric unit. At first, 20 residues in the C-terminal domain (291–

311) did not fit the electron density well. We changed these into alanine

residues, drew the electron density map, and manually assigned the

side chains. The model building was done with O (Jones et al., 1991)

and CueMol (http://cuemol.sourceforge.jp/en/). In the final model,

molecule A contained all residues (1–317), and molecules B–D con-

tained residues 1–314. Each of the four molecules contained a disulfide

bond between Cys253 and Cys312. The electron densities corre-

sponding to AMPPNP were observed in two molecules (A and C) out

of the four in the asymmetric unit. No electron densities for either L-

lysine or tRNA were detected. The TilS/AMPPNP model was refined up

to 2.7 Å resolution by using the program CNS (Adams et al., 1997), with

final Rfree and Rwork factors of 29.4% and 22.6%, respectively (Table 1).

During this study, the Km values for ATP and L-lysine, determined by

the steady state kinetics of A. aeolicus TilS, were reported to be 19.4

and 629.4 mM, respectively (Nakanishi et al., 2005). According to the

Km value of ATP, all of the active sites should be occupied by 2 mM

AMPPNP. However, the reagents in the crystallization might reduce

the binding affinity of TilS for the substrates, due to the possible

change in the dielectric constant of the solution. The affinity for L-lysine

is lower than that for ATP by about 30-fold, and thus we consider this to

be the reason for its absence from the crystal of TilS/AMPPNP.

In order to obtain the crystal of TilS containing four ATPs in all four

molecules in the asymmetric unit, as well as L-lysine, we increased

their concentrations to 4 mM (ATP) and 50 mM (L-lysine). We used

ATP instead of AMPPNP, since the hydrolysis of ATP would not occur

in the absence of tRNA. As described below, this crystal contained

ATP, Mg2+, and L-lysine, and therefore we refer to it as TilS/ATP/Mg/

Lys. The crystals of TilS/ATP/Mg/Lys were grown in a drop composed

of 1 ml protein solution (7 mg/ml TilS in 10 mM Tris-HCl buffer [pH 7.0]

containing 300 mM NaCl, 10 mM MgCl2, 1 mM 2-mercaptoethanol, 4

mM ATP, and 50 mM L-lysine) and an equal volume of the reservoir

solution (0.1 M citrate-Na buffer [pH 5.4], containing 0.2 M ammonium

acetate and 20% PEG 4,000). The crystals grew in 2 weeks. The Mg2+

concentration was increased twice so that its proportion to the ATP

remained the same, as compared to the conditions for TilS/AMPPNP.

Increasing the concentration of L-lysine above 50 mM did not yield any

crystals under the conditions we searched. When the crystal grown in
3, December 2007 ª2007 Elsevier Ltd All rights reserved 1651
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the presence of 50 mM L-lysine was soaked in a higher concentration

of L-lysine, it started to melt.

The TilS/ATP/Mg/Lys crystal was transferred into 0.1 M citrate buffer

(pH 5.4) containing 0.2 M ammonium acetate, 20% PEG 4,000, 15%

glycerol, 4 mM ATP, 10 mM MgCl2, and 50 mM L-lysine, and the dif-

fraction data set was collected on beamline BL41XU at the SPring8

(Japan). The data were processed with the program HKL2000

(Otwinowski and Minor, 1997). The crystal of TilS/ATP/Mg/Lys belongs

to the space group P21, with unit cell parameters of a = 97.4 Å, b = 81.6

Å, c = 109.1 Å, and b = 106.0�. The change in the cell constant of a from

94.5 Å to 97.4 Å (changed by 3%) suggests that the crystal of TilS/ATP/

Mg/Lys is nonisomorphous to that of TilS/AMPPNP, which would be

caused by the increased concentrations of L-lysine and ATP in the

crystal. A strong spherical density was observed between the side

chains of the Asp36 and Asp137 residues in molecule C. Associations

with two negatively charged aspartic acid residues suggest that it

would be a divalent cation. Since the crystallization conditions con-

tained Mg2+ as the only divalent cation, we assigned the Mg2+ to this

strong electron density. We could not find any significant structural

differences between the active sites with and without the Mg2+.

The TilS/ATP/Mg/Lys structure was determined by molecular

replacement with the program MOLREP (Vagin and Teplyakov, 1997)

and was refined up to 2.5 Å resolution by using the program CNS

(Adams et al., 1997), with final Rfree and Rwork factors of 27.4% and

22.9%, respectively (Table 1). In the final model, molecule A contains

all residues (1–317), molecules B and C contain residues 1–314, and

molecule D contains residues 1–313. All four molecules contain the

ATP, molecule B contains the L-lysine, and molecule C contains the

Mg2+. The terminal amino and carboxyl atoms of the L-lysine interact

with Arg203 of molecule C, and Glu211 and Arg214 of molecule D,

which is considered to be due to the crystal packing. The Ramachan-

dran plot analyses with PROCHECK (Laskowski et al., 1993) revealed

that both models showed good stereochemistry (Table 1).

Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) was carried out with a VP-cap-

illary DSC platform (MicroCal, USA) up to 130�C, at scan rates of 90�C/

hr, to determine the unfolding transition temperatures of the A. aeolicus

TilS wild-type and the C312A and C312S mutants. The proteins were

concentrated to 0.8 mg/ml in 10 mM Tris-HCl buffer (pH 7.0) containing

300 mM NaCl, filtered through a 0.22 mm pore size membrane, and

degassed before measurements.
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