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The goal of this study is to understand the physical meaning and evaluate the intrinsic length scale
parameters, featured in the theories of gradient elasticity, by deploying the analytical treatment and
experimental measurements of the dispersion of elastic waves. The developments are focused on
examining the propagation of longitudinal waves in an aluminum rod with periodically varying cross-
section. First, the analytical solution for the dispersion relationship, based on the periodic cell analysis
of a bi-layered laminate and Bloch theorem, is compared to two competing models of gradient elasticity.
It is shown that the customary gradient elastic model with two length-scale parameters is able to capture
the dispersion accurately up to the beginning of the first band gap. On the other hand, the gradient elastic
model with an additional length scale (affiliated with the fourth-order time derivative in the field equa-
tion) is shown to capture not only the first dispersion branch before the band gap, but also the band gap
itself and the preponderance of the second branch. Closed form relations between the microstructure
parameters and the intrinsic length scales are obtained for both gradient elasticity models. By way of
the asymptotic treatment in the limit of a weak contrast between the laminae, a clear physical meaning
and scaling of the length-scale parameters was established in terms of: (i) the microstructure (given by
the size of the unit cell and the contrast between the laminae), and (ii) thus induced dispersion relation-
ship (characterized by the location and the width of the band gap). The analysis is verified through an
experimental observation of wave dispersion, and wave attenuation within the band gap. A comparison
between the analytical treatment, the gradient elastic model with three intrinsic length scales, and exper-
imental measurements demonstrates a good agreement over the range of frequencies considered.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that the classical approaches in continuum
mechanics have limitations in mimicking the behavior of materials
with microstructure. For instance, the conventional theory of linear
elasticity cannot capture the dispersion characteristics of body
waves propagating through a material that appears to be homoge-
neous at the meso scale. This and other limitations provide a moti-
vation towards developing enriched continuum models that are
able to capture the size effects by introducing intrinsic length
scales synthesizing the key features of the sub-scale material struc-
ture. In the context of linear elasticity, the so-called gradient elas-
ticity models have been considered for almost half a century. A
brief survey of the theory of gradient elasticity and its applications
are outlined in the sequel; for a comprehensive overview of the
available formulations, in terms of both static and dynamic prob-
lems, the reader is referred to Askes and Aifantis (2011).
The general theory of gradient elasticity was established in the
1960s by Toupin (1962, 1964) and Mindlin (1964). However, the
problem with applying the general theory resides in a large
number of intrinsic parameters, which makes the experimental
measurements thereof extremely difficult. For this reason, a multi-
tude of reduced models with a manageable number of length-scale
parameters have been proposed. For instance, static theories of
gradient elasticity with a single length-scale parameter are typi-
cally used to deal with the stress singularities near the crack tip
(Aifantis, 1992; Gourgiotis and Georgiadis, 2009). Similar ap-
proaches aiming to mitigate the singularity at the dislocation core
can be found for example in Gutkin and Aifantis (1999). Another
area where the models of gradient elasticity are found to be useful
is the prediction of the wave dispersion characteristics in heteroge-
neous or discrete systems, see e.g. (Mindlin, 1964; Muhlhaus and
Oka, 1996; Gonella et al., 2011). A variety of dynamic models, that
account for higher-order inertial terms and thus allow for a more
detailed description of the wave dispersion, have been considered
in Metrikine and Askes (2002), Askes and Metrikine (2002) and
Askes and Aifantis (2009). An in-depth discussion of the dispersion
phenomena brought about by the models of gradient elasticity can
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Fig. 1. Schematics of the elastic rod with rectangular cuts (left) and its 1D
approximation (right).
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be found in Papargyri-Beskou et al. (2009) and Fafalis et al. (2012).
Many such models, however, are found to be non-causal in the
context of wave propagation; to deal with the causality issue,
one option is to include the fourth-order time derivative (and affil-
iated length-scale parameter) in the formulation (Metrikine, 2006).
As shown in Pichugin et al. (2008), such consideration of the
fourth-order time derivative also caters for an elevated asymptotic
accuracy of the models of gradient elasticity within the framework
of discrete models. A detailed comparison between the dispersive
characteristics of various simplified models of gradient elasticity
can be found in Askes et al. (2008).

One of the biggest challenges in dealing with the theories of
gradient elasticity is a physical interpretation of the featured
length-scale parameters in terms of given microstructure (Askes
and Aifantis, 2011). When tackling the materials with randomly
distributed heterogeneities, a numerical homogenization over
the representative volume element (RVE) is typically utilized
(Kouznetsova et al., 2002; Kouznetsova et al., 2004; Gitman et al.,
2007). In this situation, the parameters of gradient elasticity are re-
lated to the size of the RVE, although such computational platform
brings little to no physical clarity when dealing with multiple
length scales. Another possibility is to derive the latter from the
expansion of a discrete model (Metrikine and Askes, 2002;
Metrikine, 2006), described as a specific arrangement of masses
and springs. One drawback of this approach, however, is the lack
of a precise relationship between the discrete model and the struc-
ture of a given heterogeneous continuum. As an alternative to the
foregoing treatments, one-dimensional multi-scale homogeniza-
tion of a bi-layered laminate was considered in Chen and Fish
(2001) and Fish et al. (2002). Such approach allows one to obtain
a closed-form expression for the intrinsic length scale in terms of
the parameters of the laminate. In the present investigation, it is
shown that the homogenization strategy in Chen and Fish (2001)
and Fish et al. (2002) amounts to a Taylor series expansion of the
affiliated dispersion relationship, enabling the gradient elasticity
model to capture the initial slope and the initial curvature thereof.
In this case, however, the theory of gradient elasticity fails to
capture the salient ‘‘meso’’-frequency features brought about by
the microstructure, such as the presence of the band gaps.

