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Mammalian genomes are punctuated by DNA sequences containing an atypically high frequency of
CpG sites termed CpG islands (CGIs). CGIs generally lack DNA methylation and associate with the
majority of annotated gene promoters. Many studies, however, have identified examples of CGI
methylation in malignant cells, leading to improper gene silencing. CGI methylation also occurs
in normal tissues and is known to function in X-inactivation and genomic imprinting. More
recently, differential methylation has been shown between tissues, suggesting a potential role in
transcriptional regulation during cell specification. Many of these tissue-specific methylated CGIs
localise to regions distal to promoters, the regulatory function of which remains to be determined.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

In mammals, the majority of CpG pairs are chemically modified
by the covalent attachment of a methyl group to the C5 position of
the cytosine ring. This modified residue is distributed throughout
the majority of the genome including gene bodies, endogenous re-
peats and transposable elements and functions to repress tran-
scription [1–3]. Methylcytosine spontaneously deaminates to
thymine resulting in the under representation of CpG (21% of that
expected in the human genome) [4]. The genome is punctuated
however by non-methylated DNA sequences called CpG islands
(CGIs) which have an elevated G + C content and little CpG sup-
pression [5–7]. These conspicuous unique sequences are approxi-
mately 1 kb in length and overlap the promoter regions of
60–70% of all human genes [4,6,8–10].

CGIs have been shown to colocalise with the promoters of all
constitutively expressed genes and approximately 40% of those
displaying a tissue restricted expression profile [8,11]. CGI promot-
ers appear to define a class of transcription start site (TSS) which
can initiate from multiple positions. The more tissue restricted
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class of non-CGI promoters is generally associated with a single
well defined initiation site (reviewed in [12]). Promoter association
accounts for the uneven distribution of CGIs in the genome, show-
ing preferential localisation to gene rich loci [4].

Consistent with promoter association, CGIs are generally char-
acterised by a transcriptionally permissive chromatin state
[10,13,14]. These findings suggest that CGIs may provide a means
to distinguish gene promoter regions from the large proportion
of transcriptionally irrelevant intergenic chromatin. Support for
this idea was provided by an early study investigating the distribu-
tion of transcription factor (TF) binding sites in a small panel of
human genes [15]. Whilst binding sites were slightly enriched in
promoter proximal sequences, they were also highly abundant
throughout the genome (approximately 16 sites per 100 bp). This
study concluded that the presence of binding sites alone was insuf-
ficient to identify promoters, which supports the idea that CGIs
may serve as TF ‘‘landing lights” in the darkness of the nucleus
[15,16].

Not all CGIs localise to annotated TSSs (Fig. 1 – example iii),
however it is interesting to note that detailed investigation of
intragenic CGIs has led to the identification of previously unantic-
ipated promoters [17–19]. This raises the possibility that all CGIs
represent sites of transcriptional initiation many of which have
yet to be characterised. Indeed it is possible that certain alterna-
tive transcriptional start sites are utilised in a highly tissue re-
stricted fashion, and consequently have escaped annotation.
Several transcripts initiate from intragenic CGIs and have been
shown to be expressed during specific developmental stages
[17,19].
lsevier B.V. All rights reserved.
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Fig. 1. CpG islands located within a region of human chromosome 19. The upper panel illustrates a 65 kb portion of human chromosome 19 (17195000–17260000) which
contains five annotated genes (blue bars) and four CpG islands. The promoters of OCEL1, NR2F6 and ANKLE1 overlap with CGIs (i,iii and iv) and an additional CGI (ii) localises to
the third exon of NR2F6. The classical sequence parameters applied to CGI prediction are illustrated (dashed red lines) for CpG (observed/expected; CpG[o/e] = 0.6) and G + C
base composition (GC% = 50%). The lower panel represents an enlarged view of four 6 kb regions (i–iv) spanning each CGI and illustrates the distribution of CpG sites (vertical
black strokes) relative to the annotated genes.
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2. CGI identification

CGIs were first identified by digestion of mouse genomic DNA
using the methyl-CpG sensitive restriction enzyme HpaII (CCGG
recognition site). A small portion of the genome, composed of very
highly fragmented DNA, was found to be derived from sequences
containing clusters of non-methylated CpG sites [5,6,20]. Quantifi-
cation of these digestion products, combined with sequence anal-
ysis and correction for contaminating DNA indicated that these
were derived from approximately 26 300 discrete CGIs [21,22].
These sequences were characterised as at least 200 bp in length
and with a G + C content of 50% and a CpG frequency (observed/ex-
pected; [o/e]) of 0.6 (Fig. 1) [7,8].

