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Abstract

Let f :C�PC be a polynomial function. It is well known that there exists a "nite set ALC such that the
restriction of f to C�!f��(A) is a di!erentiable "bration onto C!A. Following Broughton in (Proc. Symp.
Pure Math. 40 (1983) 167.) we call the smallest of such A1s the set of atypical values of f and write it A

�
. Let

F be a generic "ber of f. The main goal of this article is to describe the monodromy on H
�
(F,Z) around an

atypical value a3A
�
. For that purpose we de"ne and study a monodromic "ltration on the homology with

coe$cients in Z : 0LM
��

LM
�
LM

�
LM

�
"H

�
(F,Z). The term M

��
is added to allow for the bound-

ary of F. We introduce a compact model Ķ
�
for the smooth part of the reduced curve associated to the a$ne

"ber f�� (a). One important result of this article is theorem (8.12) which shows how H
�
( Ķ

�
,Z) gives (via the

transfer homomorphism) a precise description of the invariant cycles in H
�
(F,Z). � 2001 Elsevier Science

Ltd. All rights reserved.

MSC: 14D05; 32S40; 32S55

1. Introduction

Let f :C�PC be a polynomial function. It is well known that there exists a "nite set ALC such
that the restriction of f to C�!f��(A) is a di!erentiable "bration onto C!A. Following
Broughton in [4] we call the smallest of such A's the set of atypical values of f and write it A

�
. The

set A
�
contains the set C

�
of critical values of f. As f is not a proper map, in general A

�
is not equal

toC
�
. Indeed one has A

�
"C

�
�I

�
where I

�
is the set of irregular values of f at in"nity (see Section

7 for more details).
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Our aim is to describe the monodromy around any atypical value of f. To achieve this goal we
prepare two tools.
(1) A twist formula. Its proof relies on Durfee's description of the semi-stable reduction given in

[11]. This formula generalizes the local one presented in [12,9].
(2) A homomorphism fromH

�
( Ķ

�
,Z) to H

�
(F,Z) where F is a generic "ber of f, a3A

�
and Ķ

�
is

a compact model for the smooth part of the reduced curve associated to the a$ne "ber f��(a). This
homomorphism follows from a transfer homomorphism.
We now state the main results of this article. In Section 8, we produce a morphism fM from

a surface (which is a blow up of P�(C)) to P�(C). This morphism is a certain compacti"cation of f,
and it has the property that fM ��(a) is a divisor with normal crossings. From the divisor fM ��(a), one
can easily obtain a positive integer m such that the homomorphism (t�!1)� :H

�
(F,Z)PH

�
(F,Z)

is equal to zero, where t stands for the homomorphism induced by the monodromy.
We de"ne a monodromic "ltration 0LM

��
LM

�
LM

�
LM

�
"H

�
(F,Z) by specifying that

M
��

"�x � such that I(x, y)"0 for all y3M
�
� where I( , ) stands for the intersection pairing on

H
�
(F,Z), M

�
"M

��
� Im(t�!1) and M

�
"Ker(t�!1).

The termM
��

which is added to allow for the boundary of F, is computed in Theorem 8.10. The
terms M

�
and M

�
are determined in Theorem 8.15, using essentially the topological tools

described above.
The monodromies can be computed from a combinatorial data which is summarized in (3.16)

and (8.26).
We next apply these results to the determination of the invariant cycles, thus answering

a question which was asked to us by F. Pham. Classically, one looks in the proper case at invariant
cocyles (see [15]). When f is proper there is a neighbourhood <

�
of the special "ber F

�
which

deformation retracts onto F
�
. The invariant cocyle theorem then states that the image of the

homomorphism H�(F
�
,C)�P H�(<

�
,C) ������

H

&� H�(F,C) is equal to Ker(t!1). In the case we con-
sider, f is not proper. When a3I

�
, there is nothing comparable to <

�
and to the deformation

retraction. So the classical point of view does not work to characterize the invariant cocyles in
terms of the cohomology of the special "ber f��(a). That being so, we replace cohomology by
homology and use the transfer homomorphism. It is in Section 8, that we introduce a compact
model Ķ

�
for the smooth part of the reduced curve associated to the a$ne "ber f��(a). One

important result of this article is Theorem 8.12 which shows how H
�
( Ķ

�
,Z) gives (via the transfer

homomorphism) a precise description of the invariant cycles in H
�
(F,Z). In fact, our point of

view gives also a homological version of `thea invariant cycle theorem in the proper case (see
Theorem 5.4).
From our description of the geometric monodromy around a3A

�
and from the determination of

the invariant cycles obtained from Ķ
�
we can answer a question of A. Dimca which deals with the

characterization of the atypical "bers in terms of the homology monodromy. The answer is the
following (for a di!erent approach see [3]).

Theorem 8.18. Let c3C and suppose that the xber f��(c) is irreducible and that the homology
monodromy H

�
(F,Z)PH

�
(F,Z) around c is the identity. Then c is a generic value of f i.e. c�A

�
.

Remark. It is known that after a suitable base change a reducible "ber is always atypical. Hence
the preceding theorem gives a new characterization of the atypical values.
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The article is organized as follows.
In Section 2 we introduce notations and concepts which will be used in the sequel. The weight
"ltration is studied in Section 3. The twist formula is proved in Section 4. In Section 5 we brie#y
recall facts about the transfer homomorphism and use it. In Section 6 we study the monodromy of
a germ of holomorphic function de"ned in a neighbourhood of a normal surface singularity. Now
the "ber has a boundary and this requires a modi"cation of the tools used in Sections 2}5 to take
account of the boundary components. This kind of modi"cation is useful in the a$ne case, to deal
properly with the contribution to the invariant cycles of the homology coming from in"nity.
In Section 7 we make explicit a smooth compacti"cation � :XPP�(C) for the given f :C�PC.

We recall its main properties which have been presented with more details in [18]. An explicit
description of the set of atypical values is then quickly obtained.
In Section 8 we speci"cally deal with the monodromies around an atypical value a3A

�
and also

with the monodromy at in"nity. By de"nition the latter is the monodromy associated to a loop
which goes once around a small circle centered at R3P�(C).
In Section 9 we work out an example of monodromy which sheds light on Theorem 8.12. The

example is based on speci"c polynomials of degree 6 due to Artal [2].

2. The monodromy of a proper morphism

Let X be a complex analytic surface, normal and irreducible. Let ; be an open disc in C,
centered at the origin. Let f :XP; be a proper and surjective morphism.
Let ;H";!�0� and XH"X!f��(0). If ; is small enough, we may suppose that the

singularities of X are in f��(0) and that 03C is the only critical value of f. Under these conditions,
the restriction of f to XH is a di!erentiable "bration onto ;H.
Choose z3;H and let F"f��(z). We write S�� for the circle of radius � centered at the origin ofC

with �" � z � .

De5nition 2.1. A monodromy for f is a di!eomorphism h :FPF such that the restriction of f to
f��(S�� ) is a "bration isomorphic to the obvious "bration of the mapping torus Fx[0,1]/(x,1)+
(h(x),0) onto S�.
The monodromy h is de"ned up to isotopy. We shall construct an explicit monodromy for f and

describe its induced action on H
�
(F,Z) by following the method introduced by Clemens in [5]. The

same path has already been followed by Campo in [1] and byDu Bois-Michel in [8,9] in the local case.
Let p� :X�PX be a resolution of the singularities of X and let p� :XM PX� be a sequence of

blow-ups (of points). Let us write fM for f � p� � p� .

De5nition 2.2. One says that the morphism p� � p� is a very good resolution if fM ��(0) ful"lls the
following properties:

(1) The divisor fM ��(0) has normal crossings.

Let us write D for the reduced divisor associated to fM ��(0) and let D
�
,2,D

�
,2,D

�
be the

irreducible components of D.

(2) Each D
�
is a smooth curve.
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(3) If iOj then D
�
�D

�
either is empty or contains a unique point which will be written

P
��
.

We assume i(j to avoid redundancy.
It is well know that very good resolutions exist. From now on, we assume that p� � p� is a very

good resolution.

Notation 2.3. (i) D�
�
stands for the subset of smooth points of D in D

�
. One has the equality

D�
�
"D

�
!�

���
D

�
�D

�
.