An experimental measurement of the length-scale parameters
of gradient elasticity is likewise an arduous task, as their effect
on the sensory data may be limited. For example, static methods
were deployed in Aifantis (1999), Lam et al. (2003) and Askes
et al. (2012), where the size effects in torsion, bending and fracture
were used to determine the relevant length-scale parameters. In
the context of fracture mechanics, the intrinsic length scale may
be calibrated assuming the equality between the maximum princi-
pal stress and the uniaxial tensile strength of a material (Askes
et al., 2012). On the other hand, the dynamic methods geared
toward exposing the intrinsic length scales typically entail mea-
surements of wave dispersion. For instance, the ultrasound wave
dispersion in polycrystalline metals was studied in Savin et al.
(1970), while Jakata and Every (2008) deployed neutron scattering
to obtain the dispersion characteristics of cubic crystals. In Wang
and Hu (2005), on the other hand, the dispersion of flexural waves
in carbon nanotubes (obtained via molecular dynamic simulations)
was compared to that stemming from the theories of gradient
elasticity. In most wave-based techniques, however, the attention
is focused on the low-frequency approximation of the germane
dispersion relationship, whereby the dispersion is treated as a
small correction to the ‘‘baseline’’ non-dispersive wave model.
Unfortunately, such paradigm does not cater for distinguishing
between multiple length scales of gradient elasticity, e.g. between
the ‘‘static’’ length scales and those that are inertia-related.

To help bridge the gap, this work employs both theoretical
analysis and experimental observations to shed light on the
fundamental relationship between the material microstructure,
wave dispersion, and equivalent-homogeneous parameters of gra-
dient elasticity. The primary goals are to understand the physical
meaning of the length-scale parameters featured by two promi-
nent models of gradient elasticity and to attempt their measure-
ment in an experimental setting. To facilitate the analytical
treatment of the dispersion analysis, a one-dimensional problem
of longitudinal wave propagation in an elastic rod with periodically
varying cross-section is adopted as a modeling platform.

2. Problem statement

Consider the propagation of longitudinal waves in a non-
uniform rod characterized by the periodic pattern of rectangular
cuts as shown in Fig. 1. The cuts, also referred to as the ‘‘damage’’,
endow the wave propagation problem with a length scale L (the
length of the unit cell) and a dimensionless parameter c ¼ A2=A1,
which describes the ratio between the damaged and intact cross-
sectional areas. The analysis of the wave dispersion in such periodic
system is performed from both theoretical and experimental per-
spectives, with the aim of establishing a link between the parame-
ters of gradient elasticity and germane material microstructure.
3. Wave dispersion in a periodic bi-layered structure

To study dispersion of elastic waves in a homogeneous rod with
varying cross-section, it is useful to first consider an equivalent
one-dimensional (1D) model that assumes constant cross-section
but varying material properties as shown in the right panel of
Fig. 1. Assuming time-harmonic excitation at frequency x, the gov-
erning equation for the propagation of longitudinal waves in the
latter system reads

@

@x
EðxÞ @u

@x

� �
þ qðxÞx2u ¼ 0; ð1Þ

where x is the axial coordinate; u carries the implicit time factor
eixt , and qðxÞ and EðxÞ signify respectively the (varying) mass den-
sity and Young’s modulus of the rod. In this setting, the analysis
of wave propagation through material with periodic structure can
be performed using the Bloch analysis e.g. (Brillouin, 1946), which
can be formulated for the unit cell as

u

r

� �����
x¼L

¼ e�ikL u

r

� �����
x¼0

; ð2Þ

where u and r ¼ E@u=@x denote respectively the axial displacement
and affiliated normal stress, and k is the wave number. Relationship
(2) can be understood as the boundary condition for the problem of
wave propagation through a bi-layered material that is governed by
(1). With the aid of the transfer matrix approach, on the other hand,
the solution of (1) can be written as

u
r

� �����
x¼L

¼ T2 T1
u
r

� �����
x¼0

; ð3Þ

where the matrices T1 and T2 are given respectively by
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with c ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
denoting the longitudinal wave sound speed in the

rod with a constant cross section. By requiring the existence of a
nontrivial solution to (2)–(4), one obtains

det T2 T1 � e�ikLI2
� �

¼ 0; ð5Þ

where I2 is the identity matrix of size two. The solution of (5) re-
sults in the dispersion relationship

k ¼ 1
L
� cos�1 ð1þ bÞ cos

xL
c

� �
� b

� �
þ 2np

� �
;

b ¼ 1
4

cþ c�1 � 2
� �

; ð6Þ

where n is an integer and b describes the contrast in material prop-
erties between two layers. Eq. (6) furnishes many families of the
dispersion relationship, depending on the choice of the sign in front
of the cosine function and n. In the analysis of periodic structures,
the wavenumber k is typically taken from 0 to p=L, which corre-
sponds to the first Brillouin zone e.g. (Gonella and Ruzzene,
2010), so that infinitely many frequencies correspond to each k
(see the left panel in Fig. 2). This, however, may not be suitable
for the problem under consideration since such dispersion relation
is not reducible to k ¼ x=c, in the case of a rod with constant cross
section (c ¼ 1). To tackle the problem, the so called extended i.e.
‘‘unwrapped’’ version of dispersion relation (Brillouin, 1946) should
be considered. This case, which satisfies the limiting behavior as
c! 1, is shown in the right panel of Fig. 2 for b ¼ 0:11. As can be
seen from the display, the real part of the wave number monoton-
ically grows with frequency while fluctuating around the straight
line. Here, the observed deviation from the linear behavior dimin-
ishes for vanishing values of b and the solution converges to
k ¼ x=c as b! 0. One can also observe the presence of the band
gaps, which feature constant real part of k and non-zero imaginary
part of k. With reference to (6), the latter are bounded by the fre-
quencies where

ð1þ bÞ cos
xL
c

� �
� b ¼ �1 ) xL

c
¼ � cos�1 b� 1

bþ 1

� �
þ 2np;

n ¼ 0;1;2 . . . : ð7Þ

In what follows, the featured (unwrapped) dispersion relationship
is compared to two representative models of gradient elasticity.
Fig. 2. Alternative representations of the dispersion rela
4. Gradient elasticity as a low-frequency approximation

The characterization of a dispersion relationship for a material
with ‘‘microstructure’’ such as that in Fig. 1 can also be effected
within the framework of gradient elasticity (GE) (Mindlin, 1964;
Askes and Aifantis, 2011). In what follows, an attempt is made to
do so by making reference to two prototypical models that have
been previously considered in a number of studies, see e.g. (Askes
et al., 2008).

