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INTRODUCTION 

Let p: G + GL( V) be a rational representation of a connected linear 
algebraic group G on a finite-dimensional vector space V, all defined over 
an algebraically closed field K of characteristic zero. If V has a Zariski- 
dense G-orbit, we call a triplet (G, p, V) a prehomogeneous oector space 
(abbrev. P.V.). When p is irreducible, such P.V.s have been classified in 
[ 11. Since then, it has turned out gradually that the complete classification 
of reductive P.V.s (i.e., P.V.s with reductive groups G) is an extremely 
laborious task. Therefore it is natural to classify some restricted class of 
P.V.s (e.g., [2]) to get some insight into the general situation. 

A P.V. (G, p, V) is called a 2-simple P. V. when ( 1) G = GL( 1)’ x G, x G, 
with simple algebraic groups G, and Gz, (2) p is the composition of a 
rational representation p’ of G, x G, of the form p’ = p1 0 p’, + . . . + 
PkOL&+(a,+ ... +a,)@l+l@(z,+ ... +t,) with k+s+t=l, where 
pi, (TV (resp. pi, T,) are nontrivial irreducible representations of G, 
(resp. G,), and the scalar multiplications GZ,( 1)’ on each irreducible com- 
ponent V, for i = 1, . . . . f, where V= I/, @ . . . @ V,. We say that a 2-simple 
P.V. (G,p, V) is of type Zif k>l and at least one of (GL(l)xG,xG,, 
pi@ pi) (i = 1, . . . . k) is a nontrivial P.V. (see Definition 5, p. 43 in [ 11). On 
the other hand, if k>l and all (GL(l)xG,xG,, p,Op() (i=l,...,k) are 
trivial P.V.s, it is called a 2-simple P.V. of type II. In [3], all 2-simple P.V.s 
of type II has been already classified. In this paper, we shall classify all 2- 
simple P.V.s of type I. Thus, together with [3], we complete a classification 
of all 2-simple P.V.s. For example, the fact that all irreducible P.V.s are 
castling-equivalent to 2-simple P.V.s (or to (,X(m) x &Y(m) x G,!,(2), 
/1 1 @ /i I @ n 1 ) with m = 2,3) (see [ 1 ] ) indicates the importance of 2-simple 
P.V.s. For simplicity, we write (G, p’, V) or (G, p’) instead of (G, p, V). 
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This paper consists of the following four sections: Introduction. 
1. Preliminaries. 2. A classification. 3. List. 

In Section 1, we give also some correction of [2]. In Section 3, we shall 
give the list of 2-simple P.V.s of type I, which are not catling-equivalent to 
simple P.V.s. For regular P.V.s (see Section 4 in Cl]), we also give the 
generic isotropy subgroups and the number of basic relative invariants. 

1. PRELIMINARIES 

First we start from the correction of [2]. 

PROPOSITION 1.1. (1) The triplet (GL(l)3 x X(5), n,@n,@n:. 
V( lo)@ V(lO)@ V(5)*) is a nonregular P.V. with the generic isotrop?, suh- 
algebra 

;A= 

If we identify V(lO)@ V(lO)O V(5)* 
‘X= -X, ‘Y= -Y, ZEK~), the action 
/IA Y’A; y’A ~ ’ . 2) for x = (X, Y; Z) and 
The basic relative invariants are given by 

x YZ 

./-lb-) = Pf 

H--j 

and 
-‘Z’Y 0 

with {(X, Y;Z)IX, YEM(~), 
p is given by p( g)x = (aAX’A, 
g=(cr,/Ly;A)EGL(1)3xSL(5). 

Y XZ 

fib) = Pf i-H -‘Z’X 0 

where Pf denotes the Pfaffiaan. 

(2) The triplet (GL(l)3xSL(5), /i,@/l,@/i,, V(lO)@ V(lO)@ 
V(5)) is nor a P.V. 

ProofI We may also identify V( 10) with CK. e, A e, ( 1 < i < j < 5). Then 
the isotropy subalgebra at a generic point x0 = (e2 A e3 + e, A e4, 
e, A e3 + e2 A es) is given by 

-El -2Ez 
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The dual action of gXO on KS is a P.V., since the isotropy subalgebra at 
e, + e2 E K5 is given by h, and hence we have (1). The standard action of g.,O 
on KS is a non-P.V., since f(Z)=z,z,:,* for Z=Cziei~ KS is a non- 
constant absolute invariant. Q.E.D. 

Remurk 1.2. There is a mistake in Proposition 2.2, p. 80 in [2]. It 
should be corrected to “For n = 2m + 1, the triplet (5) for n = 5 and the 
triplet (2) are P.V.s, and the triplets (3) (4), (5) with n # 5, (6) are not 
P.V.s.” Thus the triplet (GL( 1 )3 x SL(5), A, @ A2 @ ,4 f) should be added in 
the table of simple P.V.s, p. 100 in [2] as the nineteenth P.V. Thus we 
obtain the following theorem. 

THEOREM 1.3 ([2] with the correction above). All non-irreducible 
simple P. V.s with scalar multiplications are given as follows: 

(1) (G,!,(l)‘+’ xSL(n), fl,&%T@A,@Aj*)) (1 dkdn, n>,2). 

(2) (GJC(~)~+’ xSL(n), Az@Ai*‘*@j@A~*‘, (l<kd3, n>4) 
e.ucept (GL( 1 )4 x SL(n), A, @ A, @ A, @ A :) with n = odd. 

(3) (GL(l)‘xSL(2m+ l), A,@Az) for m>2. 

(4) (GL(l)‘xSL(n),2A,OAl*‘). 

(5) (GI!J~)~xSL(~), A20A20A?). 

(6) (GL(1)2xSL(n), A3@Aj*‘) (n=6,7). 

(7) (GL(1)‘xSL(6),n30/i,o/1,). 

(8) (GL(l)‘xSp(n),n,~~~n,) (1=2,3). 

(9) (GL(l)‘xSp(2),/1,O/i,). 

(10) (GL(l)‘xSp(3),/1,On,). 
(11) (GL( 1)’ x Spin(n), (half-)spin rep. @ vector rep.) (n = 7, 8, 

10, 12). 

(12) (GL(I)’ x Spin(lO), A @ A), where A = the even half-spin 
representation. 

Here A’ * ’ stands for A or its dual A *. Note that (G, p. V) 2: (G, p*, V*) as 
triplets [f G is reductive. 

Now let us consider the triplet (GL( 1) x SL(2m + 1) x %,(2), /i, @ A,, 
V(m(2m+ 1))O V(2)). Let g.r0 be the isotropy subalgebra of 
&( 1) @ d(2nZ + 1) @ Jt(2) at a generic point x0 given in p. 94 in [ 11. 
For A=(; -j:)~&(2), let nA,(A)=(cc,) be an (n+l)x(n+l) matrix 
with c(~+,,~+ I = (n-2k)a (Odk<n), Clk.k+,=kb,crk+l,k=(n+l-k)c 
(1 d k f n), all other clij = 0. Put nA :(A) = - ‘(a,). By simple calculation, 
we have the following lemma. 
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LEMMA 1.4. The generic isotropy subalgebra gyO is given as follows: 

I t 

mn:(A)+m~z,,,+, 0 

!Lo= (610 
B (nz-1)/i,(A)-(m+l)U,,, 1 

O(A); 

A E .1/(2), B= (b,,)E M(m, m + 1) (1.1) 

with bj,=ai+i_, 

1 

--(q/(1)03/(2))@ V(2m). 

THEOREM 1.5 [ I]. All nontrivial irreducible (reduced or nonreduced) 
2-simple P. V.s are given as follows. Here H - H, implies that the generic 
isotropy subgroup H is locally isomorphic to a group H, : 

(1) 
(1) (SL(2m+ l)xGL(2m’+m-2), A2@A,) (m35) #Yth 

H-(GL(l)xSL(2)).G;. 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
O(3). 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(II) 

(19) 

(20) 

(SL(S)xGL(4),A,@A,) with H- (1). 

(SL(S)xGL(6),A,@A,) with H-11). 

(SL(S)xGL(7), A,@A1) with H-SL(2). 

(SL(2)xGL(3), 3A,@A,) with H- { 11. 

(SL(3)xGL(2), 2A,@A,) with H-(l). 

(SL(3)xGL(4), 2A,@A,) with H-jll. 

(SL(8)xGL(55), A,@A,) with H-SL(3). 

(Spin(7) x GL(5), spin rep. @ A ,) ,ilith H - SL(2) x SL(2). 

(Spin(9) x GL( 15), spin rep. @ A, ) with H - Spin(7). 

(Spin( 10) x GL( 13), half-spin rep. @ A ,) with H - SL( 2) x 

(Spin(ll)xGL(31), spin rep.@A,) with H-SL(5). 

(Spin( 14) x GL(63), half-spin rep. @A, ) with H - (G,) x (G,). 

((G,)xGL(5), A,@A,) with H-GL(2). 

(E,xGL(26), A,@A,) with H-F,. 

(E6 x GL( 2 ), A, 0 A, ) ,iith H - Spin( 8 ). 

(E, x GL(25), A, @A,) with H-Spin(g). 

(E,xGL(55), A,@A,) with H-E,. 

(SL(6)xGL(2), A,@A,) with H-SL(2)xSL(2)xSL(2). 

(SL(6)xGL(13), A,@A,) with H-SL(2)xSL(2)xSL(2). 
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(21) (,SL(7)xGL(19), A2@A,) with H-(GL(l)xSL(2)).Gz. 

(22) (SL(9)xGL(34), A,@A,) nith H-(GL(l)xSL(2)).G:. 

(23) (SL(2m)xGL(2m2-m-l), A,@,4,) (m>3) with H- 
Wm). 

(24) (SL(m)xGL(~m(m+ 1)-l), 2/1,8/l,) (0133) wirh H- 
O(m 1. 

(25) (SL(6)xGL(19), A3@A,) ~‘ith H+SL(3)xSL(3). 

(26) (SL(7)xGL(34), A30A,) with H-(Gz). 

(27) (Sp(3)xGL(13), /!,@A,) ndh H-SL(3). 

(28) (Spin(l2)xGL(31), half-spin rep.OA,) with H-SL(6). 

(III) 
(29) (SL(S)xGL(3), A2@A,) wirA H-SL(2). 

(30) (SL(2m+l)xGL(2), A,@A,) (m>5) wifh H-(GL(l)x 
SL(2)). GS” (see (1.1)). 

(31) (Sp(n)xGL(2), A,@2A,) with H-(Sp(n-2)xS0(2)). 
U(2n-3) (~232). 

(32) (SO(n) x GL(m), A, 0 A,) with H-SO(m)x SO(n-m) for 
n=9, II, or n313, andn>m>2. 

(33) (Spin(7)xGL(2), spinrep.OA,) with H-SL(3)x0(2). 

(34) (Spin(7)xGL(3), spinrep.@A,) wifh H-SL(2)x0(3). 

(35) (Spin(7)xGL(6), spinrep.@A,) with H-SL(3)x0(2). 

(36) (Spin(lO)xGL(2), half-spin rep.@A,) with H-(G,)xSL(2). 

(37) (Spin( 10) x GL(3), half-spin rep. 0 A ,) with H - SL(2) x 
O(3). 

(38) (Spin(lO)xGL(14), half-spin rep.@A,) with H-(G,)x 
SL( 2). 

(39) ((G,)xGL(2), A,@n,) with H-GL(2). 

(40) ((Gz)xGL(6), A,@A,) with H-SL(3). 

(41) (SL(2)xGL(2), 2/1,0/I,) with H-0(2). 

(42) (SL(S)xGL(8), A,@A,) with H-(GL(l)xSL(2)).G4,. 

(43) (SL(9) x GL(2), A,@,4,) with H- (GL(l)x SL(2)).Gt. 

(44) (SL(2m+ l)xGL(2m2+m- l), A2@A,) (~224) with H- 
(GL( 1) x Sp(m)) . G;“‘. 