(ii) For every P
��

"D
�
�D

�
we choose a small open disc ;

�� � �
in D

�
containing P

��
and a disc

;
����

in D
�
also containing P

��
. Let DK

�
"D

�
!�

���
;

�� � �
. The di!erence set D�

�
!DK

�
is a disjoint

union of small open annuli.

De5nition 2.4. A curvette �
�
of D

�
is a germ of smooth complex curve, transversal to D

�
at a point

P
�
of D�

�
. The multiplicity m

�
of D

�
in fM ��(0) is the order at P

�
of the restriction fM � �

�
PC. One has

the equality of divisors fM ��(0)"��
���

m
�
D

�
.

Let D�� be the closed disc in C, centered at the origin, of radius �. We write <"fM ��(D�� ) and
�"fM ��(S�� ). We write f� for fM � �PS�� .

Remark. The di!erentiable "bration f� :�PS�� is isomorphic by p� � p� to the "bration
f � f��(S�� )PS�� . Hence we shall also write F for the "ber f��� (z).
From the isomorphism theorem of Durfee [11] and the formulae of du Bois-Michael in [8] we

get the next two claims.

Claim 2.5. For every �'0 there exists a radius 	(�) with 0(	(�);� such that, for every choice of
discs;

�� � �
of radii smaller than 	(�), there exists a deformation retraction R :<PD with the following

properties:

1. The restriction of R to R��(DK
�
) is the analytic projection of a tubular neighborhood of DK

�
in <.

2. For every P3D�
�
(i.e. not only for every P3DK

�
), the inverse image R��(P) is a diwerentiable disc

transversal to D
�
.

3. For every P
��

"D
�
�D

�
the intersection ��R��(P

��
) is a torus, called the plumbing torus.

Notation 2.6. F
�
"F�R��(D

�
), F�

�
"F�R��(D�

�
), FK

�
"F�R��(DK

�
).

Claim 2.7. One can construct a monodromy h for f� with the following properties:

1. The restriction R
�
of R to FK

�
is a cyclic covering of DK

�
of order m

�
. Note that FK

�
is not necessarily

connected.
2. The subspaces F

�
, F�

�
, FK

�
are invariant by h.

3. The restriction hK
�
of h to FK

�
is a generator of the Galois group of R

�
(it will not be necessary

here to tell which generator it is). As a consequence, hK
�
is a diweomorphism of xnite order

m
�
of FK

�
.
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4. If P
��

"D
�
�D

�
, we write m

��
for the g.c.d. of m

�
and m

�
(as before we suppose that i(j). Let A

��
be

equal to R��(;
�� � �

�;
����

)�F. Then F
�
�F

�
is the disjoint union of m

��
boundary components C�

��
of

F
�
and F

�
(
"1,2,2,m

��
). Also A

��
is the disjoint union of m

��
open annuli A�

��
, each A�

��
being

a tubular neighbourhood of C�
��
in F.

5. The m
��
components of A

��
are permuted cyclically and transitively by h. As a consequence,

h��� leaves each A�
��
invariant.

Remark 2.8. The number c
�
of connected components of F

�
divides m

�
and all the multiplicities

m
�
such that D

�
�D

�
O�. Hence c

�
divides m

��
.

3. The weight 5ltration on the integral homology

Let C"�
���

F
�
�F

�
and let � :H

�
(C,Z)PH

�
(F,Z) be the homomorphism induced by the

inclusion of C in F. We consider the Mayer}Vietoris sequence associated to the decomposition of
F as F"��

���
F
�
and to the numbering of the components:

Recall that the homomorphisms � and �
�
are the direct sum of the homomorphisms induced by

the inclusions F
�
LF.

De5nition 3.1. As in [8] we de"ne a "ltration on H
�
(F,Z) by specifying that:

=
�
"�(H

�
(C,Z)), =

�
"�(�H

�
(F

�
,Z)), =

�
"H

�
(F,Z).

One has 0L=
�
L=

�
L=

�
"H

�
(F,Z).

Comments. (1) By the way it is constructed, the monodromy h leaves each F
�
, F�

�
, FK

�
invariant, as

well as C"�C�
��
. We write t for the action induced by the monodromy on homology. Hence,

H
�
(F,Z), the "ltration, the graded group associated to it and the Mayer}Vietoris sequence are all

equipped with a Z[t, t��]-module structure.
Let I be the intersection form on H

�
(F,Z), F being oriented by its complex structure. Let

IH :H
�
(F,Z)PHom

�
(H

�
(F,Z),Z) be the homomorphism adjoint to I. Let also u :H�(F,C)P

Hom
�
(H

�
(F,C),C) be the homomorphism induced by the evaluation.

(2) One can show, as in [8] that u�� � IH(=
�
�

�
C) is the weight "ltration of the mixed hodge

structure on H�(F,C). However, this fact will not be needed in this article.
(3) Using the theory of "brations of Waldhausenmanifolds on the circle or the Nielsen}Thurston

theory of di!eomorphisms of surfaces, one can show that the "ltration on the integral homology of
F by the =

�
depends only on the homotopy class of the "bration f� :�PS�.

De5nitions 3.2. (1) As usual, we associate to D the con"guration graph G(D) in the following way.
To each irreducible component D

�
of D there corresponds a vertex 


�
; and there is an edge between



�
and 


�
if and only if D

�
�D

�
is nonempty.
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(2) By a process which goes back to Nielsen, we associate to the monodromy h constructed in
claim (2.7) a graph G(h) as follows. To each connected component F	

�
of F

�
we associate a vertex s	

�
.

If F	
�
meets F


�
we associate an edge between s	

�
and s


�
to each connected component of F	

�
�F


�
.

From the construction of the graphs, one easily gets the following proposition.

Proposition 3.3. (1) There exists continuous and surjective maps �
�
:DPG(D) and �

�
:FPG(h) such

that ���
�

(

�
)"DK

�
and ���

�
(s	
�
)"FK 	

�
where FK 	

�
"F	

�
�FK

�
.

(2) The monodromy h induces a graph automorphism h


:G(h)PG(h) such that �

�
� h"h



� �

�
.

(3) Let RM be the restriction R �FPD. Then there exists a unique morphism of graphs 	 :G(h)PG(D)
such that the following diagram commutes:

(4) The map 	 can be identixed with the projection of G(h) onto its quotient by the action of h


.

Corollary 3.4. The action of h


equips H

�
(G(h),Z) with a Z[t, t��]-module structure. The homomor-

phism (�
�
)
�
:H

�
(F,Z)PH

�
(G(h),Z) is a Z[t, t��]-module homomorphism.

Proposition 3.5. The homomorphism (�
�
)
�

vanishes on =
�
. The quotient homomorphism

�� :=
�
/=

�
PH

�
(G(h),Z) is a Z[t, t��]-module isomorphism.

Proof. The way �
�
has been constructed shows that, for each 1-cycle a in G(h) one can "nd

(noncanonically) a 1-cycle a� in F such that �
�
(a�)"a. Thus �� is onto.

Let �a�� be the edges, arbitrarily oriented, of G(h). They form a basis of the 1-chains of G(h). As
G(h) is a graph, each homology class in H

�
(G(h),Z) can be written in a unique way as ��n�a� . The

construction of �
�
provides a bijection between the edges �a�� and the connected components �C��

of C. We orient C� in such a way that, if x is an element of H
�
(G(h),Z) such that �

�
(x)"��n�a�

then I(x,C� )"n� . We write (C� ) for the class of C� in H
�
(C,Z). Now, the homomorphism

� :H
�
(F,Z)PH

�
(C,Z) is de"ned by the formula �(x)"��I(x,C� )(C�). Hence Ker(�

�
)
�
"Ker �"

=
�
and the proof is completed. �

Corollary 3.6. Let x3H
�
(F,Z). Then x3=

�
if and only if I(x, y)"0 for all y3=

�
.

Let r
�
: Hom

�
(=

�
,Z)PHom

�
(=

�
,Z) be the restriction homomorphism (for i"0, 1) and let

I
�
"r

�
� IH.

Corollary 3.7. (1) The kernel of I
�

is equal to =
�

and the quotient homomorphism IM
�
:

=
�
/=

�
PHom

�
(=

�
,Z) is a Z[t, t��]-module isomorphism.

(2) The kernel of I
�
is equal to=

�
and the quotient homomorphism IM

�
:=

�
/=

�
PHom

�
(=

�
,Z) is

a Z[t, t��]-module isomorphism.