4.1. Two length-scale model

Out of a wide variety of available GE models, perhaps the most
prevalent governing equation describing the (dispersive) one-
dimensional wave propagation reads

1� h2 @2

@x2

 !
@2u
@t2 ¼ c2

o 1� l2 @2

@x2

 !
@2u
@x2 ; ð8Þ

see Mindlin (1964), where h and l are the length-scale parameters of
the gradient elastic model, co is the zero-frequency limit of the
phase velocity, and u denotes the axial displacement. On taking
u / eiðxt�kxÞ, one finds the dispersion relationship affiliated with
(8) to read

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� h2x2=c2

oÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� h2x2=c2

oÞ
2
þ 4l2x2=c2

o

q
2l2

vuut
: ð9Þ

Here the sign in front of the inner square root should be chosen to
ensure the solution with either zero or positive attenuation coeffi-
cient as will be examined later. The gradient elastic model (8) has
three independent parameters, co;h, and l, which can be selected
based on different considerations. For instance, (9) can be viewed
as a low-frequency approximation of the dispersion relationship
(6). With such objective, parameters co; h, and l are selected so that
(6) and (9) have (i) the same initial slopes, and (ii) the same onset of
the first band gap. These requirements produce the system of
equations

co ¼
cffiffiffiffiffiffiffiffiffiffiffiffi

1þ b
p ;

�ð1� h2x2
1=c2

oÞ
2l2 ¼ k2

1;

1� h2x2
1

c2
o

 !2

þ 4x2
1l2

c2
o
¼ 0;

ð10Þ
tionship (6): wrapped (left) and unwrapped (right).
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where

k1 ¼
p
L
; x1 ¼

c
L

cos�1 b� 1
bþ 1

� �
; ð11Þ

describe the position of the first band gap according to (7). The sys-
tem of Eq. (10) can be solved to find the length-scale parameters l
and h as

l2 ¼ �ð1þ bÞ L2

p4 cos�1 b� 1
bþ 1

� �� �2

;

h2 ¼ L2

1þ b
cos�1 b� 1

bþ 1

� �� ��2

� 2L2

p2 : ð12Þ

Note that according to (12) coefficients l2 and h2 may take negative
values, which contradicts the notion of positive definiteness of the
strain energy density in gradient-elastic solids (Mindlin, 1964).
However, it is known (e.g. Mindlin, 1972) that the only way to
match the wave dispersion in a lattice is to forgo the latter restric-
tion of positive definiteness, see also Fish et al. (2002) for a partic-
ular 1D example. In this setting, the results presented herein are
consistent with the observations in Mindlin (1972), as the negative
values of the featured length-scale parameters are required to
match the observed wave dispersion in a ‘‘damaged’’ rod. Further-
more, models of type (8) are typically derived as a low-frequency
approximation (Mindlin, 1964) of a material with microstructure.
Accordingly their lack of positive definiteness (when e.g. l2 and h2

are negative) should be interpreted in the context of this limitation.
As an illustration, Fig. 3 plots a comparison between the 1D model
(6) and the GE model (9) with co;h, and l given by (10a) and (12). In
this particular case, (9) deploys positive sign in front of the inner
square root both for x < x1 and x > x1. In general, the sign is cho-
sen so that ImðkÞ ¼ 0 outside of the band gap, and ImðkÞ < 0 within
the band gap which ensures positive energy dissipation. As can be
seen from the display, the first branch of the dispersion relationship
(before the band gap) is well approximated by the GE model; how-
ever, the band gap itself and the second branch are poorly described
by (9).

4.2. Three length-scale model

In order to describe the first band gap predicted by (6), one has
to endow the gradient elasticity model with at least one additional
parameter. One possibility is to include the fourth-order time
derivative in the governing Eq. (8) as examined e.g. in Metrikine
(2006), Pichugin et al. (2008) and Askes et al. (2008). In this case,
the dispersive propagation of elastic waves is described by
Fig. 3. Comparison in terms of the dispersion relationship between the periodic 1D
model (6) with b ¼ 0:11 and gradient elasticity model (9) with the GE parameters
given by (10a) and (12).
1� h2 @2

@x2 þ
s2

c2
o

@2

@t2

 !
@2u
@t2 ¼ c2

o 1� l2
@2

@x2

 !
@2u
@x2 ; ð13Þ

where s is the additional length-scale parameter. The dispersion
relation that corresponds to (13) reads

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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oÞ �
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oÞ
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oð1� s2x2=c2
oÞ

q
2l2

vuut
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ð14Þ

Again, the sign in front of the inner square root is chosen so that k is
real-valued outside of the band gap, and has negative imaginary
part therein. The dispersion relation (14) now involves four inde-
pendent parameters, which allows the GE model to reproduce the
end of the first band gap in terms of x2 in addition to the previous
requirements. The system of equations, analogous to (10), can be
written as

co ¼
cffiffiffiffiffiffiffiffiffiffiffiffi

1þ b
p ;

�ð1� h2x2
1=c2

oÞ
2l2

¼ k2
1;

1� h2x2
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þ 4l2x2
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c2
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c2
o

� �
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1� h2x2
2

c2
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þ 4l2x2
2

c2
o

1� s2x2
2

c2
o

� �
¼ 0;