(45) (SO(lO)xGL(m), A,@A,) (26mG.9) with H-SO(lO-m) 
x SO(m). 
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(46) (S0(12)xGL(m), A,@A,) (2<m<ll) with H-S0(12-m) 
x SO(m). 

(47) (Spin(7)xGL(7), spinrep.@n,) with H-(G,). 

(48) (Spin( 10) x GL( 15), half-spin rep. @ n ,) ,iith H- (GL( 1) x 
Spin( 7)) . Gz. 

(VI 
(49) (SL(S)xGL(2), /1,0/i,). 
(50) (SL(5)x GL(9), A,@A,). 
(51) (SL(7) x GL(2), A,@A,). 
(52) (SL(7) x GL(20), /!,@A,). 
(53) (S0(5)xGL(m), A,@AI)1:(Sp(2)xGL(m), A,@A,) (m= 

2, 3,4). 
(54) (S0(6)xGL(m), A,@A,)=(SL(4)xGL(m), A,@A,) (2d 

m<5). 

(55) (SO(7) x GL(m), /i, @A,) N (Spin(7) x GL(m), vector rep. 
@Al) (2<m,<6). 

(56) (SO(g)xGL(m), A,@A,) (2dm$7). 

(57) (Sp(n)xGL(2m), A,@A,) (n>m>l). 
(58) (Sp(n)xGL(2m+ l), n,@/1,) (n>mb 1). 

The following lemma is almost obvious. 

LEMMA 1.6. Let H be a generic isotropy subgroup of (GL( 1) x G x G’, 
p, @ p’, ). Let d and d’ be the minimum of degree of nontrivial representations 
of G and G’, respectively: 

(1) If 1 + dim H $ min{ d, d’}, then there exists no non-irreducible 
%-simple P. V. with an irreducible component (GL( 1) x G x G’, p 1 0 p’, ). 

(2) If l+dimH$d (resp. d’), then (GL(l)‘xGxG’, pl@p;+ 
pz@p;) with pr # 1 (resp. pi # 1) is not a P.V. 

2. A CLASSIFICATION 

In this section, for each nontrivial 2-simple P.V. (GL( 1) x G x G’, 
p, @pi) in Theorem 1.5, we shall determine all nonirreducible 2-simple 
P.V.s which have (GL( 1) x G x G’, p1 @ pi) as one of their irreducible com- 
ponents. For this purpose, we shall investigate the prehomogeneity of 
(GL( 1)2 x G x G’, p, @pi + p2 @ pi), where we do not assume the non- 
triviality of p2 and pi in general. 
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THEOREM 2.1. There exists no nonirreducible 2-simple P. V. ivhich has one 
of (1) in Theorem 1.5 as an irreducible component. 

ProoJ For (1 ), we have p; = 1 by (2) of Lemma 1.6 and Lemma 1.4, 
since 2m2+m-2 $ dim(gP(l)@g.,)=2m+5 for m>5. If pz#l, we 
have p2 = A, or A: by dimension reason. Then the castling transform 
(GL( 1)’ x SL(2m + 1) x SL(2), A: @ A, + pz 0 1) is also a P.V., and by 
(l.l), (GL(2), (m- l)A,) (resp. (GL(2),mA,)) must be a P.V. if pr=A, 
(resp. pz = AT), which is a contradiction since m >, 5. By (1) of Lemma 1.6, 
we have (2)-(7) and (11) in Theorem 1.5. For (8), by (2) of Lemma 1.6, we 
have p;= 1. If pz# 1, then its castling transform (GL(l)‘x X(8), 
AT +p2) 2 (GL(l)‘x SL(8), A3 +p:) is a P.V. which is a contradiction by 
Theorem 1.3. Similarly, we have ( 12), ( 13) ( 15) and (18). For (9) by 
dimension reason, if pi # 1, then we have pz = 1 and p; = A, or AT. If 
pa=1 and pi=A,, its castling transform (GL( 1)’ x Spin( 7) x SL(4), 
spin rep. 0 A, + 10 A i ) must be also a P.V. Since (Spin( 7) x GL(4), 
spin rep. 0 A ,) is a non-P.V. (see p. 118 in [ 1 I), the case for p2 = 1 and 
pi = A, is a non-P.V. Since a generic isotropy subgroup of (9) is reductive, 
the case for pr = 1 and pi = A i+ is also a non-P.V. Hence pi = 1. If pz # 1, 
then deg pz < 7 = dim(GL(1) x X(2)x X(2)) and hence p2 must be the 
vector representation. By (5.37), p. 118 in [l], it is a P.V. if and only if the 
triplet (GL(l)xSL(2)xSL(2), A,@A,@A,+A,@1@2A,, V(4)@V(3)) 
is a P.V. However, it is clearly not a P.V. and we have finished the case (9). 
For (lo), if p;# 1, then degp,@p;ddim(GL(l)xSpin(7))=22, and 
hence pi = A, or AT and pz = 1. In this case, it is a P.V. if and only if 
(GL( 1) x Spin(7), A, 0 (spin rep. + vector rep.)) is a P.V. By p. 96 in [2], it 
is not a P.V. If pi = 1, it reduces to the simple case by a castling transfor- 
mation. By pp. 77, 89 in [a], it is not a P.V. for any p2 # 1. For (14), if 
pz @pi # 1, then pz = 1 and p> = A, (or AT) by dimension reason. If 
pk=A,, we have its castling transform (GL( 1)’ x G2 x X(3), 
AzOA,+l@A,). Since (G?xGL(3), AzOAl) is a non-P.V. by p. 136 
in [ 11, the case for pz = 1 and pi = A, (hence also the case for p; = A:) 
is a non-P.V. For (16) and (17), we have our desired result from the 
fact that the restriction of (&,, A,) (resp. (GL(2), A,), (GL(25), A,)) to 
a generic isotropy subgroup H m Spin(8) is given by (Spin(g), 
l+l+l+A,+A.+A,, V(27)) (resp. (Spin(g), 1 + 1, V(2)), (Spin(g), 
1 + A, + A,+ A,, V(25)), where A, (resp. A,, A,) denotes the vector (resp. 
even half-spin, odd half-spin) representation of Spin(g). One can check this 
fact by simple calculation of weights. Q.E.D. 

LEMMA 2.2. Let (GL(1) x G x G’, p1 0 pi) be one of (II) in Theorem 1.5. 
Zf (GL(l)‘xGxG’, plop’, +p,Op;) is also a P.V., then we have p;= 1. 

Proof: By (5.10) in p. 93 in [l], we have (19). By (2) of Lemma 1.6, we 
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have (20)-(22) and (24)-(27). Since the restriction of (GL(2m2-m- l), A ,) 
to H= Sp(m) is (Sp(m), A,), we have (23) by p. 106 in [l]. For (28), by 
dimension reason, only the possibility for pi # 1 is pi = A 1 or A:. If 
pi = A,, we have its castling transform (GL( 1)’ x Spin( 12) x SL(2), half- 
spin rep. @A, + 1 @A,) which is a non-P.V. by p. 130 in [ 11. Since N is 
reductive, the case for pi = A : is also a non-P.V. Q.E.D. 

THEOREM 2.3. All non-irreducible 2-simple P.V.s which have oue qf (II) 
in Theorem 1.5 as an irreducible component are given as follows: 

(GL(l)‘xSL(6)x,SL(2), A,@A, +A;*‘@l) (2.1) 
(GL(l)‘xSL(6)xSL(13),ft2@d,+n~*‘~l) (2.2) 
(GL(l)‘xSL(7)xSL(l9),A,@A,+A~*‘@l) (2.3) 
(GL(l)‘xSL(9)xSL(34),A,@/i,+A,@l) (2.4) 
(GL( I)‘+’ x5’L(2m)xSL(2m2-nz- 1). A,@A, +Z,T@ I), 

~herem33;s=l,2,3;~,=/11*‘, C2=A~*‘+Aj*‘, and 
&z,=A’*‘+n /*)+A;*‘. (2.5 

(GL(l)‘xS~(n)xSL(+n(n+l)-1), 2A,@A,+A/*‘@l) (n33) (2.6 

(GL(l)2xSL(6)xSL(19), A,@A,+A,@l) (2.7 

) 

(GL(l)3xSL(6)xSL(19), A,OA,+A,@l+A,@l) (2.8) 
(GL(l)2xSL(7)xSL(34),A,@A,+A~*~@l) (2.9) 
(GL(l)‘xSp(3)xSL(l3),n,o/i,+n,ol) (2.10) 

(GL( 1)’ x Spin( 12) x SL( 3 1). half-spin rep. @ A, -t- vector rep. @ 1). (2.11) 

Note that A,@A, + AT @ 1 for (22) is not a P.V., and AT = A, for 
SL(6) in (2.7) and (2.8). 

Proof: For (19) (resp. (21), (22)), we have dim(GL(l)‘- * x H) = 8 + I 
(resp.9+1, ll+I)adegpz+ ... +degp,>(I-l)degA,=6(1-1) (resp. 
7(1-l), 9(1-l)), and hence 1~2, p?=A, or A:. Since (19) and the 
castling transform of (21) are F.P.s (see [4] ), the case (19) and (21) are 
actually P.V.s. 

By Lemma 2.2 and a castling transformation, (20) reduces to (19). For 
(22) first note that the castling transform of (CL(l)’ x SL(9) x SL(34), 
Az@A,+A,@l (resp. A,@A,+AT@l)) is given by (GL(l)‘xSL(9)x 
SL(2), A,@A,+A:@l (resp. A2@A,+A,@l)). If the case for 
,4z@A,+,4,@l is a P.V., then by (1.1). the triplet (GL(2), 4A,, V(5)) 
must be also a P.V., which is a contradiction by dimension reason. 
By (1.1) (GL(l)‘xSL(9)xSL(2), A,@Ai+A:@l) is a P.V. if and 
only if g = { (~1) @ ( - ‘C); C is the second matrix in (1.1) ) acts on K’ 
prehomogeneously. Since x0 = e6 + e, E K’ is a generic point, (g, K”) (and 



PREHOMOGENEOUSVECTOR SPACES 377 

hence (22)) is a P.V. By a castling transformation, (23)-(28) reduce to the 
simple P.V.s, and by Theorem 1.3, we have our results. Q.E.D. 

LEMMA 2.4. Let (GL(l) x G x G’. p,@p’,) he one of (III) in 
Theorem 1.5. [f (GL(l)‘xGxG’, p,@p’, +p?@p;) is also a P.V., then we 
have p? = 1. 

Proof. By (2) of Lemma 1.6, we have the cases (29), (37), and (39). For 
(30) if p? # 1, then we have pi = 1 since otherwise deg pl@ pi 3 
2(2m + 1) > dim H + 1 = 2m + 5. Then, by the castling transformation and 
( 1) in Theorem 2.1, we have our result. For (31), p2 0 pi must be one of 
(a) A,@A,, Az@l, A,@A, for n=2, (b) A,@1 for n=3, (c) A,@2/1,, 
‘4,~ A, for n 3 3, A, 0 1. However, (a) and (b) are impossible by dimen- 
sion reason. If pr@ pi = A, @2A, (resp. A I 0 A ,, A, 0 l), it is a P.V. if 
and only if (GL(l)*xSL(2), A2(2A,+2A1) (resp. A2(2A,+A,), 
A2(2A, + 1))) is a P.V. by pp. 4Wll in [l], which is impossible by dimen- 
sion reason. Now before going ahead, we shall prove several sublemmas. 

SUBLEMMA 2.4.1. The triplet (GL( 1 )2 x SO(n) x SL(m), A, 0 A, + A, 0 
AT, M(n, m)@M(n, m)) is a non-P.V.for n>,m> 1. 

Proof. For x = (X, Y) E M(n, m) @ M(n, m), g = (~1, 0; A, B) E GL( 1 )2 x 
SO(n)xSL(m) and p=A,@A,+A,@A, (resp. A,@A,+A,@/i:), we 
have p( g).u = (crAX’B, /?A Y’B) (resp. (ctAX’B, JA YB- ‘)) and hence, 
.f( x) = det(‘XX) . det( ‘YY) . det( ‘XY) ~’ is a nonconstant absolute invariant. 

