A Classification of 2-Simple Prehomogeneous Vector Spaces of Type I

Tatsuo Kimura, Shin-ichi Kasai, Masaaki Inuzuka, and Osami Yasukura
The Institute of Mathematics, University of Tsukuba, Iharaki, 305, Japan

Communicated by Nagayoshi Iwahori
Received June 30, 1986

Introduction

Let $\rho: G \rightarrow G L(V)$ be a rational representation of a connected linear algebraic group G on a finite-dimensional vector space V, all defined over an algebraically closed field K of characteristic zero. If V has a Zariskidense G-orbit, we call a triplet (G, ρ, V) a prehomogeneous vector space (abbrev. P.V.). When ρ is irreducible, such P.V.s have been classified in [1]. Since then, it has turned out gradually that the complete classification of reductive P.V.s (i.e., P.V.s with reductive groups G) is an extremely laborious task. Therefore it is natural to classify some restricted class of P.V.s (e.g., [2]) to get some insight into the general situation.

A P.V. (G, ρ, V) is called a 2 -simple P.V. when (1) $G=G L(1)^{\prime} \times G_{1} \times G_{2}$ with simple algebraic groups G_{1} and G_{2}, (2) ρ is the composition of a rational representation ρ^{\prime} of $G_{1} \times G_{2}$ of the form $\rho^{\prime}=\rho_{1} \otimes \rho_{1}^{\prime}+\cdots+$ $\rho_{k} \otimes \rho_{k}^{\prime}+\left(\sigma_{1}+\cdots+\sigma_{s}\right) \otimes 1+1 \otimes\left(\tau_{1}+\cdots+\tau_{t}\right)$ with $k+s+t=l$, where ρ_{i}, σ_{i} (resp. $\rho_{j}^{\prime}, \tau_{j}$) are nontrivial irreducible representations of G_{1} (resp. G_{2}), and the scalar multiplications $G L(1)^{t}$ on each irreducible component V_{l} for $i=1, \ldots, l$, where $V=V_{1} \oplus \cdots \oplus V_{l}$. We say that a 2 -simple P.V. (G, ρ, V) is of type I if $k \geqslant 1$ and at least one of $\left(G L(1) \times G_{1} \times G_{2}\right.$, $\left.\rho_{i} \otimes \rho_{i}^{\prime}\right)(i=1, \ldots, k)$ is a nontrivial P.V. (see Definition 5, p. 43 in [1]). On the other hand, if $k \geqslant 1$ and all $\left(G L(1) \times G_{1} \times G_{2}, \rho_{i} \otimes \rho_{i}^{\prime}\right)(i=1, \ldots, k)$ are trivial P.V.s, it is called a 2 -simple P.V. of type II. In [3], all 2-simple P.V.s of type II has been already classified. In this paper, we shall classify all 2 simple P.V.s of type I. Thus, together with [3], we complete a classification of all 2 -simple P.V.s. For example, the fact that all irreducible P.V.s are castling-equivalent to 2 -simple P.V.s (or to $(S L(m) \times S L(m) \times G L(2)$, $\Lambda_{1} \otimes A_{1} \otimes A_{1}$) with $m=2,3$) (see [1]) indicates the importance of 2 -simple P.V.s. For simplicity, we write (G, ρ^{\prime}, V) or (G, ρ^{\prime}) instead of (G, ρ, V).

This paper consists of the following four sections: Introduction. 1. Preliminaries. 2. A classification. 3. List.

In Section 1, we give also some correction of [2]. In Section 3, we shall give the list of 2 -simple P.V.s of type I, which are not catling-equivalent to simple P.V.s. For regular P.V.s (see Section 4 in [1]), we also give the generic isotropy subgroups and the number of basic relative invariants.

1. Preliminaries

First we start from the correction of [2].
Proposition 1.1. (1) The triplet $\left(G L(1)^{3} \times S L(5), \quad \Lambda_{2} \oplus A_{2} \oplus A_{1}^{*}\right.$, $\left.V(10) \oplus V(10) \oplus V(5)^{*}\right)$ is a nonregular $P . V$. with the generic isotropy subalgebra

$$
\mathfrak{h}=\left\{(\varepsilon, \varepsilon, 3 \varepsilon) \oplus\left(\begin{array}{c|c}
-3 \varepsilon I_{2} & A \\
\hline 0 & 2 \varepsilon I_{3}
\end{array}\right) ; A=\left(\begin{array}{rrr}
\gamma & -\gamma & -\gamma \\
-\gamma & \gamma & \gamma
\end{array}\right)\right\}
$$

If we identify $V(10) \oplus V(10) \oplus V(5)^{*}$ with $\{(X, Y ; Z) \mid X, Y \in M(5)$, $\left.{ }^{'} X=-X,{ }^{t} Y=-Y, Z \in K^{5}\right\}$, the action ρ is given by $\rho(g) x=\left(\alpha A X^{t} A\right.$, $\left.\beta A Y^{\prime} A ; \gamma^{\prime} A^{-1} \cdot Z\right)$ for $x=(X, Y ; Z)$ and $g=(\alpha, \beta, \gamma ; A) \in G L(1)^{3} \times S L(5)$. The basic relative invariants are given by

$$
f_{1}(x)=P f\left(\begin{array}{c|c}
X & Y Z \\
\hline-Z^{\prime} Y & 0
\end{array}\right) \quad \text { and } \quad f_{2}(x)=\operatorname{Pf}\left(\begin{array}{c|c}
Y & X Z \\
\hline-{ }^{\prime} Z^{t} X & 0
\end{array}\right)
$$

where Pf denotes the Pfaffian.
(2) The triplet $\left(G L(1)^{3} \times S L(5), \quad \Lambda_{2} \oplus \Lambda_{2} \oplus \Lambda_{1}, \quad V(10) \oplus V(10) \oplus\right.$ $V(5))$ is not a P.V.

Proof. We may also identify $V(10)$ with $\Sigma K \cdot e_{1} \wedge e_{,}(1 \leqslant i<j \leqslant 5)$. Then the isotropy subalgebra at a generic point $x_{0}=\left(e_{2} \wedge e_{3}+e_{1} \wedge e_{4}\right.$, $\left.e_{1} \wedge e_{3}+e_{2} \wedge e_{5}\right)$ is given by

$$
\begin{aligned}
\mathfrak{g}_{x_{0}}= & \left\{\left(\varepsilon_{1}, \varepsilon_{2} ;\left(\begin{array}{l|l}
A_{1} & A_{2} \\
\hline 0 & A_{3}
\end{array}\right)\right) ; A_{1}=\left(\begin{array}{cc}
-\varepsilon_{1}-2 \varepsilon_{2} & \\
& -2 \varepsilon_{1}-\varepsilon_{2}
\end{array}\right),\right. \\
& \left.A_{2}=\left(\begin{array}{lll}
\gamma_{1} & \gamma_{2} & \gamma_{3} \\
\gamma_{3} & \gamma_{1} & \gamma_{4}
\end{array}\right), A_{3}=\left(\begin{array}{ccc}
\varepsilon_{1}+\varepsilon_{2} & \\
& 2 \varepsilon_{2} & \\
& & 2 \varepsilon_{1}
\end{array}\right)\right\}
\end{aligned}
$$

The dual action of $\mathfrak{g}_{x_{0}}$ on K^{5} is a P.V., since the isotropy subalgebra at $e_{1}+e_{2} \in K^{5}$ is given by \mathfrak{h}, and hence we have (1). The standard action of $\mathfrak{g}_{x_{0}}$ on K^{5} is a non-P.V., since $f(Z)=z_{4} z_{5} z_{3}^{-2}$ for $Z=\sum z_{i} e_{i} \in K^{5}$ is a nonconstant absolute invariant.
Q.E.D.

Remark 1.2. There is a mistake in Proposition 2.2, p. 80 in [2]. It should be corrected to "For $n=2 m+1$, the triplet (5) for $n=5$ and the triplet (2) are P.V.s, and the triplets (3), (4), (5) with $n \neq 5$, (6) are not P.V.s." Thus the triplet $\left(G L(1)^{3} \times S L(5), \Lambda_{2} \oplus A_{2} \oplus \Lambda_{1}^{*}\right)$ should be added in the table of simple P.V.s, p. 100 in [2] as the nineteenth P.V. Thus we obtain the following theorem.

TheOrem 1.3 ([2] with the correction above). All non-irreducible simple P.V.s with scalar multiplications are given as follows:
(2) $\quad(G L(1)^{k+1} \times S L(n), A_{2} \oplus A_{1}^{(*)} \overbrace{\oplus \cdots \oplus}^{k} \Lambda_{1}^{(*)})(1 \leqslant k \leqslant 3, n \geqslant 4)$ except $\left(G L(1)^{4} \times S L(n), A_{2} \oplus A_{1} \oplus A_{1} \oplus A_{1}^{*}\right)$ with $n=o d d$.
(3) $\left(G L(1)^{2} \times S L(2 m+1), A_{2} \oplus A_{2}\right)$ for $m \geqslant 2$.
(4) $\left(G L(1)^{2} \times S L(n), 2 \Lambda_{1} \oplus \Lambda_{1}^{(*)}\right)$.
(5) $\quad\left(G L(1)^{3} \times S L(5), A_{2} \oplus A_{2} \oplus A_{1}^{*}\right)$.
(6) $\left(G L(1)^{2} \times S L(n), A_{3} \oplus A_{1}^{(*)}\right)(n=6,7)$.
(7) $\left(G L(1)^{3} \times S L(6), A_{3} \oplus A_{1} \oplus A_{1}\right)$.
(8) $\quad\left(G L(1)^{\prime} \times \operatorname{Sp}(n), \Lambda_{1} \xlongequal[\oplus \cdots \oplus]{1} \Lambda_{1}\right)(l=2,3)$.
(9) $\left(G L(1)^{2} \times \operatorname{Sp}(2), A_{2} \oplus A_{1}\right)$.
(10) $\left(G L(1)^{2} \times \operatorname{Sp}(3), A_{3} \oplus A_{1}\right)$.
(11) $\left(G L(1)^{2} \times \operatorname{Spin}(n),(\right.$ half- $)$ spin rep. \oplus vector rep. $)(n=7,8$, $10,12)$.
(12) $\left(G L(1)^{2} \times \operatorname{Spin}(10), A \oplus A\right)$, where $A=$ the even half-spin representation.
Here $\Lambda^{(*)}$ stands for Λ or its dual Λ^{*}. Note that $(G, \rho, V) \simeq\left(G, \rho^{*}, V^{*}\right)$ as triplets if G is reductive.

Now let us consider the triplet $\left(G L(1) \times S L(2 m+1) \times S L(2), A_{2} \otimes \Lambda_{1}\right.$, $V(m(2 m+1)) \otimes V(2))$. Let $g_{x_{0}}$ be the isotropy subalgebra of $g \ell(1) \oplus \mathscr{f}(2 m+1) \oplus \mathscr{f}(2)$ at a generic point X_{0} given in p. 94 in [1]. For $A=\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right) \in \mathscr{A}(2)$, let $n A_{1}(A)=\left(\alpha_{i j}\right)$ be an $(n+1) \times(n+1)$ matrix with $\quad \alpha_{k+1, k+1}=(n-2 k) a \quad(0 \leqslant k \leqslant n), \quad \alpha_{k, k+1}=k b, \alpha_{k+1, k}=(n+1-k) c$ $(1 \leqslant k \leqslant n)$, all other $\alpha_{i j}=0$. Put $n A_{1}^{*}(A)=-^{\prime}\left(\alpha_{i j}\right)$. By simple calculation, we have the following lemma.

Lemma 1.4. The generic isotropy subalgebra $\mathfrak{g}_{x_{0}}$ is given as follows:

$$
\begin{gathered}
\mathfrak{g}_{x_{0}}=\left\{\begin{array}{c|c}
(\delta) \oplus\left(\begin{array}{c|c}
m A_{1}^{*}(A)+m \delta I_{m+1} & 0 \\
B & (m-1) A_{1}(A)-(m+1) \delta I_{m}
\end{array}\right) \oplus(A) \\
A \in: f(2), B=\left(b_{\imath}\right) \in M(m, m+1) \\
\text { with } \left.b_{i j}=a_{i+i-1}\right\} \simeq(g f(1) \oplus s(2)) \oplus V(2 m)
\end{array}, .\right.
\end{gathered}
$$

Theorem 1.5 [1]. All nontrivial irreducible (reduced or nonreduced) 2-simple P.V.s are given as follows. Here $H \sim H_{1}$ implies that the generic isotropy subgroup H is locally isomorphic to a group H_{1} :
(1) $\left(S L(2 m+1) \times G L\left(2 m^{2}+m-2\right), \quad A_{2} \otimes A_{1}\right) \quad(m \geqslant 5) \quad$ with $H \sim(G L(1) \times S L(2)) \cdot G_{a}^{m}$.
(2) $\left(S L(5) \times G L(4), A_{2} \otimes A_{1}\right)$ with $H \sim\{1\}$.
(3) $\left(S L(5) \times G L(6), A_{2} \otimes A_{1}\right)$ with $H \sim\{1\}$.
(4) $\quad\left(S L(5) \times G L(7), A_{2} \otimes A_{1}\right)$ with $H \sim S L(2)$.
(5) $\left(S L(2) \times G L(3), 3 A_{1} \otimes A_{1}\right)$ with $H \sim\{1\}$.
(6) $\left(S L(3) \times G L(2), 2 A_{1} \otimes A_{1}\right)$ with $H \sim\{1\}$.
(7) $\left(S L(3) \times G L(4), 2 \Lambda_{1} \otimes A_{1}\right)$ with $H \sim\{1\}$.
(8) $\left(S L(8) \times G L(55), A_{3} \otimes A_{1}\right)$ with $H \sim S L(3)$.
(9) $\left(\operatorname{Spin}(7) \times G L(5)\right.$, spin rep. $\left.\otimes A_{1}\right)$ with $H \sim S L(2) \times S L(2)$.
(10) $\quad\left(\operatorname{Spin}(9) \times G L(15)\right.$, spin rep. $\left.\otimes A_{1}\right)$ with $H \sim \operatorname{Spin}(7)$.
(11) $\left(\operatorname{Spin}(10) \times G L(13)\right.$, half-spin rep. $\left.\otimes A_{1}\right)$ with $H \sim S L(2) \times$ $O(3)$.
(12) $\quad\left(\operatorname{Spin}(11) \times G L(31)\right.$, spin rep. $\left.\otimes A_{1}\right)$ with $H \sim S L(5)$.
(13) $\quad\left(\operatorname{Spin}(14) \times G L(63)\right.$, half-spin rep. $\left.\otimes A_{1}\right)$ with $H \sim\left(G_{2}\right) \times\left(G_{2}\right)$.
(14) $\left(\left(G_{2}\right) \times G L(5), A_{2} \otimes A_{1}\right)$ with $H \sim G L(2)$.
(15) $\left(E_{6} \times G L(26), A_{1} \otimes A_{1}\right)$ with $H \sim F_{4}$.
(16) $\left(E_{6} \times G L(2), \Lambda_{1} \otimes \Lambda_{1}\right)$ with $H \sim \operatorname{Spin}(8)$.
(17) $\left(E_{6} \times G L(25), A_{1} \otimes A_{1}\right)$ with $H \sim \operatorname{Spin}(8)$.
(18) $\left(E_{7} \times G L(55), A_{6} \otimes A_{1}\right)$ with $H \sim E_{6}$.
(II)
(19) $\quad\left(S L(6) \times G L(2), \Lambda_{2} \otimes \Lambda_{1}\right)$ with $H \sim S L(2) \times S L(2) \times S L(2)$.
(20) $\quad\left(S L(6) \times G L(13), A_{2} \otimes A_{1}\right)$ with $H \sim S L(2) \times S L(2) \times S L(2)$.
(21) $\left(S L(7) \times G L(19), A_{2} \otimes A_{1}\right)$ with $H \sim(G L(1) \times S L(2)) \cdot G_{a}^{6}$.
(22) $\quad\left(S L(9) \times G L(34), A_{2} \otimes A_{1}\right)$ with $H \sim(G L(1) \times S L(2)) \cdot G_{a}^{8}$.
(23) $\quad\left(S L(2 m) \times G L\left(2 m^{2}-m-1\right), \quad A_{2} \otimes A_{1}\right) \quad(m \geqslant 3)$ with $H \sim$ $\mathrm{Sp}(m)$.
(24) $\left(S L(m) \times G L\left(\frac{1}{2} m(m+1)-1\right), \quad 2 \Lambda_{1} \otimes A_{1}\right) \quad(m \geqslant 3)$ with $H \sim$ $O(m)$.
(25) $\quad\left(S L(6) \times G L(19), A_{3} \otimes A_{1}\right)$ with $H \sim S L(3) \times S L(3)$.
(26) $\quad\left(S L(7) \times G L(34), A_{3} \otimes A_{1}\right)$ with $H \sim\left(G_{2}\right)$.
(27) $\left(S p(3) \times G L(13), A_{3} \otimes A_{1}\right)$ with $H \sim S L(3)$.
(28) $\left(\operatorname{Spin}(12) \times G L(31)\right.$, half-spin rep. $\left.\otimes A_{1}\right)$ with $H \sim S L(6)$.
(III)
(29) $\left(S L(5) \times G L(3), A_{2} \otimes A_{1}\right)$ with $H \sim S L(2)$.
(30) $\left(S L(2 m+1) \times G L(2), A_{2} \otimes A_{1}\right)(m \geqslant 5)$ with $H \sim(G L(1) \times$ $S L(2)) \cdot G_{a}^{2 m}(\operatorname{see}(1.1))$.
(31) $\quad\left(\operatorname{Sp}(n) \times G L(2), \quad \Lambda_{1} \otimes 2 \Lambda_{1}\right)$ with $H \sim(\operatorname{Sp}(n-2) \times S O(2))$. $U(2 n-3)(n \geqslant 2)$.
(32) $\left(S O(n) \times G L(m), \Lambda_{1} \otimes \Lambda_{1}\right)$ with $H \sim S O(m) \times S O(n-m)$ for $n=9,11$, or $n \geqslant 13$, and $n>m \geqslant 2$.
(33) $\left(\operatorname{Spin}(7) \times G L(2)\right.$, spin rep. $\left.\otimes A_{1}\right)$ with $H \sim S L(3) \times O(2)$.
(34) $\quad\left(\operatorname{Spin}(7) \times G L(3)\right.$, spin rep. $\left.\otimes A_{1}\right)$ with $H \sim S L(2) \times O(3)$.
(35) $\left(\operatorname{Spin}(7) \times G L(6)\right.$, spin rep. $\left.\otimes A_{1}\right)$ with $H \sim S L(3) \times O(2)$.
(36) $\quad\left(\operatorname{Spin}(10) \times G L(2)\right.$, half-spin rep. $\left.\otimes A_{1}\right)$ with $H \sim\left(G_{2}\right) \times S L(2)$.
(37) $\left(\operatorname{Spin}(10) \times G L(3)\right.$, half-spin rep. $\left.\otimes A_{1}\right)$ with $H \sim S L(2) \times$ $O(3)$.
(38) $\left(\operatorname{Spin}(10) \times G L(14)\right.$, half-spin rep. $\left.\otimes A_{1}\right)$ with $H \sim\left(G_{2}\right) \times$ SL(2).
(39) $\left(\left(G_{2}\right) \times G L(2), \Lambda_{2} \otimes A_{1}\right)$ with $H \sim G L(2)$.
(40) $\quad\left(\left(G_{2}\right) \times G L(6), A_{2} \otimes A_{1}\right)$ with $H \sim S L(3)$.
(IV)
(41) $\quad\left(S L(2) \times G L(2), 2 A_{1} \otimes A_{1}\right)$ with $H \sim O(2)$.
(42) $\quad\left(S L(5) \times G L(8), A_{2} \otimes A_{1}\right)$ with $H \sim(G L(1) \times S L(2)) \cdot G_{a}^{4}$.
(43) $\quad\left(S L(9) \times G L(2), \Lambda_{2} \otimes \Lambda_{1}\right)$ with $H \sim(G L(1) \times S L(2)) \cdot G_{u}^{8}$.
(44) $\left(S L(2 m+1) \times G L\left(2 m^{2}+m-1\right), \Lambda_{2} \otimes A_{1}\right)(m \geqslant 4)$ with $H \sim$ $(G L(1) \times \operatorname{Sp}(m)) \cdot G_{a}^{2 m}$.
(45) $\quad\left(S O(10) \times G L(m), \Lambda_{1} \otimes A_{1}\right)(2 \leqslant m \leqslant 9)$ with $H \sim S O(10-m)$ $\times S O(m)$.
(46) $\left(S O(12) \times G L(m), A_{1} \otimes A_{1}\right)(2 \leqslant m \leqslant 11)$ with $H \sim S O(12-m)$ $\times S O(m)$.
(47) $\left(\operatorname{Spin}(7) \times G L(7)\right.$, spin rep. $\left.\otimes A_{1}\right)$ with $H \sim\left(G_{2}\right)$.
(48) $\left(\operatorname{Spin}(10) \times G L(15)\right.$, half-spin rep. $\left.\otimes A_{1}\right)$ with $H \sim(G L(1) \times$ $\operatorname{Spin}(7)) \cdot G_{a}^{8}$.
(V)
(49) $\left(S L(5) \times G L(2), A_{2} \otimes A_{1}\right)$.
(50) $\quad\left(S L(5) \times G L(9), A_{2} \otimes A_{1}\right)$.
(51) $\quad\left(S L(7) \times G L(2), A_{2} \otimes A_{1}\right)$.
(52) $\quad\left(S L(7) \times G L(20), A_{2} \otimes A_{1}\right)$.
(53) $\quad\left(S O(5) \times G L(m), A_{1} \otimes A_{1}\right) \simeq\left(S p(2) \times G L(m), A_{2} \otimes \Lambda_{1}\right)(m=$ 2, 3, 4).
(54) $\quad\left(S O(6) \times G L(m), A_{1} \otimes A_{1}\right) \simeq\left(S L(4) \times G L(m), A_{2} \otimes A_{1}\right)(2 \leqslant$ $m \leqslant 5$).
(55) $\quad\left(S O(7) \times G L(m), \Lambda_{1} \otimes A_{1}\right) \simeq(\operatorname{Spin}(7) \times G L(m)$, vector rep. $\left.\otimes A_{1}\right)(2 \leqslant m \leqslant 6)$.
(56) $\quad\left(S O(8) \times G L(m), A_{1} \otimes A_{1}\right)(2 \leqslant m \leqslant 7)$.
(57) $\quad\left(S p(n) \times G L(2 m), \Lambda_{1} \otimes A_{1}\right)(n>m \geqslant 1)$.
(58) $\quad\left(\operatorname{Sp}(n) \times G L(2 m+1), A_{1} \otimes \Lambda_{1}\right)(n>m \geqslant 1)$.