The completion of the human genome project in 2001 facili-
tated in silico CGI prediction [4]. Values for length and base com-
position similar to those identified by Gardiner-Garden and
Frommer are routinely employed by the major genome browsers
to annotate CGIs (Table 1). Thresholds are somewhat arbitrary
however, and the effect of varying these values can profoundly al-
ter prediction accuracy [23–25]. To reduce the extraneous inclu-
sion of non-CGI sequences Takai and Jones investigated the effect
Table 1
Overview of CpG island prediction algorithms.

Database/prediction Length G + C CpG[o/e]

ENSEMBL P400 P50% P0.6
NCBI relaxed P200 P50% P0.6
NCBI strict P500 P50% P0.6
USCSb >200 P50% >0.6
EMBOSS UDc UD UD
CpGProD >500 >50% >0.6
CpGcluster NA NA NA

a RM, repeat masked; Y, yes; N, no; NA, non applicable.
b Parameters used for CGI identification for the ENCODE project although totals vary
c UD, user defined.
of increasing the minimum length, CpG[o/e] and G + C composition
to 500 bp, 0.65% and 55%, respectively. This increased stringency
reduced the number of identified islands by approximately 90%
and largely excluded contaminating Alu elements. This algorithm
also reduced the number of gene promoter associated islands, sug-
gesting that bona fide CGIs were also being discarded [24].

Repeat elements such as ‘‘young” Alus resemble the base com-
position of CGIs and significantly contribute to the number of false
positives identified [24]. Preliminary computational analysis of the
human genome sequence identified 50 267 CGIs, of which only
28 890 were unique [4]. Many of the multi copy sequences could
be removed by screening against known classes of repeats identi-
fied in the Repbase database [26]. This database is subject to iter-
ative improvements due to updating the repeat repertoire.
Reanalysis of the human genome sequence in 2002 resulted in
the loss of a further 1890 false positives suggesting a more conser-
vative estimate of 27 000 CGIs [27]. The beneficial consequences of
repeat masking can be illustrated by the example of a low copy
repetitive element that is related to the adenovirus sequence lo-
cated on human chromosomes 4 and 19 [28]. This element is iden-
tified as a single CGI or a tandem cluster of repeated CGIs by
RMa Comments Reference

N Stringent length constraint [88]
N Total CGIs = 307 193
N Total CGIs = 24 163
Y Total CGIs = 28 226 [89]
NA Variable parameters [90]
Y Total CGIs = 76 793 [23]
N Clustering Total = 197 727 [25]

due to repeat masking differences between hg17 and hg18 builds [87].
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ENSEMBL and NCBI, but is recognized as a repeat and eliminated by
the algorithm employed by the USCS browser (Table 1).

The total number of predicted CGIs is highly variable depending
on the exact sequence parameters applied. NCBI Mapview main-
tains two different permutations of these parameters to provide
a relaxed and stringent identification of CpG islands (Table 1).
‘‘NCBI strict” predicts 24 163 unique CGIs whereas their relaxed
criterion identifies more than 307 000. This variability arises due
to the following factors: (1) the application of arbitrary thresholds,
(2) no account being taken for the heterogeneity of CGIs and (3) the
fact that DNA sequence based prediction methods necessarily
ignore DNA methylation status.