Q.E.D. 

SUBLEMMA 2.4.2. For n 4 ma 1, the triplet (GL(l)‘x SO(n) x SL(m), 
A,@l+A,@A,, V(n)@M(n,m))isanon-P.V. 

Proof: By pp. 1099110 in [l], it is a P.V. if and only if 
(GL(l)xSO(n-m)xSO(m), A,@A,@l+A,@l@A,) is a P.V. In this 
case, a triplet (SO(m), A ,, V(m)) without scalar multiplication must be a 
P.V., which is a contradiction. Q.E.D. 

SUBLEMMA 2.4.3. For m,, mz > n >, 1, the triplet (SO(m,) x SO(m,) x 
GL(n), A,@l@A,+l@A,@A/*‘, M(m,,n)@M(m,,n)) isanon-P.V. 

Proof. For x=(X, Y)~M(m,,n)@M(m,,n), g=(A, B, C)eSO(m,) 
xSO(m,)xGL(n) and p ‘*)=n,olo/i,+lo/i,onl*‘, we have 
p( g).u = (AX’C, BY’C) (resp. p*( g)s = (AX’C, BYI?‘)), and hence f(x) = 
det(‘XX).det(‘YY) ’ (resp. f(x) = det(‘XX) .det(‘YY)) is a nonconstant 
absolute invariant. Q.E.D. 
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SUBLEMMA 2.44. For n 2 m 2 1, the triplet (CL(n) x GL(m), (1 + 
A, +AT)@A,, V(m)@M(n,m)@M(n, m)) is a non-P.V. 

Proof: For x=(4’,X,,X,)~V(m)OM(n,m)OM(n,rn), g=(A,B)E 
GL(n)xGL(m) and p=(l +A1 +A:)@A,, we have P(g)x=(By,AX,‘B, 
‘A-IX,‘@. Hence, if nz > 2, then j(x) =det(‘X?Xi + ‘X,X,) .det(‘X,X,))’ 
is a nonconstant absolute invariant. If m = 1, then f(x) = (‘Xi A’?). Jam’ is a 
nonconstant absolute invariant. Q.E.D. 

SUBLEMMA 2.4.5. For narna 1, the triplet (SO(n)x GL(m), 1 @A, + 
A, @Al*‘, V(m)@M(n, m)) is a non-P.V. 

ProoJ By pp. 109-110 in [l], it is a P.V. if and only if (SO(m), 
A,, V(m)) is a P.V. without scalar multiplication, which is a contradiction. 

Q.E.D. 

Now we start to prove the case (32). Note that if p; = 1, we may assume 
n > 2m by a castling transformation. If pr # 1, then pz @pi must be one of 
A,@Ai*‘, A,@l, or A01 (n=9, 11, 14) with A=(half-) spin represen- 
tation by [ 11. If p2 @pi = A i 0 A [*’ (resp. A, @ 1 ), then it is a non-P.V. by 
Sublemma 2.4.1 (resp. Sublemma 2.4.2). For n = 9 and pz @pi = A @ 1, it is 
a non-P.V. by p. 127 in [l], A(Spin(7)) c SO(8), and Sublemma 2.45. For 
n=ll and p@p;=A@l, it is a non-P.V. by p. 130 in [l] and Sub- 
lemma 2.4.4. For n = 14 and pz @pi = A @ 1, it is a non-P.V. by p. 133 in 
[ 1 ] and Sublemma 2.4.3. For (33) we have p2 @pi = A @ 1 (A = the spin 
rep.) or A, @ 1 (A, = the vector rep.) by dimension reason. If 
p2@p; = A 0 1, then it is a non-P.V. by A(Spin(7)) c SO(8) and Sub- 
lemma 2.4.2. If p>@p; = A, 0 1, then it is a non-P.V. by (5.35) p. 117 in 
[ 11, and Sublemma 2.4.4. For (34), we have pz @ pi = vector rep. 0 1, and 
it is a P.V. if and only if its castling transform (Spin(7) x GL(5), 
spin rep. @A, + vector rep. @ 1) is a P.V. which is a contradiction by 
Theorem 2.1 for (9) in Theorem 1.5. For (35). if pz # 1, then we have 
pi = 1, since otherwise dim H + 1 = 10 > deg p2 @pi 2 7 ‘6 = 42, which is a 
contradiction. Hence we can reduce (35) to (33) by the castling transfor- 
mation. For (36) we have pz @pi = A @ 1 (A = half-spin rep.) or A, 0 1 
(A, = the vector rep.) by dimension reason. If p2@p;= A @ 1, it is a 
P.V. if and only if (GL(l)x(G,)xSL(2), A,@A2@A,+A,@1@A,, 
V( 14) @ V(2)) is a P.V. by calculation of weights (cf. p. 123 in [ 11). By 
(5.53) p. 136 in [l], it is a P.V. if and only if (O(2), A,, V(2)) is a P.V. 
Since dim O(2) = 1 <dim V(2) = 2, it is a non-P.V. If pz @pi = A, @ 1, it is 
a non-P.V. by (5.42), p. 123 in [ 11, A,(G,) c SO(7), and Sublemma 2.4.3. 
For (38), if pz # 1, then p;= 1 by dimension reason, and hence (38) 
reduces to the case (36) by a castling transformation. For (40) if p2 # 1, we 
have p2 @p; = A2 0 1 by dimension reason. It is a non-P.V. by 
A,(G,) c SO(7) and Sublemma 2.4.2. Q.E.D. 
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THEOREM 2.5. All non-irreducible 2-simple P. V.s which have one of (III) 
in Theorem 1.5 as an irreducible component are given as follows: 

(GL(l)‘xSL(S)xSL(3), A2@A, + lo/i;*‘) 

(GL(l)“xSL(2m+l)xSL(2), AzOA,+lOp) (m255), 
where p = A,, 2A,, or 3A,. 

(GL(1)3xSL(2m+l)xSL(2), 
A~oA,+1oA,+lop) cm 2 5 1, where p = A, or 

2fl,. 

(GL(1)4xSL(2m+ l)xSL(2), 
n~on,+lo(A,+A,+n,)) (m>5) 

(GL(l)‘xSp(n)xSL(2), A,@2A,+l@A,) (n>2) 

(GL(l)‘xSO(n)xSL(m),A,@A,+l@A~*)) 

(GL( 1)‘~ Spin(7) x SL(2), spin rep. 0 A, + 1 @A,) 

(GL(l)‘xSpin(7)xSL(3), spinrep.@A,+l@Ai*‘) 

(GL(l)‘xSpin(7)xSL(6),spinrep.@A,+l@A~*’) 

(GL( 1)’ x Spin( 10) x SL(2), half-spin rep. @ A, + 1 @ p), where 
p = A,, 2A,, or 3A,. 

(GL( 1 )3 x Spin( 10) x SL( 2), half-spin rep.@A 1 + 1 @A, + 1 @p), 
bvhere p = A, or 2A,. 

(GL( 1)” x Spin( 10) x SL( 2), half-spin 
rep.OA,+lO(A,+A,+A,)) 

(GL(l)‘xSpin(lO)xSL(3),half-spinrep.@A,+l@Ai*’) 

(GL( 1)’ x Spin( 10) x SL( 14) half-spin rep. @ A, + 10 A i* )) 

(GL(l)‘x(G,)xSL(2), A,@A,+l@A,) 

(GL(l)‘x(G,)xSL(6), A2@A,+1@Ai*‘). 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

Proof First note that if (GL( 1 )k x SO(n), p I 0 . . 0 pk) is a P.V., then 
we have k = 1 and p, = A,. The SL(m)-part of the generic isotropy sub- 
group of (29) (resp. (31) (32), (33), (34) (37) (39)) is SO(m) by p. 96 
(resp. pp. 104, 109, 117, 118, 125, 136) in Cl], and hence we have (2.12) 
(2.16))(2.19), (2.24) and (2.26). Now, if (GL(l)k x SL(2), p, @ ... @pJ is 
a P.V., then we have k<3 and p,@ ... @pk=A1@A,@A, (k=3); 
2/1,0/i,, A,@A, (k=2); 3A,, 2A,, A, (k=l). The SL(2)-part of the 
generic isotropy subgroup of (30) (resp. (36)) is SL(2) by (1.1) in 
Lemma 1.4 (resp. p. 112 in [l]) and hence, we have (2.13)-(2.15) and 
(2.21)-(2.23). For (35) (38), and (40), we have pzOp;+ ... +p,@p;= 
l@A[*‘, i.e., 1=2 and p;=A I* ’ by dimension reason. Since the generic 
isotropy subgroups of (35) (38), (40) in Theorem 1.5 are reductive, we 
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may assume that p2 @pi = 1 @ A I to see the prehomogeneity. Then, by a 
castling transformation, (35) (resp. (38), (40)) is reduced to (2.19) (resp. 
(2.24), (2.26)) and we have (2.20), (2.25), and (2.27). Q.E.D. 

LEMMA 2.6. Let (GL(l) x G x G’, p, 0 p’,) he one of (IV) in 
Theorem 1.5. Then, (i) (GL(1)” x G x G’, p, @p’, +p,@p;) is a non-P.V.,for 
anypz#l andpS#l; (ii) (GL(l)‘xGxG’, pIOp’,+prO1+lOp>) isa 
non-P. V. for any pz # 1 and pi # 1. 

Proof For (41), we have (i) by dimGL(l)xH=2<4=2x2< 
degp,@pI, and (ii) by dimGL(1)2xH=3<4=2+2ddeg(p2@1+ 
lop;). For (42) we have (i) by dimGL(l)xH=9<40=5x8< 
degp,@pi and (ii) by dimGL(1)2xH=10<13=8+5<deg(p,@l+ 
lap;). For (43). we have (i) by dimGL(l)xH=13<18=9x2< 
degp,@p;. Now if (GL(l)‘xSL(9)xSL(2), A2@A,+pz@l) is a P.V., 
then (GL( 1)’ x SL(9) x SL(34), p2 @ A, + p; @ 1) is also a P.V., and hence, 
by (2.4), we have pz = A 7. If (GL( 1)’ x SL(9) x SL(2), A, @ A, + A: @ 1 + 
lap;) is a P.V., then (GL( 1)’ x SL(2), 3A, + PI,) must be also a P.V. by 
Lemma 1.4, and hence pi = 1. For (44) we have (i) by dim GL( 1) x H= 
2m’+3m+2<4m3+4nz’-m-1=(2m+l)x(2m’+m-1)~degp,~pI, 
for m > 4. Now assume that (GL( 1)’ x SL(2m + 1) x SL(202’ + m - 1 ), 
A, @ A, + 1 @pl,) is a P.V. We shall see that pi = A, (and p[7 # AT). Since 
dimGL(l)xH=2nz’+3nz+23degp;32m2+rn-1, we have pi=A, or 
A F. By calculating the weights, the SL(2m’ + m - 1) part of the generic 
isotropy subgroup H of ( GL( 1) x SL( 2m + 1) x SL( 2m’ + m - 1). 