The following lemma is almost obvious.
Lemma 1.6. Let H be a generic isotropy subgroup of $\left(G L(1) \times G \times G^{\prime}\right.$, $\left.\rho_{1} \otimes \rho_{1}^{\prime}\right)$. Let d and d^{\prime} be the minimum of degree of nontrivial representations of G and G^{\prime}, respectively:
(1) If $1+\operatorname{dim} H \varsubsetneqq \min \left\{d, d^{\prime}\right\}$, then there exists no non-irreducible 2-simple P.V. with an irreducible component $\left(G L(1) \times G \times G^{\prime}, \rho_{1} \otimes \rho_{1}^{\prime}\right)$.
(2) If $1+\operatorname{dim} H \varsubsetneqq d$ (resp. d^{\prime}), then $\left(G L(1)^{2} \times G \times G^{\prime}, \rho_{1} \otimes \rho_{1}^{\prime}+\right.$ $\left.\rho_{2} \otimes \rho_{2}^{\prime}\right)$ with $\rho_{2} \neq 1$ (resp. $\rho_{2}^{\prime} \neq 1$) is not a P.V.

2. A Classification

In this section, for each nontrivial 2 -simple P.V. $\left(G L(1) \times G \times G^{\prime}\right.$, $\rho_{1} \otimes \rho_{1}^{\prime}$) in Theorem 1.5, we shall determine all nonirreducible 2 -simple P.V.s which have ($G L(1) \times G \times G^{\prime}, \rho_{1} \otimes \rho_{1}^{\prime}$) as one of their irreducible components. For this purpose, we shall investigate the prehomogeneity of $\left(G L(1)^{2} \times G \times G^{\prime}, \rho_{1} \otimes \rho_{1}^{\prime}+\rho_{2} \otimes \rho_{2}^{\prime}\right)$, where we do not assume the nontriviality of ρ_{2} and ρ_{2}^{\prime} in general.

Theorem 2.1. There exists no nonirreducible 2 -simple P.V. which has one of (I) in Theorem 1.5 as an irreducible component.

Proof. For (1), we have $\rho_{2}^{\prime}=1$ by (2) of Lemma 1.6 and Lemma 1.4, since $2 m^{2}+m-2 \supsetneqq \operatorname{dim}\left(g \ell(1) \oplus \mathfrak{g}_{x_{0}}\right)=2 m+5$ for $m \geqslant 5$. If $\rho_{2} \neq 1$, we have $\rho_{2}=\Lambda_{1}$ or Λ_{1}^{*} by dimension reason. Then the castling transform $\left(G L(1)^{2} \times S L(2 m+1) \times S L(2), A_{2}^{*} \otimes A_{1}+\rho_{2} \otimes 1\right)$ is also a P.V., and by (1.1), $\left(G L(2),(m-1) A_{1}\right)$ (resp. $\left.\left(G L(2), m \Lambda_{1}\right)\right)$ must be a P.V. if $\rho_{2}=A_{1}$ (resp. $\rho_{2}=A_{1}^{*}$), which is a contradiction since $m \geqslant 5$. By (1) of Lemma 1.6, we have (2)-(7) and (11) in Theorem 1.5. For (8), by (2) of Lemma 1.6, we have $\rho_{2}^{\prime}=1$. If $\rho_{2} \neq 1$, then its castling transform $\left(G L(1)^{2} \times S L(8)\right.$, $\left.\Lambda_{3}^{*}+\rho_{2}\right) \simeq\left(G L(1)^{2} \times S L(8), A_{3}+\rho_{2}^{*}\right)$ is a P.V. which is a contradiction by Theorem 1.3. Similarly, we have (12), (13), (15), and (18). For (9), by dimension reason, if $\rho_{2}^{\prime} \neq 1$, then we have $\rho_{2}=1$ and $\rho_{2}^{\prime}=\Lambda_{1}$ or Λ_{1}^{*}. If $\rho_{2}=1$ and $\rho_{2}^{\prime}=\Lambda_{1}$, its castling transform $\left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(4)\right.$, spin rep. $\otimes A_{1}+1 \otimes A_{1}$) must be also a P.V. Since $(\operatorname{Spin}(7) \times G L(4)$, spin rep. $\otimes A_{1}$) is a non-P.V. (see p. 118 in [1]), the case for $\rho_{2}=1$ and $\rho_{2}^{\prime}=A_{1}$ is a non-P.V. Since a generic isotropy subgroup of (9) is reductive, the case for $\rho_{2}=1$ and $\rho_{2}^{\prime}=\Lambda_{1}^{*}$ is also a non-P.V. Hence $\rho_{2}^{\prime}=1$. If $\rho_{2} \neq 1$, then $\operatorname{deg} \rho_{2} \leqslant 7=\operatorname{dim}(G L(1) \times S L(2) \times S L(2))$ and hence ρ_{2} must be the vector representation. By (5.37), p. 118 in [1], it is a P.V. if and only if the triplet $\left(G L(1) \times S L(2) \times S L(2), \Lambda_{1} \otimes \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1 \otimes 2 \Lambda_{1}, V(4) \oplus V(3)\right)$ is a P.V. However, it is clearly not a P.V. and we have finished the case (9). For (10), if $\rho_{2}^{\prime} \neq 1$, then $\operatorname{deg} \rho_{2} \otimes \rho_{2}^{\prime} \leqslant \operatorname{dim}(G L(1) \times \operatorname{Sin}(7))=22$, and hence $\rho_{2}^{\prime}=\Lambda_{1}$ or Λ_{1}^{*} and $\rho_{2}=1$. In this case, it is a P.V. if and only if $\left(G L(1) \times \operatorname{Spin}(7), A_{1} \otimes(\right.$ spin rep. + vector rep. $\left.)\right)$ is a P.V. By p. 96 in [2], it is not a P.V. If $\rho_{2}^{\prime}=1$, it reduces to the simple case by a castling transformation. By pp. 77, 89 in [2], it is not a P.V. for any $\rho_{2} \neq 1$. For (14), if $\rho_{2} \otimes \rho_{2}^{\prime} \neq 1$, then $\rho_{2}=1$ and $\rho_{2}^{\prime}=\Lambda_{1}$ (or Λ_{1}^{*}) by dimension reason. If $\rho_{2}^{\prime}=\Lambda_{1}$, we have its castling transform $\left(G L(1)^{2} \times G_{2} \times S L(3)\right.$, $\left.\Lambda_{2} \otimes A_{1}+1 \otimes A_{1}\right)$. Since $\left(G_{2} \times G L(3), \Lambda_{2} \otimes \Lambda_{1}\right)$ is a non-P.V. by p. 136 in [1], the case for $\rho_{2}=1$ and $\rho_{2}^{\prime}=\Lambda_{1}$ (hence also the case for $\rho_{2}^{\prime}=\Lambda_{1}^{*}$) is a non-P.V. For (16) and (17), we have our desired result from the fact that the restriction of (E_{6}, Λ_{1}) (resp. ($\left.G L(2), \Lambda_{1}\right)$, ($\left.G L(25), \Lambda_{1}\right)$) to a generic isotropy subgroup $H \sim \operatorname{Spin}(8)$ is given by $(\operatorname{Spin}(8)$, $1+1+1+\Lambda_{1}+A_{e}+\Lambda_{0}, V(27)$) (resp. (Spin(8), $\left.1+1, V(2)\right),(\operatorname{Spin}(8)$, $1+\Lambda_{1}+\Lambda_{v}+\Lambda_{0}, V(25)$), where $\Lambda_{1}\left(\right.$ resp. $\left.\Lambda_{c}, \Lambda_{0}\right)$ denotes the vector (resp. even half-spin, odd half-spin) representation of $\operatorname{Spin}(8)$. One can check this fact by simple calculation of weights.
Q.E.D.

Lemma 2.2. Let $\left(G L(1) \times G \times G^{\prime}, \rho_{1} \otimes \rho_{1}^{\prime}\right)$ be one of (II) in Theorem 1.5 . If $\left(G L(1)^{2} \times G \times G^{\prime}, \rho_{1} \otimes \rho_{1}^{\prime}+\rho_{2} \otimes \rho_{2}^{\prime}\right)$ is also a P.V., then we have $\rho_{2}^{\prime}=1$.
Proof. By (5.10) in p. 93 in [1], we have (19). By (2) of Lemma 1.6, we
have (20)-(22) and (24)-(27). Since the restriction of ($\left.G L\left(2 m^{2}-m-1\right), \Lambda_{1}\right)$ to $H=\operatorname{Sp}(m)$ is $\left(\operatorname{Sp}(m), A_{2}\right)$, we have (23) by p. 106 in [1]. For (28), by dimension reason, only the possibility for $\rho_{2}^{\prime} \neq 1$ is $\rho_{2}^{\prime}=\Lambda_{1}$ or Λ_{1}^{*}. If $\rho_{2}^{\prime}=A_{1}$, we have its castling transform $\left(G L(1)^{2} \times \operatorname{Spin}(12) \times S L(2)\right.$, halfspin rep. $\otimes A_{1}+1 \otimes A_{1}$) which is a non-P.V. by p. 130 in [1]. Since H is reductive, the case for $\rho_{2}^{\prime}=\Lambda_{1}^{*}$ is also a non-P.V.
Q.E.D.

Theorem 2.3. All non-irreducible 2-simple P.V.s which have one of (II) in Theorem 1.5 as an irreducible component are given as follows:

$$
\begin{align*}
& \left(G L(1)^{2} \times S L(6) \times S L(2), A_{2} \otimes \Lambda_{1}+\Lambda_{1}^{(*)} \otimes 1\right) \tag{2.1}\\
& \left(G L(1)^{2} \times S L(6) \times S L(13), A_{2} \otimes A_{1}+\Lambda_{1}^{(*)} \otimes 1\right) \tag{2.2}\\
& \left(G L(1)^{2} \times S L(7) \times S L(19), A_{2} \otimes A_{1}+\Lambda_{1}^{(*)} \otimes 1\right) \tag{2.3}\\
& \left(G L(1)^{2} \times S L(9) \times S L(34), A_{2} \otimes A_{1}+A_{1} \otimes 1\right) \tag{2.4}\\
& \left(G L(1)^{s+1} \times S L(2 m) \times S L\left(2 m^{2}-m-1\right), A_{2} \otimes A_{1}+\Sigma_{s} \otimes 1\right), \\
& \text { where } m \geqslant 3 ; s=1,2,3 ; \Sigma_{1}=\Lambda_{1}^{(*)}, \Sigma_{2}=\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)} \text {, and } \\
& \Sigma_{3}=A_{1}^{(*)}+A_{1}^{(*)}+A_{1}^{(*)} \text {. } \tag{2.5}\\
& \left(G L(1)^{2} \times S L(n) \times S L\left(\frac{1}{2} n(n+1)-1\right), 2 A_{1} \otimes A_{1}+A_{1}^{(*)} \otimes 1\right)(n \geqslant 3) \tag{2.6}\\
& \left(G L(1)^{2} \times S L(6) \times S L(19), A_{3} \otimes A_{1}+A_{1} \otimes 1\right) \tag{2.7}\\
& \left(G L(1)^{3} \times S L(6) \times S L(19), A_{3} \otimes A_{1}+A_{1} \otimes 1+A_{1} \otimes 1\right) \tag{2.8}\\
& \left(G L(1)^{2} \times S L(7) \times S L(34), A_{3} \otimes A_{1}+\Lambda_{1}^{(*)} \otimes 1\right) \tag{2.9}\\
& \left(G L(1)^{2} \times S p(3) \times S L(13), A_{3} \otimes A_{1}+A_{1} \otimes 1\right) \tag{2.10}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(12) \times S L(31), \text { half-spin rep. } \otimes A_{1}+\text { vector rep. } \otimes 1\right) \cdot(2.11) \tag{2.11}
\end{align*}
$$

Note that $\Lambda_{2} \otimes A_{1}+\Lambda_{1}^{*} \otimes 1$ for (22) is not a P.V., and $\Lambda_{3}^{*}=\Lambda_{3}$ for $S L(6)$ in (2.7) and (2.8).

Proof. For (19) (resp. (21), (22)), we have $\operatorname{dim}\left(G L(1)^{l-1} \times H\right)=8+l$ (resp. $9+l, 11+l) \geqslant \operatorname{deg} \rho_{2}+\cdots+\operatorname{deg} \rho_{1} \geqslant(l-1) \operatorname{deg} \Lambda_{1}=6(l-1)$ (resp. $7(l-1), 9(l-1)$), and hence $l=2, \rho_{2}=\Lambda_{1}$ or Λ_{1}^{*}. Since (19) and the castling transform of (21) are F.P.s (see [4]), the case (19) and (21) are actually P.V.s.

By Lemma 2.2 and a castling transformation, (20) reduces to (19). For (22), first note that the castling transform of $\left(G L(1)^{2} \times S L(9) \times S L(34)\right.$, $A_{2} \otimes A_{1}+A_{1} \otimes 1\left(\right.$ resp. $\left.\left.A_{2} \otimes A_{1}+A_{1}^{*} \otimes 1\right)\right)$ is given by $\left(G L(1)^{2} \times S L(9) \times\right.$ $S L(2), \quad A_{2} \otimes A_{1}+\Lambda_{1}^{*} \otimes 1$ (resp. $\Lambda_{2} \otimes A_{1}+\Lambda_{1} \otimes 1$)). If the case for $A_{2} \otimes A_{1}+A_{1} \otimes 1$ is a P.V., then by (1.1), the triplet (GL(2), 4 $\left.A_{1}, V^{\prime}(5)\right)$ must be also a P.V., which is a contradiction by dimension reason. By (1.1), $\left(G L(1)^{2} \times S L(9) \times S L(2), \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1\right)$ is a P.V. if and only if $\mathfrak{g}=\left\{(\alpha) \oplus\left(-{ }^{t} C\right) ; C\right.$ is the second matrix in (1.1)\} acts on K^{φ} prehomogeneously. Since $x_{0}=e_{6}+e_{9} \in K^{\prime 9}$ is a generic point, (\mathfrak{g}, K^{9}) (and
hence (22)) is a P.V. By a castling transformation, (23)-(28) reduce to the simple P.V.s, and by Theorem 1.3, we have our results.
Q.E.D.

Lemma 2.4. Let $\left(G L(1) \times G \times G^{\prime}, \quad \rho_{1} \otimes \rho_{1}^{\prime}\right)$ be one of (III) in Theorem 1.5. If $\left(G L(1)^{2} \times G \times G^{\prime}, \rho_{1} \otimes \rho_{1}^{\prime}+\rho_{2} \otimes \rho_{2}^{\prime}\right)$ is also a P.V., then we have $\rho_{2}=1$.

Proof. By (2) of Lemma 1.6, we have the cases (29), (37), and (39). For (30), if $\rho_{2} \neq 1$, then we have $\rho_{2}^{\prime}=1$ since otherwise $\operatorname{deg} \rho_{2} \otimes \rho_{2}^{\prime} \geqslant$ $2(2 m+1)>\operatorname{dim} H+1=2 m+5$. Then, by the castling transformation and (1) in Theorem 2.1, we have our result. For (31), $\rho_{2} \otimes \rho_{2}^{\prime}$ must be one of (a) $\Lambda_{1} \otimes A_{1}, A_{2} \otimes 1, \Lambda_{2} \otimes A_{1}$ for $n=2$, (b) $\Lambda_{3} \otimes 1$ for $n=3$, (c) $\Lambda_{1} \otimes 2 A_{1}$, $A_{1} \otimes A_{1}$ for $n \geqslant 3, A_{1} \otimes 1$. However, (a) and (b) are impossible by dimension reason. If $\rho_{2} \otimes \rho_{2}^{\prime}=A_{1} \otimes 2 A_{1}$ (resp. $A_{1} \otimes A_{1}, A_{1} \otimes 1$), it is a P.V. if and only if $\left(G L(1)^{2} \times S L(2), \quad \Lambda^{2}\left(2 \Lambda_{1}+2 \Lambda_{1}\right) \quad\right.$ (resp. $\quad \Lambda^{2}\left(2 \Lambda_{1}+\Lambda_{1}\right)$, $\left.\Lambda^{2}\left(2 \Lambda_{1}+1\right)\right)$) is a P.V. by pp. $40-41$ in [1], which is impossible by dimension reason. Now before going ahead, we shall prove several sublemmas.

Sublemma 2.4.1. The triplet $\left(G L(1)^{2} \times S O(n) \times S L(m), A_{1} \otimes A_{1}+A_{1} \otimes\right.$ $\left.A_{1}^{*}, M(n, m) \oplus M(n, m)\right)$ is a non-F.V. for $n \geqslant m \geqslant 1$.

Proof. For $x=(X, Y) \in M(n, m) \oplus M(n, m), g=(\alpha, \beta ; A, B) \in G L(1)^{2} \times$ $S O(n) \times S L(m)$ and $\rho=\Lambda_{1} \otimes A_{1}+A_{1} \otimes A_{1}\left(\right.$ resp. $\left.\Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes A_{1}^{*}\right)$, we have $\rho(g) x=\left(\alpha A X^{t} B, \beta A Y^{t} B\right) \quad\left(\right.$ resp. $\left.\quad\left(\alpha A X^{t} B, \beta A Y B^{-1}\right)\right)$ and hence, $f(x)=\operatorname{det}\left({ }^{t} X X\right) \cdot \operatorname{det}\left({ }^{t} Y Y\right) \cdot \operatorname{det}\left({ }^{t} X Y\right)^{-2}$ is a nonconstant absolute invariant.

Sublemma 2.4.2. For $n \geqq m \geqslant 1$, the triplet $\left(G L(1)^{2} \times S O(n) \times S L(m)\right.$, $\left.A_{1} \otimes 1+\Lambda_{1} \otimes A_{1}, V(n) \oplus M(n, m)\right)$ is a non-P.V.

Proof. By pp. 109-110 in [1], it is a P.V. if and only if $\left(G L(1) \times S O(n-m) \times S O(m), \Lambda_{1} \otimes \Lambda_{1} \otimes 1+\Lambda_{1} \otimes 1 \otimes \Lambda_{1}\right)$ is a P.V. In this case, a triplet $\left(S O(m), \Lambda_{1}, V(m)\right)$ without scalar multiplication must be a P.V., which is a contradiction.
Q.E.D.

Sublemma 2.4.3. For $m_{1}, m_{2} \geqslant n \geqslant 1$, the triplet $\left(S O\left(m_{1}\right) \times S O\left(m_{2}\right) \times\right.$ $\left.G L(n), A_{1} \otimes 1 \otimes \Lambda_{1}+1 \otimes \Lambda_{1} \otimes \Lambda_{1}^{(*)}, M\left(m_{1}, n\right) \oplus M\left(m_{2}, n\right)\right)$ is a non-P.V.