To overcome these problems we recently developed a novel
technique to select CGI sequences based on the empirical criterion
of non-methylated CpG clustering [29]. A recombinant CXXC do-
main from murine MBD1 with specific affinity for non-methylated
CpG pairs was used to purify CGIs from total genomic DNA
[29–32]. The sequenced library identified in excess of 17 000 CGIs
in human blood DNA. Extrapolating the identified CGI sequences to
annotated genes suggests that the complete human somatic cell
CGI complement is approximately 25 000 [29].

Most computational prediction and sequence selection tech-
niques identify a CGI complement of between 24 000 and 27 000.
Despite the apparent concordance between these methods, many
identified CGIs are not common between the different sets. This
inconsistency may be addressed by the incorporation of multiple
layers of information into prediction methods, including DNA
methylation status and chromatin modifications. CGIs generally
associate with domains of chromatin containing hyperacetylated
nucleosomes consistent with a transcriptionally permissive state
[10,14,33]. In the future, epigenetic information may facilitate
detection methods allowing current, somewhat arbitrary, thresh-
olds to be replaced by accurate contextual information [34].
(A) Direct Inhibition

(B) Demethylation

(C) Steric Hindrance /
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Fig. 2. Potential mechanisms leading to CGI hypomethylation. (A) CGIs remain hypomet
DNA methyltransferases (DNMT; blue ovals). (B) CGIs acquire DNA methylation normal
machinery (RNApolII and TF) and histone H3 lysine 4 trimethylation (H3K4me3) exclu
Methylated and unmethylated CpGs are denoted by filled and open lollipops, respective
3. The origin of CpG islands

The mechanism by which CGIs remain hypomethylated during
the period of global de novo methylation during early development
remains unclear [35,36]. The characteristic clustering of CpG sites
is a consequence of immunity against de novo methylation during
the earliest stages of mammalian development. A simple sugges-
tion would be that CGIs are intrinsically refractory to de novo
methylation by DNA methyltransferases (DNMT) due to their
DNA sequence (Fig. 2A). This seems unlikely however, as CGIs con-
tain a substantially elevated density of CpG sites, the preferred
substrate of the DNMT enzymes [37]. Moreover, CGIs located on
the female inactive X chromosome and those of certain cultured
mammalian cells readily acquire DNA methylation [2,38].

A second possibility is that CGIs are targeted by a DNA demeth-
ylation mechanism, which specifically removes the methyl moiety
from the cytosine base (Fig. 2B) [39]. Various protein factors,
including CGBP (CpG-binding protein) possess a CXXC domain,
which can specifically bind to non-methylated CpG sites [40,41].
This protein has been shown to associate with the MLL complex,
which mediates the formation of transcriptionally permissive
chromatin via histone modifying activities [42]. It is possible, that
an equivalent recruitment mechanism could target a demethyla-
tion activity to CGIs. However, no such demethylase activity has
thus far been identified in somatic tissues.

A plausible alternative is that bound transcription factors steri-
cally preclude DNMT association at CGI sequences (Fig. 2C) [43].
Evidence for such a mechanism is supported by mouse transgenic
experiments in which ablation of binding sites for the ubiquitous
transcription factor Sp1 was shown to facilitate de novo methyla-
tion of the APRT promoter CGI [44,45]. Consistent with this idea,
a-globin is transcribed in the embryo and contains a promoter
CGI whilst the related, but transcriptionally silent b-globin gene
RNA polII

DNMT

DM
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DNMT3L
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hylated via intrinsic sequence properties which exclude the action or association of
ly but are targeted by a demethylating activity (DM). (C) The basal transcriptional
des the DNMTs from sites of transcriptional initiation (dashed green line). (A–C)
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is not embryonically transcribed and has no CGI [46]. Analysis of a
panel of genes expressed during mouse embryogenesis found that
93% are associated with a 50 CGI [47]. These data raise the possibil-
ity that CGIs are footprints of the basal transcription machinery
localised during embryogenic de novo methylation (Fig. 2C). Fur-
thermore, global run on expression analysis indicated that bidirec-
tional transcription initiation frequently occurs at gene promoters
[48]. This observation could account for the relatively large region
of steric hindrance that would be required to generate a typical
CGI. However, this model does not account for the observation that
CGIs are intrinsically sensitive to nuclease digestion and therefore
more accessible than the majority of the genome [14,49]. More-
over, the majority of CGIs remain hypomethylated in terminally
differentiated cells irrespective of transcriptional activity [1,8,10].