Proof. As F is without boundary, IH is onto and by (3.6) Ker I
�
"=

�
, Ker I

�
"=

�
. �
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Remark 3.8. Let m be the lcm of the multiplicities m
�
de"ned in (2.4). The de"nition of=

�
implies

that (t�!1)=
�
"0 and that =

�
L=

�
. Hence Corollary 3.7 shows that (t�!1)(=

�
/=

�
)�

(t�!1)=
�
"0. In particular one has (t�!1)�(=

�
)"0.

Corollary 3.9. From the Mayer}Vietoris sequence, one gets the following exact sequence of Z[t, t��]-
modules and homomorphisms:

0PH
�
(G(h),Z) �

�
�
� ��

&� H
�
(C,Z) ��

P �
�

H
�
(F

�
,Z) ��

P H
�
(F,Z)P0.

Remark 3.10. Let c (resp. c
�
) be the number of connected components of F (resp. F

�
) and let

<(i)"�j � s.t. jOi and D
�
�D

�
O�� and m

��
"gcd(m

�
,m

�
). Corollary 3.9 implies that the character-

istic polynomial of the action induced by the monodromy on H
�
(G(h),Z) is equal to

(�
���

(t���!1))(�
�
(t��!1))��(t�!1). By 3.7 one has the same characteristic polynomial for

=
�
and=

�
/=

�
.

To study the module=
�
/=

�
a short way is to glue a disc on each boundary component of FK

�
to

obtain a surface FM
�
without boundary. The monodromy hK

�
extends to a di!eomorphism hM

�
:FM

�
PFM

�
of "nite order. The projection onto the quotient is a rami"ed covering RM

�
:FM

�
PD

�
which extends

the cyclic covering R
�
. The action of hM

�
equips H

�
(FM

�
,Z) with a Z[t, t��]-module structure. From

the de"nition of =
�
and=

�
one gets the next proposition.

Proposition 3.11. The module =
�
/=

�
is isomorphic to �

�
H

�
(FM

�
,Z).

It is not di$cult to describe the Z[t, t��]-module H
�
(FM

�
,Z) in terms of numerical invariants

which come from D
�
and neighboring components (the `haloa of D

�
). Here is how. Let g

�
be the

genus of D
�
and let v(i)"Card(<(i)).

De5nition 3.12. The halo �
�
ofD

�
is the disjoint union of the ordered triple (m

�
, v

�
#2g

�
!2, c

�
) with

the set �m
��
�
�	����

.

The following proposition is a direct generalization of Proposition 1.7 of [9].

Proposition 3.13. The characteristic polynomial of the action induced by hM
�
on H

�
(FM

�
,Z) is equal to

(t��!1)
�������(�
�	����

(t���!1)��)(t��!1)�.

We now interpret geometrically the graded module =
�
/=

�
which is isomorphic to

Hom
�
(=

�
,Z). To do that we use the chorizo space Ch(h) introduced by [19]. By de"nition, Ch(h) is

the quotient of F obtained by identifying each curve C�
��

to a point. Note that Ch(h) can be
identi"ed with D�� which will be de"ned in Section 4. It is clear that h induces a homeomorphism
h

	

: Ch(h)PCh(h) which is of "nite order m. It equips H
�
(Ch(h),Z) with a Z[t, t��]-module

structure.
One has projections �� :FPCh(h) and �� : Ch(h)PG(h) such that �

�
"�� � ��.
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Proposition 3.14. One has

(1) Ker(��
�
:H

�
(F,Z)PH

�
(Ch(h),Z))"=

�
and hence =

�
/=

�
is isomorphic to H

�
(Ch(h),Z).

(2) Ker(��
�
:H

�
(Ch(h),Z)PH

�
(G(h),Z))"��

�
(=

�
/=

�
).

The proof of (1) is immediate and (2) is a direct consequence of Proposition 3.5. From Corollary
3.7 we obtain the following corollary.

Corollary 3.15. H
�
(Ch(h),Z) is isomorphic to Hom

�
(=

�
,Z).

Conclusion 3.16. The con"guration graph G(D) (see (3.2)) together with the halo (see De"nition
3.12) associated to each vertex determine the geometric and the homological monodromies. The
graph G(h) and the action induced by h on G(h) are easily obtained from this data. The graph G(D)
and the halos can be computed from the special divisor D except for the integers c

�
. However, in

some special cases, the c
�
can be determined. If the component D

�
is rational, then c

�
is equal to the

gcd of m
�
and of the m

�
for j3<(i). If the component D

�
is reduced (i.e. m

�
"1) one has c

�
"1.

4. The twist formula

Recall that ��
���

m
�
D

�
is the divisor associated to fM ��(0) and that m is the lcm of the m

�
's. From

Claim 2.7 we deduce that h� is the identity outside the annuli A�
��
which are tabular neighbour-

hoods of the curvesC�
��

LC. Therefore there exist rational numbers r�
��
such that, for all y3H

�
(F,Z)

the following equality holds (where [C�
��
] stands for the homology class):

t�(y)"y#m�
���

�
�
r�
��
I(y,C�

��
)[C�

��
].

Remark 4.1. The sign of the rational numbers r�
��

depends on the orientation of F (via the
intersection form I) but not on the choice of an orientation of the C�

��
LC. The "ber F is equipped

with the orientation induced by its complex structure.

Theorem 4.2 (Twist formula). One has the equality: r�
��

"!1/lcm(m
�
,m

�
).

Corollary 4.3. All the twist numbers mr�
��
associated to h� are negative integers.

Comments. (1) The sign of the twists depends on the direction of the monodromy. It is de"ned as
follows. The loop �(s)"z exp(2i�s) for 0)s)1 goes once along the circle S�� in the direction
which agrees with the orientation induced by the complex structure of D�� on its boundary S�� . One
chooses a vector "eld � tangent to �"fM ��(S�� ) which projects down by df� onto d�/ds. Let
� :��RPR be the #ow associated to�. A monodromy h is the "rst returnmap on F associated to
the #ow; in other words h(x)"�(x,1) for all x3F. To avoid controversy, it is important to note that
such a monodromy is the inverse of monodromies used by topologists in knot theory.
(2) Another way to get the sign of the twists proceeds as follows. One can prove a priori that the

� ofWaldhausen (see [21, p. 322] or [23, p. 109]) is equal to minus the sign of the twist. For a proof see
[22]. Now when everything is oriented by the complex structure, all Waldhausen � are equal to #1.
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Proof of Theorem 4.2. We shall use the semi-stable reduction of fM ��(0), as it is presented by Durfee
in [10]. Let us start from fM :XM P;. Let � be the radius of ; and let ��"����. Let ;� be the disc
centered of the origin of C, of radius �� and let �

�
:;�P; be de"ned by �

�
(z)"z�. Let us consider

the pull-back diagram

Let D� be the reduced divisor associated to ( fM �)��(0). Let n :XM �PXM � be the normalization. One
gets the following commutative diagram:

As fM ��(0) is supposed to be with normal crossings, one can determine the nature of the singular
points of XM � (a priori one knows that they are isolated and on ( fM �)��(0)). More precisely, one has
the following proposition.

Proposition 4.4. (1) The restriction ��
�

�D�PD is a bijection. Let D�
�
be the component of D� which sits

over D
�
. Let D�

�
be the inverse image n��(D�

�
). It is not necessarily irreducible.

(2) Suppose that D
�
�D

�
"P

��
and let m

��
be the gcd of m

�
and m

�
. Then in XM � one has

m
��
intersection points between D�

�
and D�

�
, written Q�

��
for 
"1,2,2,m

��
.

(3) The pointsQ�
��
are the only points inXM � which are possibly singular. Let n

��
be the lcm ofm

�
andm

�
.

(4) The singularity of XM � in Q�
��
is of type A

�
with p"(m/n

��
)!1.

For a proof see [10].

Proposition 4.5. Let 
 :XM ��PXM � be the minimal resolution of the singularities of XM �. We get by
composition a morphism � :XM ��PXM . This morphism is xnite, except possibly over the points P

��
. The

xber ���(P
��
) has m

��
connected components ��

��
. The conxguration graph of each ��

��
is a bamboo

(i.e. a tree with vertices of valency inferior or equal to (2) with (m/n
��
)!1 vertices. Each vertex

represents a smooth rational curve of self-intersection equal to !2.