ð15Þ

where

k1 ¼
p
L
; x1 ¼

c
L

cos�1 b� 1
bþ 1

� �
;

x2 ¼
c
L

2p� cos�1 b� 1
bþ 1

� �� �
; ð16Þ

are the parameters associated with the first band gap. By solving
(15) and (16), one can express the GE parameters in terms of the
quantities of the 1D model as

l2 ¼ � 1� ðx1=x2Þ2

4ðp2 � L2x2
1=c2

oÞ
L2; h2 ¼ c2

o

x2
1

1þ 2p2l2

L2

 !
;

s2 ¼ c2
o

x2
1

1þ p4c2
ol2

L4x2
1

 !
: ð17Þ

As an illustration, Fig. 4 shows a comparison between the disper-
sion relation (6) and its gradient elastic approximation given by
(14), (15a) and (17). A comparison demonstrates that the modified
GE model (13) with four parameters performs significantly better
than its three-parameter analog (8). The dispersion behavior is
now captured fairly accurately up to the end of the first band gap
and further into the second branch.

4.3. Comment on the homogenization approach

A similar problem of wave dispersion through a bi-layered lam-
inate was analyzed in Chen and Fish (2001) and Fish et al. (2002)
via the homogenization procedure. By interpreting the results in
Fish et al. (2002) in terms of the current notation, one finds that

co ¼
cffiffiffiffiffiffiffiffiffiffiffiffi

1þ b
p ; l2 ¼ � b

12ð1þ bÞ L
2; ð18Þ

while the remaining GE parameters (h and s) are identically zero
since the gradient elastic model used in Fish et al. (2002) has only
one length scale. A comparison between (15a) and (17) on the
one hand and (18) on the other reveals that the zero-frequency limit



Fig. 4. Comparison in terms of the dispersion relationship between the periodic 1D model (6) with b ¼ 0:11 and gradient elasticity model (14) with the GE parameters given
by (10a) and (17).
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of the phase velocity, co, has the same value in both treatments,
while the respective formulas for the length-scale parameter l dif-
fer. To better understand the meaning of (18), one can expand (6)
in Taylor series to obtain

x2 ¼ k2c2

1þ b
1� b

12ð1þ bÞ L
2k2 þ OðL4k4Þ

� �
: ð19Þ

With reference to (18), expansion (19) shows that the homogeniza-
tion procedure in Fish et al. (2002) allows one to capture the initial
slope and the curvature of the dispersion relationship exactly,
which provides only a low-frequency approximation of the disper-
sion behavior (6). In contrast, the four-parameter GE model (13)
with parameters given by (15a) and (17) has the ability to capture
the dispersion of elastic waves through a bi-layered laminate up
to, through, and past the first band gap.

4.4. Comment on the second gradient theories

For completeness, one should mention that higher-order GE
models have also been proposed in the literature, such as the sec-
ond gradient model in Mindlin (1965). To transcend the limitations
of the latter formulation that has its roots in elastostatics, a dy-
namic extension of this theory was proposed in Fafalis et al.
(2012), where an ad hoc assumption about the equivalence be-
tween the kinetic energies of the first-order GE model Mindlin
(1964) and its second-order counterpart Mindlin (1965) has been
made. By following the derivation in Fafalis et al. (2012), a one-
dimensional version of the elastodynamic second gradient model
can be written as

1� h2 @2

@x2

 !
@2u
@t2 ¼ c2

o 1� l2
1
@2

@x2

 !
1� l2

2
@2

@x2

 !
@2u
@x2 ; ð20Þ

which, on taking u / eiðxt�kxÞ, reads

1þ h2k2

 �

x2 ¼ c2
o 1þ l2

1k2

 �

1þ l2
2k2


 �
k2
: ð21Þ

The latter equation can be solved analytically for k to compute the
germane dispersion formula. A preliminary analysis indicates that
the dispersion relationship stemming from (21) is similar to (14)
in that it features three parameters that can be adjusted to capture
the onset (in terms of both frequency and wave number) and the
width of the first band gap. However, the complexity of the problem
affiliated with (21) precludes similar analytical treatment (i.e. the
length-scale parameters cannot be explicitly expressed in terms of
the microstructural features), which may cloud a physical interpre-
tation of the GE parameters that is the focus of this study. For this
reason, the three-parameter model (20) is not investigated in fur-
ther detail.

4.5. Physical meaning of the parameters of gradient elasticity

To help understand the meaning of the (squared) length-scale
parameters l2

;h2 and s2, it is instructive to consider the case of
small contrast between the two layers comprising the unit cell,
namely b ¼ 1

4 ðcþ c�1 � 2Þ � 1 (see Fig. 1). In this case, expressions
(17) can be expanded to the leading order in Taylor series to obtain

l2 ¼ � L2

2p2 þ Oð
ffiffiffi
b

p
L2Þ;

h2 ¼ L2

p2

3
p
� p

4

� � ffiffiffi
b

p
þ OðbL2Þ;

s2 ¼ L2

2p2 þ Oð
ffiffiffi
b

p
L2Þ:

ð22Þ

As expected, l;h and s all scale linearly with L since there are no
other length scales in the physical problem. However, the three
parameters differ in magnitude when b� 1, which may be repre-
sentative of many physical configurations. In particular, parameters
l and s are both OðLÞ for small b and do not vanish in the limit of a
non-dispersive material (b! 0). In this case, the key role of l and s
is to reflect the size of the unit cell, which is primarily responsible for
the position (frequency- and wave number-wise) of the band gap. In
particular, from (16) and (22) it follows that the wave-number loca-
tion of the first band gap, kbg, is given by

kbg ’
1ffiffiffiffiffiffiffiffiffiffi
�2l2

p ’ 1ffiffiffiffiffiffiffi
2s2
p ; b� 1: ð23Þ

Consequently, the characteristic i.e. ‘‘center’’ frequency of the band
gap is approximated by xbg ¼ cokbg. In contrast the third length
scale, h, is primarily responsible for the width of the band gap. To
establish the latter claim, one may expand x1 and x2 in (16) in Tay-
lor series and deploy the second of (22) to show that