Recent studies investigating the methyltransferase like factor
DNMT3L suggests a rather speculative mechanism for the persis-
tence of hypomethylated CGIs. This protein associates with, and
facilitates the action of the de novo methyltransferases [50–53].
However, DNMT3L cannot bind to chromatin in which the Histone
H3 tails are tri-methylated at the lysine 4 position [54]. Genome
wide determination indicated that the majority of protein coding
gene promoters are occupied by RNA polymerase II and possess
islands of trimethylated H3K4 even in the absence of transcrip-
tional elongation in ES cells [13,55,56]. The presence of this active
mark at CGI-promoters may be refractive to de novo methylation
via repulsion of DNMT3L (Fig. 2C).

It is conceivable that more than one of these models is involved
in the establishment of CGIs and the hypomethylation which usu-
ally persists during subsequent differentiation. Global analysis of
chromatin modifications, transcriptional activity, transcription fac-
tor binding and DNA methylation analysis will help to determine
the origin of CGIs and the mechanism that maintains them.
4. CpG island methylation

The majority of CGIs are hypomethylated, but a small percent-
age acquires methylation during normal development. Some of
these examples are known to play a key role in X-inactivation
and genomic imprinting [57,58]. Disruption of CGI methylation
patterns has also been well-documented as a hallmark of neoplas-
tic cells [59]. Recently, DNA ‘‘methylome” characterisation has
been the basis for an increasing number of investigations due to
significant advances in analytical technologies [1,2,10,29,60]. A
major focus of this work has centered on CGIs as they represent
a tractable fraction of the genome with obvious regulatory
potential.

Several studies have recently improved our understanding of
DNA methylation at CGI-promoters. This is of particular interest
as it is known that hypermethylation of CGI promoters result in
stable transcriptional repression [3]. Microarrays probed with
DNA enriched for methyl-CpGs identified 3–4% of CGI-promoters
as hypermethylated in a panel of somatic tissues [2,10,61]. Alterna-
tively, promoters with relatively reduced CpG content were fre-
quently found to be more often hypermethylated [10]. This is
consistent with the observation that a methylated fraction purified
from human whole blood was found to be enriched for DNA se-
quences with a CpG density intermediate between CGIs and bulk
genomic DNA [62].

The above studies focused on gene promoter however CGIs dis-
tal to TSSs have also been implicated in transcriptional regulation
[58,63]. Systematic analysis of all predicted CGIs (149) on the q
arm of human chromosome 21 determined that 22% were hyper-
methylated in peripheral blood DNA [64]. An independent investi-
gation characterised methylation at 2524 regions of human
chromosomes 6, 20 and 22 across 12 tissues using high resolution
bisulfite sequencing [1]. This study identified 9.2% of predicted
CGIs as methylated at more than 80% of CpG sites in one or more
somatic tissues [1]. More recently, global CGI methylation has been
characterised through affinity purification of methylated DNA and
microarray screening. MBD affinity purified (MAP) DNA identified
11.6% of islands as hypermethylated in a panel of somatic tissues
[29]. In a similar manner, Rauch and coworkers identified approx-
imately 25% of CGIs as being heavily methylated in human B cells
[63].

These global studies indicate that sites of CGI methylation fre-
quently localise to genomic regions distal to promoters. Consistent
with this observation, bisulfite analysis identified 2.1% of pro-
moter-associated CGIs as hypermethylated (>80% of CpGs) relative
to more than 9% of the complete CGI complement [1]. However,
despite this observation the exact proportion of hypermethylated
CGIs varies widely between these studies (9–25%). The discrepan-
cies between these studies may be attributed to three key experi-
mental factors:

(1) Variable detection: The relative methylation levels required
for detection differs between each of the analytical tech-
niques. For example, bisulfite analysis provides single base
pair resolution allowing the determination of intermediate
levels of methylation (>20 and <80% meCpG) which is imper-
ceptible by techniques such as Methyl-DNA Immunoprecip-
itation (MeDIP) [2].