For a proof see [10].
One has the following commutative diagram:

Let D�� be the reduced divisor of ( fM ��)��(0).
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Lemma 4.6. The divisor ( fM ��)��(0) is reduced (i.e. D��"( fM ��)��(0)).

For a proof see [10].
Let us choose a point z�3;� such that �

�
(z�)"z. Via � one can identify the "ber ( fM ��)��(z�) with

fM ��(z)"F. From the pull-back construction, one can see that h� is a monodromy for fM ��.
If we take account of the intersections of ��

��
with the neighboring components, there are m/n

��
intersection points along ��

��
in D��. As D�� is reduced, the monodromy for each such point is

a Picard}Lefschetz monodromy. It is well known that the P.L. monodromy is a Dehn twist of
sign!1 around the vanishing cycle. For a detailed proof taking great care of the sign, see [16] and
[6]. Observe that our sign and direction conventions are the same as the ones in Lamotke and
Deligne.
Now, each annulus A�

��
of fM ��(z)"F can be identi"ed via � with the intersection B�

��
of

( fM ��)��(z�) with the boundary of a well-chosen neighborhood of ��
��
. The m/n

��
vanishing cycles are

all homologous in B�
��
. Therefore the Dehn twists add up and we get that the twist number for

h� along B�
��
is equal to !m/n

��
. Hence mr�

��
"!m/n

��
and we obtain eventually the equality

r�
��

"!1/n
��
.

We now draw some consequences of the twist formula on the Z[t, t��]-module structure on
H

�
(F,Z).
From the de"nition of the "ltration 0L=

�
L=

�
L=

�
"H

�
(F,Z) given in Section 3 we

immediately get the following proposition.

Proposition 4.7. One has (1) (t�!1)(=
�
)"0 and (2) (t�!1)(=

�
)L=

�
.

Theorem 4.8. One has the equality =
�
"Ker(t�!1).

Proof of Theorem 4.8. There remains to prove that=
�
MKer(t�!1). To do that we de"ne a map

q :H
�
(F,Z)PZ by q(x)"I(x,(t�!1)x). One can prove that q is a quadratic form, but we shall not

need this fact.
From the de"nition of r�

��
we obtain the equality: q(x)"�

���
��mr���(I(x,C�

��
))�.

Let us now suppose that y3Ker(t�!1). From the de"nition of the map q we have that q(y)"0.
The above formula for q(x) applied to q(y) shows that I(y,C�

��
)"0 for all C�

��
, because r�

��
(0

(Theorem 4.2). By (3.6) we have that y3=
�
, which proves the theorem.

Theorem 4.9. One has (t�!1)(=
�
)�

�
Q"=

�
�

�
Q.

Proof of Theorem 4.9. Let us consider the homomorphism (t�!1) :=
�
P=

�
. From Proposition

4.7 we know that (t�!1)(=
�
)L=

�
. From Theorem 4.8 we get an injective homomorphism

� :=
�
/=

�
P=

�
induced by (t�!1). From Corollary 3.7 we deduce that=

�
/=

�
and=

�
have

the same rank over Q, which proves the theorem. �

Remark 4.10. The last theorem shows that �(=
�
/=

�
) is a subgroup of "nite index in=

�
. The "nite

abelian group=
�
/Im(�) is an interesting invariant. It has been used by Du Bois-Michel in the local

case to distinguish topologically singularities which have the same monodromy over Q.
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We have obtained so far a detailed description of the integral monodromy. After tensorization
with C, Remark 3.8, Corollary 3.15 and Theorem 4.9 give the Jordan structure on H

�
(F,C).

Corollary 4.11. Let 
 be a mth root of unity. Then:

(1) The dimension of the 
-eigenspace of H
�
(F,C) (i.e. the number of Jordan n-blocks for n"1 or

2 which correspond to 
) is equal to the dimension of the 
-eigenspace of H
�
(Ch(h),C).

(2) The number of Jordan 2-blocks ofH
�
(F,C) which correspond to 
 is equal to the dimension of the


-eigenspace of H
�
(G(h),C).

5. Transfer and invariant cycles

We brie#y recall some facts about the transfer homomorphism. For details and proofs see [13].
LetK be a ("nite) simplicial complex and let G be a "nite group acting simplicially onK (on the

left). Without loss of generality, we may suppose that:
(i) If � is a simplex of K such that g�"� for some g3G then g � �"id � �.
(ii) The quotient space KM "K/G is a simplicial complex and the projection � :KPKM is

simplicial.
Let A be an abelian group and let C

�
(K,A) be the group of simplicial n-chains on K with

coe$cients in A. One de"nes a homomorphism. ¹
�
:C

�
(KM ,A)PC

�
(K,A) as follows. Let �� be an

n-simplex in KM and let � be a simplex in K such that �(�)"�� . By de"nition ¹
�
(�� )"�

�	

g�.

It is easily checked that the homomorphisms �¹
�
�
�
�

make up a chain homomorphism (the
transfer) ¹ :C

H
(KM ,A)PC

H
(K,A).

Proposition 5.1. (1) The composition �
H

� ¹
H
:H

H
(KM ,A)PH

H
(KM ,A) is equal to multiplication by

r"Card(G).
(2) The composition ¹

H
� �

H
:H

H
(K,A)PH

H
(K,A) is equal to 
"�

�	

g
H
where g

H
is the

homomorphism induced by g :KPK.

From the proposition it is not hard to deduce the transfer theorem which reads as follows.

Theorem 5.2. Suppose that multiplication by r is an automorphism of A. Then:
(1) ¹

H
:H

H
(KM ,A)PH

H
(K,A) is injective.

(2) Im(¹
H
) is equal to the invariant subgroup of the action of G on H

H
(K,A).

Let ¹
H
:H

�
(DK

�
,A)PH

�
(FK

�
,A) be the transfer homomorphism associated to the cyclic covering

R
�
de"ned in (2.7).

Theorem 5.3. Suppose that multiplication by m is an automorphism of A. One has

Ker((t!1) :H
�
(F,A)PH

�
(F,A))"���

�

¹
H
(H

�
(DK

�
,A))�.
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Proof of Theorem 5.3. One has Ker(t�!1)"=
�
by Theorem 4.7. Hence Ker(t!1)L=

�
. The

conclusion follows from the de"nition of =
�
and the transfer theorem.

In principle, Theorem 5.3 is not true if integer coe$cients are used. To deal with this case,
one can proceed as follows. First, one remarks that H

�
(F,Z) is torsion-free and hence

Ker((t!1) :H
�
(F,Z)PH

�
(F,Z)) is a pure subgroup of H

�
(F,Z). Then, the proof of the transfer

theorem, without the hypothesis on A, shows that Im(¹
H
) is contained in Ker(t!1). After

tensorization with Q, one "nally obtains the following theorem.

Theorem 5.4. The subgroup Ker((t!1) :H
�
(F,Z)PH

�
(F,Z)) of H

�
(F,Z) is the smallest pure

subgroup of H
�
(F,Z) which contains �(�

�
¹

H
H

�
(DK

�
,Z)).

Now, the homeomorphism h

	

: Ch(h)PCh(h) is of "nite order and its orbit space is D. The
homeomorphism h



:G(h)PG(h) is also of "nite order and its orbit space is G(D). Hence there are

transfers associated to them. The next theorem is a consequence of the transfer theorem and of
Corollary 4.11 applied to the case 
"1.

Theorem 5.5. (1) The invariant space ofH
�
(Ch(h),C) is equal to ¹

H
(H

�
(D,C)).Hence the dimension of

the invariant space of H
�
(F,C) is equal to dim(H

�
(D,C)).

(2) The invariant space of H
�
(G(h),C) is equal to ¹

H
(H

�
(G(D),C)). Hence the number of Jordan

2-blocks of H
�
(F,C) which correspond to 
"1 is equal to dim(H

�
(G(D),C)).

Comment. The value for the dimension of the invariant space of H
�
(F,C) is well known. See [15,

Section 15].

Corollary 5.6. (1) There are no invariant cycles in H
�
(F,C) if and only if the conxguration of D is

a disjoint union of trees of rational curves.
(2) There are no Jordan 2-blocks in H

�
(F,C) which correspond to 
"1 if and only if the

conxguration graph of D is a disjoint union of trees.