A,OA,)is 1 (*j; i:,yi2mz+m)c, 

2~~ = (m - 1)(2m + 1 )‘E. A E Sp(nz) 

I 

or 

Now if p;=A,, its castling transform is (GL( 1)’ x SL(2m + 1) x SL(2), 
A,@A, + 1 @A,). which is a P.V. by (2.13). Note that it is a P.V. for 
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1~ > 4. This implies that the SL(2m’ + m - 1 )-part of H must be of the form 

since (GL( 1) x Sp(m), A,) is a non-P.V. for m 3 3. Therefore, if pi = A:, it 
is a non-P.V. Assume that (GL( 1 )3 x SL( 2~ + 1) x SL( 2m2 + m - 1 ), 
AZ @ A, + 10 A, + pz 0 1) is a P.V. Then its castling transform 
(GL(1)3xSL(2nz+ l)xSL(2), A,@A, + 1 @A, +p,*@l) must be a P.V. 
If nz 3 5, then we have p; = 1 by (30) of Lemma 2.4. If nr = 4, by (43) 
of our Lemma 2.6, we have p; = 1. For (45) assume that 
(GL( I )’ x SO( 10) x SL(m), A, 0 A, + pz 0 pi) is a P.V. for p2 # 1 and 
pi # 1. Then we have dim G = nr2 + 46 3 dim I’> 2Om, i.e., (m - 1O)2 > 54 
(26m69), and hence m=2. Thus plOpi must be A,OA~*‘or half-spin 
rep. @ A,. By Sublemma 2.4.1, p2@pi # A, 0 A!*‘. If pz@p; = half- 
spin rep. 0 A,, then dim G = 50 < dim I’= 52, which is a contradiction. 
Thus we have (i) for (45). Now assume that (GL( 1 )3 x SO(10) x SL(m), 
A,@A,+pz@l+l@p;) is a P.V. with p2#1 and p;#l. By Sublemma 
2.4.2, pr must be a half-spin representation of Spin( 10). Since SL(nr)-part 
of the generic isotropy subgroup of (SO(10) x CL(m), A, @A,) is O(m), pi 
must be A, or A T. The generic isotropy subgroup of (GL( 1)’ x Spin( 10) x 
SL(m), vector rep. 0 A i + 10 A{* ‘) is locally isomorphic to 0( 10 - m) x 
O(m - 1) (p. 110 in [ 11) and by calculation of weights, we see that the 
restriction of a half-spin representation of Spin( 10) to 0(10-m) x O(m- 1) 
is given by (Spin(8), even half-spin rep. @odd half-spin rep.) for m = 2, 9; 
(GL(l)xSpin(7), (A,+A:)@spinrep.) for nz=3,8; (SL(2)xSL(4), 
A,@(A,+A:)) for m=4,7; (SL(2)xSL(2)xSp(2), A,@l@A,+ 
1 @ A, @A, ) for m = 5,6. Since they are not P.V.s even with a scalar 
multiplication (see the proof of (2.9) in [4] for m = 5,6), we have (ii) for 
(45). For (46). assume that (GL( 1)’ x Spin( 12) x SL(m), vector rep. 0 A, + 
pr 0 pi) (m 3 2) is a P.V. with pr # 1 and pi # 1. By Theorem 1.5, pz @ pi 
must be vector rep. @ A,. By Sublemma 2.4.1, it is a non-P.V. and hence we 
have (i) for (46). Now assume that (GL(1)3 x Spin(12) x SL(m), 
vector rep. 0 A, + p20 1 + 10 pi) is a P.V. Then yz must be a half-spin 
representation by Sublemma 2.4.2, and pi = A, or A: (see the proof for 
(45)). Since the generic isotropy subgroup of (CL(l) x Spin(l2), pz) is 
SL(6) (p.129in Cl]), (GL(l)2xSpin(12)xSL(m), vectorrep.@A,+p,@l) 
is a P.V. if and only if (SL(6)xGL(m), (A,+Af)@A1) is a P.V. By the 
proof of Sublemma 2.4.4 (and by a castling transformation if necessary), it 
is not a P.V. for 2 <m f 10. Since the generic isotropy subgroup of 
(GL( 1)’ x Spin( 12) x SL( 1 1 ), vector rep. @ A i + p2 @ 1) is reductive, we 
may assume that pi = A, as far as we consider the prehomogeneity. Then 
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its castling transform is (GL( 1 )3 x Spin( 12) x Z(2), vector rep. @ A r + 
p2 @ I+ 10 A ,), which is not a P.V. as we have seen above. Thus we have 
(ii) for (46). For (47), if (GL(l)*xSpin(7)xSL(7), spinrep.@A,+p2@p;) 
isaP.V.forp,#landp~#l,thendimGL(l)xH=15~degp,~p~~49, 
which is a contradiction, and hence we have (i) for (7). If (GL( 1)3 x 
Spin(7) x SL(7), spin rep. 0 A, + pz 0 1 + lop;) is a P.V., then pr must be 
the vector representation by Theorem 1.3, since a castling transform 
(GL( l)* x Spin(7), spin rep. + p2) of (GL( 1 )* x Spin(7) x X(7), spin rep. @ 
A I + p2 @ 1) must be a P.V. By dimension reason, we have p3 = A, or A T. 
Since the generic isotropy subgroup of (GL( 1)” x Spin(7) x Z(7), 
spin rep. @ ,4, + p2 0 1) is reductive, we may assume p3 = A r . Then, by a 
castling transformation, we have (GL( 1)’ x Spin( 7) x ,SL( 2) spin rep. @ 
A r + p2 @I 1 + 1@,4, ), which is not a P.V. by (33) of Lemma 2.4. Thus we 
have (ii) for (47). For (48), if (GL(l)‘x Spin( 10) x X(15), half-spin 
rep.@A,+p,@p;) is a P.V. for p2#1 and pi#l, then dimGL(l)xH= 
312 deg p2 @ pk b 150, which is a contradiction, and hence we have (i) for 
(48). If (GL(1)3 x Spin(l0) x X(15), half-spin rep.@ A, +prO 1 + lop;) 
is a P.V., then p2 must be the half-spin representation or the vector 
representation by [2], and pi = A r or A : by dimension reason. Since the 
generic isotropy subgroup of (GL( 1)’ x Spin( 10) x SL( 15) half-spin rep. @ 
A, + p2 @ 1) is reductive (see pp. 96, 97 in [Z]), we may assume that 
pi = A,. Then, by a castling transformation, we have (GL( 1)’ x Spin( 10) x 
X(2), half-spin rep. 0 A r + pz 0 1 + 1 @A ,), which is not a P.V. by (36) of 
Lemma 2.4. Thus we have (ii) for (48). Q.E.D. 

THEOREM 2.7. All non-irreducible 2-simple P. V.s which have one of (IV) 
in Theorem 1.5 as an irreducible component are given as follow: 

(GL(l)*xSL(2)xSL(2),2A,@A,+A,@l) (2.28) 

(GL(1)*xSL(2)xSL(2),2/1,@/1,+1~/1,) (2.29) 

(CL(l)‘+” xX(5)xX(8), A,@A,+Z,@l) (s= 1, 21, 
where Z, = Ai*) andL’,=A,@AI*‘. (2.30) 

(GL(l)‘xSL(S)xSL(8), /l,@A,+l@A;*‘) (2.31) 

(GL(l)*xSL(9)xSL(2), A,@A,+A~@l) (2.32) 

(CL(l)‘+ x%(9)xX(2), A,@A,+l@T,) (t = 1, 2, 3), 
where T,=A,, 2A,, 3A,; T2=A1@A,, A,@2A,; 
T,=A,@A,@A,. (2.33) 

(CL(l)‘+” xSL(2m+l)xSL(2m2+m-l), 
~*On,+c,ol) (s= 1,2, 3), where C, = Al*‘, AT; 
C,=Aj*)@Ai*‘; Z:,=Aj*‘@Aj*‘@Al*’ except for 
c,2:A1@A:@A: (m 2 4). (2.34) 
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(GL(1)2xSL(2m+l)xSL(2m’+m-1), 
A,OA, + 1 @A,) (mb4) 

(GL( 1)’ x Spin( 10) x SL(m), vector rep. @ A i + half-spin 
rep. 0 1) (2dm<9, mf5) 
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(2.35) 

(2.36) 

(GL(l)2xSO(10)xSL(m), A,OA,+l@A~*‘) (26m<9) (2.37) 

(Gt( 1)’ x Spin( 12) x SL( 1 1 ), vector rep. @ A, + half-spin 
rep. @ 1) (2.38) 

(GL(l)~xS0(12)xSL(m), A,@A,+l@A;*)) (26m6 11) (2.39) 

(GL( 1)’ x Spin( 7) x SL( 7), spin rep. 0 A, + vector rep. 0 1) (2.40) 

(GL(l)‘xSpin(7)xSL(7), spinrep.OA,+l@A~*‘) (2.41) 

(GL(l)‘xSpin(lO)xSL(15), AO@Al+pO1) l&h p=A, or x, 
brlhere A, (resp. A,, x) is the odd half-spin (resp. even 
half-spin, vector) representation of Spin( 10). (2.42) 

(GL(1)2xSpin(10)xSL(15), A,,@A,+lOAj*‘). (2.43) 

Note rhat A,@A, +A,@1 ftir (2.32) and A2@A, + 1 @A: for (2.35) 
are non-P. V.s. 

Proof: For (2.28) (resp. (2.29)), we have pz = A, (resp. pi = A ,), since 
deg p2 (resp. deg pi) d dim G - deg 2A, @A, = 2. Since the Z(2) part of 
the generic isotropy subgroup is O(2), (2.28) and (2.29) are actually 
P.V.s. For (2.30), (GL( 1)’ +,’ xX(5)xX(8), A2@A,+Z,v@1) with 
C,=CJ,+ ... +cJ,,, is a P.V. if and only if (GL(l)‘+“xSL(S)xSL(2), 
A,@A,+(oT+ ... +op)Ol) is a P.V. Since dimG>dim V, we have 
5s d deg IS? + ... + deg a,: d s + 8, and hence s = 1 or 2. Thus we have 
o:=Al*’ for s=l and a~@o~=A~*)@A~*‘. However, a:@oT# 
A, 0 A, since otherwise (GL( 1)’ x SL(2), 2A 1 @ 2A,) becomes a P.V. 
by (1.1 ), which is a contradiction by dimension reason. By calculating 
the isotropy subalgebra at (X0, e5, e, +e,+e,+e,) (resp. (X0, e5, 
e,+e,+e,)) of (GL(1)3xSL(5)~SL(2), A2@Al+(A:+A,*)@l (resp. 
A,@ A, + (A: + A,)@ 1)) (see Lemma 1.4), we see that they are actually 
P.V.s. For (2.31), if A2@A,+l@(zl+ ... +r,) is a P.V., then we have 
8t6degz,+...+degz,~8+tandhencet=l,t,=AI*).Ifr,=A,,then 
it is castling-equivalent to (2.12) and hence it is a P.V. If z, = A:, we 
identify the representation space of A, @ A, + 10 A: with 