(2) Inconsistent CGI classification: The number of CGIs identified
can vary widely depending on the sequence parameters
applied to their identification. This is illustrated for the
study by Rauch et al., where the inclusion of CGIs with a rel-
atively low CpG density, are frequently methylated relative
to CGIs identified by more stringent criteria [1,7,63]. These
sequences are arguably not bona fide CGIs.

(3) Tissue specific CGI methylation: A proportion of all CGIs are
differentially methylated between tissues. Studies investi-
gating multiple tissues will consequently identify a greater
total number of hypermethylated CGIs.

Two recent studies have combined bisulfite conversion with
next generation sequencing technology to characterise DNA meth-
ylation at CGIs [60,65]. This technology, although presently limited
to the characterisation of a small fraction of the genome, provides
unparalleled resolution and a greater insight into the distribution
of DNA methylation in the mammalian genome.
5. Differential CGI methylation

A small but significant proportion of CGIs are differentially
methylated between normal tissues and cell types [1,29,66–70].
Characterisation of these differences identifies the existence of tis-
sue specific CGI methylation fingerprints which may demarcate
cellular functions [69,71].

5.1. Germ line specific hypomethylation

A number of CGIs have been found to be unmethylated in cells
of the germ line, but methylated in all tested somatic cell types. For
example, germ line specific genes of the MAGE (melanoma antigen
encoding genes) family acquire promoter-CGI methylation during
embryogenesis and are silent in all somatic tissues [72]. Promoter
demethylation correlates with the ectopic expression of these
genes in various cancer cells suggesting that DNA methylation is
the primary silencing mechanism [73]. Genome wide characterisa-
tion of a synthetic mouse differentiation model identified accumu-
lation of de novo methylation and transcriptional silencing at the
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Fig. 3. Schematic representation of CGI gene association. (A) A simple mammalian gene with a single promoter associated CGI (high density of vertical black strokes). (B) A
more complex gene structure including alternative promoters (P1–3), multiple intragenic CGIs (i–v), a single intergenic CGI and an antisense transcript (dashed red arrow).
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promoters of many germ line specific genes [74]. Restriction land-
mark genome scanning (RLGS) in a panel of mouse tissues identi-
fied 5% of CGIs as differentially methylated [75]. Candidate
analysis of 15 of these islands confirmed that 14 were specifically
hypomethylated in mature sperm and heavily methylated in so-
matic cells [75]. A similar trend was identified in human tissues,
where promoter arrays probed with methylated DNA from brain,
testis and monocytes identified testis specific hypomethylation
[67]. Furthermore, CGIs shown to be hypermethylated in human
blood were also completely devoid of methylation in sperm DNA
[61].

Sperm specific hypomethylation suggests that certain germline-
specific genes may be irrevocably silenced via CGI methylation in
somatic cells. Since mature sperm cells are transcriptionally inac-
tive, the genes which are regulated by CGI methylation must be ex-
pressed during sperm maturation. Consistent with this suggestion,
somatic acquisition of DNA methylation correlated well with tran-
scriptional activity in human testis (containing primordial germ
cells) and gene silencing in somatic cells [76]. Knowledge of spe-
cific gene expression profiles in immature germ cells will be re-
quired to determine if CGI methylation acts as a primary
repressor of germ line specific genes in somatic cells.