6. The local case

Let (Z,P) be a representative of a germ of complex analytic normal surface at P3Z and let
f : (Z,P)P(C,0) be a holomorphic function. One chooses Z small enough to have Z!�P� smooth.
Using Durfee's theory of neighborhoods, one can "nd a compact sub-analytic neighborhoodN of
P in Z, adapted to f��(0), and a small enough disc;LC centered at 03C such that the restriction
f � ( f��(;)�N!f��(0)�N)P;!�0� is a di!erentiable "bration.
It is proved in [11] and in [17] that the topology of the construction does not depend on the

choices.
We writeX forN�f��(;) and keep f for f �XP;. We proceed as in Section 2 to de"neXM , fM and

D. The new feature is that some components of D have a boundary. From a di!erentiable point of
view, each such component is a compact two-dimensional disc. Let D

�
,2,D

�
be the components

of D which have no boundary and let D
��

,2,D
��

be those which have one. One has the equality
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for divisors fM ��(0)"�m
�
D

�
with i"!r,2,!1,1,2, k. The m

�
are positive integers. The

3-manifold �"fM ��(S�� ) is constructed as in Section 2.
Claims 2.5 and 2.7 are true with the added property that can one "nd a deformation retraction

R such that RM ��(bD)"bF where b( ) stands for `boundarya.
One has points P

��
and curves C�

��
as in Section 2, with i(j. Here i can be (0 but not j. If i is

(0, let j(i) be the unique j such that D
�
�D

�
O�.

We write C
�

for the union of the C�
��
with i(0 and C

�
for the union of those with i'0. Let

C"C
�

�C
�
, The inclusions CLF and F

�
LF induce the homomorphisms � and � as in

Section 3.
We de"ne a weight "ltration 0L=

��
L=

�
L=

�
L=

�
"H

�
(F,Z) by specifying that:

=
��

"�H
�
(C

�
,Z), =

�
"�H

�
(C,Z), =

�
"�(�

�
H

�
(F

�
,Z)).

Remark 6.1. For i(0 the surface F
�
is a disjoint union of annuli A�

�����
for 
"1,2,m

�����
. One

boundary component of such an annulus is the curve C�
�����

and the other boundary component
B�
�����

belongs to bF. As a consequence=
�
is also equal to �(�

���
H

�
(F

�
,Z)).

The twist formula (4.2) is valid. The proof is essentially the same. As in Section 4 a consequence is
the following theorem.

Theorem 6.2. One has the equality Ker((t�!1) :H
�
(F,Z)PH

�
(F,Z))"=

�
.

To describe the Z[t, t��]-module structure onH
�
(F,Z) one studies "rst=

��
. Notice that it can

be de"ned intrisically as a submodule of H
�
(F,Z). Indeed, it consists of the elements x3H

�
(F,Z)

such that I(x, y)"0 for all y3H
�
(F,Z).

Let D
�
be a component of D with i(0. The curves C�

�����
for 
"1,2,m

�����
(or equivalently the

curves B�
�����

) are permuted cyclically and transitively by the monodromy h. One orients them as bF
with F oriented from its complex structure. It is now easy to see that=

��
�C is semi-simple and

that its characteristic polynomial is equal to (t�!1)�����
����

(t������!1) where c is the number of
connected components of F.
The structure of the submodule of invariant cycles Ker(t!1)�=

��
of =

��
is now easily

understood. The multiplicity of the root 
"1 in the above polynomial is equal to (r!1). There is
no problem going from C to Z and one gets the following proposition.

Proposition 6.3. The subgroupKer(t!1)�=
��

of=
��

is torsion-free and its rank is equal to (r!1)
where r is the number of connected components of f��(0)!�P�.

To further study the module structure on H
�
(F,Z) the shortest way is to glue a disc on each

boundary component of bF. One obtains a surface FM without boundary. The inclusion FLFM
induces a surjective homomorphism � :H

�
(F,Z)PH

�
(FM ,Z). The image by � of the "ltration of

H
�
(F,Z) is equal to 0L=M

�
L=M

�
L=M

�
"H

�
(FM ,Z) where=M

�
"=

�
/=

��
.

One then proceeds as in Sections 3, 4, 5. The monodromy h gives rise to a monodromy hM :FM PFM .
The chorizo space Ch(hM ) has only components without boundary. One de"nes DM as the part of
D which consists of the components which have no boundary. The graphs G(DM ) and G(hM ) are
de"ned as before. As P is a normal point inZ,D andG(DM ) are connected. The analogue of Corollary
4.11 is true for the "ltration on H

�
(FM ,Z).
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We conclude this section by stating what happens to the eigenvalue 
"1 in H
�
(F,C).

Theorem 6.4. (1) The dimension of the subspace of invariant cycles of H
�
(F,C) is equal to

(r!1)#dimH
�
(DM ,C).

(2) The number of Jordan 2-blocks of H
�
(F,C) which correspond to the eigenvalue 
"1 is equal to

dimH
�
(G(DM ),C).

7. Compacti5cations for a polynomial function

Let us start from a polynomial function f :C�PC. If (X,>) are coordinates on C�, then f is
expressed by a polynomial f (X,>)"�	����

c	�X	>� where d is assumed to be the degree of the
polynomial. If (X :> :Z) are homogeneous coordinates on P�(C), then f gives rise to a meromorphic
function � :P�(C)}PP�(C) de"ned as usual by �(X :> :Z)"(�� (X;>;Z) :Z�) where �� (X :> :Z)"
�c	�X	>�Z���	���.
We write ¸

�
for the line at in"nity of P�(C), de"ned by Z"0. Hence P�(C)!¸

�
can be

identi"ed with C� equipped with the coordinates (X,>).
We shall call modi"cation of P�(C) a morphism � :XPP�(C) which is a composition of blowing

down (of exceptional curves of "rst kind) whose center project to ¸
�

(it should properly be called
a modi"cation over ¸

�
).

De5nition 7.1. A resolution of the meromorphic function � :P�(C) }PP�(C) is a modi"cation
� :XPP�(C) such that �"� �� is a morphism from X to P�(C).
It is well known that resolutions do exist. Let us call minimal a resolution such that there is no

contractible P�(C) in X which is vertical both for � and �. Classical theorems about birational
morphisms between smooth surfaces imply that a minimal resolution is unique.
For the moment let � be any resolution of �. Let EI (resp. D

�
) be the reduced divisor associated

to ���(¸
�
) (resp. ���(R)). Thus X!EI is canonically isomorphic to P�(C)!¸

�
and can be

identi"ed with C�. Note that ���(¸
�
) is a curve with normal crossings whose con"guration graph

is a tree of P�(C).

Theorem 7.2. D
�
is connected.

Comment. This theorem is true with no extra assumption on f. One does not need to assume that
the generic "ber of � is connected. For a proof see [18]. We now draw important consequences of
the theorem.
Let A

�
,2,A

�
be the connected components of the closure of EI !D

�
. A priori the con"guration

graph of each A
�
is a tree of P�(C). Let E

�
be the unique component of A

�
which meets D

�
.

De5nition 7.3. An irreducible component E of EI is called dicritical if the restriction� �EPP�(C) is
non-constant. As this restriction is holomorphic and proper, it is necessarily surjective.

Corollary 7.4. Each E
�
is a dicritical component. It is the unique dicritical component of A

�
.
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Proof. The restriction� �E
�
PP�(C) cannot be constant, otherwise we would have E

�
LD

�
which

is impossible. If another component of A
�
were dicritical, the subset D

�
of EI would not be

connected.

Corollary 7.5. The restriction � � (A
�
!E

�
)PP�(C) takes values in C and is constant on each

connected component of (A
�
!E

�
).

From now on, we suppose that � is the minimal resolution of �.

Theorem 7.6. The conxguration graph of eachA
�
in the minimal resolution is a bamboo. One extremity

of the bamboo represents the dicritical component E
�
.

Corollary 7.7. Let B
�
be the closure of (A

�
!E

�
) in the minimal resolution. Then the conxguration

graph of B
�
is a bamboo, possibly empty.