Proof. For $x=(X, Y) \in M\left(m_{1}, n\right) \oplus M\left(m_{2}, n\right), \quad g=(A, B, C) \in S O\left(m_{1}\right)$ $\times S O\left(m_{2}\right) \times G L(n) \quad$ and $\quad \rho^{(*)}=\Lambda_{1} \otimes 1 \otimes \Lambda_{1}+1 \otimes \Lambda_{1} \otimes \Lambda_{1}^{(*)}$, we have $\rho(g) x=\left(A X^{t} C, B Y^{t} C\right)\left(\right.$ resp. $\rho^{*}(g) x=\left(A X^{t} C, B Y C^{-1}\right)$), and hence $f(x)=$ $\operatorname{det}\left({ }^{t} X X\right) \cdot \operatorname{det}\left({ }^{t} Y Y\right){ }^{-1}\left(\right.$ resp. $\left.f(x)=\operatorname{det}\left({ }^{t} X X\right) \cdot \operatorname{det}\left({ }^{t} Y Y\right)\right)$ is a nonconstant absolute invariant.
Q.E.D.

Sublemma 2.4.4. For $n \geqslant m \geqslant 1$, the triplet $(G L(n) \times G L(m), \quad(1+$ $\left.\left.\Lambda_{1}+\Lambda_{1}^{*}\right) \otimes \Lambda_{1}, V(m) \oplus M(n, m) \oplus M(n, m)\right)$ is a non-P.V.

Proof. For $x=\left(y, X_{1}, X_{2}\right) \in V(m) \oplus M(n, m) \oplus M(n, m), g=(A, B) \in$ $G L(n) \times G L(m)$ and $\rho=\left(1+\Lambda_{1}+A_{1}^{*}\right) \otimes A_{1}$, we have $\rho(g) x=\left(B y, A X_{1}{ }^{t} B\right.$, $\left.{ }^{t} A^{-1} X_{2}{ }^{t} B\right)$. Hence, if $m \geqslant 2$, then $f(x)=\operatorname{det}\left({ }^{t} X_{2} X_{1}+{ }^{\prime} X_{1} X_{2}\right) \cdot \operatorname{det}\left({ }^{t} X_{2} X_{1}\right)^{-1}$ is a nonconstant absolute invariant. If $m=1$, then $f(x)=\left({ }^{t} X_{1} X_{2}\right) \cdot y^{-2}$ is a nonconstant absolute invariant.
Q.E.D.

Sublemma 2.4.5. For $n \geqslant m \geqslant 1$, the triplet $\left(S O(n) \times G L(m), 1 \otimes A_{1}+\right.$ $\left.A_{1} \otimes A_{1}^{(*)}, V(m) \oplus M(n, m)\right)$ is a non-P. V.

Proof. By pp. 109-110 in [1], it is a P.V. if and only if $(S O(m)$, $\Lambda_{1}, V(m)$) is a P.V. without scalar multiplication, which is a contradiction.
Q.E.D.

Now we start to prove the case (32). Note that if $\rho_{2}^{\prime}=1$, we may assume $n \geqslant 2 m$ by a castling transformation. If $\rho_{2} \neq 1$, then $\rho_{2} \otimes \rho_{2}^{\prime}$ must be one of $A_{1} \otimes A_{1}^{(*)}, A_{1} \otimes 1$, or $\Lambda \otimes 1(n=9,11,14)$ with $A=$ (half-) spin representation by [1]. If $\rho_{2} \otimes \rho_{2}^{\prime}=A_{1} \otimes A_{1}^{(*)}$ (resp. $A_{1} \otimes 1$), then it is a non-P.V. by Sublemma 2.4.1 (resp. Sublemma 2.4.2). For $n=9$ and $\rho_{2} \otimes \rho_{2}^{\prime}=\Lambda \otimes 1$, it is a non-P.V. by p. 127 in [1], $A(\operatorname{Spin}(7)) \subset S O(8)$, and Sublemma 2.4.5. For $n=11$ and $\rho_{2} \otimes \rho_{2}^{\prime}=A \otimes 1$, it is a non-P.V. by p. 130 in [1] and Sublemma 2.4.4. For $n=14$ and $\rho_{2} \otimes \rho_{2}^{\prime}=A \otimes 1$, it is a non-P.V. by p. 133 in [1] and Sublemma 2.4.3. For (33), we have $\rho_{2} \otimes \rho_{2}^{\prime}=A \otimes 1(A=$ the spin rep.) or $\Lambda_{1} \otimes 1$ ($\Lambda_{1}=$ the vector rep.) by dimension reason. If $\rho_{2} \otimes \rho_{2}^{\prime}=\Lambda \otimes 1$, then it is a non-P.V. by $\Lambda(\operatorname{Spin}(7)) \subset S O(8)$ and Sublemma 2.4.2. If $\rho_{2} \otimes \rho_{2}^{\prime}=\Lambda_{1} \otimes 1$, then it is a non-P.V. by (5.35), p. 117 in [1], and Sublemma 2.4.4. For (34), we have $\rho_{2} \otimes \rho_{2}^{\prime}=$ vector rep. $\otimes 1$, and it is a P.V. if and only if its castling transform $(\operatorname{Spin}(7) \times G L(5)$, spin rep. $\otimes A_{1}+$ vector rep. $\otimes 1$) is a P.V. which is a contradiction by Theorem 2.1 for (9) in Theorem 1.5. For (35), if $\rho_{2} \neq 1$, then we have $\rho_{2}^{\prime}=1$, since otherwise $\operatorname{dim} H+1=10 \geqslant \operatorname{deg} \rho_{2} \otimes \rho_{2}^{\prime} \geqslant 7 \cdot 6=42$, which is a contradiction. Hence we can reduce (35) to (33) by the castling transformation. For (36), we have $\rho_{2} \otimes \rho_{2}^{\prime}=\Lambda \otimes 1\left(\Lambda=\right.$ half-spin rep.) or $\Lambda_{1} \otimes 1$ ($A_{1}=$ the vector rep.) by dimension reason. If $\rho_{2} \otimes \rho_{2}^{\prime}=A \otimes 1$, it is a P.V. if and only if $\left(G L(1) \times\left(G_{2}\right) \times S L(2), A_{1} \otimes A_{2} \otimes A_{1}+\Lambda_{1} \otimes 1 \otimes A_{1}\right.$, $V(14) \oplus V(2)$) is a P.V. by calculation of weights (cf. p. 123 in [1]). By (5.53), p. 136 in [1], it is a P.V. if and only if $\left(O(2), \Lambda_{1}, V(2)\right)$ is a P.V. Since $\operatorname{dim} O(2)=1<\operatorname{dim} V(2)=2$, it is a non-P.V. If $\rho_{2} \otimes \rho_{2}^{\prime}=A_{1} \otimes 1$, it is a non-P.V. by (5.42), p. 123 in [1], $\Lambda_{2}\left(G_{2}\right) \subset S O(7)$, and Sublemma 2.4.3. For (38), if $\rho_{2} \neq 1$, then $\rho_{2}^{\prime}=1$ by dimension reason, and hence (38) reduces to the case (36) by a castling transformation. For (40), if $\rho_{2} \neq 1$, we have $\rho_{2} \otimes \rho_{2}^{\prime}=A_{2} \otimes 1$ by dimension reason. It is a non-P.V. by $\Lambda_{2}\left(G_{2}\right) \subset S O(7)$ and Sublemma 2.4.2.
Q.E.D.

Theorem 2.5. All non-irreducible 2-simple P.V.s which have one of (III) in Theorem 1.5 as an irreducible component are given as follows:

$$
\begin{align*}
& \left(G L(1)^{2} \times S L(5) \times S L(3), A_{2} \otimes A_{1}+1 \otimes A_{1}^{(*)}\right) \\
& \left(G L(1)^{2} \times S L(2 m+1) \times S L(2), A_{2} \otimes A_{1}+1 \otimes \rho\right) \quad(m \geqslant 5), \\
& \text { where } \rho=\Lambda_{1}, 2 \Lambda_{1} \text {, or } 3 A_{1} \text {. } \\
& \left(G L(1)^{3} \times S L(2 m+1) \times S L(2),\right. \\
& \left.\Lambda_{2} \otimes A_{1}+1 \otimes A_{1}+1 \otimes \rho\right) \quad(m \geqslant 5), \quad \text { where } \rho=\Lambda_{1} \quad \text { or } \\
& 2 \Lambda_{1} \text {. } \tag{2.14}\\
& \left(G L(1)^{4} \times S L(2 m+1) \times S L(2),\right. \\
& \left.\Lambda_{2} \otimes A_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}+A_{1}\right)\right) \quad(m \geqslant 5) \tag{2.15}\\
& \left(G L(1)^{2} \times \operatorname{Sp}(n) \times S L(2), A_{1} \otimes 2 A_{1}+1 \otimes A_{1}\right) \quad(n \geqslant 2) \tag{2.16}\\
& \left(G L(1)^{2} \times S O(n) \times S L(m), A_{1} \otimes A_{1}+1 \otimes A_{1}^{(*)}\right) \tag{2.17}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(2), \text { spin rep. } \otimes A_{1}+1 \otimes A_{1}\right) \tag{2.18}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(3), \text { spin rep. } \otimes A_{1}+1 \otimes A_{1}^{(*)}\right) \tag{2.19}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(6) \text {, spin rep. } \otimes A_{1}+1 \otimes \Lambda_{1}^{(*)}\right) \tag{2.20}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(2), \text { half-spin rep. } \otimes A_{1}+1 \otimes \rho\right) \text {, where } \\
& \rho=A_{1}, 2 A_{1} \text {, or } 3 A_{1} \text {. } \tag{2.21}\\
& \left(G L(1)^{3} \times \operatorname{Spin}(10) \times S L(2), \text { half-spin rep. } \otimes A_{1}+1 \otimes A_{1}+1 \otimes \rho\right), \\
& \text { where } \rho=A_{1} \text { or } 2 A_{1} \text {. } \tag{2.22}\\
& \left(G L(1)^{4} \times \operatorname{Spin}(10) \times S L(2),\right. \text { half-spin } \\
& \text { rep. } \left.\otimes A_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)\right) \tag{2.23}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(3), \text { half-spin rep. } \otimes A_{1}+1 \otimes \Lambda_{1}^{(*)}\right) \tag{2.24}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(14) \text {, half-spin rep. } \otimes A_{1}+1 \otimes A_{1}^{(*)}\right) \tag{2.25}\\
& \left(G L(1)^{2} \times\left(G_{2}\right) \times S L(2), A_{2} \otimes A_{1}+1 \otimes A_{1}\right) \tag{2.26}\\
& \left(G L(1)^{2} \times\left(G_{2}\right) \times S L(6), \Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{(*)}\right) \text {. } \tag{2.27}
\end{align*}
$$

Proof. First note that if $\left(G L(1)^{k} \times S O(n), \rho_{1} \oplus \cdots \oplus \rho_{k}\right)$ is a P.V., then we have $k=1$ and $\rho_{1}=A_{1}$. The $S L(m)$-part of the generic isotropy subgroup of (29) (resp. (31), (32), (33), (34), (37), (39)) is $S O(m)$ by p. 96 (resp. pp. 104, 109, 117, 118, 125, 136) in [1], and hence we have (2.12), (2.16)-(2.19), (2.24), and (2.26). Now, if ($\left.G L(1)^{k} \times S L(2), \rho_{1} \oplus \cdots \oplus \rho_{k}\right)$ is a P.V., then we have $k \leqslant 3$ and $\rho_{1} \oplus \cdots \oplus \rho_{k}=A_{1} \oplus A_{1} \oplus A_{1}(k=3)$; $2 \Lambda_{1} \oplus A_{1}, \Lambda_{1} \oplus A_{1}(k=2) ; 3 A_{1}, 2 \Lambda_{1}, \Lambda_{1}(k=1)$. The $S L(2)$-part of the generic isotropy subgroup of (30) (resp. (36)) is $S L(2)$ by (1.1) in Lemma 1.4 (resp. p. 112 in [1]) and hence, we have (2.13)-(2.15) and (2.21)-(2.23). For (35), (38), and (40), we have $\rho_{2} \otimes \rho_{2}^{\prime}+\cdots+\rho_{l} \otimes \rho_{l}^{\prime}=$ $1 \otimes A_{1}^{(*)}$, i.e., $l=2$ and $\rho_{2}^{\prime}=\Lambda_{1}^{(*)}$ by dimension reason. Since the generic isotropy subgroups of (35), (38), (40) in Theorem 1.5 are reductive, we
may assume that $\rho_{2} \otimes \rho_{2}^{\prime}=1 \otimes \Lambda_{1}$ to see the prehomogeneity. Then, by a castling transformation, (35) (resp. (38), (40)) is reduced to (2.19) (resp. (2.24), (2.26)) and we have (2.20), (2.25), and (2.27).
Q.E.D.

Lemma 2.6. Let $\left(G L(1) \times G \times G^{\prime}, \rho_{1} \otimes \rho_{1}^{\prime}\right)$ be one of (IV) in Theorem 1.5. Then, (i) $\left(G L(1)^{2} \times G \times G^{\prime}, \rho_{1} \otimes \rho_{1}^{\prime}+\rho_{2} \otimes \rho_{2}^{\prime}\right)$ is a non-P.V. for any $\rho_{2} \neq 1$ and $\rho_{2}^{\prime} \neq 1$; (ii) $\left(G L(1)^{3} \times G \times G^{\prime}, \rho_{1} \otimes \rho_{1}^{\prime}+\rho_{2} \otimes 1+1 \otimes \rho_{3}^{\prime}\right)$ is a non-P.V. for any $\rho, \neq 1$ and $\rho_{3}^{\prime} \neq 1$.

Proof. For (41), we have (i) by $\operatorname{dim} G L(1) \times H=2<4=2 \times 2 \leqslant$ $\operatorname{deg} \rho_{2} \otimes \rho_{2}^{\prime}$ and (ii) by $\operatorname{dim} G L(1)^{2} \times H=3<4=2+2 \leqslant \operatorname{deg}\left(\rho_{2} \otimes 1+\right.$ $1 \otimes \rho_{3}^{\prime}$). For (42), we have (i) by $\operatorname{dim} G L(1) \times H=9<40=5 \times 8 \leqslant$ $\operatorname{deg} \rho_{2} \otimes \rho_{2}^{\prime}$ and (ii) by $\operatorname{dim} G L(1)^{2} \times H=10<13=8+5 \leqslant \operatorname{deg}\left(\rho_{2} \otimes 1+\right.$ $1 \otimes \rho_{3}^{\prime}$). For (43), we have (i) by $\operatorname{dim} G L(1) \times H=13<18=9 \times 2 \leqslant$ $\operatorname{deg} \rho_{2} \otimes \rho_{2}^{\prime}$. Now if $\left(G L(1)^{2} \times S L(9) \times S L(2), A_{2} \otimes A_{1}+\rho_{2} \otimes 1\right)$ is a P.V., then $\left(G L(1)^{2} \times S L(9) \times S L(34), \rho_{2} \otimes A_{1}+\rho_{2}^{*} \otimes 1\right)$ is also a P.V., and hence, by (2.4), we have $\rho_{2}=A_{1}^{*}$. If $\left(G L(1)^{3} \times S L(9) \times S L(2), A_{2} \otimes A_{1}+A_{1}^{*} \otimes 1+\right.$ $\left.1 \otimes \rho_{3}^{\prime}\right)$ is a P.V., then $\left(G L(1)^{2} \times S L(2), 3 A_{1}+\rho_{3}^{\prime}\right)$ must be also a P.V. by Lemma 1.4, and hence $\rho_{3}^{\prime}=1$. For (44), we have (i) by $\operatorname{dim} G L(1) \times H=$ $2 m^{2}+3 m+2<4 m^{3}+4 m^{2}-m-1=(2 m+1) \times\left(2 m^{2}+m-1\right) \leqslant \operatorname{deg} \rho_{2} \otimes \rho_{2}^{\prime}$ for $m \geqslant 4$. Now assume that $\left(G L(1)^{2} \times S L(2 m+1) \times S L\left(2 m^{2}+m-1\right)\right.$, $A_{2} \otimes A_{1}+1 \otimes \rho_{3}^{\prime}$) is a P.V. We shall see that $\rho_{3}^{\prime}=\Lambda_{1}$ (and $\rho_{3}^{\prime} \neq \Lambda_{1}^{*}$). Since $\operatorname{dim} G L(1) \times H=2 m^{2}+3 m+2 \geqslant \operatorname{deg} \rho_{3}^{\prime} \geqslant 2 m^{2}+m-1$, we have $\rho_{3}^{\prime}=A_{1}$ or Λ_{1}^{*}. By calculating the weights, the $S L\left(2 m^{2}+m-1\right)$ part of the generic isotropy subgroup H of $\left(G L(1) \times S L(2 m+1) \times S L\left(2 m^{2}+m-1\right)\right.$.

$$
\begin{gathered}
\left.\Lambda_{2} \otimes A_{1}\right) \text { is }\left\{\left(\begin{array}{c|c}
\Lambda_{2}(A)+\varepsilon_{1} I & * \\
\hline 0 & \Lambda_{1}(A)-\varepsilon_{2} I
\end{array}\right) ; \varepsilon_{1}=\left(2 m^{2}+m\right) \varepsilon,\right. \\
\left.2 \varepsilon_{2}=(m-1)(2 m+1)^{2} \varepsilon, A \in \operatorname{Sp}(m)\right\}
\end{gathered}
$$

or

$$
\left\{\left(\begin{array}{c|c}
A_{2}(A)+\varepsilon_{1} I & 0 \\
\hline * & A_{1}(A)-\varepsilon_{2} I
\end{array}\right)\right\}
$$