5.2. Differential methylation in embryonic stem cells

Embryonic stem cells are pluripotent and might therefore be
expected to lack any CGI methylation. Characterisation of DNA
methylation patterns in mouse embryonic stem cells (ES cells)
has however identified hypermethylation at approximately 3% of
CGI-promoters. These included various developmental genes such
as Rhox2 and many genes involved in testis and oocyte specific
functions [56]. Rhox genes are temporally and spatially regulated
during post-implantation development in mice and are expressed
specifically in the extraembryonic tissues [77]. The Rhox cluster
has been shown to associate with embryo specific hypermethyla-
tion and transcriptional analysis in DNMT deficient embryonic
cells indicates that this provides the primary silencing mechanism
for these genes [56,77]. Minimal overlap between genes repressed
by DNA promoter methylation and those targeted by PcG and Na-
nog/Oct4 suggests that there are multiple complementary regula-
tory mechanisms which maintain correct expression during
mammalian embryogenesis [56].

5.3. Differential CGI methylation in somatic cells

Recent studies have revealed a significant fraction of CGIs that
show tissue specific DNA methylation. It is tempting to hypothe-
sise that this differential methylation serves to regulate gene
expression during cellular differentiation. Consistent with this no-
tion, the promoter-CGIs of rSPHK1 and hSLC6A8 have been shown
to be specifically methylated in non-expressing tissues [68,78].
The CpG-rich promoter of the human gene MASPIN was shown to
be differentially methylated in a panel of 10 somatic tissues and
cell types. Although this promoter sequence represents a weak
CGI, DNA methylation levels correlate well with the transcriptional
activity of the gene [66].

Analysis of human chromosomes 6, 20 and 22 by bisulfite geno-
mic sequencing identified eleven CGIs which were differentially
methylated between 8 somatic tissues [1]. Interestingly, these
genes displayed a relatively poor correlation with gene expression
levels in these tissues. Global methylation studies also identified a
limited concordance between differentially methylated CGIs and
gene expression [29,63]. It is not yet clear whether this represents
limited sensitivity of the transcriptional assays or an independent
repression mechanism which functions irrespective of methylation
status (discussed below).

A clearer understanding of the role of differential CGI methyla-
tion may be gained by characterising the function of specific genes
in more detail. Strikingly, genes involved in developmental pro-
cesses are frequently associated with differentially methylated
CGIs. PAX6, OSR1 and various members of the Homeobox (HOX)
super family have been shown to exhibit cell type-specific DNA
methylation at CGIs [29,63,69,79]. HOX genes are highly conserved
and function to dictate the positional identities of cells within the
embryo, representing key regulators of mammalian development.
Similarly, the PAX6 transcription factor is required for neural and
ocular development and its expression is temporally and spatially
partitioned within the mammalian brain [19]. Further work is
needed to test the hypothesis that tissue specific CGI methylation
at genes of this kind plays an important role in cell type
specification.
6. CGI methylation and transcription

6.1. CGI methylation and transcriptional regulation

There is extensive evidence to support a functional role for pro-
moter-CGI methylation in transcriptional repression (see, for
example [10,72,80]). DNA methylation of the CpG-rich promoters
of MASPIN and GATA2 correlates with tissue specific gene silencing
[66,75]. In light of this evidence, it is tempting to hypothesise that
the major function of CGI methylation is to repress transcription.
However many genes display a relatively poor correlation between
CGI hypermethylation and the transcriptional status of associated
genes [29,63,81].

There are several potential explanations for this lack of corre-
lation as illustrated in Fig. 3. In a simple example such as that de-
picted in Fig. 3A, hypermethylation of the single promoter
associated CGI would lead to stable transcriptional silencing.
The majority of methylated CGIs are located within intragenic re-
gions where the effect on transcription is less clear [1,29,63].
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Many genes can generate multiple transcripts by utilising alterna-
tive transcription starts sites. Rauch and colleagues identified
expression of PARP12 despite hypermethylation of its primary
CGI promoter. Rapid amplification of cDNA ends (50 RACE), how-
ever, identified transcription initiation from an intragenic pro-
moter downstream of the methylated CGI [63]. Alternative
promoters (e.g. P1–3 in Fig. 3B) could be inactivated by CGI meth-
ylation (Fig. 3B – CGIs (i) and (ii)).

Where intragenic islands do not associate with a known TSS, it
is possible that their methylation could prevent spurious gene
body transcription which could otherwise interfere with the cor-
rect expression of the parent gene (Fig 3B – CGI (iii and iv)). As
yet there is no evidence for this conjecture.