For a proof see [18].
We now describe explicitly the atypical set of f, i.e. the minimal set A

�
such that

f � (C�!f��(A
�
))P(C!A

�
) is a di!erentiable "bration. LetC

�
be the "nite set of critical values of

f. Let E
�
be a dicritical component of the minimal resolution. We de"ne I�

�
to be the set of critical

values (di!erent from R) of the restriction � �E
�
PP�(C). And we de"ne I

�
to be equal to

I�
�
���(B

�
)�. Finally let I

�
"��

���
I
�
.

Theorem 7.8. One has the equality A
�
"C

�
�I

�
.

Comment. The union is not necessarily disjoint. It is not hard to see that A
�
LC

�
�I

�
. The

converse requires some work. For a proof see [18].

De5nition 7.9. If z �A
�
the "ber f��(z) is said to be generic. If z � I

�
the "ber f��(z) is said to be

generic at inxnity.

8. The a7ne monodromies

Let f :C�PC be a polynomial function. Let � be the minimal resolution of � de"ned in
Section 7. We consider the following commutative diagram:
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According to De"nition 2.2, there exists a sequence of blowing ups of points p :XM PX such that
p is a very good resolution for all the "bers of fM"� � p :XM PP�(C). We ask moreover that each
"ber cuts transversally the dicritical components. The dicritical components of fM will be written E

�
(for j"1,2, s).

De5nition 8.1. The order d
�
of the dicritical component E

�
is the degree of the restriction

fM �E
�
PP�(C).

Let a3A
�
��R� and D

�
be the reduced divisor associated to fM ��(a). Let D�� be the closed disc

centered at a of radius �. One chooses the radius small enough in order thatD���(A
�
��R�)"�a�.

As in Section 2, we write<"fM ��(D�� ) and �"fM ��(S�� ). We write f� for the restriction fM � �PS�� . Let
FM be a "ber of f� . As fM is a proper map de"ned on a smooth complex manifold, f� is a di!erentiable
"bration. Its monodromy can be described as in Sections 2}5. In particular, for a su$ciently small
� we can "nd a deformation retraction R :<PD

�
ful"lling the conditions stated in (2.5) and

a monodromy h associated to R as in (2.7).
We study "rst the a$ne monodromy at in"nity. Accordingly, we let a"R and we consider the

monodromy h :FM PFM constructed with the help of R :<PD
�
. Let P

�
"D

�
�E

�
. The intersection

R��(P
�
)�FM is made of d

�
points which are cyclically permuted by h. The space

Fs "FM !��
���

R��(P
�
)�FM is isomorphic via � � p to the generic a$ne "ber. To deal with compact

"bers with boundary, we choose (for j"1,2, s) a small open disc ;
�
around P

�
in D

�
and we

consider F"FM !��
���

(R��(;
�
)�FM ).

De5nition 8.2. The di!emorphism h
�
:FPF obtained by restriction of h is the a$ne monodromy

of f at in"nity.
The inclusion of F in FM induces a surjective homomorphism � :H

�
(F,Z)PH

�
(FM ,Z). Let

=
��

"Ker�. Let 0L=M
�
L=M

�
L=M

�
"H

�
(FM ,Z) be the "ltration on H

�
(FM ,Z) de"ned as in

(3.1). For i"0,1,2 we write =
�
"���(=M

�
). Hence the quotients =

���
/=

�
are isomorphic

as Z[t, t��]-modules to =M
���

/=M
�
and the following proposition is a direct consequence of

Sections 4 and 5.

Proposition 8.3. Let m be 1 cm of the multiplicities of the irreducible components of D
�
. Then:

(1) (t�!1)�H
�
(F,Z)"0.

(2) Ker(t�!1)"=
�
.

(3) =
�
/=

�
is a semi-simple Z[t, t��]-module isomorphic to H

�
(G(h),Z).

(4) (t�!1)H
�
(F,Z)L=

�
and M

�
�
�"=

��
�(t�!1)H

�
(F,Z) is of xnite index in =

�
.

Remark 8.4. The index of M
�
in =

�
can be computed with the twist formula (4.2).

Theorem 8.5. One hasKer(t!1)L=
��

and the characteristic polynomial of the semi-simple module
=

��
is equal to (t�!1)����

���
(t��!1) where c is the number of connected components of F.

Corollary 8.6. The rank of Ker(t!1) is (s!1).
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Proof of Theorem 8.5. From Section 7 we know that the divisor D
�
has only rational components

and its con"guration graph is a tree. Hence=M
�
�=

�
/=

��
has no invariant cycle by (5.6).

Remark 8.7. As fM ��(R)"�m
�
D

�
is a divisor with rational components, the number c of connec-

ted components of the "bers F and FM is equal to the gcd of the multiplicities m
�
.

Partial results about h
�

have been obtained by Dimca in [7].
We now study the a$ne monodromy around a3A

�
. Hence h :FM PFM is the monodromy

constructed with the help of R :<PD
�
. For every dicritic component E

�
let �Q

��
� i"1,2, n( j )�

�
�" D
�
�E

�
and let d

��
be the multiplicity of the restriction fM �E

�
at Q

��
.

Remark 8.8. One has the equality d
�
"��� � �

���
d
��
.

Let Fs "FM !��
���

��� � �
���

(R��(Q
��
)�FM ). It is isomorphic via � � p to the generic "ber of f. To deal

again with compact "bers (with boundary) we choose small open discs;
��
aroundQ

��
in D

�
and we

de"ne F"FM !��
���

��� � �
���

(R��(;
��
)�FM ).

De5nition 8.9. The restriction h
�
:FPF of h on F is the a$ne monodromy of f around a.

Let � :H
�
(F,Z)PH

�
(FM ,Z) be the surjective homomorphism induced by the inclusion of F in FM .

Let 0L=M
�
L=M

�
L=M

�
"H

�
(FM ,Z) be the "ltration on H

�
(FM ,Z) de"ned as in (3.1). We equip

H
�
(F,Z) with a "ltration de"ned as follows:=

��
"Ker� and=

�
"���(=M

�
) for i"0,1,2.

Theorem 8.10. The Z[t, t��]-module=
��

is semi-simple and its characteristic polynomial is equal to
(t�!1)����

���
��� � �

���
(t���!1) where c is the number of connected components of F.

Proof. The monodromy h
�
permutes cyclically the d

��
connected components of the boundary of

R��(;
��
)�FM .

Now, let ¸
�
be the union of the irreducible components of D

�
such that the subset of smooth

points Ls
�
of ¸

�
is isomorphic via � � p to the subset of smooth points of the reduced curve

associated to the a$ne "ber f��(a). Without loss of generality, we may assume that ¸
�
is smooth

(just perform some more blow-ups). Let us write D
�
"¸

�
�

�
D

�
where the D

�
's are the irreducible

components which are not in ¸
�
. Let us de"ne DK

�
and Ķ

�
as in Section 2.

Remark 8.11. We interpret Ķ
�
as a compact model for the smooth part of the a$ne special "ber. In

our description of h
�
, an essential part will be played by Ķ

�
to determine the invariant cycles.

The di!erence Ls
�
! Ķ

�
is a disjoint union of small open annuli. One has the following inclusions:

FK
�
"R��( Ķ

�
)�FLFs

�
"R��(Ls

�
)�Fs LF

�
"R��(¸

�
)�FM .

Let 	 :H
�
(FK

�
,Z)PH

�
(F,Z) be the homomorphism induced by the inclusion FK

�
LF. Let also

¹ :H
�
( Ķ

�
,Z)PH

�
(F,Z) be the transfer homomorphism de"ned in Section 5. One of the main

results of this section is the following.

Theorem 8.12. Ker((t!1) :H
�
(F,Z)PH

�
(F,Z)) is the smallest pure subgroup of H

�
(F,Z) which

contains 	(¹(H
�
( Ķ

�
,Z))).