Dxbg ’
4c
L

ffiffiffi
b

p
’ 4p2 3

p
� p

4

� ��1 c h2

L3

¼ 4
p

3
p
� p

4

� ��1

c h2 k3
bg; b� 1; ð24Þ

where the last equality makes use of the fact that kbg ¼ p=L, see
(16). To illustrate the performance of the GE model (13) with
approximate, physically-driven values of the length-scale parame-
ters l;h and s, Fig. 5 shows a comparison between the dispersion
relationship for the 1D bi-layered model (6) and the gradient



Fig. 5. Comparison in terms of the dispersion relationship between the periodic 1D model (6) with b ¼ 0:11 and gradient elasticity model (14) with the asymptotic values
(b! 0) of the GE parameters given by (10a) and (25).
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elasticity model (14) with (i) co ¼ c=
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
taken to match the ini-

tial slope of the observed dispersion relationship, and (ii) the
length-scale parameters taken as

l2 ¼ �1

2k2
bg

; h2 ¼ 3
p
� p

4

� �
pDxbg

4c k3
bg

; s2 ¼ 1

2k2
bg

: ð25Þ

Fig. 5 shows that the gradient elastic model with a set of
approximate parameters (25) is still able to describe the essence
of the dispersion relationship in the bi-layered material. The pri-
mary advantage of (25) over (17) lies in the transparency of the
physical meaning of the parameters l;h and s, which allows for a
better understanding of the relation between the salient features
of the dispersion relationship and corresponding gradient elastic
model.

In support of the relevance of the asymptotic expressions (22)
and (25), one may recall with reference to 6 and Fig. 1 that

c :¼ A2

A1
¼ 1þ 2b� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ b

q
< 1; ð26Þ

which demonstrates for instance that setting b < 0:1 requires the
ratio of the cross-sectional areas in Fig. 1 to be bounded as
0:54 < c < 1. In other words, the ‘‘small contrast’’ asymptotics 22
and 25 remain relevant even in situations where the damaged seg-
ment of the unit cell is affiliated with the 46% reduction in the
cross-sectional area.

4.6. General case of an arbitrary notch length

This section considers the dispersion of elastic waves through a
bi-layered structure (see Fig. 1) in a more general case when the
lengths of the ‘‘narrow’’ and ‘‘wide’’ parts of the rod are different.
By using symbol L to denote the overall length of the unit cell,
the length of the wide part is now taken as dL (0 < d < 1), while
the length of the narrow part consequently equals ð1� dÞL. By
Fig. 6. Variation of the normalized parameters of gradient elast
performing the analysis similar to that in Section 3, the dispersion
relationship for such generalized bi-material rod can be derived as

k ¼ �L�1 cos�1 ð1þ bÞ cos
xL
c

� �
� b cos

xð1� 2dÞL
c

� �� �
þ 2pn

L
;

b ¼ 1
4

cþ c�1 � 2
� �

: ð27Þ

Unfortunately, the closed-form computation of the position k1 of
the first band gap from (27) is not possible, which precludes the
analytical treatment commensurate to that in Sections 4.1 and
4.2. Alternatively, one can find x1 and x2 numerically from (27),
and then use 15(a), 16(a) and 17 to find the effective values of
the length-scale parameters (l;h and s) of gradient elasticity. The re-
sult is presented in Fig. 6, where the values of the normalized
length-scale parameters are plotted versus d and b. As can be seen
from the display, all figures are symmetric with respect to the line
d ¼ 1

2, which can be independently concluded from (27). Further-
more, consistent with the asymptotic expansion (22) for d ¼ 1

2, the
variations of jljðd;bÞ and sðd;bÞ are notably smaller than that of
hðd; bÞ. Finally, the limit of the featured distributions as b! 0 is also
consistent with (22) since 1=ð

ffiffiffi
2
p

pÞ � 0:225.
5. Experimental study

To investigate the dispersion of longitudinal waves in an exper-
imental setting, measurements were performed on aluminum rods
with periodically varying rectangular cross-section. Fig. 7 shows
the schematics of the experimental setup, where the cross-section
of the intact portion of the rod is square and measures 1:3 cm�
1:3 cm, while the damaged section is comprised of unit cells char-
acterized by length L and damage coefficient c ¼ A2=A1 ¼ 0:525.
Each rod was hung horizontally using supporting fishnet loops
(not shown) placed evenly to reduce sagging. A compressional
(P-wave) ultrasonic transducer, used to generate the axial motion,
icity jlj=L (left), h=L (center) and s=L (right) versus d and b.



Fig. 8. The LDV system used to capture the longitudinal motion (particle velocity)
in a rod.