Now if $\rho_{3}^{\prime}=\Lambda_{1}$, its castling transform is $\left(G L(1)^{2} \times S L(2 m+1) \times S L(2)\right.$, $\Lambda_{2} \otimes \Lambda_{1}+1 \otimes A_{1}$), which is a P.V. by (2.13). Note that it is a P.V. for
$m \geqslant 4$. This implies that the $S L\left(2 m^{2}+m-1\right)$-part of H must be of the form

$$
\left\{\left(\begin{array}{c|c}
\Lambda_{2}(A)+\varepsilon_{1} I & * \\
\hline 0 & \Lambda_{1}(A)-\varepsilon_{2} I
\end{array}\right) ; A \in \operatorname{Sp}(m)\right\}
$$

since $\left(G L(1) \times \operatorname{Sp}(m), A_{2}\right)$ is a non-P.V. for $m \geqslant 3$. Therefore, if $\rho_{3}^{\prime}=\Lambda_{1}^{*}$, it is a non-P.V. Assume that $\left(G L(1)^{3} \times S L(2 m+1) \times S L\left(2 m^{2}+m-1\right)\right.$, $A_{2} \otimes A_{1}+1 \otimes A_{1}+\rho_{2} \otimes 1$) is a P.V. Then its castling transform $\left(G L(1)^{3} \times S L(2 m+1) \times S L(2), \Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}+\rho_{2}^{*} \otimes 1\right)$ must be a P.V. If $m \geqslant 5$, then we have $\rho_{2}^{*}=1$ by (30) of Lemma 2.4. If $m=4$, by (43) of our Lemma 2.6, we have $\rho_{2}^{*}=1$. For (45), assume that $\left(G L(1)^{2} \times S O(10) \times S L(m), \quad \Lambda_{1} \otimes A_{1}+\rho_{2} \otimes \rho_{2}^{\prime}\right)$ is a P.V. for $\rho_{2} \neq 1$ and $\rho_{2}^{\prime} \neq 1$. Then we have $\operatorname{dim} G=m^{2}+46 \geqslant \operatorname{dim} V \geqslant 20 m$, i.c., $(m-10)^{2} \geqslant 54$ $(2 \leqslant m \leqslant 9)$, and hence $m=2$. Thus $\rho_{2} \otimes \rho_{2}^{\prime}$ must be $\Lambda_{1} \otimes \Lambda_{1}^{(*)}$ or half-spin rep. $\otimes \Lambda_{1}$. By Sublemma 2.4.1, $\quad \rho_{2} \otimes \rho_{2}^{\prime} \neq \Lambda_{1} \otimes \Lambda_{1}^{(*)}$. If $\rho_{2} \otimes \rho_{2}^{\prime}=$ halfspin rep. $\otimes A_{1}$, then $\operatorname{dim} G=50<\operatorname{dim} V=52$, which is a contradiction. Thus we have (i) for (45). Now assume that ($G L(1)^{3} \times S O(10) \times S L(m)$, $A_{1} \otimes A_{1}+\rho_{2} \otimes 1+1 \otimes \rho_{3}^{\prime}$) is a P.V. with $\rho_{2} \neq 1$ and $\rho_{3}^{\prime} \neq 1$. By Sublemma 2.4.2, ρ_{2} must be a half-spin representation of $\operatorname{Spin}(10)$. Since $S L(m)$-part of the generic isotropy subgroup of $\left(S O(10) \times G L(m), \Lambda_{1} \otimes A_{1}\right)$ is $O(m), \rho_{3}^{\prime}$ must be Λ_{1} or Λ_{1}^{*}. The generic isotropy subgroup of $\left(G L(1)^{2} \times \operatorname{Spin}(10) \times\right.$ $S L(m)$, vector rep. $\left.\otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{(*)}\right)$ is locally isomorphic to $O(10-m) \times$ $O(m-1)$ (p. 110 in [1]) and by calculation of weights, we see that the restriction of a half-spin representation of $\operatorname{Spin}(10)$ to $O(10-m) \times O(m-1)$ is given by ($\operatorname{Spin}(8)$, even half-spin rep. \oplus odd half-spin rep.) for $m=2,9$; $\left(G L(1) \times \operatorname{Spin}(7), \quad\left(\Lambda_{1}+\Lambda_{1}^{*}\right) \otimes\right.$ spin rep. $)$ for $m=3,8 ; \quad(S L(2) \times S L(4)$, $\left.\Lambda_{1} \otimes\left(\Lambda_{1}+\Lambda_{1}^{*}\right)\right)$ for $m=4,7 ; \quad\left(S L(2) \times S L(2) \times \operatorname{Sp}(2), \quad \Lambda_{1} \otimes 1 \otimes \Lambda_{1}+\right.$ $1 \otimes A_{1} \otimes A_{1}$) for $m=5,6$. Since they are not P.V.s even with a scalar multiplication (see the proof of (2.9) in [4] for $m=5,6$), we have (ii) for (45). For (46), assume that $\left(G L(1)^{2} \times \operatorname{Spin}(12) \times S L(m)\right.$, vector rep. $\otimes A_{1}+$ $\left.\rho_{2} \otimes \rho_{2}^{\prime}\right)(m \geqslant 2)$ is a P.V. with $\rho_{2} \neq 1$ and $\rho_{2}^{\prime} \neq 1$. By Theorem $1.5, \rho_{2} \otimes \rho_{2}^{\prime}$ must be vector rep. $\otimes A_{1}$. By Sublemma 2.4.1, it is a non-P.V. and hence we have (i) for (46). Now assume that $\left(G L(1)^{3} \times \operatorname{Spin}(12) \times S L(m)\right.$, vector rep. $\left.\otimes A_{1}+\rho_{2} \otimes 1+1 \otimes \rho_{3}^{\prime}\right)$ is a P.V. Then ρ_{2} must be a half-spin representation by Sublemma 2.4.2, and $\rho_{3}^{\prime}=\Lambda_{1}$ or Λ_{1}^{*} (see the proof for (45)). Since the generic isotropy subgroup of $\left(G L(1) \times \operatorname{Spin}(12), \rho_{2}\right)$ is $S L(6)\left(\right.$ p. 129 in [1]), $\left(G L(1)^{2} \times \operatorname{Spin}(12) \times S L(m)\right.$, vector rep. $\left.\otimes A_{1}+\rho_{2} \otimes 1\right)$ is a P.V. if and only if $\left(S L(6) \times G L(m),\left(\Lambda_{1}+\Lambda_{1}^{*}\right) \otimes \Lambda_{1}\right)$ is a P.V. By the proof of Sublemma 2.4.4 (and by a castling transformation if necessary), it is not a P.V. for $2 \leqslant m \leqslant 10$. Since the generic isotropy subgroup of $\left(G L(1)^{2} \times \operatorname{Spin}(12) \times S L(11)\right.$, vector rep. $\left.\otimes A_{1}+\rho_{2} \otimes 1\right)$ is reductive, we may assume that $\rho_{3}^{\prime}=\Lambda_{1}$ as far as we consider the prehomogeneity. Then
its castling transform is $\left(G L(1)^{3} \times \operatorname{Spin}(12) \times S L(2)\right.$, vector rep. $\otimes A_{1}+$ $\rho_{2} \otimes 1+1 \otimes A_{1}$), which is not a P.V. as we have seen above. Thus we have (ii) for (46). For (47), if $\left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(7)\right.$, spin rep. $\left.\otimes A_{1}+\rho_{2} \otimes \rho_{2}^{\prime}\right)$ is a P.V. for $\rho_{2} \neq 1$ and $\rho_{2}^{\prime} \neq 1$, then $\operatorname{dim} G L(1) \times H=15 \geqslant \operatorname{deg} \rho_{2} \otimes \rho_{2}^{\prime} \geqslant 49$, which is a contradiction, and hence we have (i) for (7). If ($G L(1)^{3} \times$ $\operatorname{Spin}(7) \times S L(7)$, spin rep. $\left.\otimes A_{1}+\rho_{2} \otimes 1+1 \otimes \rho_{3}^{\prime}\right)$ is a P.V., then ρ_{2} must be the vector representation by Theorem 1.3, since a castling transform $\left(G L(1)^{2} \times \operatorname{Spin}(7)\right.$, spin rep. $\left.+\rho_{2}\right)$ of $\left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(7)\right.$, spin rep. \otimes $\left.\Lambda_{1}+\rho_{2} \otimes 1\right)$ must be a P.V. By dimension reason, we have $\rho_{3}=\Lambda_{1}$ or Λ_{1}^{*}. Since the generic isotropy subgroup of $\left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(7)\right.$, spin rep. $\otimes \Lambda_{1}+\rho_{2} \otimes 1$) is reductive, we may assume $\rho_{3}=\Lambda_{1}$. Then, by a castling transformation, we have $\left(G L(1)^{3} \times \operatorname{Spin}(7) \times S L(2)\right.$, spin rep. \otimes $A_{1}+\rho_{2} \otimes 1+1 \otimes A_{1}$), which is not a P.V. by (33) of Lemma 2.4. Thus we have (ii) for (47). For (48), if $\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(15)\right.$, half-spin rep. $\otimes A_{1}+\rho_{2} \otimes \rho_{2}^{\prime}$) is a P.V. for $\rho_{2} \neq 1$ and $\rho_{2}^{\prime} \neq 1$, then $\operatorname{dim} G L(1) \times H=$ $31 \geqslant \operatorname{deg} \rho_{2} \otimes \rho_{2}^{\prime} \geqslant 150$, which is a contradiction, and hence we have (i) for (48). If $\left(G L(1)^{3} \times \operatorname{Spin}(10) \times S L(15)\right.$, half-spin rep. $\left.\otimes A_{1}+\rho_{2} \otimes 1+1 \otimes \rho_{3}^{\prime}\right)$ is a P.V., then ρ_{2} must be the half-spin representation or the vector representation by [2], and $\rho_{3}^{\prime}=\Lambda_{1}$ or Λ_{1}^{*} by dimension reason. Since the generic isotropy subgroup of $\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(15)\right.$, half-spin rep. \otimes $A_{1}+\rho_{2} \otimes 1$) is reductive (see pp.96, 97 in [2]), we may assume that $\rho_{3}^{\prime}=A_{1}$. Then, by a castling transformation, we have $\left(G L(1)^{2} \times \operatorname{Spin}(10) \times\right.$ $S L(2)$, half-spin rep. $\otimes A_{1}+\rho_{2} \otimes 1+1 \otimes A_{1}$), which is not a P.V. by (36) of Lemma 2.4. Thus we have (ii) for (48).
Q.E.D.

Theorem 2.7. All non-irreducible 2-simple P.V.s which have one of (IV) in Theorem 1.5 as an irreducible component are given as follows:

$$
\begin{align*}
& \left(G L(1)^{2} \times S L(2) \times S L(2), 2 A_{1} \otimes A_{1}+A_{1} \otimes 1\right) \tag{2.28}\\
& \left(G L(1)^{2} \times S L(2) \times S L(2), 2 A_{1} \otimes A_{1}+1 \otimes A_{1}\right) \tag{2.29}\\
& \left(G L(1)^{1+s} \times S L(5) \times S L(8), A_{2} \otimes A_{1}+\Sigma_{s} \otimes 1\right) \quad(s=1,2), \\
& \text { where } \Sigma_{1}=\Lambda_{1}^{(*)} \text { and } \Sigma_{2}=\Lambda_{1} \oplus \Lambda_{1}^{(*)} \text {. } \tag{2.30}\\
& \left(G L(1)^{2} \times S L(5) \times S L(8), A_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{(*)}\right) \tag{2.31}\\
& \left(G L(1)^{2} \times S L(9) \times S L(2), A_{2} \otimes A_{1}+A_{1}^{*} \otimes 1\right) \tag{2.32}\\
& \left(G L(1)^{1+t} \times S L(9) \times S L(2), A_{2} \otimes A_{1}+1 \otimes T_{t}\right) \quad(t=1,2,3), \\
& \text { where } T_{1}=\Lambda_{1}, 2 A_{1}, 3 A_{1} ; T_{2}=\Lambda_{1} \oplus \Lambda_{1}, \Lambda_{1} \oplus 2 \Lambda_{1} \text {; } \\
& T_{3}=\Lambda_{1} \oplus \Lambda_{1} \oplus \Lambda_{1} . \tag{2.33}\\
& \left(G L(1)^{1+s} \times S L(2 m+1) \times S L\left(2 m^{2}+m-1\right),\right. \\
& \left.A_{2} \otimes A_{1}+\Sigma_{s} \otimes 1\right) \quad(s=1,2,3) \text {, where } \Sigma_{1}=\Lambda_{1}^{(*)}, \Lambda_{2}^{*} \text {; } \\
& \Sigma_{2}=\Lambda_{1}^{(*)} \oplus \Lambda_{1}^{(*)} ; \Sigma_{3}=\Lambda_{1}^{(*)} \oplus \Lambda_{1}^{(*)} \oplus \Lambda_{1}^{(*)} \text { except for } \\
& \Sigma_{3} \simeq \Lambda_{1} \oplus \Lambda_{1}^{*} \oplus \Lambda_{1}^{*} \quad(m \geqslant 4) \text {. } \tag{2.34}
\end{align*}
$$

$$
\begin{align*}
& \left(G L(1)^{2} \times S L(2 m+1) \times S L\left(2 m^{2}+m-1\right),\right. \\
& \left.\quad A_{2} \otimes A_{1}+1 \otimes A_{1}\right) \quad(m \geqslant 4) \tag{2.35}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(m), \text { vector rep. } \otimes A_{1}+\right.\text { half-spin } \\
& \quad \text { rep. } \otimes 1) \quad(2 \leqslant m \leqslant 9, m \neq 5) \tag{2.36}\\
& \left(G L(1)^{2} \times S O(10) \times S L(m), A_{1} \otimes A_{1}+1 \otimes A_{1}^{(*)}\right) \quad(2 \leqslant m \leqslant 9) \tag{2.37}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(12) \times S L(11), \text { vector rep. } \otimes A_{1}+\right.\text { half-spin } \\
& \quad \text { rep. } \otimes 1) \tag{2.38}\\
& \left(G L(1)^{2} \times S O(12) \times S L(m), A_{1} \otimes A_{1}+1 \otimes A_{1}^{(*)}\right) \quad(2 \leqslant m \leqslant 11) \tag{2.39}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(7), \text { spin rep. } \otimes A_{1}+\text { vector rep. } \otimes 1\right) \tag{2.40}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(7), \text { spin rep. } \otimes A_{1}+1 \otimes \Lambda_{1}^{(*)}\right) \tag{2.41}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(15), A_{0} \otimes A_{1}+\rho \otimes 1\right) \text { with } \rho=A_{e} \text { or } \chi, \\
& \quad \text { where } A_{0}\left(\text { resp. } A_{c}, \chi\right) \text { is the odd half-spin }(\text { resp. even } \\
& \quad \text { half-spin, vector }) \text { representation of } \operatorname{Spin}(10) . \tag{2.42}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(15), A_{0} \otimes A_{1}+1 \otimes A_{1}^{(*)}\right) . \tag{2.43}
\end{align*}
$$

Note that $\Lambda_{2} \otimes A_{1}+\Lambda_{1} \otimes 1$ for (2.32) and $\Lambda_{2} \otimes A_{1}+1 \otimes \Lambda_{1}^{*}$ for (2.35) are non-P.V.s.

Proof. For (2.28) (resp. (2.29)), we have $\rho_{2}=A_{1}$ (resp. $\rho_{3}^{\prime}=\Lambda_{1}$), since $\operatorname{deg} \rho_{2}$ (resp. $\left.\operatorname{deg} \rho_{3}^{\prime}\right) \leqslant \operatorname{dim} G-\operatorname{deg} 2 \Lambda_{1} \otimes A_{1}=2$. Since the $S L(2)$ part of the generic isotropy subgroup is $O(2)$, (2.28) and (2.29) are actually P.V.s. For $(2.30),\left(G L(1)^{1+s} \times S L(5) \times S L(8), A_{2} \otimes A_{1}+\Sigma_{s} \otimes 1\right)$ with $\Sigma_{s}=\sigma_{1}+\cdots+\sigma_{s}$, is a P.V. if and only if $\left(G L(1)^{1+s} \times S L(5) \times S L(2)\right.$, $\left.A_{2} \otimes A_{1}+\left(\sigma_{1}^{*}+\cdots+\sigma_{s}^{*}\right) \otimes 1\right)$ is a P.V. Since $\operatorname{dim} G \geqslant \operatorname{dim} V$, we have $5 s \leqslant \operatorname{deg} \sigma_{1}^{*}+\cdots+\operatorname{deg} \sigma_{s}^{*} \leqslant s+8$, and hence $s=1$ or 2 . Thus we have $\sigma_{1}^{*}=\Lambda_{1}^{(*)}$ for $s=1$ and $\sigma_{1}^{*} \oplus \sigma_{2}^{*}=\Lambda_{1}^{(*)} \oplus \Lambda_{1}^{(*)}$. However, $\sigma_{1}^{*} \oplus \sigma_{2}^{*} \neq$ $A_{1} \oplus A_{1}$ since otherwise $\left(G L(1)^{2} \times S L(2), 2 A_{1} \oplus 2 A_{1}\right)$ becomes a P.V. by (1.1), which is a contradiction by dimension reason. By calculating the isotropy subalgebra at $\left(X_{0}, e_{5}, e_{1}+e_{3}+e_{4}+e_{5}\right)$ (resp. (X_{0}, e_{5}, $\left.e_{1}+e_{3}+e_{5}\right)$) of ($G L(1)^{3} \times S L(5) \times S L(2), \Lambda_{2} \otimes \Lambda_{1}+\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}\right) \otimes 1$ (resp. $\left.A_{2} \otimes A_{1}+\left(A_{1}^{*}+\Lambda_{1}\right) \otimes 1\right)$) (see Lemma 1.4), we see that they are actually P.V.s. For (2.31), if $\Lambda_{2} \otimes A_{1}+1 \otimes\left(\tau_{1}+\cdots+\tau_{t}\right)$ is a P.V., then we have $8 t \leqslant \operatorname{deg} \tau_{1}+\cdots+\operatorname{deg} \tau_{t} \leqslant 8+t$ and hence $t=1, \tau_{1}=\Lambda_{1}^{(*)}$. If $\tau_{1}=\Lambda_{1}$, then it is castling-equivalent to (2.12), and hence it is a P.V. If $\tau_{1}=\Lambda_{1}^{*}$, we identify the representation space of $A_{2} \otimes A_{1}+1 \otimes A_{1}^{*}$ with

$$
V=V_{2} \overbrace{\oplus \cdots \oplus}^{8} V_{2} \oplus K^{8}
$$

where $V_{2}=\Sigma K e_{1} \wedge e, \quad(1 \leqslant i<j \leqslant 5)$. Then the action is given by $x \mapsto \alpha \cdot \Lambda_{2}(A) \quad\left(x_{1}, \ldots, x_{8}\right)^{t} B+\beta^{t} B^{-1} y$ for $x=\left(x_{1}, \ldots, x_{8} ; y\right) \in V$ and $g=$ $(\alpha, \beta ; A, B) \in G L(1)^{2} \times S L(5) \times S L(8)$. By calculating the isotropy sub-
algebra at $x=\left(\omega_{1}, 2 \omega_{3}, 2 \omega_{2}, \omega_{10}, \omega_{5}-\omega_{8}, \omega_{4}-\omega_{9}, \omega_{6}, \omega_{7} ; e_{2}+e_{8}\right)$ (see p. 95 in [1]), we see that it is a P.V. For $\left(G L(1)^{1+s} \times S L(9) \times S L(2)\right.$, $\Lambda_{2} \otimes A_{1}+\Sigma_{s} \otimes 1$), we have (2.32) from (2.4) by a castling transformation. For (2.33), since the $S L(2)$ part of the generic isotropy subgroup of $\left(G L(1) \times S L(9) \times S L(2), A_{2} \otimes A_{1}\right)$ is $S L(2)$ by Lemma 1.4, we have our result by [1]. For (2.34), it is castling-equivalent to a simple P.V. $\left(G L(1)^{1+s} \times S L(2 m+1), A_{2} \oplus \Sigma_{s}^{*}\right)$, and hence we obtain our result by [2]. For (2.35), if $\Lambda_{2} \otimes \Lambda_{1}+1 \otimes\left(\tau_{1}+\cdots+\tau_{t}\right)$ is a P.V., then we have $\left(2 m^{2}+m-1\right) t \leqslant \operatorname{deg} \tau_{1}+\cdots+\operatorname{deg} \tau_{t} \leqslant t+\left(2 m^{2}+3 m+1\right)$ and hence $t=1$ and $\tau_{1}=\Lambda_{1}^{(*)}$. By the proof of (44) of Lemma 2.6, we have our result. For (2.36), if vector rep. $\otimes A_{1}+\left(\sigma_{1}+\cdots+\sigma_{s}\right) \otimes 1(2 \leqslant m \leqslant 9)$ is a P.V., then $\sigma_{1}, \ldots, \sigma_{s} \neq$ the vector representation by Sublemma 2.4.2 and $\sigma_{1}=A_{c}$ or $\sigma_{1}+\sigma_{2}=A_{e}+A_{e}, s \leqslant 2$ by [2]. If $\sigma_{1}+\sigma_{2}=A_{e}+A_{e}$, then $\operatorname{dim} G \geqslant \operatorname{dim} V$ implies $(m-5)^{2} \geqslant 10(2 \leqslant m \leqslant 9)$ and hence $m=9$. Then, it is castlingequivalent to $\left(G L(1)^{3} \times \operatorname{Spin}(10)\right.$, vector rep. $\left.\oplus A_{e} \oplus A_{e}\right)$, which is a nonP.V. by [2], and hence we have $\sigma_{1}=A_{\bullet}$. In this case, it is a P.V. for $m=1,2,3$ (and hence $m=9,8,7$) by Theorems 3.3 and 5.7 in Kimura et al. [4]. For $m=4$ (resp. $m=5$), the restriction of ($G L(1) \times \operatorname{Spin}(10) \times S L(m)$, $\left.\Lambda_{e} \otimes 1\right)$ to the generic isotropy subgroup $S O(10-m) \times S L(m)$ is equivalent to $\left(G L(1) \times S L(2) \times S L(2) \times S L(4), A_{1} \otimes A_{1} \otimes 1 \otimes A_{1}+A_{1} \otimes 1 \otimes A_{1} \otimes A_{1}^{*}\right)$ for $m=4$ (resp. $\left(G L(1) \times \operatorname{Sp}(2) \times \operatorname{Sp}(2), A_{1} \otimes A_{1} \otimes A_{1}\right)$ for $m=5$). Thus the case for $m=4$ (and hence $m=6$) is a P.V. (see the corollary of Theorem 1.16 in [3]), and the case $m=5$ is a non-P.V. For (2.37), since the $S L(m)$ part of the generic isotropy subroup of $(G L(1) \times S O(10) \times$ $\left.S L(m), \Lambda_{1} \otimes A_{1}\right)$ is $S O(m)$, we have our result by [2]. If $\left(G L(1)^{1+s} \times\right.$ $\operatorname{Spin}(12) \times S L(m)$, vector rep. $\left.\otimes A_{1}+\Sigma_{s} \otimes 1\right)$ is a P.V. with $2 \leqslant m \leqslant 11$, then we have $m=11$ by the proof of Lemma 2.6. Hence it is castling-equivalent to a simple P.V. $\left(G L(1)^{1+\cdots} \times \operatorname{Spin}(12)\right.$, vector rep. $\left.+\Sigma_{s}\right)$. Thus we obtain (2.38) by Theorem 1.3. For (2.39), we have our result similarly as (2.37). For (2.40), it is castling-equivalent to a simple P.V. For (2.41), since the $S L(7)$ part of the generic isotropy subgroup of $(G I(1) \times \operatorname{Spin}(7) \times S L(7)$, spin rep. $\otimes \Lambda_{1}$) is ($\left.\left(G_{2}\right), \Lambda_{2}\right)$, we have our result by [2]. For (2.42), it is castling-equivalent to a simple P.V. and we have our result by Theorem 1.3. Now assume that $\left(G L(1)^{1+t} \times \operatorname{Spin}(10) \times S L(15), A_{0} \otimes A_{1}+1 \otimes\right.$ $\left(\tau_{1}+\cdots+\tau_{t}\right)$) is a P.V. Then we have $15 t \leqslant \operatorname{deg} \tau_{1}+\cdots+\operatorname{deg} \tau_{t} \leqslant 30+t$ and hence $t=1$ or 2 . By dimension reason, we have $\tau_{1}=\Lambda_{1}^{(*)}$ for $t=1$ and $\tau_{1}+\tau_{2}=\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}$ for $t=2$. If $t=1$ and $\tau_{1}=A_{1}$, it is castling-equivalent to $\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(2), A_{e} \otimes A_{1}+1 \otimes A_{1}\right)$ which is a P.V. by (2.21). If $t=2$ and $\tau_{1}+\tau_{2}=A_{1}+A_{1}$, it is castling-equivalent to $\left(G L(1)^{3} \times\right.$ $\left.\operatorname{Spin}(10) \times S L(3), \quad A_{c} \otimes A_{1}+1 \otimes A_{1}+1 \otimes A_{1}\right)$ which is a non-P.V. by Theorem 2.5 for (37). Let V_{e} be the vector space spanned by $1, e_{i} e_{\text {, }}$ $(1 \leqslant i<j \leqslant 5)$, $e_{k} e_{l} e_{s} e_{i}(1 \leqslant k<l<s<t \leqslant 5)$ over K. Let ρ_{1} by the even half-spin representation A_{e} on V_{e}. Then, the odd half-spin representation
Λ_{0} is the dual ρ_{1}^{*} of ρ_{1}. Now the representation space V of $\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(15), A_{0} \otimes A_{1}+1 \otimes \Lambda_{1}^{*}\right)$ is identified with