v= v20h V,@K8, 

where Vz = CKe, A e, (1 < i < j< 5). Then the action is given by 
xy~ c( . A,(A) (x1,..., x8)‘B + ~*B-‘J’ for x = (xi ,..., x,; p) E V and g = 
(~1, B; A, B) E GL( 1)’ x X(5) x Z(8). By calculating the isotropy sub- 
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algebra at x = (o,, 20,, 2w,, olO, os - LI)~, wq - wg, 06, 0,; ez + es) (see 
p. 95 in Cl]), we see that it is a P.V. For (GL(1),+J xSL(9)x SL(2), 
A2 0 A, + Z:, 0 1 ), we have (2.32) from (2.4) by a castling transformation. 
For (2.33) since the SL(2) part of the generic isotropy subgroup of 
(CL(l) x SL(9) x SL(2), A,OA,) is SL(2) by Lemma 1.4, we have our 
result by [ 11. For (2.34), it is castling-equivalent to a simple P.V. 
(CL(I)‘+’ x SL(2m + l), A2 OZ.:), and hence we obtain our result by [Z]. 
For (2.35), if A20A, +l@(r,+ ... +r,) is a P.V., then we have 
( 2m2 + m - 1 )t < deg t , + . . . + deg T, < t + (2m’ + 3m + 1) and hence r = 1 
and T, = A i*‘. By the proof of (44) of Lemma 2.6, we have our result. For 
(2.36), if vector rep.@A, + (0, + ... +o,,)Ol (26md9) is a P.V., then 
fl,, . . . . g1 # the vector representation by Sublemma 2.42 and C, = A,. or 
CJ, +a*=n,+n., ~62 by [2]. If a,+a,=A.+A,, then dimG>dim I’ 
implies (m - 5)‘> 10 (2 <m < 9) and hence m = 9. Then, it is castling- 
equivalent to (GL( 1 )3 x Spin( lo), vector rep. @ A, @ A,), which is a non- 
P.V. by [2]. and hence we have C, = A,. In this case, it is a P.V. for 
m = 1, 2, 3 (and hence m = 9, 8, 7) by Theorems 3.3 and 5.7 in Kimura et al. 
[4]. For nz= 4 (resp. m = 5) the restriction of (GL( 1) x Spin( 10) x SL(m), 
A,, 0 1) to the generic isotropy subgroup SO( 10 - m) x SL(m) is equivalent 
to (GL(l)xSL(2)xSL(2)xSL(4), /1,~n,~l~/i,+/i,~l~/,~~~) 
for m = 4 (resp. (GL( 1) x Sp(2) x Sp(2), A, 0 A, @A,) for m = 5). Thus the 
case for m = 4 (and hence m = 6) is a P.V. (see the corollary of 
Theorem 1.16 in [3]), and the case m = 5 is a non-P.V. For (2.37), since 
the SL(m) part of the generic isotropy subroup of (GL( 1) x SO(10) x 
SL(m), A,@A,) is SO(m), we have our result by [2]. If (GL(l)‘+‘x 
Spin( 12) x SL(m), vector rep. @ A, + C,Y @ 1) is a P.V. with 2 < rrr < 11, then 
we have m = 11 by the proof of Lemma 2.6. Hence it is castling-equivalent 
to a simple P.V. (GL( 1 )I+’ x Spin( 12) vector rep. + C,). Thus we obtain 
(2.38) by Theorem 1.3. For (2.39), we have our result similarly as (2.37). 
For (2.40), it is castling-equivalent to a simple P.V. For (2.41), since the 
SL(7) part of the generic isotropy subgroup of (GL(l)xSpin(7)xSL(7), 
spin rep.@/1 ,) is ((G,), Ar), we have our result by [2]. For (2.42), it is 
castling-equivalent to a simple P.V. and we have our result by Theorem 1.3. 
Now assume that (GL( 1 )I+’ x Spin(l0) x SL(15), A, @ A, + 1 @ 
(t,+ ... +t,)) is a P.V. Then we have 15t<degz,+ ... +degt,d30+t 
and hence t = 1 or 2. By dimension reason, we have T, = /11*, for t = 1 and 
T, +T,=lti*'+/i I*, for t = 2. If t = 1 and T, = A,, it is castling-equivalent 
to (GL(I)*xSpin(lO)xSL(2), A,@A, + 1 @A,) which is a P.V. by (2.21). 
If t=2 and z,+t,=A,+A,, it is castling-equivalent to (GL( 1)3 x 
Spin(lO)xSL(3), A,@A,+l@A,+l@A,) which is a non-P.V. by 
Theorem 2.5 for (37). Let V, be the vector space spanned by 1, e,e, 
(l<i<j65), ekelese, (l<kcl<s<t65) over K. Let p, by the even 
half-spin representation A, on I’,. Then, the odd half-spin representation 
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A, is the dual p: of p,. Now the representation space I/ of 
(GL(1)2xSpin(10)xSL(15), A,@A,+l@A:) is identified with 

The action is given by x -+ (a;C(A)(X,, . . . . X,,)‘B; /.I’B- ‘y) for 
x = (X,, . ..) Jr,,; J’)EV. g=(cc,B;A,B)EGL(l)‘xSpin(lO)xSL(lS). Put 
.Yo= (e1e5, e2e5, e3e5, e4e5, e2e3e4e5, -ele3e4e5, e1e2e4e5, -e,e,e,e,, 
-1 +ele2e3e4, e,ez, e,e3, e,e4, -e3e4, eze4, -e,e,; eg)E V. The isotropy 
subalgebra of #( 1) @ #( 1) @I U( 10) @ .I!( 15) at x0 is given by { (16s), (E), 
{AO(-3O&)O(-‘A)O(30&)}, {(A-14&Z,) 0 (-‘A-14&2,) @ (16e)@ 
(A,(A) + 16~)} 1 A E j!(4), e~yC(l)}~g1(1)0j((4). Hence it is a P.V. 
Since (GL(l)xSL(4), A,@1 +A,@A:*)) is a non-P.V., (GL(1)3x 
Spin(lO)xSL(15),A,@A,+l@A~+l@A~*’)isanon-P.V. Q.E.D. 

THEOREM 2.8. All non-irreducible 2-simple P.V.s which have (SL(5) x 
GL(2), A, 0 A ,) ((49) in Theorem 1.5) as an irreducible component are given 
as follows: 

(GL(l)‘+‘ xSL(S)xSL(2), A,@A,+Z,,@l) (s= 1,2), 
where Z, =/Ii*’ andZz=A:+A~*) (Z2#A*+A,). (2.44) 

(GL(l)‘+’ xSL(S)xSL(2), A,@A,+l@T,) (r= 1,2, 3), 
where T,=A,, 2A,, 3A,; T,=A,+A,, 2A,+A,; 
T3=A,+A,+A,. (2.45) 

(GL(l)‘xSL(S)xSL(2), A,@A,+A;*‘@l+l@A,) (2.46) 

(GL(l)“+‘xSL(S)xSL(2), A,@A,+A:@l+l@T,) 
(t=1,2), where T,=2A,; T,=A,+A,. (2.47) 

Proof: By dimension reason, Az@Al +p20p;(p2# 1, p;# 1) is anon- 
P.V. If AZ @ A, + (a, + . + o,)@ 1 is a P.V., then its castling transform 
(GL(l)“+’ xSL(S)xSL(8), A,@A,+(o:+ ... +a,*)@l) is also a P.V., 
and hence, by (2.30). we have aT=A[*’ and o:+a:=A,+Ai*‘, i.e., 
(2.44). We have (2.45) similarly as (2.13))(2.15). By dimension reason, 
AzOA,+A:01+A~*)01+p40pk is a non-P.V. for any p40pb#1. 
AssumethatA,OAl+A,~1+1~(t,+~~~ft,)isaP.V.Then,by(1,1) 
of Lemma 1.4, (GL(l)‘+’ x SL(2), 2A 1 + tr + . . . + T!) must be a P.V., and 
hence we have t=l and rl=Al. Next assume that A,@A,+A:@l+ 
lo(Tl+ . . . +t,) is a P.V. Then, by (1.1) of Lemma 1.4, (GL(l)‘+’ x 
SL(2), A,+T,+ ... +t,) must be a P.V., and hence t=l, r,=A,, 2A,; 
t = 2, 21 + t2 = A, + A,. Thus it is enough to prove that (2.46) and (2.47) 
are actually P.V.s. (2.46) is a F.P. (see (5.19) in [4]) and hence a P.V. For 
(2.47), the generic isotropy subgroup of (GL( 1)’ x SL(2), A, + A ,) or 
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(GL(1) x SL(2), 2A,) is 0(2),and hence (2.47) is a P.V. if and only if 
(GL(1)3xSL(5), A,@A,@AT) is a P.V. By (5) of Theorem 1.3, we have 
our results. Q.E.D. 

THEOREM 2.9. All non-irreducible 2-simple P. V.s which have (SL(5) x 
GL(9), A, @ A, ) ((50) in Theorem 1.5) as an irreducible component are given 
as ,follows: 

(GL(l)‘+” xSL(S)xSL(9), A2@A,+E,@1) (s = 1, 2, 3), 
where Z, =A:*‘, A:; Z,=A~*)+A~*‘, A$+A,; 
C,=A;*‘+A ;*‘+A/*’ exceptfor C,-A-:+A:+A,. (2.48) 

(GL(1)2XSL(5)XSL(9),n20n,+10/i1*') (2.49) 

(GL(l)3xSL(5)xSL(9), A2@A,+A;*‘@1+1@Aj*)). (2.50) 

Proof: By dimension reason, A2 @ A, + p2 @ p;(pz # 1, pi # 1) is a non- 
P.V. Since A2 0 A, + Z:, @ 1 (C, = c1 + . . . + CJ.,) is castling-equivalent to 
(GL(l)‘+” x SL(S), A, + CT), we have our result by Theorem 1.3. If 
A,@A,+~@T,(T,=T,+ ... +T,) is a P.V., then t=l and T~=A~*’ by 
dimension reason. The prehomogeneity of (2.49) comes from that of (2.50). 
If A,@A,+l@A~*‘+Z,~@l (C,#l) is a P.V., then we have s=l and 
C-J, = A I*’ by dimension reason. Now A2@A,+A~*‘@1+1@A, is 
castling-equivalent to (2.46) and hence it is a P.V. Since A,@ A, + A: 0 1 
is castling-equivalent to a regular P.V. (GL( 1)’ x SL(5), A, 0 /iI), its 
generic isotropy subgroup is reductive. Since A2 @ A, + A: @ 1 + 10 A, is 
a P.V., A,@A1+A:@l+l@A: is also a P.V. By Lemma2.10, it is 
castling-equivalent to A, @ A, + A, @ 1 + 1 @ A:, and hence (2.50) is 
actually a P.V. Q.E.D. 

LEMMA 2.10. Assume that G is reductive and deg p, = m > 3. Then 
(GL(1)3xGxSL(m-1), pI@A,+p2@1+1@A~) is castling-equivalent 
to (GL(1)3xGxSL(m-1), p,@A,+p:@l+l@A:). 

Proof. It isequivalent to ((GL(l)xG)xGL(m-l)xGL(l), p,@Al@ 
l+p2@101+1@A:@A1) mL’ ((GL(l)xG)xGL(m-l)xGL(m-2), 
~,OA,01+p,0101+10A,OA,) -(’ p:OA,O1+p,O1O1+ 
l@A,@A; wR P,OA,~~+~:O~O~+~OA,~A: wL’ (GL(1)3x 
GxSL(m-1), pI@A,+p:@l+l@A:), where -‘(resp. wR) denotes 
the castling- (resp. reductive-)equivalence. Q.E.D. 

THEOREM 2.11. All non-irreducible 2-simple P.V.s which have (SL(7) x 
GL(2), A,@ A,) ((51) in Theorem 1.5) as an irreducible component are given 
as follows: 
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(GL(l)‘xSL(7)xSL(2),A,@A,+A~*‘@l) (2.51) 

(CL(l)‘+’ xSL(7)xSL(2), A,@A,-tl@T,) (t = 1, 2, 3), 
where T, = A,, 2/l,, 3A, ; T, = A, + A,, A, + 2A, ; 
T3=A,+A,+A,. (2.52) 

(GJC(~)~XSL(~)XSL(~), Az@A,+A;r@l+l@A,). (2.53) 

Note that AZ @ A, + A, @ 1 + 1 @A, is a non-P.V. for (2.53). 

Proof Az@A, + pz @p;(pz # 1, pi # 1) is a non-P.V. by dimension 
reason. A2 0 A, + Z, 0 1 is castling-equivalent to (GL( 1)’ +’ x X(7) x 
SL(19), A*@A,+Z,@l) and hence we obtain (2.51) from (2.3). If 
Ar@A,+A,@l+l@T, is a P.V., then (GL(l),+‘xSL(2), 3A,+T,) 
must be a P.V. by Lemma 1.4. Hence we have t=O, T,= 1. If 
A,@A,+AT@l+l@T,(T,#l) is a P.V., then (GL(l)‘+‘xSL(2), 
2A, + T,) must be a P.V. and hence t = 1, T, = A,, i.e., (2.53). It is actually 
a P.V. For example, (X,; ‘(OOOOOlO),‘(l, 1)) (see Lemma 1.4 for X,) is a 
generic point. Q.E.D. 

THEOREM 2.12. All non-irreducible 2-simple P. V.s which huve 
(X47) x GL(20), A, @ A, ) ((52) in Theorem 1.5) as an irreducible com- 
ponent are given as follo,~s: 

(CL(l)‘+” xSL(7)xSL(20), Az@A,+c,Y@l, (s= 1, 2, 3) 
bthere Z,=Ai*‘, A*; Z,=Ai*‘+A/*); 
C,=Ai*‘+A ;*)+A;*’ exceptforC,-A,+A:+A:. (2.54 

(GL(1)2xSL(7)xSL(20), A,@A,+l@A,) (2.55 

(GL(l)3xSL(7)xSL(20), A,@A,+A,@l+l@A,). (2.56 

Note that A2@A,+1@A~ for (2.55) and A2@A,+AT@1+1@A, 
for (2.56), are not P.V.s. 