Fig. 9. Normalized voltage of the input signal versus dimensionless time.
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was glued to the left end of the rod, while the other end was glued
to a stationary wall as shown in Fig. 7. To compensate for the
weight of the transducer and connecting cable, an additional fish-
net loop was placed near the left end of the rod. For the purpose of
having a narrow-band input signal, the transducer was excited by a
modulated 5-cycle sine burst with carrier frequency fc as shown in
Fig. 9. A three-dimensional Laser Doppler Vibrometer (LDV) system
PSV-400 by Polytec, shown in Fig. 8, was used to capture the time
histories of the axial motion at scan points. Due to imperfections in
the weight distribution along the rod and misalignment of the
transducer, the motion generated in the rod included both longitu-
dinal and flexural waves. To facilitate the temporal separation be-
tween the longitudinal wave and its (slower) flexural counterpart,
the first set of observation points (referred to as the ‘‘scan points
before damage’’ in Fig. 7) were placed 60 cm away from the excita-
tion transducer, with 5 cm separation between the neighboring
points. To capture the dispersive behavior of longitudinal waves
traveling through the damaged section (i.e. the section with micro-
structure), the second set of observation points, again with 5 cm
separation, were located right after the series of two-sided rectan-
gular grooves that were approximately 0:3 cm deep as shown in
Fig. 7. A cross-correlation technique was used to determine the
phase shift between the measured signals before and after the
damaged section, using multiple scan points for better accuracy.
This information is then used to estimate the phase velocity at a gi-
ven carrier frequency fc. In this setting, the dispersion relationship
is constructed experimentally by repeating the measurements over
a representative set of carrier frequencies fc . To determine the va-
lue of the attenuation coefficient, the peak amplitudes before and
after the damaged section were utilized. Note that the amplitude
of the transmitted wave was also affected by the reflections from
the ends of the damaged section; within the band gap (where
the amplitudes matter), however, these reflections were found to
reduce the transmitted wave by roughly 5% and were consequently
disregarded. The three laser heads of the LDV system were posi-
tioned at an optimal distance of approximately 90 cm from the
rod, which allowed for the sensing of axial motion at all scan points
without readjusting. To increase the sensitivity of the non-contact
motion measurements and to accurately reconstruct the axial mo-
tion in the rod, the left and right laser heads were spread apart by
approximately 1 m (see Fig. 8). Each scan point was treated with a
small piece of retroreflective 3M tape (see Fig. 7) to enhance the
backscattering and improve the signal-to-noise characteristics of
Fig. 7. Schematics of the
the measured signals. The acquisition was performed using veloc-
ity decoder VD-03 with the sensitivity set to 10 mm/(s�V) and the
sampling rate Fs ¼ 2:56 MHz. For each scan point, signal stacking
over 50 realizations was used to minimize the effect of ambient
vibrations. All onboard LDV filters, both analog and digital, were
turned off to avoid systematic phase errors in the measurements.
Thus captured motion i.e. particle velocity signals were filtered
afterwards with a simple band-pass filter over the frequency inter-
vals ½0:2f c;3f c� and ½0:95f c;1:05f c�, catering respectively for the
measurements of the phase velocity and attenuation coefficient.

To illuminate experimentally the physical meaning of the
length-scale parameters featured in the GE model, three rods were
experimental setup.
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prepared with different lengths of the unit cell comprising the dam-
aged section, namely L ¼ 1:9 cm, L ¼ 6 cm, and L ¼ 8 cm (see
Fig. 7). Consistent with the assumptions made in Sections 4.1
and 4.2, the lengths of the damaged and intact segments of each
unit cell were made to be equal. Note that the depth of the two-
sided grooves was kept fixed, so that the ratio c ¼ A2=A1 ¼ 0:525
and consequently parameter b ¼ 0:108 were common for all rods.
To examine the dispersion of elastic waves through the sections
with microstructure, the frequency range in terms of the carrier
signal is taken as fc 2 ½10 kHz;75 kHz� for all three specimens. At
certain frequencies, however, the rods with L ¼ 6 cm and
L ¼ 8 cm experienced severe amplitude decay affiliated with the
presence of the band gap. To accurately capture the effect of atten-
uation, additional scan points were introduced inside the damaged
section, which allowed for precise tracking of the amplitude decay.
As an illustration, Fig. 10 shows the normalized peak amplitude of
the axial motion (in terms of particle velocity) measured along the
damaged section for fc 2 ½20 kHz;40 kHz� in the rod with L ¼ 8 cm.
Here, all points corresponding to fc ¼ const: are normalized by the
peak amplitude at the first scan point, located 60 cm away from the
excitation transducer. As can be seen from the display, the pres-
ence of the microstructure results in an exponential-type decay
of longitudinal waves at frequencies near fc ¼ 30 kHz, which
greatly reduces the motion amplitude after the damaged section.
In addition, Fig. 10 features a notable increase in the amplitude
near the interface between the damaged section and intact rod
(x ¼ 140	 150 cm) for input frequencies away from the band
gap. This feature is related to the wave reflections that are inevita-
ble due to impedance mismatch between the damaged section and
the intact part of the rod.

Undamaged rod. In general, the longitudinal waves in a rod exhi-
bit dispersive behavior when the dominant wavelength becomes
comparable to the thickness of the rod. In this study, the magnitude
of such induced dispersion is comparable or less than that due to
the presence of microstructure. To effectively investigate the dis-
persion induced solely by the microstructure, the variation of the
longitudinal wave speed versus frequency is first measured in the
intact rod and then ‘‘subtracted’’ from the observed (aggregate) dis-
persion relationship. Fig. 11 plots the variation of the phase velocity
of longitudinal waves in the intact rod versus frequency. The error
bars reflect the standard deviation, computed from the measure-
ments taken at different scan points. Here, the main source of error
is a limited resolution of the distance measurements used to locate
the scan points, estimated at 1 mm. Fig. 11 also shows the polyno-
mial fit of the data, which can be written as
Fig. 10. Distribution of the peak particle velocity in th
cint

c
¼ 1� a1 x

c


 �2
� a2 x

c


 �4
; ð28Þ

where cint denotes the phase velocity in the intact rod;
c ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
¼ 5023 m/s, a1 ¼ 1:3 mm, and a2 ¼ 2:3 mm. In what fol-

lows, this relation is used to nullify the dispersion due to finite
cross-sectional dimensions of the rod.