There is evidence that Intragenic CGIs can localise to sites of
antisense non-coding RNA (ncRNA) transcription initiation which
negatively regulate the expression of the sense transcript (Fig. 3B
– CGI (v)). Both the Air and Tsix ncRNA transcripts originate from
CGIs and are involved in the regulation of the sense transcript
[82–84]. The HOXD cluster is repressed in trans by the action of
HOTAIR, a ncRNA transcribed from the HOXC locus [85]. In each
case, CGI methylation results in the derepression of genes silenced
by ncRNAs.

Many hypermethylated CGIs are located in intergenic DNA out-
side coding sequences and therefore have no obvious regulatory
role in gene transcription (Fig. 3B – CGI (vi)). In the case of the
H19/IGF2 imprinted locus however, parent specific methylation at
an intergenic CGI upstream of the H19 ncRNA gene determines
the expression of the imprinted locus. CGI methylation prevents
the association of the insulator element CTCF and promotes
expression of IGF2 from the paternal allele [58]. This illustrates a
potential mechanism whereby hypermethylation of intergenic
CGIs can illicit a transcriptional effect.

These examples illustrate the complexity in determining the ef-
fect of DNA methylation at CGIs. Characterisation of transcription
initiation using RNA polymerase chromatin immunoprecipitation
and RACE will provide a better understanding of the function of
CGI methylation at these sites.

6.2. Initiation or maintenance

Does hypermethylation of TSS associated CGIs act as the ini-
tial silencing mechanism or as a secondary event to provide sta-
ble, heritable gene repression? Several germ line and embryonic
specific genes associate with methylated CGI promoters and can
be reactivated by depletion of DNA methylation levels [56,72,
73,77]. This observation indicates the former possibility;
although it is conceivable that once silenced, the initial repres-
sive event is lost and DNA methylation merely acts as a mainte-
nance device. Several studies have identified differential CGI
methylation between somatic tissues associated with constitu-
tively repressed genes. This suggests that methylation is stochas-
tically accumulated in different cell types in the absence of
transcription. This fits with the observation that CGI methylation
is a relatively late event during X-inactivation following gene
repression [86].

Absence of TFs at silenced promoters could facilitate transient
de novo methylation. This possibility would align with the notion
that methylation may be regarded as the basal state of the genome
and is excluded from specific regions by the presence of bound fac-
tors. Alternatively DNMT recruitment could be mediated by initial
repressive events to target DNA methylation and irrevocably
silence transcription of the associated gene. To dissect these possi-
bilities it will be necessary to measure gene transcription levels,
chromatin modification, transcription factor binding and DNA
methylation during cellular differentiation to determine the order
of events leading to transcriptional repression.
7. Concluding remarks

The completion of the human and mouse genome projects has
revealed and unexpectedly small number of genes [4,27]. The
mammalian transcriptome, however, is highly complex, with many
genes generating multiple, often functionally distinct transcripts
[12]. This is the result of many factors, including alternative splic-
ing, differential promoter usage, TF availability, and the expression
of regulatory ncRNAs. Several recent studies have identified differ-
ential patterns of DNA methylation across the genome. This evi-
dence indicates that CGI methylation may provide an important
epigenetic component of mammalian development and cellular
differentiation. Interestingly, one recent study identified extensive
tissue-specific methylation localised to regions which flank CGIs
(<2 kb). Differential DNA methylation of these CGI ‘‘shores” corre-
lates well with tissue specific gene expression [69]. These findings
illustrate the complex role played by DNA methylation in the reg-
ulation of mammalian transcription.

There are many remaining questions. Do all CGIs colocalise to
sites of transcriptional initiation? Do tissue-specific methylation
patterns have a mechanistic role in ‘‘hard wiring” expression pat-
terns in terminally differentiated cells? How prevalent is inter-
individual differential CGI methylation? These questions must be
addressed before we can begin to understand the role of CGIs in
transcriptional regulation and consequently the aberrant events
associated with disease.
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