$$
V=V_{e} \overbrace{\oplus \cdots \oplus}^{15} V_{e} \oplus K^{15}
$$

The action is given by $x \rightarrow\left(\alpha_{1}^{*}(A)\left(X_{1}, \ldots, X_{15}\right)^{t} B ; \quad \beta^{t} B^{-1} y\right)$ for $x=\left(X_{1}, \ldots, X_{15} ; y\right) \in V, \quad g=(\alpha, \beta ; A, B) \in G L(1)^{2} \times \operatorname{Spin}(10) \times S L(15)$. Put $x_{0}=\left(e_{1} e_{5}, e_{2} e_{5}, e_{3} e_{5}, e_{4} e_{5}, e_{2} e_{3} e_{4} e_{5},-e_{1} e_{3} e_{4} e_{5}, e_{1} e_{2} e_{4} e_{5},-e_{1} e_{2} e_{3} e_{5}\right.$, $\left.-1+e_{1} e_{2} e_{3} e_{4}, e_{1} e_{2}, e_{1} e_{3}, e_{1} e_{4},-e_{3} e_{4}, e_{2} e_{4},-e_{2} e_{3} ; e_{9}\right) \in V$. The isotropy subalgebra of $g f(1) \oplus g \ell(1) \oplus o(10) \oplus \circ(15)$ at x_{0} is given by $\{(16 \varepsilon),(\varepsilon)$, $\left\{A \oplus(-30 \varepsilon) \oplus\left(-{ }^{t} A\right) \oplus(30 \varepsilon)\right\}, \quad\left\{\left(A-14 \varepsilon I_{4}\right) \oplus\left(-{ }^{t} A-14 \varepsilon I_{4}\right) \oplus(16 \varepsilon) \oplus\right.$ $\left.\left.\left(A_{2}(A)+16 \varepsilon\right)\right\} \mid A \in J \ell(4), \quad \varepsilon \in g \ell(1)\right\} \simeq g \ell(1) \oplus J \ell(4)$. Hence it is a P.V. Since $\left(G L(1) \times S L(4), \quad A_{1} \otimes 1+A_{1} \otimes \Lambda_{2}^{(*)}\right)$ is a non-P.V., $\left(G L(1)^{3} \times\right.$ $\left.\operatorname{Spin}(10) \times S L(15), \Lambda_{0} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}+1 \otimes \Lambda_{1}^{(*)}\right)$ is a non-P.V. Q.E.D.

Theorem 2.8. All non-irreducible 2 -simple P.V.s which have $(S L(5) \times$ $\left.G L(2), A_{2} \otimes A_{1}\right)((49)$ in Theorem 1.5$)$ as an irreducible component are given as follows:

$$
\begin{align*}
& \left(G L(1)^{1+{ }^{*}} \times S L(5) \times S L(2), A_{2} \otimes A_{1}+\Sigma_{s} \otimes 1\right) \quad(s=1,2), \\
& \text { where } \Sigma_{1}=\Lambda_{1}^{(*)} \text { and } \Sigma_{2}=\Lambda_{1}^{*}+\Lambda_{1}^{(*)} \quad\left(\Sigma_{2} \neq \Lambda_{1}+\Lambda_{1}\right) \text {. } \tag{2.44}\\
& \left(G L(1)^{1+t} \times S L(5) \times S L(2), A_{2} \otimes A_{1}+1 \otimes T_{t}\right) \quad(t=1,2,3), \\
& \text { where } T_{1}=A_{1}, 2 A_{1}, 3 A_{1} ; T_{2}=A_{1}+A_{1}, 2 A_{1}+\Lambda_{1} \text {; } \\
& T_{3}=\Lambda_{1}+\Lambda_{1}+A_{1} . \tag{2.45}\\
& \left(G L(1)^{3} \times S L(5) \times S L(2), A_{2} \otimes A_{1}+A_{1}^{(*)} \otimes 1+1 \otimes A_{1}\right) \tag{2.46}\\
& \left(G L(1)^{2+t} \times S L(5) \times S L(2), A_{2} \otimes A_{1}+\Lambda_{1}^{*} \otimes 1+1 \otimes T_{t}\right) \\
& (t=1,2) \text {, where } T_{1}=2 A_{1} ; T_{2}=A_{1}+A_{1} . \tag{2.47}
\end{align*}
$$

Proof. By dimension reason, $\Lambda_{2} \otimes \Lambda_{1}+\rho_{2} \otimes \rho_{2}^{\prime}\left(\rho_{2} \neq 1, \rho_{2}^{\prime} \neq 1\right)$ is a nonP.V. If $A_{2} \otimes A_{1}+\left(\sigma_{1}+\cdots+\sigma_{s}\right) \otimes 1$ is a P.V., then its castling transform $\left(G L(1)^{s+1} \times S L(5) \times S L(8), A_{2} \otimes A_{1}+\left(\sigma_{1}^{*}+\cdots+\sigma_{s}^{*}\right) \otimes 1\right)$ is also a P.V., and hence, by (2.30), we have $\sigma_{1}^{*}=\Lambda_{1}^{(*)}$ and $\sigma_{1}^{*}+\sigma_{2}^{*}=\Lambda_{1}+\Lambda_{1}^{(*)}$, i.e., (2.44). We have (2.45) similarly as (2.13)-(2.15). By dimension reason, $\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1+\Lambda_{1}^{(*)} \otimes 1+\rho_{4} \otimes \rho_{4}^{\prime}$ is a non-P.V. for any $\rho_{4} \otimes \rho_{4}^{\prime} \neq 1$. Assume that $\Lambda_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes\left(\tau_{1}+\cdots+\tau_{t}\right)$ is a P.V. Then, by $(1,1)$ of Lemma 1.4, $\left(G L(1)^{t+1} \times S L(2), 2 \Lambda_{1}+\tau_{1}+\cdots+\tau_{t}\right)$ must be a P.V., and hence we have $t=1$ and $\tau_{1}=\Lambda_{1}$. Next assume that $\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1+$ $1 \otimes\left(\tau_{1}+\cdots+\tau_{r}\right)$ is a P.V. Then, by (1.1) of Lemma 1.4, $\left(G L(1)^{t+1} \times\right.$ $\left.S L(2), \Lambda_{1}+\tau_{1}+\cdots+\tau_{t}\right)$ must be a P.V., and hence $t=1, \tau_{1}=\Lambda_{1}, 2 \Lambda_{1}$; $t=2, \tau_{1}+\tau_{2}=A_{1}+A_{1}$. Thus it is enough to prove that (2.46) and (2.47) are actually P.V.s. (2.46) is a F.P. (see (5.19) in [4]) and hence a P.V. For (2.47), the generic isotropy subgroup of $\left(G L(1)^{2} \times S L(2), \Lambda_{1}+\Lambda_{1}\right)$ or
$\left(G L(1) \times S L(2), 2 A_{1}\right)$ is $O(2)$, and hence (2.47) is a P.V. if and only if $\left(G L(1)^{3} \times S L(5), A_{2} \oplus A_{2} \oplus A_{1}^{*}\right)$ is a P.V. By (5) of Theorem 1.3 , we have our results.
Q.E.D.

Theorem 2.9. All non-irreducible 2 -simple P.V.s which have $(S L(5) \times$ $\left.G L(9), \Lambda_{2} \otimes A_{1}\right)((50)$ in Theorem 1.5) as an irreducible component are given as follows:

$$
\begin{align*}
& \left(G L(1)^{1+s} \times S L(5) \times S L(9), \Lambda_{2} \otimes \Lambda_{1}+\Sigma_{s} \otimes 1\right) \quad(s=1,2,3), \\
& \text { where } \Sigma_{1}=\Lambda_{1}^{(*)}, \Lambda_{2}^{*} ; \Sigma_{2}=\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}, \Lambda_{2}^{*}+\Lambda_{1} ; \\
& \Sigma_{3}=\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)} \text { except for } \Sigma_{3} \simeq \Lambda_{1}^{*}+\Lambda_{1}^{*}+\Lambda_{1} \tag{2.48}\\
& \left(G L(1)^{2} \times S L(5) \times S L(9), \Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{(*)}\right) \tag{2.49}\\
& \left(G L(1)^{3} \times S L(5) \times S L(9), \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{(*)} \otimes 1+1 \otimes \Lambda_{1}^{(*)}\right) . \tag{2.50}
\end{align*}
$$

Proof. By dimension reason, $\Lambda_{2} \otimes A_{1}+\rho_{2} \otimes \rho_{2}^{\prime}\left(\rho_{2} \neq 1, \rho_{2}^{\prime} \neq 1\right)$ is a nonP.V. Since $A_{2} \otimes A_{1}+\Sigma_{s} \otimes 1\left(\Sigma_{s}=\sigma_{1}+\cdots+\sigma_{s}\right)$ is castling-equivalent to $\left(G L(1)^{1+s} \times S L(5), \Lambda_{2}+\Sigma_{s}^{*}\right)$, we have our result by Theorem 1.3. If $A_{2} \otimes A_{1}+1 \otimes T_{t}\left(T_{t}=\tau_{1}+\cdots+\tau_{t}\right)$ is a P.V., then $t=1$ and $\tau_{1}=\Lambda_{1}^{(*)}$ by dimension reason. The prehomogeneity of (2.49) comes from that of (2.50). If $\Lambda_{2} \otimes A_{1}+1 \otimes A_{1}^{(*)}+\Sigma_{s} \otimes 1\left(\Sigma_{s} \neq 1\right)$ is a P.V., then we have $s=1$ and $\sigma_{1}=\Lambda_{1}^{(*)}$ by dimension reason. Now $\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{(*)} \otimes 1+1 \otimes \Lambda_{1}$ is castling-equivalent to (2.46) and hence it is a P.V. Since $\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1$ is castling-equivalent to a regular P.V. $\left(G L(1)^{2} \times S L(5), A_{2} \oplus \Lambda_{1}\right)$, its generic isotropy subgroup is reductive. Since $A_{2} \otimes A_{1}+\Lambda_{1}^{*} \otimes 1+1 \otimes \Lambda_{1}$ is a P.V., $\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1+1 \otimes \Lambda_{1}^{*}$ is also a P.V. By Lemma 2.10 , it is castling-equivalent to $A_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes A_{1}^{*}$, and hence (2.50) is actually a P.V.
Q.E.D.

Lemma 2.10. Assume that G is reductive and $\operatorname{deg} \rho_{1}=m \geqslant 3$. Then $\left(G L(1)^{3} \times G \times S L(m \quad 1), \rho_{1} \otimes A_{1}\left|\rho_{2} \otimes 1\right| 1 \otimes A_{1}^{*}\right)$ is castling-cquivalent to $\left(G L(1)^{3} \times G \times S L(m-1), \rho_{1} \otimes A_{1}+\rho_{2}^{*} \otimes 1+1 \otimes A_{1}^{*}\right)$.

Proof. It is equivalent to $\left((G L(1) \times G) \times G L(m-1) \times G L(1), \rho_{1} \otimes A_{1} \otimes\right.$ $\left.1+\rho_{2} \otimes 1 \otimes 1+1 \otimes A_{1}^{*} \otimes \Lambda_{1}\right) \quad \sim^{c}((G L(1) \times G) \times G L(m-1) \times G L(m-2)$, $\left.\rho_{1} \otimes A_{1} \otimes 1+\rho_{2} \otimes 1 \otimes 1+1 \otimes A_{1} \otimes A_{1}\right) \quad \sim^{c} \quad \rho_{1}^{*} \otimes A_{1} \otimes 1+\rho_{2} \otimes 1 \otimes 1+$ $1 \otimes A_{1} \otimes A_{1}^{*} \sim^{R} \rho_{1} \otimes A_{1} \otimes 1+\rho_{2}^{*} \otimes 1 \otimes 1+1 \otimes A_{1} \otimes A_{1}^{*} \sim^{c}\left(G L(1)^{3} \times\right.$ $\left.G \times S L(m-1), \rho_{1} \otimes A_{1}+\rho_{2}^{*} \otimes 1+1 \otimes \Lambda_{1}^{*}\right)$, where $\sim^{c}\left(\right.$ resp. $\left.\sim^{R}\right)$ denotes the castling- (resp. reductive-)equivalence.
Q.E.D.

Theorem 2.11. All non-irreducible 2-simple P.V.s which have $(S L(7) \times$ $\left.G L(2), A_{2} \otimes A_{1}\right)((51)$ in Theorem 1.5) as an irreducible component are given as follows:

$$
\begin{align*}
& \left(G L(1)^{2} \times S L(7) \times S L(2), A_{2} \otimes A_{1}+\Lambda_{1}^{(*)} \otimes 1\right) \tag{2.51}\\
& \left(G L(1)^{1+t} \times S L(7) \times S L(2), A_{2} \otimes A_{1}+1 \otimes T_{t}\right) \quad(t=1,2,3), \\
& \quad \text { where } T_{1}=\Lambda_{1}, 2 A_{1}, 3 \Lambda_{1} ; T_{2}=A_{1}+A_{1}, A_{1}+2 \Lambda_{1} ; \\
& \quad T_{3}=A_{1}+A_{1}+A_{1} . \tag{2.52}\\
& \left(G L(1)^{3} \times S L(7) \times S L(2), A_{2} \otimes A_{1}+A_{1}^{*} \otimes 1+1 \otimes A_{1}\right) \tag{2.53}
\end{align*}
$$

Note that $A_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes A_{1}$ is a non-P.V. for (2.53).
Proof. $A_{2} \otimes A_{1}+\rho_{2} \otimes \rho_{2}^{\prime}\left(\rho_{2} \neq 1, \rho_{2}^{\prime} \neq 1\right)$ is a non-P.V. by dimension reason. $A_{2} \otimes A_{1}+\Sigma_{s} \otimes 1$ is castling-equivalent to $\left(G L(1)^{1+s} \times S L(7) \times\right.$ $\left.S L(19), \Lambda_{2}^{*} \otimes \Lambda_{1}+\Sigma_{s} \otimes 1\right)$ and hence we obtain (2.51) from (2.3). If $A_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes T_{t}$ is a P.V., then $\left(G L(1)^{1+t} \times S L(2), 3 A_{1}+T_{t}\right)$ must be a P.V. by Lemma 1.4. Hence we have $t=0, T_{t}=1$. If $A_{2} \otimes A_{1}+A_{1}^{*} \otimes 1+1 \otimes T_{i}\left(T_{t} \neq 1\right)$ is a P.V., then $\left(G L(1)^{1+t} \times \operatorname{SL}(2)\right.$, $2 \Lambda_{1}+T_{t}$) must be a P.V. and hence $t=1, T_{t}=\Lambda_{1}$, i.e., (2.53). It is actually a P.V. For example, $\left(X_{0} ;^{\prime}(0000010),{ }^{\prime}(1,1)\right)$ (see Lemma 1.4 for $\left.X_{0}\right)$ is a generic point.
Q.E.D.

Theorem 2.12. All non-irreducible 2-simple P.V.s which have $\left(S L(7) \times G L(20), A_{2} \otimes A_{1}\right)((52)$ in Theorem 1.5) as an irreducible component are given as follows:

$$
\begin{align*}
& \left(G L(1)^{1+s} \times S L(7) \times S L(20), \Lambda_{2} \otimes \Lambda_{1}+\Sigma_{s} \otimes 1\right) \quad(s=1,2,3) \\
& \quad w^{*} \text { here } \Sigma_{1}=\Lambda_{1}^{(*)}, \Lambda_{2}^{*} ; \Sigma_{2}=\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)} ; \\
& \Sigma_{3}=\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)} \text { except for } \Sigma_{3} \simeq \Lambda_{1}+\Lambda_{1}^{*}+\Lambda_{1}^{*} \tag{2.54}\\
& \left(G L(1)^{2} \times S L(7) \times S L(20), \Lambda_{2} \otimes \Lambda_{1}+1 \otimes A_{1}\right) \tag{2.55}\\
& \left(G L(1)^{3} \times S L(7) \times S L(20), \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}\right) . \tag{2.56}
\end{align*}
$$

Note that $A_{2} \otimes A_{1}+1 \otimes A_{1}^{*}$ for (2.55), and $\Lambda_{2} \otimes A_{1}+\Lambda_{1}^{*} \otimes 1+1 \otimes A_{1}$ for (2.56), are not P.V.s.

Proof. If $\Lambda_{2} \otimes \Lambda_{1}+\rho_{2} \otimes \rho_{2}^{\prime}\left(\rho_{2} \neq 1, \rho_{2}^{\prime} \neq 1\right)$ is a P.V., then we have $\operatorname{dim} G=449 \geqslant \operatorname{dim} V \geqslant 420+7 \times 20=560$, which is a contradiction. Similarly as (2.34) and (2.35), we have (2.54) and (2.55). Since $A_{2} \otimes A_{1}+1 \otimes A_{1}+\Sigma_{3} \otimes 1$ is castling-equivalent to $\left(G L(1)^{2+s} \times S L(7) \times\right.$ $\left.S L(2), \Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}+\Sigma_{s}^{*} \otimes 1\right)$, we have $s=1$ and $\Sigma_{1}=\Lambda_{1}$ by (2.53).
Q.E.D.