Augmented 1D model. From a preliminary comparison between
the experimental results and the 1D model described in Section 3,
it became apparent that the simplistic one-dimensional model is
suitable only for qualitative analysis. In particular, the position
and the width of the band gap were captured admissibly well,
while the slope of the dispersion relationship was notably overes-
timated – even at low frequencies. This difference shows the limi-
tation of the 1D model, which is not capable of accurately
reproducing the 2D features of the rod with notches. One straight-
forward solution is to solve the 2D elastodynamic problem via e.g.
the finite element method and to obtain the desired dispersion
relationship numerically. Another option, that is adopted in this
study, mitigates the limitations of the original approximation and
is able to match the experimental data without onerous departure
from the one-dimensional framework. With reference to the left
panel in Fig. 1, the main limitation of the original 1D model resides
in the premise that the normal stress across any section of the rod
is constant, including intact sections that are close to the interface
with the damaged segment. To overcome this problem and account
for the non-uniform sectional distribution of stress near the inter-
faces, it is useful to assume the variation of the mass density and
Young’s modulus over the length of the unit cell as shown in
Fig. 12. With reference to Figs. 1 and 12, the mass density distribu-
tion accordingly remains unchanged while the Young’s modulus
within the intact segment of the unit cell varies as

E�!gðx0ÞE; gðx0Þ ¼min 1; cþ ð1� cÞ x
0

‘
; cþ ð1� cÞ

1
2 L� x0

‘

� �
;

0 < x0 <
1
2

L; ð29Þ

where x0 ¼ x� xc; xc denotes the position of the left end of the unit
cell, and the transition length ‘ is selected so that the augmented
model matches the observed phase velocity of longitudinal waves
(through the damaged segment) at low frequencies. For consis-
tency, the same value of ‘ is used for all configurations regardless
of the length L of the unit cell.

For completeness, one should note that the dispersion relation-
ship for the above augmented 1D model cannot be calculated
e aluminum rod (L ¼ 8 cm) for fc ¼ 20	 40 kHz.



Fig. 11. Variation of the longitudinal phase velocity versus frequency for the intact
rod.

Fig. 12. Schematics of the variation of the mass density (left) and the Young’s
modulus (right) over the unit cell of the augmented 1D model.

Fig. 13. Variation of the normalized phase velocity in the rod with L ¼ 1:9 cm.
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analytically; instead, the numerical treatment via the transfer ma-
trix approach (as in Section 3) is used to solve the problem and
consequently compute the parameters co;x1 and x2 that are
needed for the calibration of the GE model.

Rods with microstructure. To facilitate the interpretation of the
experimental measurements, it is noted with reference to Fig. 4
that the wave number k featured in the latter diagram can be con-
veniently written as

k ¼ x
cdam

� ia;

where cdam is the phase velocity of the longitudinal waves propa-
gated through the damaged section, and a P 0 is the attenuation
coefficient characterizing the affiliated exponential decay of wave
amplitude (if any). As an example, Fig. 13 plots the variation of the
normalized phase velocity in the damaged segment, cdam=cint, versus
frequency for the rod with L ¼ 1:9 cm. Due to the constraints im-
posed by the experimental approach, the carrier frequency fc of
the input signal is assumed to take the role of the excitation fre-
quency x=ð2pÞ. Here the normalization of the observed phase veloc-
ity by cint, computed via (28), allows one to ‘‘subtract’’ the dispersion
caused by the finite cross-sectional dimensions of the intact rod. As
before, the error bars reflect the standard deviation computed from
the measurements taken at different scan points. Note that the aug-
mented 1D model (the solid line in Fig. 13) features the transition
length ‘ ¼ 8:5 mm, found to provide the best fit with the experimen-
tal data. In general, ‘ shifts the dispersion curve of the 1D model in
the vertical direction without noticeably distorting its shape. The
gradient elastic model (13) with the length-scale parameters com-
puted according to (17) is indicated by the dashed line. In this case,
the parameters of gradient elasticity take values co ¼ 4375 m/s,
jlj ¼ 4:2 mm, h ¼ 1:24 mm, and s ¼ 4:2 mm. It is worth noting that
the featured length scales compare favorably with their low-con-
trast estimates (22) of jlj ¼ 4:3 mm, h ¼ 1:43 mm and s ¼ 4:3 mm,
despite the underpinning incompatibilities introduced by the aug-
mented 1D model. As can be seen from the display, the overall agree-
ment between the dispersion curves is admissible. Also note that
since 2‘ ¼ 17 mm > L=2 ¼ 9:5 mm, an overlapping of the transition
zones shown in Fig. 12 takes place in which case gðx0Þ < 1 through-
out the intact zone of the unit cell, see (29). In general, the approx-
imations introduced by the premise of one-dimensional wave
propagation, including those stemming from (29), are the main
cause of the discrepancies observed in Fig. 13.

Fig. 14 shows the results of the experimental measurements for
the rod with L ¼ 6 cm. The left panel plots the variation of the
phase velocity versus the carrier frequency, while the right panel
describes the corresponding variation of the attenuation
coefficient. The solid lines show the predictions of the augmented
1D model (‘ ¼ 8:5 mm), while the dashed lines indicate the corre-
sponding gradient elastic approximation. The calculated parame-
ters of gradient elasticity are co ¼ 4607 m/s, jlj ¼ 13:2 mm,
h ¼ 4:8 mm and s ¼ 13 mm. As a point of reference, it is noted that
the low-frequency approximation (22) in this case yields
jlj ¼ 13:5 mm, h ¼ 4:5 mm and s ¼ 13:5 mm. Clearly, the results
in Fig. 14 for L ¼ 6 cm are qualitatively different from those in
Fig. 13 for L ¼ 1:9 cm since the former feature a band gap (shown
as a shaded area) within the featured frequency range. As can be
seen from the display, the band gap features non-zero attenuation
coefficient and represents the transition zone between two
branches of phase velocity. Note that the magnitude of the disper-
sion in Fig. 14 (L ¼ 6 cm) is roughly an order of magnitude higher
than that in Fig. 13 (L ¼ 1:9 cm). Further, it is seen that the agree-
ment between the measurements and the 1D model at low fre-
quencies (below 25 kHz) is significantly better for L ¼ 6 cm than
for L ¼ 1:9 cm. This can be explained by the smaller contribution
of the ‘‘‘’’ correction, see (29), introduced by the augmented 1D
model. One may also note that the observed values of the phase
velocity in Fig. 14 seem to follow a smooth curve, which is not ob-
served by the model. The principal reason for such disagreement
resides in the multi-frequency nature of the transient pulse,
whereby each measurement point along the carrier frequency axis
represents an average between the neighboring frequencies. This
‘‘averaging’’ is one possible reason for the ‘‘smoothing’’ of experi-
mental data. Another possible reason for the observed discrepancy
is the presence of the 2D features (in terms of non-axial wave prop-
agation) that are not captured by 1D model. Regarding the attenu-
ation coefficient, the error bars in the right panel of Fig. 14 are
computed on the basis of the ratio between the observed motion
amplitude after the damaged section and the noise level. For this
reason, the error bars for the attenuation coefficient are higher in-
side the band gap since the amplitude of the signal reduces dra-
matically after passing through the damaged section.