Proof: If A,@A,+P,OPI? (p2#lr pi/l) is a P.V., then we have 
dim G = 449 2 dim V> 420 + 7 x 20 = 560, which is a contradiction. 
Similarly as (2.34) and (2.35) we have (2.54) and (2.55). Since 
A, @ A, + 1 @ A, + C,, 0 1 is castling-equivalent to (GL( 1)’ + ’ x SL( 7) x 
SL(2),A,OA,+lOA,+c,~ol),wehaves=land~,=A,by(2.53). 

Q.E.D. 

THEOREM 2.13. All non-irreducible 2-simple P. V.s which have 
(S0(5)xGUm), A,0A1)=(Sp(2)xGL(m), A2@A,) (m=2,3,4) ((53) 
in Theorem 1.5) as an irreducible component are given as follows: 

(GL(l)‘xSp(2)xSL(m),A,oA,+A,ol) (2.57) 
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(GL(l)‘xSp(2)xSL(m),n,o/i,+lonl*’) (2.58) 

(GL(1)3xSp(2)xSL(m), /120/t,+/I,@1+1@/I;*‘), 
for m=2,4 (m#3). (2.59) 

ProoJ: If /12@n,+~z@~; (,02# 1, pk# 1) is a P.V., then we have 
dim G = m2 + 11 3 dim V> 5m + 4m (m = 2, 3, 4) which is a contradiction. 
First note that A, @ /i , + A2 @ 1 is a non-P.V. by Sublemma 2.4.2. Hence if 
~2@~,+Z-,@1 is a P.V., then s=l, Z-r=/1, or s<2, C,=n,+n, for 
m = 4, by dimension reason. However, a castling transform (GL( 1)3 x 
Sp(2), ~t,+n, +A,) of (GL(1)3 xSp(2)xSL(4), n2@n, +A,@ 1 + 
/1, @ 1) is a non-P.V., we have (2.57). Actually (2.57) is a P.V. by (5.10) in 
[4]. Since the SL(m) part of the generic isotropy subgroup of (GL( 1) x 
Sp(2) x SL(m), A, @ AI) (m = 2, 3,4) is O(m), we have (2.58). For (2.59), 
we have m # 3 by dimension reason. Since the generic isotropy subalgebra 
of 

(see p. 455 in Kimura and Kasai [S]), (GL( 1 )3 x Sp(2) x SL(2), 
~I,On,+ii,@l+l@~I,) is a P.V., and hence (GL(1)3xSp(2)xSL(4), 
il, @ A, + A, 0 1 + 1 0 n ,) is a P.V. by a castling transformation. Since the 
SL(4) part of the generic isotropy subgroup of (GL( 1) x Sp(2) x SL(4), 
A,@A,) is O(4), (GL(l)‘xSp(2)xSL(4), /l,@n,+n,@l+l@ilT) is 
also a P.V. Q.E.D. 

THEOREM 2.14. All non-irreducible 2-simple P. V.s which have (SO(6) x 

GL(nl), A,@A,)z(SL(4)xGL(m), A,@A,) (2<m<5) ((54) in 
Theorem 1.5) as an irreducible component are given as jbllows: 

(GL(1)*xSL(4)XSL(2),n20n,+n,o/1,) (2.60 

(GL(l)‘+” xSL(4)xSL(m), /12@/1,+Cs@1) (s = 1, 2, 3), 
where C, = A,; C,=A, +A, (m#3), E,=A,+A: 

(m = 5); Z,=A, +A[*‘+A{*’ 
(m=5) (2.61 ) 

(GL(l)‘xSL(4)xSL(m), n2@/1,+1@/1i*‘) (2.62 

(GL(1)3xSL(4)xSL(m),/iz@n,+n,@l+1@/ii*’). (2.63) 

Note that /1,=/1: for SL(4). 

Proof: If n2@n, +pz@p; (p2# 1, p;# 1) is a P.V., we have dim G= 
16+m*>dim V>6m+4m (2<m<5) and hence m=2, p20pi= 
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/i, @ ,4,. Then it is acturally a P.V., since ((e, A e2, e3 A e,), (e, + e3, 
e, + e4)) is a generic point. Note that ,4, @ /i , + /i , @A, + pJ @pi is not a 
P.V. for any p3 0 pi # 1 by dimension reason. Thus we have (2.60). Let us 
consider nzOn, +Z,@ 1 with Cs=~, + ... +o,. If m=5, it is castling- 
equivalent to a simple P.V. (GL( 1)’ +* x SL(4), A, + 0, + ... + 0,) and 
hence we have s=l,2,3; a,=/l,; a,+o,=n,+n{*‘; o,+a,+cr,= 
il,+iii*‘+/ij*‘. For m=2,3,4, /l,@/ll+o,@l with o,=nZ (resp. 
0, = 211,) is not a P.V. by Sublemma 2.4.2 (resp. by dimension reason), and 
hence 

Since dimG=l5+s+m>dim V=6m+degZJ>6m+&, i.e., (m-3)‘+ 
6 3 3s (2 <m < 4), we have s = 1 or 2. Since the SL(4) part of the generic 
isotropy subgroup of (X(4)x GL(3), n?@/l,,V(6)@ V(6)@ V(6)) at 
(e, A e,, e3 A e4, e, A e3 +e, A e4) is SO(4),(GL(l)’ x SL(4) x SL(3), 
n,@/i,+n,@l) is a P.V. and (G~?(l)~xSL(4)xX(3), ii,@n,+ 
/1,@ 1 + /1 i* ) @ 1) is a non-P.V. Since the generic isotropy subalgebra of 
(SL(4)xGL(2), A2@A,) at (el A e,, e3 A e4) is given by 

one can check easily that (GL( 1)3 x SL(4) x X(2), n2@n, + A, @ 1 + 
/1,@1 (resp. Ar@n,+n,@l+n:@l)) is a P.V. (resp. is a non-P.V.), 
and so is the case for m = 4 by a castling transformation. Thus we have 
(2.61). Since the SL(m)-part of the generic isotropy subgroup of 
(GL(l)x X(4)xX(m), /1,@/1,) is SO(m), we have (2.62). Assume that 
/42@n,+c,Y@l+lonj*” 1s a P.V. Then we have dim G = s + 16 + m2 3 
7m + deg C, 2 7m + 4s, and hence s = 1; s = 2 (m = 2, 5). We shall see that 
s # 2. Since the SL(2) part of the generic isotropy subalgebra of 
(GL(l)3xSL(4)xSL(2), /1,0/1,+/i,0l+d,0l)iszero, wehaves 
for m=2. By p. 94 in [2], the generic isotropy subgroup of 
(GL(l)3 x X(4) x X(5), ~2@/1,+~,@l+~[*‘@1) is reductive, 
n,On,+n,Ol+nl*‘Ol+lOn: and ~2@~,+/i,@l+/i[*‘@l+ 
I@,4 1 are P.V.-equivalent. However, its castling transform (GL( 1)” x 

%(4)x,X(2), n,O/1,+n,Ol+nl*)0l+lOn,) is a non-P.V. as 
above, we have s # 2 for m = 5. If s = 1, it is a F.P. by Theorem 5.17 in [4], 
and hence it is a P.V. Thus we have (2.63). Q.E.D. 

THEOREM 2.15. Let A (resp. A 1) be the spin (resp. the vector) represen- 
tation of Spin(7). All non-irreducible 2-simple P.V.s which have 
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(S0(7)xGL(m), /1,@A,)2:(Spin(7)xGL(m), /1,0/1,) (2dm<6) ((55) 
in Theorem 1.5) as an irreducible component are given as follows: 

(GL(l)‘x Spin(7) x SL(m), A, @A, +A 0 1) (m=2, 5,6) (2.64) 
(GL(l)2xSpin(7)xSL(m),n,@n,+l@/i~*))(2<m<6) (2.65) 
(GL(1)3xSpin(7)xSL(m),/I,0il,Snol+lo/ll*’) 

(m=2, 6). (2.66) 

Proof: If n,@/i,+~~@~; (pz#l, pi#l) is a P.V., then we have 
dim G = 22 + m2 >, dim I/ >, 7m + 7rn, i.e., (m - 7)’ >/ 27 (2 f m < 6) which 
is a contradiction. If/i,0/1,+(fl,+ ... + a,) @ 1 is a P.V., then we have 
s = 1 and (T, = il by Sublemma 2.4.2 and [Z]. Since the restriction of 
(GL( 1) x Spin(7), A,) to a generic isotropy subgroup of (GL( 1) x 
Spin(7). /i) is equivalent to ((G2), .4,, k’(7)) (see p. 116 in [l]), we 
have (2.64). Since the X.(m) part of a generic isotropy subgroup of 
(GI.( 1) x Spin(7) x Z(m), A, @A,) is SO(m), we have (2.65). Now 
n,@/l,+n@l+l@n[*’ is a P.V. if and only if (GL(l)2 x (G,) x X(m), 
A2@,4, + 1 @A/*‘) (m=2,5, 6) is a P.V. Thus we have mf5 by (14) of 
Theorem 2.1. It is a P.V. for m = 2, 6 by (2.26) and (2.27). Thus we have 
our result. Q.E.D. 

Let /i,(resp. A,, A,) be the even half-spin (resp. the odd half-spin, the 
vector) representation of Spin(8). Then it is well known that 
(Spin(8), A,) ‘v (Spin(8), /iO) z (Spin(8), ,4,) N (X?(8), A,) as triplets (see 
p. 36 in [l]). 

THEOREM 2.16. All non-irreducible 2-simple P. V.s u’hich have (SO(8) x 
GL(m), A, @ A,)(2 <m < 7) ((56) in Theorem 1.5) as an irreducible com- 
ponent are given as follows: 

(GL(l)‘xSpin(8)xSL(m),n,@/1,+/1,@1) 
(2dm<7,m#4) (2.67) 

(GL(l)‘xSpin(8)xSL(m),n,@/l,+l@n[*’) (2 <m < 7) (2.68) 

(GZ,(1)3xSpin(8)xSL(m), ~,O~,+~,Ol+l@~~*‘) 
for m = 2, 3, 6, 7. (2.69) 

Pro@ If /1,@/i,+p,@p; (p?# 1, p;#l) is a P.V., then we have 
dimG=29+m2adim Va8m+8m, i.e., (m-8)‘>35 (2<m<7)), and 
hence m = 2. Note that (Spin(8) x X(2), p2 0~;) N (W(8) x Z(2), 
4, @A,, V(8) @ V(m)) as triplets if p2 # 1 and pi # 1. Hence the Z(2) 
part of a generic isotropy subgroup of (GL( 1) x Spin(8) x SL(2), p2 @p;) 
is O(2)= {(;); c$= -t 1). Thus (GL(l)* x Spin(8), /1, + A,) must be a 
P.V., which is a contradiction by Theorem 1.3. Assume that /1,@n, + 
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(c, + . . + (T,) 0 1 is a P.V. Then, by Sublemma 2.4.2 and Theorem 1.3, we 
have s= 1,2; o,=A,; (~~=,4,+/1~. Since the restriction of A, and A, of 
Spin(8) to a generic isotropy subgroup of (GL( 1) x Spin(B), A i) gives both 
the spin representation A of Spin( 7) and A(Spin(7)) c S0(8), we have 
s # 2, i.e., s= 1 by Sublemma 2.4.2. Since (i,@A, + A, 0 1 is P.V.- 
equivalent to (GL( 1) x Spin(7) x Z(m), A 0 A,), we have (2.67) by 
Theorem 1.5. Since the SL(m) part of a generic isotropy subgroup of 
(GL(l)xSpin(8)xSL(m), A,@A,) is O(m), we have (2.68). For (2.69), 
/l,@A,+A,@l+l@Aj* (2 <m < 7, m # 4) is P.V.-equivalent to 
(GL(l)‘xSpin(7)xSL(m), A@A,+l@Ai*)). Hence we have m#5 by 
(9) of Theorem 2.1. By (2.18)-(2.20) and (2.41), we have (2.69). Q.E.D. 