Theorem 2.13. All non-irreducible 2 -simple P.V.s which have $\left(S O(5) \times G L(m), \Lambda_{1} \otimes A_{1}\right) \simeq\left(\operatorname{Sp}(2) \times G L(m), \Lambda_{2} \otimes \Lambda_{1}\right) \quad(m=2,3,4) \quad((53)$ in Theorem 1.5) as an irreducible component are given as follows:

$$
\begin{equation*}
\left(G L(1)^{2} \times \operatorname{Sp}(2) \times S L(m), A_{2} \otimes A_{1}+A_{1} \otimes 1\right) \tag{2.57}
\end{equation*}
$$

$$
\begin{align*}
& \left(G L(1)^{2} \times \operatorname{Sp}(2) \times S L(m), \Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{(*)}\right) \tag{2.58}\\
& \left(G L(1)^{3} \times \operatorname{Sp}(2) \times S L(m), \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}^{(*)}\right) \\
& \quad \text { for } m=2,4(m \neq 3) \tag{2.59}
\end{align*}
$$

Proof. If $A_{2} \otimes A_{1}+\rho_{2} \otimes \rho_{2}^{\prime}\left(\rho_{2} \neq 1, \rho_{2}^{\prime} \neq 1\right)$ is a P.V., then we have $\operatorname{dim} G=m^{2}+11 \geqslant \operatorname{dim} V \geqslant 5 m+4 m(m=2,3,4)$, which is a contradiction. First note that $\Lambda_{2} \otimes A_{1}+A_{2} \otimes 1$ is a non-P.V. by Sublemma 2.4.2. Hence if $\Lambda_{2} \otimes A_{1}+\Sigma_{s} \otimes 1$ is a P.V., then $s=1, \Sigma_{1}=A_{1}$ or $s \leqslant 2, \Sigma_{7}=A_{1}+A_{1}$ for $m=4$, by dimension reason. However, a castling transform $\left(G L(1)^{3} \times\right.$ $\left.\operatorname{Sp}(2), \quad A_{2}+\Lambda_{1}+A_{1}\right) \quad$ of $\left(G L(1)^{3} \times \operatorname{Sp}(2) \times S L(4), \quad \Lambda_{2} \otimes A_{1}+A_{1} \otimes 1+\right.$ $A_{1} \otimes 1$) is a non-P.V., we have (2.57). Actually (2.57) is a P.V. by (5.10) in [4]. Since the $S L(m)$ part of the generic isotropy subgroup of $(G L(1) \times$ $\left.\mathrm{Sp}(2) \times S L(m), \Lambda_{2} \otimes \Lambda_{1}\right)(m=2,3,4)$ is $O(m)$, we have (2.58). For (2.59), we have $m \neq 3$ by dimension reason. Since the generic isotropy subalgebra of

$$
\left(\operatorname{Sp}(2) \times G L(2), A_{2} \otimes A_{1}\right) \text { is }\left\{\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & -{ }^{\prime} A
\end{array}\right) \oplus\left(\begin{array}{cc}
-\operatorname{Tr} A & 0 \\
0 & \operatorname{Tr} A
\end{array}\right) ; A \in q \ell(2)\right\}
$$

(see p. 455 in Kimura and Kasai [5]), (GL(1) ${ }^{3} \times \operatorname{Sp}(2) \times S L(2)$, $\left.A_{2} \otimes A_{1}+\Lambda_{1} \otimes 1+1 \otimes A_{1}\right)$ is a P.V., and hence $\left(G L(1)^{3} \times \operatorname{Sp}(2) \times S L(4)\right.$, $A_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes A_{1}$) is a P.V. by a castling transformation. Since the $S L(4)$ part of the generic isotropy subgroup of $(G L(1) \times S p(2) \times S L(4)$, $\left.A_{2} \otimes A_{1}\right)$ is $O(4),\left(G L(1)^{2} \times \operatorname{Sp}(2) \times S L(4), A_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes A_{1}^{*}\right)$ is also a P.V.
Q.E.D.

Tineorem 2.14. All non-irreducible 2 -simple P.V.s which have $(S O(6) \times$ $\left.G L(m), \quad A_{1} \otimes A_{1}\right) \simeq\left(S L(4) \times G L(m), \quad \Lambda_{2} \otimes A_{1}\right) \quad(2 \leqslant m \leqslant 5) \quad((54) \quad$ in Theorem 1.5) as an irreducible component are given as follows:

$$
\begin{align*}
& \left(G L(1)^{2} \times S L(4) \times S L(2), \Lambda_{2} \otimes A_{1}+A_{1} \otimes \Lambda_{1}\right) \tag{2.60}\\
& \left(G L(1)^{1+s} \times S L(4) \times S L(m), \Lambda_{2} \otimes A_{1}+\Sigma_{s} \otimes 1\right) \quad(s=1,2,3), \\
& \quad \text { where } \quad \Sigma_{1}=A_{1} ; \quad \Sigma_{2}=\Lambda_{1}+A_{1} \quad(m \neq 3), \quad \Sigma_{2}=A_{1}+\Lambda_{1}^{*} \\
& (m=5) ; \quad \Sigma_{3}=\Lambda_{1}+\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)} \\
& \quad(m=5) \tag{2.61}\\
& \left(G L(1)^{2} \times S L(4) \times S L(m), \Lambda_{2} \otimes A_{1}+1 \otimes A_{1}^{(*)}\right) \tag{2.62}\\
& \left(G L(1)^{3} \times S L(4) \times S L(m), \Lambda_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes \Lambda_{1}^{(*)}\right) \tag{2.63}
\end{align*}
$$

Note that $\Lambda_{2}=\Lambda_{2}^{*}$ for $\operatorname{SL}(4)$.
Proof. If $A_{2} \otimes A_{1}+\rho_{2} \otimes \rho_{2}^{\prime}\left(\rho_{2} \neq 1, \rho_{2}^{\prime} \neq 1\right)$ is a P.V., we have $\operatorname{dim} G=$ $16+m^{2} \geqslant \operatorname{dim} V \geqslant 6 m+4 m \quad(2 \leqslant m \leqslant 5) \quad$ and hence $m=2, \quad \rho_{2} \otimes \rho_{2}^{\prime}=$
$A_{1} \otimes A_{1}$. Then it is acturally a P.V., since $\left(\left(e_{1} \wedge e_{2}, e_{3} \wedge e_{4}\right),\left(e_{1}+e_{3}\right.\right.$, $\left.e_{2}+e_{4}\right)$) is a generic point. Note that $A_{2} \otimes A_{1}+A_{1} \otimes A_{1}+\rho_{3} \otimes \rho_{3}^{\prime}$ is not a P.V. for any $\rho_{3} \otimes \rho_{3}^{\prime} \neq 1$ by dimension reason. Thus we have (2.60). Let us consider $A_{2} \otimes A_{1}+\Sigma_{s} \otimes 1$ with $\Sigma_{s}=\sigma_{1}+\cdots+\sigma_{s}$. If $m=5$, it is castlingequivalent to a simple P.V. $\left(G L(1)^{1+s} \times S L(4), \Lambda_{2}+\sigma_{1}+\cdots+\sigma_{s}\right)$ and hence we have $s=1,2,3 ; \sigma_{1}=\Lambda_{1} ; \sigma_{1}+\sigma_{2}=\Lambda_{1}+\Lambda_{1}^{(*)} ; \sigma_{1}+\sigma_{2}+\sigma_{3}=$ $\Lambda_{1}+\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}$. For $m=2,3,4, \Lambda_{2} \otimes \Lambda_{1}+\sigma_{1} \otimes 1$ with $\sigma_{1}=\Lambda_{2}$ (resp. $\sigma_{1}=2 \Lambda_{1}$) is not a P.V. by Sublemma 2.4 .2 (resp. by dimension reason), and hence

$$
\Sigma_{s}=\Lambda_{1}^{(*)} \overbrace{+\cdots+}^{s} \Lambda_{1}^{(*)} .
$$

Since $\operatorname{dim} G=15+s+m \geqslant \operatorname{dim} V=6 m+\operatorname{deg} \Sigma_{s} \geqslant 6 m+4 s$, i.e., $(m-3)^{2}+$ $6 \geqslant 3 s(2 \leqslant m \leqslant 4)$, we have $s=1$ or 2 . Since the $S L(4)$ part of the generic isotropy subgroup of $\left(S L(4) \times G L(3), \quad \Lambda_{2} \otimes \Lambda_{1}, V(6) \oplus V(6) \oplus V(6)\right)$ at $\left(e_{1} \wedge e_{2}, \quad e_{3} \wedge e_{4}, \quad e_{1} \wedge e_{3}+e_{2} \wedge e_{4}\right) \quad$ is $\quad S O(4),\left(G L(1)^{2} \times S L(4) \times S L(3)\right.$, $\left.A_{2} \otimes A_{1}+A_{1} \otimes 1\right)$ is a P.V. and $\left(G L(1)^{3} \times S L(4) \times S L(3), A_{2} \otimes A_{1}+\right.$ $\left.\Lambda_{1} \otimes 1+\Lambda_{1}^{(*)} \otimes 1\right)$ is a non-P.V. Since the generic isotropy subalgebra of $\left(S L(4) \times G L(2), \Lambda_{2} \otimes A_{1}\right)$ at $\left(e_{1} \wedge e_{2}, e_{3} \wedge e_{4}\right)$ is given by

$$
\left\{\left(\begin{array}{c|c}
A+\alpha I_{2} & 0 \\
\hline 0 & B-\alpha I_{2}
\end{array}\right),\left(\begin{array}{cc}
-2 \alpha & 0 \\
0 & 2 \alpha
\end{array}\right) ; A, B \in \mathscr{f}(2), \alpha \in g t(1)\right\}
$$

one can check easily that $\left(G L(1)^{3} \times S L(4) \times S L(2), A_{2} \otimes A_{1}+A_{1} \otimes 1+\right.$ $\Lambda_{1} \otimes 1\left(\mathrm{resp} . \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+\Lambda_{1}^{*} \otimes 1\right)$) is a P.V. (resp. is a non-P.V.), and so is the case for $m=4$ by a castling transformation. Thus we have (2.61). Since the $S L(m)$-part of the generic isotropy subgroup of $\left(G L(1) \times S L(4) \times S L(m), \Lambda_{2} \otimes \Lambda_{1}\right)$ is $S O(m)$, we have (2.62). Assume that $\Lambda_{2} \otimes A_{1}+\Sigma_{s} \otimes 1+1 \otimes \Lambda_{1}^{(*)}$ is a P.V. Then we have $\operatorname{dim} G=s+16+m^{2} \geqslant$ $7 m+\operatorname{deg} \Sigma_{s} \geqslant 7 m+4 s$, and hence $s=1 ; s=2(m=2,5)$. We shall see that $s \neq 2$. Since the $S L(2)$ part of the generic isotropy subalgebra of $\left(G L(1)^{3} \times S L(4) \times S L(2), A_{2} \otimes A_{1}+\Lambda_{1} \otimes 1+\Lambda_{1} \otimes 1\right)$ is zero, we have $s \neq 2$ for $m=2$. By p .94 in [2], the generic isotropy subgroup of $\left(G L(1)^{3} \times S L(4) \times S L(5), \quad \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+\Lambda_{1}^{(*)} \otimes 1\right) \quad$ is reductive, $\Lambda_{2} \otimes A_{1}+\Lambda_{1} \otimes 1+\Lambda_{1}^{(*)} \otimes 1+1 \otimes \Lambda_{1}^{*}$ and $\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+\Lambda_{1}^{(*)} \otimes 1+$ $1 \otimes A_{1}$ are P.V.-equivalent. However, its castling transform $\left(G L(1)^{4} \times\right.$ $\left.S L(4) \times S L(2), \quad \Lambda_{2} \otimes A_{1}+\Lambda_{1} \otimes 1+\Lambda_{1}^{(*)} \otimes 1+1 \otimes A_{1}\right)$ is a non-P.V. as above, we have $s \neq 2$ for $m=5$. If $s=1$, it is a F.P. by Theorem 5.17 in [4], and hence it is a P.V. Thus we have (2.63).
Q.E.D.

Theorem 2.15. Let Λ (resp. Λ_{1}) be the spin (resp. the vector) representation of $\operatorname{Spin}(7)$ All non-irreducible 2 -simple P.V.s which have
$\left(S O(7) \times G L(m), A_{1} \otimes A_{1}\right) \simeq\left(\operatorname{Spin}(7) \times G L(m), A_{1} \otimes A_{1}\right)(2 \leqslant m \leqslant 6)((55)$ in Theorem 1.5) as an irreducible component are given as follows:

$$
\begin{align*}
& \left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(m), A_{1} \otimes A_{1}+\Lambda \otimes 1\right)(m=2,5,6) \tag{2.64}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(m), A_{1} \otimes A_{1}+1 \otimes \Lambda_{1}^{(*)}\right)(2 \leqslant m \leqslant 6) \tag{2.65}\\
& \left(G L(1)^{3} \times \operatorname{Spin}(7) \times S L(m), A_{1} \otimes A_{1}+\Lambda \otimes 1+1 \otimes \Lambda_{1}^{(*)}\right) \\
& \quad(m=2,6) . \tag{2.66}
\end{align*}
$$

Proof. If $\Lambda_{1} \otimes \Lambda_{1}+\rho_{2} \otimes \rho_{2}^{\prime}\left(\rho_{2} \neq 1, \rho_{2}^{\prime} \neq 1\right)$ is a P.V., then we have $\operatorname{dim} G=22+m^{2} \geqslant \operatorname{dim} V \geqslant 7 m+7 m$, i.e., $(m-7)^{2} \geqslant 27(2 \leqslant m \leqslant 6)$, which is a contradiction. If $\Lambda_{1} \otimes A_{1}+\left(\sigma_{1}+\cdots+\sigma_{s}\right) \otimes 1$ is a P.V., then we have $s=1$ and $\sigma_{1}=\Lambda$ by Sublemma 2.4.2 and [2]. Since the restriction of $\left(G L(1) \times \operatorname{Spin}(7), \Lambda_{1}\right)$ to a generic isotropy subgroup of $(G L(1) \times$ $\operatorname{Spin}(7), A)$ is equivalent to $\left(\left(G_{2}\right), A_{2}, V(7)\right)$ (see p. 116 in [1]), we have (2.64). Since the $S L(m)$ part of a generic isotropy subgroup of $\left(G L(1) \times \operatorname{Spin}(7) \times S L(m), \quad A_{1} \otimes A_{1}\right)$ is $S O(m)$, we have (2.65). Now $\Lambda_{1} \otimes A_{1}+\Lambda \otimes 1+1 \otimes \Lambda_{1}^{(*)}$ is a P.V. if and only if $\left(G L(1)^{2} \times\left(G_{2}\right) \times S L(m)\right.$, $\left.\Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{(*)}\right)(m=2,5,6)$ is a P.V. Thus we have $m \neq 5$ by (14) of Theorem 2.1. It is a P.V. for $m=2,6$ by (2.26) and (2.27). Thus we have our result.
Q.E.D.

Let $A_{e}\left(\right.$ resp. $\left.A_{0}, A_{1}\right)$ be the even half-spin (resp. the odd half-spin, the vector) representation of $\operatorname{Spin}(8)$. Then it is well known that $\left(\operatorname{Spin}(8), A_{e}\right) \simeq\left(\operatorname{Spin}(8), \Lambda_{0}\right) \simeq\left(\operatorname{Spin}(8), \Lambda_{1}\right) \simeq\left(S O(8), \Lambda_{1}\right)$ as triplets (see p. 36 in [1]).

Theorem 2.16. All non-irreducible 2-simple P.V.s which have $(S O(8) \times$ $\left.G L(m), \Lambda_{1} \otimes A_{1}\right)(2 \leqslant m \leqslant 7)((56)$ in Theorem 1.5) as an irreducible component are given as follows:

$$
\begin{align*}
& \left(G L(1)^{2} \times \operatorname{Spin}(8) \times S L(m), A_{e} \otimes A_{1}+A_{1} \otimes 1\right) \\
& \quad(2 \leqslant m \leqslant 7, m \neq 4) \tag{2.67}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(8) \times S L(m), A_{e} \otimes A_{1}+1 \otimes A_{1}^{(*)}\right) \quad(2 \leqslant m \leqslant 7) \tag{2.68}\\
& \left(G L(1)^{3} \times \operatorname{Spin}(8) \times S L(m), \Lambda_{e} \otimes A_{1}+A_{1} \otimes 1+1 \otimes A_{1}^{(*)}\right) \\
& \quad \text { for } m=2,3,6,7 \tag{2.69}
\end{align*}
$$

Proof. If $\Lambda_{e} \otimes A_{1}+\rho_{2} \otimes \rho_{2}^{\prime}\left(\rho_{2} \neq 1, \rho_{2}^{\prime} \neq 1\right)$ is a P.V., then we have $\operatorname{dim} G=29+m^{2} \geqslant \operatorname{dim} V \geqslant 8 m+8 m$, i.e., $(m-8)^{2} \geqslant 35 \quad(2 \leqslant m \leqslant 7)$, and hence $m=2$. Note that $\left(\operatorname{Spin}(8) \times S L(2), \rho_{2} \otimes \rho_{2}^{\prime}\right) \simeq(S O(8) \times S L(2)$, $\left.A_{1} \otimes A_{1}, V(8) \otimes V(m)\right)$ as triplets if $\rho_{2} \neq 1$ and $\rho_{2}^{\prime} \neq 1$. Hence the $S L(2)$ part of a generic isotropy subgroup of $\left(G L(1) \times \operatorname{Spin}(8) \times S L(2), \rho_{2} \otimes \rho_{2}^{\prime}\right)$ is $O(2)=\left\{\binom{\alpha}{\beta} ; \alpha \beta= \pm 1\right\}$. Thus $\left(G L(1)^{2} \times \operatorname{Spin}(8), A_{e}+\Lambda_{e}\right)$ must be a P.V., which is a contradiction by Theorem 1.3. Assume that $\Lambda_{e} \otimes \Lambda_{1}+$
$\left(\sigma_{1}+\cdots+\sigma_{s}\right) \otimes 1$ is a P.V. Then, by Sublemma 2.4 .2 and Theorem 1.3, we have $s=1,2 ; \sigma_{1}=\Lambda_{1} ; \sigma_{2}=\Lambda_{1}+\Lambda_{0}$. Since the restriction of Λ_{e} and Λ_{0} of $\operatorname{Spin}(8)$ to a generic isotropy subgroup of $\left(G L(1) \times \operatorname{Spin}(8), \Lambda_{1}\right)$ gives both the spin representation A of $\operatorname{Spin}(7)$ and $\Lambda(\operatorname{Spin}(7)) \subset S O(8)$, we have $s \neq 2$, i.e., $s=1$ by Sublemma 2.4.2. Since $\Lambda_{e} \otimes \Lambda_{1}+A_{1} \otimes 1$ is P.V.equivalent to $\left(G L(1) \times \operatorname{Spin}(7) \times S L(m), \quad \Lambda \otimes \Lambda_{1}\right)$, we have (2.67) by Theorem 1.5. Since the $S L(m)$ part of a generic isotropy subgroup of $\left(G L(1) \times \operatorname{Spin}(8) \times S L(m), \Lambda_{c} \otimes A_{1}\right)$ is $O(m)$, we have (2.68). For (2.69), $\Lambda_{e} \otimes A_{1}+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}^{(*)}(2 \leqslant m \leqslant 7, m \neq 4)$ is P.V.-equivalent to $\left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(m), \Lambda \otimes A_{1}+1 \otimes \Lambda_{1}^{(*)}\right)$. Hence we have $m \neq 5$ by (9) of Theorem 2.1. By (2.18)-(2.20) and (2.41), we have (2.69). Q.E.D.

Lemma 2.17. For $2 n>m \geqslant 2, \quad\left(G L(1)^{2} \times \operatorname{Sp}(n) \times S L(m), \quad \Lambda_{1} \otimes \Lambda_{1}+\right.$ $\Lambda_{1} \otimes \Lambda_{1}^{(*)}$) is a non-P.V.

Proof. The representation space of $\Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes \Lambda_{1} \quad$ (resp. $\left.\Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes \Lambda_{i}^{*}\right)$ is identified with $V=M(2 n, m) \oplus M(2 n, m)$, where the action is given by $(X, Y) \rightarrow\left(\alpha A X^{\prime} B, \beta A Y^{\prime} B\right)$ (resp. $\left(\alpha A X^{\prime} B, \beta A Y B^{-1}\right)$) for $g=(\alpha, \beta ; A, B) \in G L(1)^{2} \times \operatorname{Sp}(n) \times S L(m)$ and $x=(X, Y) \in V$. Then a rational function $f(x)=\operatorname{det}\left({ }^{\prime} X J Y-{ }^{\prime} Y J X\right) \cdot \operatorname{det}\left({ }^{\prime} X J Y\right)^{-1}\left(\right.$ resp. $\operatorname{Tr}\left({ }^{\prime} X J Y\right)^{m}$. $\left.\operatorname{det}\left({ }^{\prime} X J Y\right)^{-1}\right)$ is a nonconstant absolute invariant for $m \geqslant 2$, where

$$
J=\left(\begin{array}{c|c}
0 & I_{n} \\
\hline-I_{n} & 0
\end{array}\right)
$$

Q.E.D.