Proof of Theorem 8.12. The theorem is not an immediate consequence of (5.4), because the transfer
on the irreducible components of D

�
!¸

�
does not appear in the statement. We shall prove that
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Ker(t!1)�H
�
(F,Z)"Ker(t!1)�	H

�
(FK

�
,Z). To do that we need to studyD

�
more carefully. Let

P(a) be the set of singular points of the reduced curve associated to the a$ne curve f��(a) and let
Q(a)"D

�
�(��

���
E

�
)"��

���
��� � �

���
�Q

��
�. Recall that p� "� � p :XM PP�(C) is a sequence of blow

ups of points.
For any P3P(a) let D(P) be the divisor p� ��(P). The theory of the resolution of plane curve

singularities implies that the con"guration graph of D(P) is a tree of rational curves.
If Q

��
3¸

�
then D(Q

��
) is empty. Otherwise D(Q

��
) is the unique connected component of D

�
!Ls

�
which meets E

�
at Q

��
. The construction of the resolution at in"nity implies that if D(Q

��
) is not

empty, its con"guration graph is a tree of rational curves.
Theorem 5.2 implies that Ker(t!1)�	H

�
(FK

�
,Z) is the image by 	 of the smallest pure subgroup

of H
�
(FK

�
,Z) which contains ¹(H

�
( Ķ

�
,Z)). Let F(P)"R��(D(P))�F and F(Q

��
)"R��(D(Q

��
))�F.

We write 	
�
:H

�
(F(P),Z)PH

�
(F,Z) and 	

��
:H

�
(F(Q

��
),Z)PH

�
(F,Z) for the homomorphisms

induced by the inclusions. As F"F
�
�

�
F(P)�

���
F(Q

��
) the following two lemmas imply

Theorem 8.12.

Lemma 8.13. One has Ker(t!1)�Im	
�
LIm	.

Lemma 8.14. One has Ker(t!1)�Im	
��

LIm	.

Proof of Lemma 8.13. Let C(P) be the boundary of F(P). One has C(P)"F(P)�F
�
. As the

con"guration graph of D(P) is a tree of rational curves one deduces from (5.6) that one has the
inclusion Ker(t!1)�H

�
(F(P),Z)L�

�
(H

�
(C(P),Z)) where �

�
is induced by the inclusion of C(P) in

F(P). The equality C(P)"F(P)�F
�
"nishes the proof of Lemma 8.13.

Proof of Lemma 8.14. Let C
��
denote R��(;

��
)�F and let C(Q

��
)"F

�
�F(Q

��
). The union of C

��
's

andC(Q
��
) is equal to the boundary bF(Q

��
). As the con"guration graph ofD(Q

��
) is a tree of rational

curves one has by Corollary 5.6 the inclusion Ker(t!1)�H
�
(F(Q

��
),Z)L�

��
(H

�
(bF(Q

��
),Z)). But

C(Q
��
) is contained in bF

�
and h

�
permutes cyclically the connected components of C

��
. Moreover,

the element inH
�
(F,Z) represented by the union of the components of C

��
(oriented as bF) is equal

to the element represented by the union of the connected components of C(Q
��
) (oriented as bF

�
).

This ends the proof of Lemma 8.14 and hence of Theorem 8.12.
In C[X,>] the polynomial ( f (X,>)!a) can be written as the product of irreducible factors

��
���

f ��
�
(X,>). Accordingly, one has the equalities among divisors fM ��(a)"��

���
r
�
¸

�
#

��
���

m
�
D

�
. Now let m be the lcm of the multiplicities �m

�
�
�
and �r

�
�
�
. As H

�
(F,Z)/=

��
is isomorphic to H

�
(FM ,Z) the structure of Z[t, t��]-module on H

�
(F,Z) induced by h

�
is deter-

mined by the following proposition, which is a direct consequence of Sections 4 and 5.

Proposition 8.15. One has
(1) (t�!1)�(H

�
(F,Z))"0.

(2) Ker(t�!1)"=
�
.

(3) =
�
/=

�
is a semi-simple module isomorphic to H

�
(G(h),Z).

(4) (t�!1)H
�
(F,Z)L=

�
.

(5) M
�
"=

��
�(t�!1)H

�
(F,Z) is of xnite index in =

�
.
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We now turn to the study of the homology of the graph G(D
�
) associated to D

�
when

( f (X,>)!a) is irreducible. Let us recall that (see Theorems 5.5 and 6.4) the rank ofH
�
(G(D

�
),Z) is

equal to the number of 2-blocks in the Jordan decomposition ofH
�
(F,Z) which correspond to the

eigenvalue 1, for the action induced by the monodromy h
�
.

Notations 8.16. We write b(P) for the number of branches of f��(a) at P3P(a). If the reduced
divisor B

�
de"ned in (7.7) is empty or if �(B

�
)Oa, we say that the dicritical component E

�
has no

bamboo for a. Otherwise, for convenience's sake, we choose � minimal among the resolutions such
that the closure of ���( f��(a)) intersects the bamboo B

�
only at smooth points of EI . We write

B
�
also for the strict transform in XM (via p) of B

�
, and we call it the bamboo of E

�
. Moreover, we

index the elements �Q
��
� of E

�
�D

�
such that Q

��
"B

�
�E

�
. If Q

��
3¸

�
we set b

��
"1. Otherwise,

b
��
is the number of intersection points of ¸

�
�D(Q

��
).

Proposition 8.17. If ( f (X,>)!a) is irreducible in C[X,>], the graph G(D
�
) has the homotopy type of

a wedge of b circles, where b"�
�
(b(P)!1)#�

���
(b

��
!1).

Proof. The a$ne curve f��(a) is irreducible if and only if ¸
�
is connected and has multiplicity 1.

Then ¸
�
is represented by only one vertex in G(D

�
). As G(D(P)) and G(D(Q

��
)) are trees, the quotient

of the graph G(D
�
) obtained by identifying each tree G(D(P)) and G(D(Q

��
)) to a point has the

homotopy type of G(D
�
). The edges of this quotient graph are in bijection with the intersection

points ¸
�
�G(D(P)) and ¸

�
�G(D(Q

��
)) and the result follows now by computing the Euler

characteristic of this quotient graph.
From the preceeding proposition we shall now deduce the proof of a conjecture of Dimca.

Theorem 8.18. Let a3C. Suppose that f��(a) is irreducible and that the homology monodromy
t around a acts as the identify on H

�
(F,Z). Then a �A

�
.

Remark 8.19. We assume that p is a minimal very good resolution of �. Hence, to say that a �A
�
is

equivalent to say that D
�
"¸

�
. Moreover D

�
"¸

�
is equivalent to P(a)"� and Q

��
3¸

�
for all (ji).

Proof of Theorem 8.18. From the hypothesisH
�
(F,Z)"Ker(t!1) we deduce from Theorem 8.10

that d
��

"1 for all (ji). Hence ifQ
��
is not the intersection of a bambooB

�
withE

�
one has thatD(Q

��
)

is empty and that Q
��

3¸
�
.

Lemma 8.20. If f��(a) is irreducible and if (t!1)H
�
(F,Z)"0 then P(a) is empty.

Proof of Lemma 8.20. We argue by contradiction and suppose thatP3P(a). As (t!1)H
�
(F,Z)"0

the module H
�
(F,Z) has no Jordan 2-blocks. In particular one has H

�
(G(D

�
),Z)"0. By Proposi-

tion 8.17 this implies b(P)"1. Hence D(P) is the exceptional divisor of the resolution of an
irreducible non-smooth plane curve germ. The theory of the resolutions of such germs implies that
D(P) has at least an irreducible component D

�
, such that its halo (see De"nition 3.12) ful"lls the

inequalities v
�
*3 and 1)m

��
(m

�
for all k3<(i). Then Propositions 3.11 and 3.13 show that

exp(2i�/m
�
) is an eigenvalue for the action of the monodromy on (=

�
/=

�
)�C. As

(t!1)H
�
(F,Z)"0 this is impossible. This ends the proof of Lemma 8.20.
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Going back to the proof of Theorem 8.18, we are left to prove that it is impossible for a dicritical
component E

�
to have a non empty bamboo.

Arguing by contradiction, let us suppose that B
�
"��� � �
��

D
 is a nonempty bamboo for a. We
index the irreducible components D
 of B

�
in such a way that D

�
�E

�
"Q

��
and that

D
 �D
��
O�.

As (t!1)H
�
(F,Z)"0 we must haveH

�
(G(D

�
),Z)"0. As f��(a) is irreducible, Proposition 8.17

implies that b
��

"1. Let A
��

be the closure of D(Q
��
)!B

�
. As b

��
"1, A

��
intersects B

�
in a unique

point which we write Q. From Notation 8.16, Q is a smooth point of B
�
. Let D

 be the irreducible

component of B
�
which contains Q. There exists an open neighborhood ; of p(Q) in X and local

coordinates (u, v) in ; such that �(u, v)"u�

g(u, v) and D

 �;"�u"0��; and furthermore
�g"0� ��u"0�"p(Q). As b

��
"1 the germ g is irreducible at p(Q).