LEMMA 2.17. For 2n > m >, 2, (GL(l)‘xSp(n)xSL(m), A,@A,+ 
A 10 A i * ‘) is a non-P I/ . . 

Proof. The representation space of A,on,+A,oA, (resp. 
A, 0 A, + A, @ A :) is identified with V= M(2n, m) @ M(2n, m), where the 
action is given by (A’, Y) + (cYAX’B, /IA Y’B) (resp. (aAX’B, PA YB- ‘)) for 
g = (a, fl; A, B) E GL( 1)2 x Sp(n) x SL(m) and s = (X, Y) E V. Then a 
rational function f(x) = det(‘XJY- ‘YJX) .det(‘XJY)-‘(resp. Tr(‘XJY)” 
det( ‘XJY)) ‘) is a nonconstant absolute invariant for m 2 2, where 

J= Q.E.D. 

LEMMA 2.18. All 2-simple P.V.s which contain (GL( 1)‘~ Sp(2) x SL(m), 
A, @ A, + A, @ 1) (m = 2, 3) as a component, are given as ,follows: 

(GL(1)2xSp(2)xSL(3),A,@A,+A,@l) (2.70) 
(GL(1)3xSp(2)xSL(3),A,@A,+A,@l+l@A:). (2.71) 

Proof: By Lemma 4.6 in [4], (GL(1)2 x Sp(2) x X(2), A, @A, + 
Az@ 1) is a non-P.V. Now (2.70) is actually a P.V., since it is castling- 
equivalent to (9) in Theorem 1.3. If A,@A,+A,@l+o,@r,+ ... + 
bk @ tk is a P.V., then we have dim G = k + 20 >, dim I/ 2 17 + 3k, we have 
k= 1. In this case, we have deg(a,@z,)<4, and hence o,@z,=A,@lor 
lOA!*‘. If o,@z,=A,@l, it is castling-equivalent to (G~C(l)~xSp(2), 
A, + A i + A i) which is a non-P.V. by Theorem 1.3. If (pi @ 5, = 10 A i, 
then it is castling-equivalent to (GL( 1 )3 x Sp(2) x SL( 2), A, 0,4, + A 2 @ 
1 + 10 A i ) which is a non-P.V. as we have seen above. If g1 @ 2, = 10 A T, 
then it is a P.V., since 
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is a generic point. Q.E.D. 

LEMMA 2.19. AN 2-simple P. V.s which contain (GL( 1)’ x Sp(3) x SL(m), 
A, @ A, + A, @ 1)(2 < m < 5) as a component, are given as follotvs: 

(GL(l)‘xSp(3)xSL(5),A,@A,+A,@l). (2.72) 

Proqf: Since the generic isotropy subalgebra of (GL( 1) x Sp(3), /1,) at 
e, A e2 A e3+e, A e5 A e6 is given by ((O)@(;f _oiA); AE.#(~)} (see [l]), 
A,@A,+A,@l is P.V.-equivalent to (SL(3)xGL(m), (Al+A:)@A,) 
which is a P.V. (resp. a non-P.V.) for m = 5 (resp. m = 2, 3,4) by the proof 
of Sublemma 2.4.4 (and a castling transformation for m = 4). If (GL( I )’ x 
Sp(3)xSL(5), n,o/i,+n,ol+p,Op;)(p,Op;#l) is a P.V., then we 
have dim G = 48 > dim V= 44 + deg p3 @pi > 49, which is a contradiction. 

Q.E.D. 

LEMMA 2.20. For n > m > 1, a triplet (GL( 1 )3 x Sp(n) x SL(2m), 
A,@A,+A,@l+A,@l, M(2n,2m)@K’“@K2”) isanon-P.V. 

Proof: The action is given by .Y -+ (aAX’B; BAy, yAz) for g= 
(LX, /I, 7; A, B) E GL( 1 )3 x Sp(n) x SL(2m) and x = (X; y, z) E M(2n, 2m) @ 
K2” 0 K’“. Then a rational function f(~ ) = ( $k) . Pf( ‘XX). Pf( ‘YJX’ ) - ’ is 
a nonconstant absolute invariant, where X’ = (A’, y, ;) E M(2n, 2m + 2) and 
Pf denotes the Pfaffian. Q.E.D. 

THEOREM 2.21. All non-irreducible 2-simple P. V.s which have (Sp(n) x 
GWm), A,@A,, V(2n)@ V(2m)) (n>m3 1) ((57) in Theorem 1.5) as an 
irreducible component are given as follows 

(GL(l)‘xSp(n)xSL(2nz),A,@A,+A,@l) (2.73) 
(CL(l)‘+’ xSp(n)xSL(2m), A,@A,+l@T,) (t = 1, 2, 31, 

where T,=Ai*‘, T,=2A,(m=l), T,=3A, 
(m= l);T,=A{*‘+A[*‘, T,=2A,+A, (m= 1); 
T,=A~*‘+A[*‘+A;*! (2.74) 

(CL(l)‘+’ xSp(n)xSL(2m), A,@A,+A,@l+l@T,), 
where t= 1, 2; T1 =A!*‘, T, =2A, (m= 1); 
T7=A;*‘+A[*). (2.75) 
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Proof. If A,@A,+P~@& (p2#1, p;# 1) is a P.V., then we have 
p2@p;=A,@Ai*’ by (2.16), Theorem2.13, and Theorem 1.5. By 
Lemma 2.17, it is a contradiction. Now assume that A, @A, + 
( CS, + . . + a,) 0 1 is a P.V. By Lemmas 2.18-2.20, we have s = 1 and 
(T,=A], i.e., (2.73). Now A,@A,+l@(z,+ ... +s,)is P.V.-equivalent to 
(Gt( 1)’ x Sp(m), 5, + + t,), and hence we have (2.74) by Theorem 1.3. 
Byp.40in[l],n,o/i,+n,ol+lo(z,+...+t,)isP.V.-equivalentto 
(GL(l)‘+’ xSL(2m), A2(A,+l)+7,+ ... +T,). By a careful check for 
scalar multiplications, we see that the latter is also P.V.-equivalent to 
(GL(l)I+’ x SL(2m), A, t-A, + z1 + ... + z,), and hence we have (2.75). 
Note that (GL(l)xSL(2), ii,@A,)~.(GL(1),/1,), and that the 
prehomogeneity of (2.73) has been also proved. Q.E.D. 

LEMMA 2.22. For n > m 2 1, a triplet (GL( 1)” x Sp(n) x SL(2nr + 1 ), 
A,@(A, + 1+ 1+ l), M(2n, 2m+ 1)@K’“@K2”@K2n) is a non-P.V. 

Prooj: The action is given by x-+ (aAX’& /?iAy,, flZAyZ. P3,4y3) 
for g= (~1, B1h, B3; A,B)~GL(l)~xSp(n)xSL(2m+l) and x = 
(X; J?, , .r2, Ye) E M( 20, 2nt + 1) @ K’” 0 K*” @ K’“. Then the polynomials 
,fi(-u) = Pf(‘XJX;) (i = 1, 2, 3) with A’, = (X, yi) E M(2n, 2m + 2) and 
gi,(.x) = ‘.rJt; ( 1 < i< j d 3) are relative invariants corresponding to the 
characters ~i(g)=~2”+‘~,(i=1,2,3) and xii(g)=fii/Ij(l<i<j<3), 
respectively. Now assume that n 3 m + 2. Then we have 2n 2 (2m + 1) + 3 
and hence h(x)=Pf(‘X’JX’) with x’=(X, J’,, y2, y,)~M(2n,2m+4) is a 
nonzero relative invariant corresponding to the character x(g) = 
ctZm+ ‘f11fi2f13. H ence, Y(X) =f,f2f3 g12gZ3 g,,C3(,x) is a nonconstant 
absolute invariant. Thus our triplet is a non-P.V. for n 2 m + 2. If 
n = m + 1, then we have 2m + 1 = 2n - 1, and it is castling-equivalent to 
(GL( 1 )4 x Sp(n), A, + A, + /i , + A i ), which is a non-P.V. by Theorem 1.3. 

Q.E.D. 

LEMMA 2.23. For n > m > 1, a tripfet (GL( 1 )4 x Sp(n) x SL(2m + 1 ), 
/i,On,+n,ol+n,ol+lon’,*), M(2n,2m+1)@K2”@K2”@‘“+‘) 
is a non-P. V. 

Proof: Since A, @ A I + A, @ 1 + A, @ 1 + 1 @ A, is castling-equivalent 
to (GL(1)4xSp(n)xSL(2n-2m), /i,O~,+/i,Ol+~,~l+l~~~), it 
isanon-P.V.byLemma2.20.Forn,On,+n,01+/i,01+1O/i:,the 
action is given by x + (CAY’& /?iAy,, f12Ay2, y’B-‘z) for g= (CL, /Ii, f12, y; 
A, B)~GL(l)~xSp(n)xSL(2m+ 1) and x=(X; y,, y,,z)~A4(2n, 2m+ 1) 
0 K2” 0 K2” 0 K2” + ‘. Then the polynomials fi(x) = Pf( ‘XiJXi) with 
Xi=(X,y,)~M(2n,2m+2) (i=l,2) and gj(x)=‘yjJXz (j=1,2) are 
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relative invariants corresponding to the characters xi(g) = c?“+ ‘fi,(i = 1, 2) 
and x;(g) = cryfi,(j= 1,2), respectively, where 

0 Ill 
J= 

i--H -I,, 0 

Then a rational function f’(.~) = (g, f2) . ( g2fi ) ‘(x) is a nonconstant 
absolute invariant, and hence it is a non-P.V. Q.E.D. 

THEOREM 2.24. All non-irreducible 2-simple P. V.s which have (Sp(n) x 
GL(2m+l), A,@A,) (n>ma 1) ((58) in Theorem 1.5) as an irreducible 
component are given by (2.70)-(2.72) and the following (2.76)-(2.78): 

(GL(l)‘+” xSp(n)xSL(2m+l), A,@A,+Z,@l), 
,~heres=l,2;~,=A,,~;,=A,+n,. (2.76) 

(GL(l)‘+’ x Sp(n) x SL(2m + 1 ), A, 0 A I + 10 T,), 
where t= 1, 2, 3; T, =A!*‘, A,. T, =2A, (m= 1); 
T,=Ai*‘+Ai*‘; T,=A,+A: (m=2); 
T,=Aj*‘+A j*)+/j;*‘; exceptfor T,=A,+A,+A:. (2.77) 

(GL(l)‘+‘xSp(n)xSL(2m+l),A,@A,+A,@l+l@T,), 
where r=l,2; T,=Al*); T,=A,+A,, /1:+/i:. (2.78) 

Prooj If ,4 i @A, + p2 @pi (pz # 1, pi # 1)is a P.V., then we have 
pzQP;=~,Q~ I*’ by Theorem 1.5, which is a contradiction by 
Lemma2.17. Now assume that A,@A,+(a,+ ... +a,)@1 is a P.V. 
Then, by Lemmas2.18-2.20, we have s=l,2; 0,=/i,, ol=Az (n=2, 
m=l), 0,=/i, (n=3, m=2) and a,+a,=A,+A,. We shall show that 
A i 0 A i + A i @ 1 + A, 0 1 is actually a P.V. If n = m + 1, then it is castling- 
equivalent to a simple P.V. (GL( 1 )3 x Sp(n), A I + A i + ,4 i). If n Z m + 2, we 
can use Proposition 13 in p. 40 in [ 11, and it is P.V.-equivalent to 
(GL(l)xGL(l)xSL(2m+l), n,On,On,+n,OlOn,+lO/,~~,) 
which is a P.V. with a generic point 

3 ‘(O...O l), ‘(1 o...o 1) . 