Lemma 2.18. All 2 -simple P.V.s which contain $\left(G L(1)^{2} \times \operatorname{Sp}(2) \times S L(m)\right.$, $\left.\Lambda_{1} \otimes \Lambda_{1}+\Lambda_{2} \otimes 1\right)(m=2,3)$ as a component, are given as follows:

$$
\begin{align*}
& \left(G L(1)^{2} \times \operatorname{Sp}(2) \times S L(3), A_{1} \otimes A_{1}+A_{2} \otimes 1\right) \tag{2.70}\\
& \left(G L(1)^{3} \times \operatorname{Sp}(2) \times S L(3), A_{1} \otimes A_{1}+A_{2} \otimes 1+1 \otimes A_{1}^{*}\right) . \tag{2.71}
\end{align*}
$$

Proof. By Lemma 4.6 in [4], $\left(G L(1)^{2} \times \operatorname{Sp}(2) \times S L(2), A_{1} \otimes A_{1}+\right.$ $\Lambda_{2} \otimes 1$) is a non-P.V. Now (2.70) is actually a P.V., since it is castlingequivalent to (9) in Theorem 1.3. If $\Lambda_{1} \otimes A_{1}+A_{2} \otimes 1+\sigma_{1} \otimes \tau_{1}+\cdots+$ $\sigma_{k} \otimes \tau_{k}$ is a P.V., then we have $\operatorname{dim} G=k+20 \geqslant \operatorname{dim} V \geqslant 17+3 k$, we have $k=1$. In this case, we have $\operatorname{deg}\left(\sigma_{1} \otimes \tau_{1}\right) \leqslant 4$, and hence $\sigma_{1} \otimes \tau_{1}=\Lambda_{1} \otimes 1$ or $1 \otimes \Lambda_{1}^{(*)}$. If $\sigma_{1} \otimes \tau_{1}=\Lambda_{1} \otimes 1$, it is castling-equivalent to $\left(G L(1)^{3} \times \operatorname{Sp}(2)\right.$, $\Lambda_{2}+A_{1}+A_{1}$) which is a non-P.V. by Theorem 1.3. If $\sigma_{1} \otimes \tau_{1}=1 \otimes \Lambda_{1}$, then it is castling-equivalent to $\left(G L(1)^{3} \times \operatorname{Sp}(2) \times S L(2), \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{2} \otimes\right.$ $1+1 \otimes \Lambda_{1}$) which is a non-P.V. as we have seen above. If $\sigma_{1} \otimes \tau_{1}=1 \otimes \Lambda_{1}^{*}$, then it is a P.V., since

$$
x=\left(\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ll|rr}
0 & 1 & \\
& & -1 \\
\hline 1 & & 0
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right)
$$

is a generic point.
Q.E.D.

Lemma 2.19. All 2-simple P.V.s which contain $\left(G L(1)^{2} \times \operatorname{Sp}(3) \times S L(m)\right.$, $\left.A_{1} \otimes A_{1}+A_{3} \otimes 1\right)(2 \leqslant m \leqslant 5)$ as a component, are given as follows:

$$
\begin{equation*}
\left(G L(1)^{2} \times \operatorname{Sp}(3) \times S L(5), A_{1} \otimes A_{1}+\Lambda_{3} \otimes 1\right) \tag{2.72}
\end{equation*}
$$

Proof. Since the generic isotropy subalgebra of ($\left.G L(1) \times \operatorname{Sp}(3), A_{3}\right)$ at $e_{1} \wedge e_{2} \wedge e_{3}+e_{4} \wedge e_{5} \wedge e_{6}$ is given by $\left\{(0) \oplus\left(\begin{array}{cc}A & 0 \\ 0 & -{ }^{-} A\end{array}\right) ; A \in J \ell(3)\right\}$ (see [1]), $\Lambda_{1} \otimes A_{1}+\Lambda_{3} \otimes 1$ is P.V.-equivalent to $\left(S L(3) \times G L(m),\left(\Lambda_{1}+\Lambda_{1}^{*}\right) \otimes \Lambda_{1}\right)$ which is a P.V. (resp. a non-P.V.) for $m=5$ (resp. $m=2,3,4$) by the proof of Sublemma 2.4.4 (and a castling transformation for $m=4$). If $\left(G L(1)^{3} \times\right.$ $\left.\operatorname{Sp}(3) \times S L(5), \Lambda_{1} \otimes A_{1}+A_{3} \otimes 1+\rho_{3} \otimes \rho_{3}^{\prime}\right)\left(\rho_{3} \otimes \rho_{3}^{\prime} \neq 1\right)$ is a P.V., then we have $\operatorname{dim} G=48 \geqslant \operatorname{dim} V=44+\operatorname{deg} \rho_{3} \otimes \rho_{3}^{\prime} \geqslant 49$, which is a contradiction.
Q.E.D.

Lemma 2.20. For $n>m \geqslant 1$, a triplet $\left(G L(1)^{3} \times \operatorname{Sp}(n) \times S L(2 m)\right.$, $\left.A_{1} \otimes A_{1}+A_{1} \otimes 1+A_{1} \otimes 1, M(2 n, 2 m) \oplus K^{2 n} \oplus K^{2 n}\right)$ is a non-P.V.

Proof. The action is given by $x \rightarrow\left(\alpha A X^{t} B ; \beta A y, \gamma A z\right)$ for $g=$ $(\alpha, \beta, \gamma ; A, B) \in G L(1)^{3} \times \operatorname{Sp}(n) \times S L(2 m)$ and $x=(X ; y, z) \in M(2 n, 2 m) \oplus$ $K^{2 n} \oplus K^{2 n}$. Then a rational function $f(x)=\left({ }^{t} y J z\right) \cdot \operatorname{Pf}\left({ }^{t} X J X\right) . \operatorname{Pf}\left({ }^{t} X^{\prime} J X^{\prime}\right)^{-1}$ is a nonconstant absolute invariant, where $X^{\prime}=(X, y, z) \in M(2 n, 2 m+2)$ and Pf denotes the Pfaffian.
Q.E.D.

Theorem 2.21. All non-irreducible 2-simple P.V.s which have $(\operatorname{Sp}(n) \times$ $\left.G L(2 m), A_{1} \otimes A_{1}, V(2 n) \otimes V(2 m)\right)(n>m \geqslant 1)((57)$ in Theorem 1.5) as an irreducible component are given as follows:

$$
\begin{align*}
& \left(G L(1)^{2} \times \operatorname{Sp}(n) \times S L(2 m), \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1\right) \tag{2.73}\\
& \left(G L(1)^{1+t} \times \operatorname{Sp}(n) \times S L(2 m), \Lambda_{1} \otimes \Lambda_{1}+1 \otimes T_{t}\right) \quad(t=1,2,3), \\
& \quad \text { where } T_{1}=\Lambda_{1}^{(*)}, T_{1}=2 A_{1}(m=1), T_{1}=3 A_{1} \\
& \quad(m=1) ; T_{2}=\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}, T_{2}=2 \Lambda_{1}+\Lambda_{1}(m=1) ; \\
& \quad T_{3}=\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)} . \tag{2.74}\\
& \left(G L(1)^{2+t} \times \operatorname{Sp}(n) \times S L(2 m), \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes T_{t}\right), \\
& \quad \text { where } t=1,2 ; T_{1}=\Lambda_{1}^{(*)}, T_{1}=2 \Lambda_{1}(m=1) ; \\
& \quad T_{2}=\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)} . \tag{2.75}
\end{align*}
$$

Proof. If $\Lambda_{1} \otimes \Lambda_{1}+\rho_{2} \otimes \rho_{2}^{\prime}\left(\rho_{2} \neq 1, \rho_{2}^{\prime} \neq 1\right)$ is a P.V., then we have $\rho_{2} \otimes \rho_{2}^{\prime}=\Lambda_{1} \otimes \Lambda_{1}^{(*)}$ by (2.16), Theorem 2.13, and Theorem 1.5. By Lemma 2.17, it is a contradiction. Now assume that $\Lambda_{1} \otimes A_{1}+$ $\left(\sigma_{1}+\cdots+\sigma_{s}\right) \otimes 1$ is a P.V. By Lemmas $2.18-2.20$, we have $s=1$ and $\sigma_{1}=\Lambda_{1}$, i.e., (2.73). Now $\Lambda_{1} \otimes A_{1}+1 \otimes\left(\tau_{1}+\cdots+\tau_{t}\right)$ is P.V.-equivalent to $\left(G L(1)^{t} \times \operatorname{Sp}(m), \tau_{1}+\cdots+\tau_{t}\right)$, and hence we have (2.74) by Theorem 1.3. By p. 40 in [1], $\Lambda_{1} \otimes A_{1}+\Lambda_{1} \otimes 1+1 \otimes\left(\tau_{1}+\cdots+\tau_{t}\right)$ is P.V.-equivalent to $\left(G L(1)^{2+t} \times S L(2 m), \Lambda_{2}\left(\Lambda_{1}+1\right)+\tau_{1}+\cdots+\tau_{i}\right)$. By a careful check for scalar multiplications, we see that the latter is also P.V.-equivalent to $\left(G L(1)^{2+t} \times S L(2 m), \Lambda_{2}+\Lambda_{1}+\tau_{1}+\cdots+\tau_{i}\right)$, and hence we have (2.75). Note that $\left(G L(1) \times S L(2), \quad A_{1} \otimes A_{2}\right) \simeq\left(G L(1), A_{1}\right), \quad$ and that the prehomogeneity of (2.73) has been also proved. Q.E.D.

Lemma 2.22. For $n>m \geqslant 1$, a triplet $\left(G L(1)^{4} \times \operatorname{Sp}(n) \times S L(2 m+1)\right.$, $\left.A_{1} \otimes\left(A_{1}+1+1+1\right), M(2 n, 2 m+1) \oplus K^{2 n} \oplus K^{2 n} \oplus K^{2 n}\right)$ is a non-P.V.

Proof. The action is given by $x \rightarrow\left(\alpha A X^{t} B ; \beta_{1} A y_{1}, \beta_{2} A y_{2}, \beta_{3} A y_{3}\right)$ for $g=\left(\alpha, \beta_{1} \beta_{2}, \beta_{3} ; \quad A, B\right) \in G L(1)^{4} \times \operatorname{Sp}(n) \times S L(2 m+1) \quad$ and $x=$ $\left(X ; y_{1}, y_{2}, y_{3}\right) \in M(2 n, 2 m+1) \oplus K^{2 n} \oplus K^{2 n} \oplus K^{2 n}$. Then the polynomials $f_{i}(x)=\operatorname{Pf}\left({ }^{\prime} X_{i} J X_{i}\right) \quad(i=1,2,3) \quad$ with $\quad X_{i}=\left(X, y_{i}\right) \in M(2 n, 2 m+2) \quad$ and $g_{i j}(x)={ }^{t} y_{i} J_{y_{j}}(1 \leqslant i<j \leqslant 3)$ are relative invariants corresponding to the characters $\quad \chi_{i}(g)=\alpha^{2 m+1} \beta_{i}(i=1,2,3) \quad$ and $\quad \chi_{i j}(g)=\beta_{i} \beta_{j}(1 \leqslant i<j \leqslant 3)$, respectively. Now assume that $n \geqslant m+2$. Then we have $2 n \geqslant(2 m+1)+3$ and hence $h(x)=\operatorname{Pf}\left({ }^{\prime} X^{\prime} J X^{\prime}\right)$ with $X^{\prime}=\left(X, y_{1}, y_{2}, y_{3}\right) \in M(2 n, 2 m+4)$ is a nonzero relative invariant corresponding to the character $\chi(g)=$ $\alpha^{2 m+1} \beta_{1} \beta_{2} \beta_{3}$. Hence, $f(x)=f_{1} f_{2} f_{3} g_{12} g_{23} g_{13} h^{-3}(x)$ is a nonconstant absolute invariant. Thus our triplet is a non-P.V. for $n \geqslant m+2$. If $n=m+1$, then we have $2 m+1=2 n-1$, and it is castling-equivalent to $\left(G L(1)^{4} \times \operatorname{Sp}(n), A_{1}+\Lambda_{1}+A_{1}+A_{1}\right)$, which is a non-P.V. by Theorem 1.3.
Q.E.D.

Lemma 2.23. For $n>m \geqslant 1$, a triplet $\left(G L(1)^{4} \times \operatorname{Sp}(n) \times S L(2 m+1)\right.$, $\left.\Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}^{(*)}, \quad M(2 n, 2 m+1) \oplus K^{2 n} \oplus K^{2 n} \oplus{ }^{2 m+1}\right)$ is a non-P.V.

Proof. Since $A_{1} \otimes A_{1}+A_{1} \otimes 1+A_{1} \otimes 1+1 \otimes A_{1}$ is castling-equivalent to $\left(G L(1)^{4} \times \operatorname{Sp}(n) \times S L(2 n-2 m), \Lambda_{1} \otimes A_{1}+\Lambda_{1} \otimes 1+\Lambda_{1} \otimes 1+1 \otimes A_{1}\right)$, it is a non-P.V. by Lemma 2.20. For $\Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}^{*}$, the action is given by $x \rightarrow\left(\alpha A X^{t} B ; \beta_{1} A y_{1}, \beta_{2} A y_{2}, \gamma^{t} B^{-1} z\right)$ for $g=\left(\alpha, \beta_{1}, \beta_{2}, \gamma\right.$; $A, B) \in G L(1)^{4} \times \operatorname{Sp}(n) \times S L(2 m+1)$ and $x=\left(X ; y_{1}, y_{2}, z\right) \in M(2 n, 2 m+1)$ $\oplus K^{2 n} \oplus K^{2 n} \oplus K^{2 m+1}$. Then the polynomials $f_{i}(x)=\operatorname{Pf}\left({ }^{t} X_{i} J X_{i}\right)$ with $X_{i}=\left(X, y_{i}\right) \in M(2 n, 2 m+2) \quad(i=1,2)$ and $g_{j}(x)={ }^{\prime} y_{j} J X z \quad(j=1,2)$ are
relative invariants corresponding to the characters $\chi_{i}(g)=\alpha^{2 m+1} \beta_{i}(i=1,2)$ and $\chi_{j}^{\prime}(g)=\alpha \gamma \beta,(j=1,2)$, respectively, where

$$
J=\left(\begin{array}{c|c}
0 & I_{n} \\
\hline-I_{n} & 0
\end{array}\right) .
$$

Then a rational function $f(x)=\left(g_{1} f_{2}\right) \cdot\left(g_{2} f_{1}\right)^{-1}(x)$ is a nonconstant absolute invariant, and hence it is a non-P.V.
Q.E.D.

Theorem 2.24. All non-irreducible 2 -simple P.V.s which have $(\operatorname{Sp}(n) \times$ $\left.G L(2 m+1), A_{1} \otimes A_{1}\right)(n>m \geqslant 1)((58)$ in Theorem 1.5) as an irreducible component are given by (2.70)-(2.72) and the following (2.76)-(2.78):

$$
\begin{align*}
& \left(G L(1)^{1+s} \times \operatorname{Sp}(n) \times S L(2 m+1), \Lambda_{1} \otimes A_{1}+\Sigma_{s} \otimes 1\right), \\
& \quad \text { where } s=1,2 ; \Sigma_{1}=\Lambda_{1}, \Sigma_{2}=\Lambda_{1}+\Lambda_{1} \tag{2.76}\\
& \left(G L(1)^{1+t} \times \operatorname{Sp}(n) \times S L(2 m+1), \Lambda_{1} \otimes A_{1}+1 \otimes T_{t}\right), \\
& \quad \text { where } t=1,2,3 ; T_{1}=\Lambda_{1}^{(*)}, \Lambda_{2}, T_{1}=2 A_{1}(m=1) ; \\
& T_{2}=\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)} ; T_{2}=\Lambda_{2}+\Lambda_{1}^{*}(m=2) ; \\
& T_{3}=\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)} ; \text { except for } T_{3} \simeq \Lambda_{1}+\Lambda_{1}+A_{1}^{*} \tag{2.77}\\
& \left(G L(1)^{2+t} \times \operatorname{Sp}(n) \times S L(2 m+1), \Lambda_{1} \otimes A_{1}+\Lambda_{1} \otimes 1+1 \otimes T_{t}\right), \\
& \text { where } t=1,2 ; T_{1}=\Lambda_{1}^{(*)} ; T_{2}=\Lambda_{1}+\Lambda_{1}, \Lambda_{1}^{*}+\Lambda_{1}^{*} . \tag{2.78}
\end{align*}
$$

Proof. If $\Lambda_{1} \otimes A_{1}+\rho_{2} \otimes \rho_{2}^{\prime} \quad\left(\rho_{2} \neq 1, \quad \rho_{2}^{\prime} \neq 1\right)$ is a P.V., then we have $\rho_{2} \otimes \rho_{2}^{\prime}=\Lambda_{1} \otimes \Lambda_{1}^{(*)}$ by Theorem 1.5, which is a contradiction by Lemma 2.17. Now assume that $A_{1} \otimes A_{1}+\left(\sigma_{1}+\cdots+\sigma_{s}\right) \otimes 1$ is a P.V. Then, by Lemmas 2.18-2.20, we have $s=1,2 ; \sigma_{1}=\Lambda_{1}, \sigma_{1}=A_{2} \quad(n=2$, $m=1), \sigma_{1}=\Lambda_{3}(n=3, m=2)$ and $\sigma_{1}+\sigma_{2}=\Lambda_{1}+\Lambda_{1}$. We shall show that $\Lambda_{1} \otimes A_{1}+A_{1} \otimes 1+A_{1} \otimes 1$ is actually a P.V. If $n=m+1$, then it is castlingequivalent to a simple P.V. $\left(G L(1)^{3} \times \operatorname{Sp}(n), \Lambda_{1}+\Lambda_{1}+A_{1}\right)$. If $n \geqslant m+2$, we can use Proposition 13 in p. 40 in [1], and it is P.V.-equivalent to $\left(G L(1) \times G L(1) \times S L(2 m+1), \quad A_{1} \otimes A_{1} \otimes A_{2}+A_{1} \otimes 1 \otimes A_{1}+1 \otimes A_{1} \otimes A_{1}\right)$ which is a P.V. with a generic point

$$
\left.\left(\begin{array}{l|l}
J & 0 \\
\hline 0 & 0
\end{array}\right),{ }^{\prime}\left(\begin{array}{llllllll}
& \cdots & 0 & 1
\end{array}\right),{ }^{\prime}\left(\begin{array}{lllll}
1 & 0 & \cdots & 1
\end{array}\right)\right) .
$$

One can also show the prehomogeneity of $\Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+\Lambda_{1} \otimes 1$ by the calculation of the isotropy subalgebra at

$$
\left.\left(\begin{array}{c|c}
I_{m} & 0 \\
& O_{m, n} \\
\hline O_{m+1, n} & I_{m+1}
\end{array}\right), e_{m+1}, e_{1}+e_{m+1}+e_{m+2}+e_{n+m+1}\right)
$$

Since $\left(G L(1)^{1+t} \times \operatorname{Sp}(n) \times S L(2 m+1), \quad \Lambda_{1} \otimes A_{1}+1 \otimes\left(\tau_{1}+\cdots+\tau_{t}\right)\right) \quad$ is P.V.-equivalent to $\left.\left(G L(1)^{1+t} \times S L(2 m+1), A_{2}+\tau_{1}+\cdots+\tau_{1}\right)\right)$ by p. 40 in [1], we have (2.77) by Theorem 1.3. Similarly $\left(G L(1)^{2+\prime} \times \operatorname{Sp}(n) \times\right.$ $\left.S L(2 m+1), \quad \Lambda_{1} \otimes A_{1}+\Lambda_{1} \otimes 1+1 \otimes\left(\tau_{1}+\cdots+\tau_{t}\right)\right)$ is P.V.-equivalent to $\left(G L(1)^{2+t} \times S L(2 m+1), \quad \Lambda_{2}\left(\Lambda_{1}+1\right)+\tau_{1}+\cdots+\tau_{t}\right) \simeq\left(G L(1)^{2+t} \times\right.$ $\left.S L(2 m+1), A_{2}+\Lambda_{1}+\tau_{1}+\cdots+\tau_{2}\right)$ and hence we have (2.78) by Theorem 1.3. Now assume that $n \geqslant m+2$. Then, by p. 40 in [1], $A_{1} \otimes A_{1}+A_{1} \otimes 1+A_{1} \otimes 1+1 \otimes\left(\tau_{1}+\cdots+\tau_{i}\right) \quad$ is a P.V., then $\left(G L(1)^{3+t} \times S L(2 m+1), \Lambda_{2}+\Lambda_{1}+\Lambda_{1}+\tau_{1}+\cdots+\tau_{t}\right)$ must be a P.V., and hence $t=1, \tau_{1}=A_{1}$. However, in this case, it is a non-P.V. by Lemma 2.23. Finally, assume that $n=m+1$, i.e., $2 m+1=2 n-1$, and $\Lambda_{1} \otimes \Lambda_{1}+A_{1} \otimes$ $1+\Lambda_{1} \otimes 1+1 \otimes \tau$ is a P.V. Then τ must be one of $\Lambda_{1}^{(*)}, \Lambda_{2}^{(*)},\left(2 \Lambda_{1}\right)^{(*)}$, $\Lambda_{3}^{(*)}(n=4)$. However, we have $\tau \neq \Lambda_{1}^{(*)}$ by Lemma 2.23 and $\tau \neq \Lambda_{2}^{(*)}$, $\left(2 \Lambda_{1}\right)^{(*)}, \Lambda_{3}^{(*)}(n=4)$ by dimension reason.
Q.E.D.

Thus we obtain the following theorem.
Theorem 2.25. All non-irreducible 2-simple P.V.s of type I are given by (2.1)-(2.78).