Lemma 8.21. If (t!1)H
�
(F,Z)"0, one has that A

��
is empty.

Proof. By de"nition, A
��

is the reduced divisor associated to the exceptional divisor of the
resolution of the plane curve germ u�

g(u, v). Hence, if g is smooth and transverse to D

 at p(Q) one
has that A

��
is empty. If not, there exists an irreducible component D

�
of A

��
with a halo in D(Q

��
)

satisfying the inequalities v
�
*3 and 1)m

��
(m

�
. If we argue as in the end of the proof of (8.20),

we get the desired conclusion.

Lemma 8.22. If (t!1)H
�
(F,Z)"0, one has 
�"e( j ).

Proof. We argue by contradiction. If 
�(e( j ) then m

"km
�� � �

with k'1. As d
��

"m
�
"1 we

cannot have 
�"1. Now if 1(
�(e( j ) the halo of D

 in D
�
is given by �

"(m

 ,1,1)�

�1,1,m
�� � �

�. As in Proposition 3.11 we consider H
�
(FM 

 ,Z). By Proposition 3.13 its characteristic

polynomial is equal to �(t)"(t�

!1)(t!1)�/(t��� � �!1)(t!1)�. As H
�
(FM 

 ,Z) is a direct sum-

mand of=
�
/=

�
the polynomial �(t) divides the characteristic polynomial of h

�
. As m

"km

�� � �
with k'1 and as (t!1)H

�
(F,Z)"0 this is impossible and the proof of Lemma 8.22 is

completed. �

De5nition 8.23. A "ber D
�
of fM will be called a `bamboo extremity "bera if f��(b) is reduced, if

D
�
!¸

�
is a union of bamboos and if everytime¸

�
intersects a bamboo B

�
, it intersects it in exactly

one point which belongs to the extremity component D
�� � �

of the bamboo.

Lemma 8.24. If D
�
is a bamboo extremity xber, then D

�
"¸

�
and thus b �A

�
.

Remark 8.25. The lemmameans that indeed a bamboo extremity "ber intersects no bamboo at all.
We have just shown that the hypothesis of Theorem 8.18 imply thatD

�
is a bamboo extremity "ber.

Thus Lemma 8.24 implies Theorem 8.18.

Proof of Lemma 8.24. We argue by contradiction and suppose that D
�
intersects at least one

bamboo. We choose one and call it B
�
. Let P"¸

�
� p(�(B

�
)) (see the beginning of this section for

the notations). We choose two distinct generic values c
�
and c

�
of f. We also choose a small

compact ball < around P in P�(C) which is a Milnor ball for ���(b),���(c
�
) and ���(c

�
). Let

1236 F. Michel, C. Weber / Topology 40 (2001) 1217}1240



K
�
"���(b)� b< and let K

�
"���(c

�
)� b< for i"1,2. Let ¸(-,-) stand for the linking coe$cient

in b<. Because any two germs in a local pencil have the same intersection number, we must have
¸(K

�
,K

�
)"¸(K

�
,K

�
). But as D

�
is a bamboo extremity "ber intersecting at least one bamboo, an

easy computation shows that ¸(K
�
,K

�
)(¸(K

�
,K

�
) which is a contradiction.

Conclusion 8.26. A statement analogous to (3.16) holds for a polynomial map f : C�PC. Again the
divisor D

�
determines the geometric and the homological monodromies except for the integers c

�
.

9. An example

In this short section we show on an example how the methods developed in this article can be
used to obtain a description of the a$ne monodromy and of its "ltration.
Before getting to details, a word of comment is in order. Let f : XP; be a proper morphism as

in Section 2. Suppose that f has only one critical point on f��(0) and that it is an ordinary double
point. Suppose that the vanishing cycle does not separate the "ber F. Then the homological
monodromy has a Jordan 2-block for the eigenvalue 1. Now, it is easy to reproduce this
phenomenon in the case of polynomial mappingsC�PC. As the referee has kindly pointed out, the
polynomial f (X,>)"X�#X�#>� does the trick. This polynomial is equisingular at in"nity (i.e.
I( f ) is empty). Hence, as far as monodromies are concerned, the polynomial f behaves as if it were
a proper mapping. The example we propose is very di!erent. The value 03C is not a critical value,
but it belongs to I( f ). So, the Jordan 2-block for the eigenvalue 1 is due to the behavior of the
polynomial at in"nity.
The example stems from computations performed by E. Artal in his thesis and which have been

used by him in [2]. Artal studies plane projective curves of degree 6 which are irreducible and have
one singularity of typeA

��
and no other. In what follows we shall only use the (nontrivial) fact that

such curves do exist. Analogous examples could be obtained in degrees 4 and 5 using some of the
curves described in Sections 2.2 and 2.3 of [20].
Let � be any one of the Artal projective curves of degree 6. One chooses a line ¸ which intersects

� transversally at the singular point Q
�
and also transversally at four smooth points Q

�
,Q

�
,Q

�
andQ

�
. Let (X;>;Z) be projective coordinates on P�(C) such that ¸"�Z"0�. Let �� (X,>,Z)"0

be the equation of �. Then f :C�PC de"ned by f (X,>)"�� (X,>, 1) is the polynomial map we are
looking for.
We are interested in the a$ne monodromy around a"03C. In the resolution� :XPP�(C) the

situation at in"nity is as follows.
(1) No dicritic component has a bamboo.
(2) For j"2,3,4,5 there is one dicritic component E

�
over each Q

�
. The degree of the restriction

� �E
�
PP�(C) is equal to 1. Hence each "ber of � cuts E

�
transversally at one point.

(3) For j"1 there is one dicritic component E
�

over Q
�
. The degree of the restriction

� �E
�
PP�(C) is equal to 2. The "ber ���(0) cuts E

�
in one point Q. At Q the "ber ���(0) has

a singularity of type A
��

which is transversal to E
�
. All other "bers ���(c) for c��0,R� cut

E
�
transversally in two distinct points.

InXM the strict transform of � is a smooth curve of genus 1. The generic "ber FM is a smooth curve
of genus 7 which cuts E

�
transversally in two distinct points. The "ber f��(0) has no singular point
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Fig. 1.

in C�. Fig. 1 produces the con"guration graph with multiplicities for EI �D
�
in a minimal very good

resolution p :XM PX as de"ned in 2.2 and used in Section 8. In this "gure, the vertex weighted by
1 represents the closure ¸

�
of fM ��(0) in D

�
, the vertex weighted by !6 represents ¸

�
, and the

vertices weighted by 0 represent the dicritical components E
�
, j"1,2,5. The graph G(D

�
)

weighted by multiplicities is drawn in Fig. 2.
One sees from Fig. 2 that the rank ofH

�
(G(D

�
),Z) is equal to 1. From Fig. 1 and Theorems 8.10

and 8.15 we obtain the Jordan structure of H
�
(F,Z) for the monodromy around 0. For

i"!1,0,1,2 the characteristic polynomial �
�
associated to =

�
/=

���
is given as follows:

�
��

"(t�!1)(t!1)�, �
�
"�

�
"(t!1), �

�
"(t#1)��(t!1)(t��!1).

One can see that ¸
�
has genus 1, that Ķ

�
has six boundary components and that 	 � ¹ is injective.

The rank of the proper space for the eigenvalue 1 in H
�
(F,Z) is the same as the rank of H

�
( Ķ

�
,Z)

and is equal to 7 (compare with Theorem 8.12). Hence we get.

Proposition 9.1. For the action induced by the monodromy h
�
around 0, there is one Jordan 2-block in

H
�
(FM ,Z) for the eigenvalue 1.

See also [3].

Proposition 9.2. The xltration induced by the xltration W on the eigenspace for the eigenvalue 1 has
three nontrivial graded quotients. The dimension of each of them is given by the above computation for
the characteristic polynomials.
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Fig. 2.

Remark 9.3. In the example I
�
is equal to �0�. In [2] Artal shows that f has seven critical values in

C!�0�. Hence the cardinal of A
�
is equal to 8. The monodromy h

�
is not isotopic to h��

�
. Using

Fig. 1 and Section 8, the reader can easily compute the characteristic polynomials �
�
for h

�
.
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