One can also show the prehomogeneity of A, @A, + A, @ 1 + A, @ 1 by 
the calculation of the isotropy subalgebra at 
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Since (GL( l)‘+’ xSp(n)xSL(2m+l), A,@A,+l@(r,+ ... +t,)) is 
P.V.-equivalent to (GL( 1)’ +’ x SL(2m + 1 ), AZ + r, + . . . + r,)) by p. 40 in 
[l], we have (2.77) by Theorem 1.3. Similarly (GL( 1)2+’ x Sp(n) x 
SL(2m + 1 ), A, @,4, + A, @ 1 + 1 0 (r, + . . + r,)) is P.V.-equivalent 
to (CL(l)‘+’ x SL(2m + I), A2(A, + 1) + T, + ... + r,) C= (GL(l)2+‘x 
SL(2m+l), A,+A,+s,+ ... +t,) and hence ‘we have (2.78) by 
Theorem 1.3. Now assume that n > m + 2. Then, by p. 40 in [ 11, 
/1,0A,+A,01+/1,01+1~(r,+ . ..+r.) is a P.V., then 
(GL(1)3+’ xSL(2m+1),A2+A,+A,+r,+...+r,)mustbeaP.V.,and 
hence t = 1, r, = A,. However, in this case, it is a non-P.V. by Lemma 2.23. 
Finally, assume that n=m+l, i.e., 2m+1=2n-1, and A,@d,+A,@ 
l+A,@l+l@r is a P.V. Then r must be one of Al*,, Al*,, (2/1,),*,, 
A :* ’ (n = 4). However, we have r # A I*, by Lemma 2.23 and T # Ai* ,, 
(2/1,)‘*‘, A:*‘(n=4) by dimension reason. Q.E.D. 

Thus we obtain the following theorem. 

THEOREM 2.25. All non-irreducible 2-simple P. V.s of type I are given hi 
(2.1))(2.78). 

3. LIST OF ~-SIMPLE P.V.s OF TYPE I 

By Theorem 2.25, any 2-simple P.V.s of type I is castling-equivalent (cf. 
[ 11) to a simple P.V. in Theorem 1.3 or to one of the a-simple P.V.s in the 
following list. For example, a 2-simple P.V. (GL( 1 )3 x SL(4) x SL(4), 
AZ@ A, + A, 0 1 + 18.4,) is castling-equivalent to (4) in (I) with 
A i * ) = A, in the list. Here H denotes the generic isotropy subgroup and 
H - H, implies that H is locally isomorphic to H,. The number of the 
basic relative invariants is denoted by N and A i *) stands for A, or its dual 
A:. 

Notation. A = the spin representation of Spin(2n + 1). 

A’ = a half-spin representation of Spin( 2n). 

x= the vector representation of Spin(n), so that (Spin(n), x)= 
(Wn), ff , ). 

List 

(I) Regular 2-Simple P. V.s of Type I 

(1) (GL(1)2xSL(4)xSL(2), A,@A,+A,@A,), H-(l), N=2. 
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(2) (GUl)3xSU4)xSL(2), A20A,+(A,+A,)@l), H-CL(l), 
N=2. 

(3) (GUl)2xSL(4)xSL(3), A,@A,+A,@l), H-SO(3), N=2. 

(4) (GL(1)3xSL(4)xSL(3), A,@A,+A,@l+l@A~*‘), H- 
SO(2), N = 3. 

(5) (GUl)3xSL(4)xSL(4),A,0A,+/i,01+1@~~), H-S0(2), 
N= 3. 

(6) (GUl)3xSL(5)xSL(2), A,OA,+(A:+Aj*‘)@l), H-(1}, 
N= 3. 

(7) (CL(l)’ x SL(5) x X(3), A, 0 A, + 1 @ AI*‘), H - SO(2), 
N= 2. 

(8) (GL(1)2xSL(5)xSL(8), A20A,+1@A;), H-S0(2), N=2. 

(9) (GL(l)‘xSL(S)xSL(9), A,@A,+l@Af), H-GL(l)x 
SL(2) x SL(2), N= 1. 

(10) (GL(l)3xSp(n)xSL(2m), n,o/i,+lo(/il*‘+/il*‘)), H- 
GL(l)xSp(n-m)xSp(m-l), N=2. 

(11) (GL(l)‘xSp(n)xSL(2), A,@A,+1@2/1,), H-Sp(n-1)x 
SO(2), N = 2. 

(12) (GL(1)2xSp(n)xSL(2), A,@A,+l@3A,), H-Sp(n-1), 
N= 2. 

(13) tG~!,(l)~ x Sp(n) x Z(2), A, 0 /t, + 10 (2/l, + A,)), H - 
Sp(n - 1 ), N = 3. 

(14) (GL(1)2xSp(n)xSL(2m+1), A,@A,+A,@l), H-GL(l)x 
Sp(m)xSp(n-m- l), N= 1. 

(15) (GL(1)4xSp(n)xSL(2m+1), A,@A,+A,@l+l@ 
(A,+A,)‘*‘), H-Sp(m-l)xSp(n-m-l), N=4. 

(16) (GL(1)3xSp(2)xSL(3), A, O/1,+/1,0 1+ 1 @A:), H-CL(l), 
N=2. 

(17) (GL(l)“xSp(2)xSL(2), A,@A,+A,@l), H-S0(2), N=2. 

(18) (GL(1)3xSp(2)xSL(2), Az@A,+A,@l+l@A,), H- {l}, 
N= 3. 

(19) (GL(1)3xSp(2)xSL(4), A20A,+A,01+1@A:), H-(l), 
N= 3. 

(20) (GL(1)2xSO(n)xSL(m), A,@A,+l@/ij*‘), H-SO(m-1)x 
SO(n-m), N=2. 

(21) (GL(1)2xSpin(7)xSL(2), A@A,+l@A,), H-SL(3), N=2. 

(22) (GL(l)‘xSpin(7)xSL(3), A@A,+l@A{*‘), H-X(2)x 
SO(2), N = 2. 
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(23) (GL(l)‘xSpin(7)xSL(6), A@A,+l@A:), H-%,(2)x 
SO(2), N= 2. 

(24) (GL(l)‘xSpin(7)xSL(7), A@A,+l@AT), H-SIT,(~), N=2. 
(25) (GL(l)‘xSpin(‘l)xSL(2), x@A,+A@l), H-GL(2), N=2. 
(26) (GL(1)3xSpin(7)xSL(2), x@A,+A@l+l@A,), H-X(2), 

N= 3. 
(27) (GL(1)3xSpin(7)xSL(6), x@A,+A@l+l@A~), H-SL(2), 

N= 3. 
(28) (GL(l)‘xSpin(8)xSL(2), x@A,+A’@l), H-SL(3)xSO(2), 

N= 2. 
(29) (GL(l)‘xSpin(8)xSL(3), x@A,+A’@l), H-SL(2)xSO(3), 

N=2. 
(30) (GL(1)3xSpin(8)xSt(2), x@A,+A’@l+l@A,), H-X(3), 

N= 3. 
(31) (GL(1)3xSpin(8)xSL(3), ~@A,+A’@l+l@A~*‘), H- 

X(2)x SO(2), N=3. 
(32) (GL(1)3xSpin(8)xSL(6),~@A,+A’@l+l@A~), H-SL(2) 

x SO(2), N= 3. 
(33) (GL(1)3xSpin(8)xSL(7), x@A,+A’@l+l@A:), H-X(3), 

N= 3. 
(34) (GL(l)‘xSpin(lO)xSL(2), A’@A,+1@2A,), H-(G?)x 

SO(2), N=2. 
(35) (GL(1)’ x Spin(l0) x X(2), A’@ A, + 1 @3A,), H- (G,), 

N=2. 
(36) (GL(l)‘xSpin(lO)xSL(2), A’@A,+l@(A,+A,)), H-GL(1) 

x (G,),N=2. 

(37) (GL(1)3xSpin(10)xSL(2),/1’0/1,+10(2/l,+n,)), H-(G,), 
N= 3. 

(38) (GL(1)4xSpin(10)xSL(2),A’@A,+l@(A,+A,+A,)), H- 
(G,), N=4. 

(39) (GL(l)‘xSpin(lO)xSL(3), A’@A,+l@Ai*)), H-X(2)x 
S0(2),N=2. 

(40) (GL(1)2xSpin(10)xSL(14), A’@Al+lgA:), H--%(2)x 
SO(2), N=2. 

(41) (GL(l)‘xSpin(lO)xSL(15), A’@A,+l@A:), H-GL(l)x 
Z(4), N= 1. 

(42) (GL(l)*xSpin(lO)xSL(2), x@A,+A’@l), H-(G,), N=2. 
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(43) (GL( 1)2 x Spin( 10) x X(3), 10 A, + A’ @ l), H - SL(3) x 
SO(2), N = 2. 

(44) (GL(1)’ x Spin( 10) x X(4), x @ A, + A’ @ l), H - SL(2) x 
Z(2), N= 2. 

(45) (GL(l)‘x(G,)xSL(2), A20A,+1@A,), H-,X(2), N=2. 

(46) (GL(l)2x(G,)xSL(6), A,OA,+l@A:), H-X,(2), N=2. 

(II) Nonregular 2-Simple P.V.s of IQpe I 

(1) (GL(l)‘xSL(2m+l)xSL(2), Az@A,+l@tA,) (t=l,2,3). 

(2) (GL(1)3xSL(2m+l)xSL(2), A2@/l,+l@(A,+tA,)) (t= 
1, 2). 

(3) (GL(lY’xSL(2m+l)xSL(2), A2@A,+1@(A,+A,+A,)). 

(4) (GL(l)‘xSL(4)xSL(2), A,@A,+A,@l). 

(5) (GL(1)3xSL(4)xSL(2), A,OA,+A,@Ql+l@A,). 

(6) (GL(1)3xSL(4)xSL(5), A,@A,+A,@l+l@A,*). 

(7) (GL(l)‘xSZ,(S)xSL(2), Az@A,+A;*‘@l). 

(8) (GJ!,(~)~xSL(S)XSL(~), A,~A,+A~*‘@l+l@AJ. 

(9) (GL(1)3xSL(5)xSL(9), A,@A,+Aj*‘@l+l@A~). 

(10) (GL(1)3xSL(5)xSL(2), Az@A,+AI”@1+1@2A,). 

(11) (GL(1)4xSL(5)xSL(2),A,0n,+/i:01+lo(n,+n,)). 

(12) (GL(1)2xSL(6)xSL(2),A2~A,+A~*‘~l). 

(13) (GL(1)2xSL(7)xSL(2), Az@A,+Ai*)@l). 

(14) (GL(1)3xSL(7)xSL(2), Az@A,+A:@l+l@A,). 

(15) (GL(1)2xSL(9)xSL(2), A2@A,+A:@l). 

(16) (GL(l)‘xSp(n)xSL(2m), A,@A,+T) with T=A,@l, 10 
A,, 1on:. 

(17) (GL(1)3xSp(n)xSL(2m), A,@A,+A,@l+l@A~*)). 

(18) (GL(1)4xSp(n)xSL(2m), /i,On,+lo(/il*‘+/il*‘)+T) with 
T=A,@l, l@A,, 10n:. 

(19) (GL(1)3xSp(n)xSL(2), A,@A,+A,@1+1@2A,). 

(20) (GL(l)‘xSp(n)xSL(2m+l), A,@A,+l@T) with T=A,, 
A:, A2. 

(21) (GL(1)3xSp(n)xSL(2m+1), A,@A,+s+T) with S, T= 
‘4,@1,l@A,, 1@/11*. 

(22) (GL(1)4xSp(n)xSL(2m+1), A,@A,+T) with T=l@A,+ 
lcg(A,+A,)‘*), l@(n:+n:+n:). 
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(23) (GL(l)‘xSp(n)xSL(3), A,@A,+1@2/1,). 

(24) (GLW3xSp(n)xSL(5), A,@A,+lo(A,+A:)). 

(25) (GL(l)‘xSp(n)xSL(2), A,@2A,+l@A,). 

(26) (GL(l)‘xSpin(lO)xSL(2), A’@A,‘+l@A,). 
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