3. List of 2-Simple P.V.s of Type I

By Theorem 2.25, any 2-simple P.V.s of type I is castling-equivalent (cf. [1]) to a simple P.V. in Theorem 1.3 or to one of the 2 -simple P.V.s in the following list. For example, a 2 -simple P.V. $\left(G L(1)^{3} \times S L(4) \times S L(4)\right.$, $\Lambda_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes A_{1}$) is castling-equivalent to (4) in (I) with $\Lambda_{1}^{(*)}=A_{1}$ in the list. Here H denotes the generic isotropy subgroup and $H \sim H_{1}$ implies that H is locally isomorphic to H_{1}. The number of the basic relative invariants is denoted by N and $\Lambda_{1}^{(*)}$ stands for Λ_{1} or its dual Λ_{1}^{*}.

Notation. $\quad \Lambda=$ the spin representation of $\operatorname{Spin}(2 n+1)$.
$\Lambda^{\prime}=$ a half-spin representation of $\operatorname{Spin}(2 n)$.
$\chi=$ the vector representation of $\operatorname{Spin}(n)$, so that $(\operatorname{Spin}(n), \chi)=$ $\left(S O(n), A_{1}\right)$.

List

(I) Regular 2-Simple P.V.s of Type I
(1) $\left(G L(1)^{2} \times S L(4) \times S L(2), \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes \Lambda_{1}\right), H \sim\{1\}, N=2$.
(2) $\left(G L(1)^{3} \times S L(4) \times S L(2), \Lambda_{2} \otimes A_{1}+\left(\Lambda_{1}+\Lambda_{1}\right) \otimes 1\right), H \sim G L(1)$, $N=2$.
(3) $\left(G L(1)^{2} \times S L(4) \times S L(3), A_{2} \otimes A_{1}+A_{1} \otimes 1\right), H \sim S O(3), N=2$.
(4) $\quad\left(G L(1)^{3} \times S L(4) \times S L(3), \quad \Lambda_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes A_{1}^{(*)}\right), \quad H \sim$ $S O(2), N=3$.
(5) $\quad\left(G L(1)^{3} \times S L(4) \times S L(4), A_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes A_{1}^{*}\right), H \sim S O(2)$, $N=3$.
(6) $\left(G L(1)^{3} \times S L(5) \times S L(2), A_{2} \otimes A_{1}+\left(\Lambda_{1}^{*}+\Lambda_{1}^{(*)}\right) \otimes 1\right), H \sim\{1\}$, $N=3$.
(7) $\quad\left(G L(1)^{2} \times S L(5) \times S L(3), \quad A_{2} \otimes A_{1}+1 \otimes A_{1}^{(*)}\right), \quad H \sim S O(2)$, $N=2$.
(8) $\quad\left(G L(1)^{2} \times S L(5) \times S L(8), \Lambda_{2} \otimes \Lambda_{1}+1 \otimes A_{1}^{*}\right), H \sim S O(2), N=2$.
(9) $\quad\left(G L(1)^{2} \times S L(5) \times S L(9), \quad A_{2} \otimes A_{1}+1 \otimes \Lambda_{1}^{*}\right), \quad H \sim G L(1) \times$ $S L(2) \times S L(2), N=1$.
(10) $\quad\left(G L(1)^{3} \times \operatorname{Sp}(n) \times S L(2 m), \quad \Lambda_{1} \otimes A_{1}+1 \otimes\left(A_{1}^{(*)}+\Lambda_{1}^{(*)}\right)\right), \quad H \sim$ $G L(1) \times \operatorname{Sp}(n-m) \times \operatorname{Sp}(m-1), N=2$.
(11) $\left(G L(1)^{2} \times \operatorname{Sp}(n) \times S L(2), \quad \Lambda_{1} \otimes A_{1}+1 \otimes 2 \Lambda_{1}\right), \quad H \sim \operatorname{Sp}(n-1) \times$ $S O(2), N=2$.
(12) $\quad\left(G L(1)^{2} \times \operatorname{Sp}(n) \times S L(2), \quad A_{1} \otimes A_{1}+1 \otimes 3 A_{1}\right), \quad H \sim \operatorname{Sp}(n-1)$, $N=2$.
(13) $\quad\left(G L(1)^{3} \times \operatorname{Sp}(n) \times S L(2), \quad \Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(2 \Lambda_{1}+\Lambda_{1}\right)\right), \quad H \sim$ $\operatorname{Sp}(n-1), N=3$.
(14) $\quad\left(G L(1)^{2} \times \operatorname{Sp}(n) \times S L(2 m+1), A_{1} \otimes A_{1}+A_{1} \otimes 1\right), \quad H \sim G L(1) \times$ $\operatorname{Sp}(m) \times \operatorname{Sp}(n-m-1), N=1$.
(15) $\quad\left(G L(1)^{4} \times \operatorname{Sp}(n) \times S L(2 m+1), A_{1} \otimes A_{1}+A_{1} \otimes 1+1 \otimes\right.$ $\left.\left(A_{1}+A_{1}\right)^{(*)}\right), H \sim \operatorname{Sp}(m-1) \times \operatorname{Sp}(n-m-1), N=4$.
(16) $\quad\left(G L(1)^{3} \times \operatorname{Sp}(2) \times S L(3), A_{1} \otimes A_{1}+A_{2} \otimes 1+1 \otimes A_{1}^{*}\right), H \sim G L(1)$, $N=2$.
(17) $\left(G L(1)^{2} \times \operatorname{Sp}(2) \times S L(2), \Lambda_{2} \otimes A_{1}+A_{1} \otimes 1\right), H \sim S O(2), N=2$.
(18) $\left(G L(1)^{3} \times \operatorname{Sp}(2) \times S L(2), \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes A_{1}\right), H \sim\{1\}$, $N=3$.
(19) $\left(G L(1)^{3} \times \operatorname{Sp}(2) \times S L(4), A_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes A_{1}^{*}\right), H \sim\{1\}$, $N=3$.
(20) $\quad\left(G L(1)^{2} \times S O(n) \times S L(m), \Lambda_{1} \otimes A_{1}+1 \otimes \Lambda_{1}^{(*)}\right), H \sim S O(m-1) \times$ $S O(n-m), N=2$.
(21) $\left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(2), A \otimes A_{1}+1 \otimes A_{1}\right), H \sim S L(3), N=2$.
(22) $\quad\left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(3), \quad \Lambda \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{(*)}\right), \quad H \sim S L(2) \times$ $S O(2), N=2$.
(23) $\left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(6), \quad \Lambda \otimes A_{1}+1 \otimes A_{1}^{*}\right), \quad H \sim S L(2) \times$ $S O(2), N=2$.
(24) $\left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(7), A \otimes A_{1}+1 \otimes A_{1}^{*}\right), H \sim S L(3), N=2$.
(25) $\left(G L(1)^{2} \times \operatorname{Spin}(7) \times S L(2), \chi \otimes A_{1}+\Lambda \otimes 1\right), H \sim G L(2), N=2$.
(26) $\left(G L(1)^{3} \times \operatorname{Spin}(7) \times S L(2), \chi \otimes \Lambda_{1}+\Lambda \otimes 1+1 \otimes \Lambda_{1}\right), H \sim S L(2)$, $N=3$.
(27) $\left(G L(1)^{3} \times \operatorname{Spin}(7) \times S L(6), \chi \otimes A_{1}+\Lambda \otimes 1+1 \otimes A_{1}^{*}\right), H \sim S L(2)$, $N=3$.
(28) $\left(G L(1)^{2} \times \operatorname{Spin}(8) \times S L(2), \chi \otimes A_{1}+\Lambda^{\prime} \otimes 1\right), H \sim S L(3) \times S O(2)$, $N=2$.
(29) $\left(G L(1)^{2} \times \operatorname{Spin}(8) \times S L(3), \chi \otimes \Lambda_{1}+\Lambda^{\prime} \otimes 1\right), H \sim S L(2) \times S O(3)$, $N=2$.
(30) $\left(G L(1)^{3} \times \operatorname{Spin}(8) \times S L(2), \chi \otimes A_{1}+\Lambda^{\prime} \otimes 1+1 \otimes \Lambda_{1}\right), H \sim S L(3)$, $N=3$.
(31) $\quad\left(G L(1)^{3} \times \operatorname{Spin}(8) \times S L(3), \quad \chi \otimes A_{1}+\Lambda^{\prime} \otimes 1+1 \otimes A_{1}^{(*)}\right), \quad H \sim$ $S L(2) \times S O(2), N=3$.
(32) $\left(G L(1)^{3} \times \operatorname{Spin}(8) \times S L(6), \chi \otimes A_{1}+\Lambda^{\prime} \otimes 1+1 \otimes A_{1}^{*}\right), H \sim S L(2)$ $\times S O(2), N=3$.
(33) $\left(G L(1)^{3} \times \operatorname{Spin}(8) \times S L(7), \chi \otimes A_{1}+\Lambda^{\prime} \otimes 1+1 \otimes A_{1}^{*}\right), H \sim S L(3)$, $N-3$.
(34) $\quad\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(2), \quad \Lambda^{\prime} \otimes \Lambda_{1}+1 \otimes 2 \Lambda_{1}\right), \quad H \sim\left(G_{2}\right) \times$ $S O(2), N=2$.
(35) $\quad\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(2), \quad \Lambda^{\prime} \otimes A_{1}+1 \otimes 3 A_{1}\right), \quad H \sim\left(G_{2}\right)$, $N=2$.
(36) $\left(G L(1)^{3} \times \operatorname{Spin}(10) \times S L(2), A^{\prime} \otimes A_{1}+1 \otimes\left(\Lambda_{1}+A_{1}\right)\right), H \sim G L(1)$ $\times\left(G_{2}\right), N=2$.
(37) $\left(G L(1)^{3} \times \operatorname{Spin}(10) \times S L(2), A^{\prime} \otimes A_{1}+1 \otimes\left(2 A_{1}+A_{1}\right)\right), H \sim\left(G_{2}\right)$, $N=3$.
(38) $\left(G L(1)^{4} \times \operatorname{Spin}(10) \times S L(2), \Lambda^{\prime} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)\right), H \sim$ $\left(G_{2}\right), N=4$.
(39) $\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(3), \quad \Lambda^{\prime} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{(*)}\right), \quad H \sim S L(2) \times$ $S O(2), N=2$.
(40) $\quad\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(14), \quad \Lambda^{\prime} \otimes A_{1}+1 \otimes A_{1}^{*}\right), \quad H \sim S L(2) \times$ $S O(2), N=2$.
(41) $\quad\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(15), \Lambda^{\prime} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}\right), \quad H \sim G L(1) \times$ $S L(4), N=1$.
(42) $\quad\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(2), \chi \otimes \Lambda_{1}+\Lambda^{\prime} \otimes 1\right), H \sim\left(G_{2}\right), N=2$.
(43) $\quad\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(3), \quad \chi \otimes A_{1}+A^{\prime} \otimes 1\right), \quad H \sim S L(3) \times$ $S O(2), N=2$.
(44) $\left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(4), \quad \chi \otimes A_{1}+\Lambda^{\prime} \otimes 1\right), \quad H \sim S L(2) \times$ $S L(2), N=2$.
(45) $\quad\left(G L(1)^{2} \times\left(G_{2}\right) \times S L(2), A_{2} \otimes A_{1}+1 \otimes A_{1}\right), H \sim S L(2), N=2$.
(46) $\quad\left(G L(1)^{2} \times\left(G_{2}\right) \times S L(6), A_{2} \otimes A_{1}+1 \otimes A_{1}^{*}\right), H \sim S L(2), N=2$.
(II) Nonregular 2-Simple P.V.s of Type I
(1) $\left(G L(1)^{2} \times S L(2 m+1) \times S L(2), A_{2} \otimes A_{1}+1 \otimes t \Lambda_{1}\right)(t=1,2,3)$.
(2) $\quad\left(G L(1)^{3} \times S L(2 m+1) \times S L(2), \quad \Lambda_{2} \otimes A_{1}+1 \otimes\left(A_{1}+t A_{1}\right)\right) \quad(t=$ 1,2).
(3) $\left(G L(1)^{4} \times S L(2 m+1) \times S L(2), A_{2} \otimes A_{1}+1 \otimes\left(A_{1}+A_{1}+A_{1}\right)\right)$.
(4) $\left(G L(1)^{2} \times S L(4) \times S L(2), A_{2} \otimes A_{1}+\Lambda_{1} \otimes 1\right)$.
(5) $\quad\left(G L(1)^{3} \times S L(4) \times S L(2), A_{2} \otimes A_{1}+A_{1} \otimes 1+1 \otimes A_{1}\right)$.
(6) $\left(G L(1)^{3} \times S L(4) \times S L(5), \Lambda_{2} \otimes A_{1}+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}^{*}\right)$.
(7) $\quad\left(G L(1)^{2} \times S L(5) \times S L(2), A_{,} \otimes A_{1}+\Lambda_{1}^{(*)} \otimes 1\right)$.
(8) $\quad\left(G L(1)^{3} \times S L(5) \times S L(2), \Lambda_{2} \otimes A_{1}+\Lambda_{1}^{(*)} \otimes 1+1 \otimes A_{1}\right)$.
(9) $\quad\left(G L(1)^{3} \times S L(5) \times S L(9), A_{2} \otimes \Lambda_{1}+\Lambda_{1}^{(*)} \otimes 1+1 \otimes \Lambda_{1}^{*}\right)$.
(10) $\quad\left(G L(1)^{3} \times S L(5) \times S L(2), \Lambda_{2} \otimes A_{1}+\Lambda_{1}^{*} \otimes 1+1 \otimes 2 A_{1}\right)$.
(11) $\left(G L(1)^{4} \times S L(5) \times S L(2), A_{2} \otimes A_{1}+A_{1}^{*} \otimes 1+1 \otimes\left(A_{1}+A_{1}\right)\right)$.
(12) $\quad\left(G L(1)^{2} \times S L(6) \times S L(2), A_{2} \otimes A_{1}+\Lambda_{1}^{(*)} \otimes 1\right)$.
(13) $\left(G L(1)^{2} \times S L(7) \times S L(2), A_{2} \otimes A_{1}+A_{1}^{(*)} \otimes 1\right)$.
(14) $\left(G L(1)^{3} \times S L(7) \times S L(2), \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1+1 \otimes \Lambda_{1}\right)$.
(15) $\left(G L(1)^{2} \times S L(9) \times S L(2), \Lambda_{2} \otimes A_{1}+\Lambda_{1}^{*} \otimes 1\right)$.
(16) $\left(G L(1)^{2} \times \operatorname{Sp}(n) \times S L(2 m), \Lambda_{1} \otimes A_{1}+T\right)$ with $T=A_{1} \otimes 1,1 \otimes$ $A_{1}, 1 \otimes A_{1}^{*}$.
(17) $\left(G L(1)^{3} \times \operatorname{Sp}(n) \times S L(2 m), \Lambda_{1} \otimes A_{1}+A_{1} \otimes 1+1 \otimes \Lambda_{1}^{(*)}\right)$.
(18) $\left(G L(1)^{4} \times \operatorname{Sp}(n) \times S L(2 m), A_{1} \otimes A_{1}+1 \otimes\left(\Lambda_{1}^{(*)}+A_{1}^{(*)}\right)+T\right)$ with $T=A_{1} \otimes 1,1 \otimes \Lambda_{1}, 1 \otimes \Lambda_{1}^{*}$.
(19) $\left(G L(1)^{3} \times \operatorname{Sp}(n) \times S L(2), \Lambda_{1} \otimes A_{1}+A_{1} \otimes 1+1 \otimes 2 A_{1}\right)$.
(20) $\left(G L(1)^{2} \times \operatorname{Sp}(n) \times S L(2 m+1), \quad \Lambda_{1} \otimes A_{1}+1 \otimes T\right)$ with $T=\Lambda_{1}$, $\Lambda_{1}^{*}, \Lambda_{2}$.
(21) $\left(G L(1)^{3} \times \operatorname{Sp}(n) \times S L(2 m+1), \quad \Lambda_{1} \otimes \Lambda_{1}+S+T\right) \quad$ with $\quad S, T=$ $A_{1} \otimes 1,1 \otimes A_{1}, 1 \otimes A_{1}^{*}$.
(22) $\left(G L(1)^{4} \times \operatorname{Sp}(n) \times S L(2 m+1), \Lambda_{1} \otimes \Lambda_{1}+T\right)$ with $T=1 \otimes \Lambda_{1}+$ $1 \otimes\left(\Lambda_{1}+\Lambda_{1}\right)^{(*)}, 1 \otimes\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}+\Lambda_{1}^{*}\right)$.

$$
\begin{align*}
& \left(G L(1)^{2} \times \operatorname{Sp}(n) \times S L(3), A_{1} \otimes A_{1}+1 \otimes 2 \Lambda_{1}\right) \tag{23}\\
& \left(G L(1)^{3} \times \operatorname{Sp}(n) \times S L(5), A_{1} \otimes A_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}\right)\right) \tag{24}\\
& \left(G L(1)^{2} \times \operatorname{Sp}(n) \times S L(2), A_{1} \otimes 2 A_{1}+1 \otimes \Lambda_{1}\right) \tag{25}\\
& \left(G L(1)^{2} \times \operatorname{Spin}(10) \times S L(2), \Lambda^{\prime} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}\right) \tag{26}
\end{align*}
$$

References

1. M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155.
2. T. Kimura, A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplications. J. Algebra 83, No. 1 (1983), 72-100.
3. T. Kimura. S.-I. Kasai. M. Taguchi, and M. Inuzuka. Some P.V.equivalences and a classification of 2 -simple prehomogeneous vector spaces of type II, Trans. Amer. Math. Soc., in press.
4. T. Kimura, S-I. Kasai, and O. Yasukura, A classification of the representations of reductive algebraic groups which admit only a finite number of orbits, Amer. J. of Math. 108 (1986), 643-692.
5. T. Kimura and S-I. Kasal, The orbital decomposition of some prehomogeneous vector spaces, Advanced Studies in Pure Math. Vol. 6, pp. 437-480, North-Holland, Amsterdam, 1985.
6. Z. Chen, A new prehomogeneous vector space of characteristic p, preprint. East China Normal University.
7. J-I. Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92, No. 4 (1970), 997-1028.
8. J-I. Igusa, On a certain class of prehomogeneous vector spaces, preprint, 1985.
9. H. Rubenthaler, Espaces Prehomogenes de Type Parabolique, Publ. Inst. Recherche Math. Acanc.
10. M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. 100, (1974), 131-171.
11. F. Sato, Zeta functions in several variables associated with prehomogeneous vector spaces III, Ann. of Math. 116 (1982), 177-212.
12. I. Satake and J. Faraut, The functional equation of zeta distributions associated with formally real Jordan algebras, Tohoku Math. J. 36, No. 3 (1984), 469-482.
13. Y. Teranishi, Relative invariants and b-functions of prehomogeneous vector spaces ($\left.G \times G L\left(d_{1}, \ldots, d_{r}\right), \tilde{\rho}_{1}, M(n, C)\right)$, Nagoya Math. J. 98 (1985), 139-156.
14. Y. Teranishi, The functional equation of zeta distributions associated with prehomogenenus vector spaces ($\tilde{G}, \tilde{\rho}, M(n, C)$), Nagoya Math. J. 99 (1985), 131-146.
15. M. Sato. M. Kashiwara, T. Kimura, and T. Oshima, Micro-local analysis of prehomogeneous vector spaces, Invent. Math. 62 (1980), 117-179.
16. T. Kimura, The b-Functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces, Nagoya Math. J. 85 (1982), 1-80.
17. I. Ozeki, On the microlocal structure of the regular prehomogeneous vector space associated with $S L(5) \times G L(4)$ I, Proc. Japan Acad. 55 (1979).
18. I. Muller, H. Rubenthaler, and G. Schiffmann, Structure des Espaces Prehomogenes Associes a Certaines Algèbres de Lie Graduees, Math. Ann. 274 (1986), 95-123.
19. A. Gyoja and N. Kawanaka, Gauss sums of prehomogeneous vector spaces, Proc. Japan Acad. Ser. A 61 (1985), 19-22.
20. A. Gyoia, On irreducible regular prehomogeneous vector space \mathbf{I}, in preparation.
21. Z. Chen, Fonction Zeta Associée a un Espace Préhomogène et Sommes de Gauss, Publ. Inst. Recherche Math. Avanc.
22. V. G. Kac. Some remarks on nilpotent orbits, J. Algehra 64 (1980).
23. J-I. Igusa, Some results on p-adic complex powers, Amer. J. Math. 106 (1984), 1013-1032.
24. M. Muro, Singular invariant tempered distributions on prehomogeneous vector spaces, preprint, 1985.