Fig. 14. Variation of the normalized phase velocity (left) and attenuation coefficient (right) in the rod with L ¼ 6 cm.

Fig. 15. Variation of the normalized phase velocity (left) and attenuation coefficient (right) in the rod with L ¼ 8 cm.

Table 1
Length scales of the gradient elasticity model (13) for the rods tested.

L
(mm)

b jlj
(mm)

h
(mm)

s
(mm)

jljas ¼ sas ¼ Lffiffi
2
p

p
(mm)

has ¼
ffiffiffiffiffiffiffiffiffiffiffi
3
p� p

4

q
Lb1=4

p

(mm)

19 0.108 4.2 1.24 4.2 4.3 1.43
60 0.108 13.2 4.8 13.0 13.5 4.5
80 0.108 17.6 6.1 17.3 18.0 6.0
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The results of experiments for the rod with L ¼ 8 cm are shown
in Fig. 15. The left panel plots the phase velocity versus the carrier
frequency, while the right panel plots the corresponding variation
of the attenuation coefficient. The markers correspond to the
experimental measurements, the solid lines stand for the aug-
mented 1D model (‘ ¼ 8:5 mm), and the dashed lines represent
the gradient elastic model whose parameters are fitted to the 1D
model. The calculated parameters of gradient elasticity are
co ¼ 4645 m/s, jlj ¼ 17:6 mm, h ¼ 6:1 mm and s ¼ 17:3 mm, again
showing consistency with the low-contrast estimates (22) of
jlj ¼ 18 mm, h ¼ 6:0 mm and s ¼ 18 mm. Note that there is almost
no qualitative difference between the results in Fig. 14 and Fig. 15.
Both sets of experimental results feature a band gap that is well
represented by the 1D and GE models, as well the prediction of
the second band gap that is not supported by the experimental
data. One explanation for this disagreement is again the multi-fre-
quency excitation source, whereby each measurement ‘‘point’’ in
terms of fc represents an average over the range of neighboring fre-
quencies. With reference to Fig. 9, the width of this frequency
range (over which the smearing occurs) is on the order of 10% of
the carrier frequency, e.g. 6 kHz for fc ¼ 60 kHz. Since the width
of the second band gap in Fig. 15 is notably smaller than 6 kHz,
it is not surprising that the latter cannot be resolved via the fea-
tured experimental approach that relies on the propagation of nar-
row-band pulses – as opposed to true monochromatic testing.

For convenience, Table 1 summarizes the length scales of the
gradient elasticity model (13) as identified from the wave disper-
sion experiments on the three rods with microstructure. In the
chart, also included are their low-contrast asymptotic estimates
(jljas

;has and sas) as computed directly from the microstructural
parameters of each rod following (22). Overall, the agreement be-
tween the two sets of estimates can be qualified as remarkable,
lending credence to the intimate relationship between the micro-
structure, the affiliated dispersion characteristics, and the effective
length scales of gradient elasticity that is exposed through this
investigation.
6. Summary

This study investigates the dispersion of longitudinal waves in a
rod with periodic ‘‘microstructure’’ (or damage) by means of the
analytical treatment, theory of gradient elasticity, and experimen-
tal measurements. First, the problem of wave propagation in a
damaged rod (with a periodic pattern of rectangular notches) is
approximated as that through a one-dimensional bi-layered struc-
ture. The dispersion relationship is then obtained using periodic
cell analysis and Bloch theorem. Two prominent models of gradi-
ent elasticity are deployed to approximate the dispersion relation
stemming from the 1D model. It is shown that the ‘‘usual’’ gradient
elastic model with two length-scale parameters is capable of cap-
turing the dispersion of elastic waves accurately up to the begin-
ning of the first band gap. In contrast, the gradient elastic model
with an additional length scale, responsible for the fourth-order
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time derivative in the governing equation, is shown to capture not
only the first dispersion branch before the band gap, but also the
entirety of the band gap and a larger part of the second branch.
Closed-form relationships between the parameters of the micro-
structure and the intrinsic length scales are obtained for both gra-
dient elasticity models. By way of the asymptotic treatment in the
limit of a small contrast between the layers, a lucid physical mean-
ing and scaling of the length-scale parameters of gradient elasticity
was established in terms of both (i) the microstructure, as given by
the size of the unit cell and the contrast between laminae, and (ii)
the induced dispersion relationship, as characterized by the initial
slope and the features of the first band gap. The analysis is sup-
ported through the experimental observations of longitudinal
wave dispersion and attenuation through a set of aluminum rods
with periodic ‘‘microstructure’’. To mitigate the inaccuracies
brought about by the simplifying assumptions of the 1D model,
the so-called augmented 1D model is introduced, where the dis-
continuous variation of the effective Young’s modulus is replaced
by a continuously varying function. This enhancement allowed
the 1D periodic model and its gradient elasticity counterpart to
accurately capture the dispersion and attenuation data measured
in the damaged aluminum rods over the frequency range from
10 kHz to 75 kHz, which includes the first band gap and the begin-
ning of the second branch. Thus identified length scales of gradient
elasticity showed a remarkable agreement with their (small-con-
trast) asymptotic approximations for all experimental configura-
tions considered.
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