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Let L be a finite-dimensional simple Lie algebra over an algebraical-
ly closed field of characteristic p > 3. It is proved in this paper
that if the p-envelope of ad L in Der L contains a torus of
maximal dimension whose centralizer in ad L acts nontriangulably
on L, then p = 5 and L is isomorphic to one of the Melikian
algebras M(m,n). In conjunction with [A. Premet, H. Strade, Simple
Lie algebras of small characteristic V. The non-Melikian case, J.
Algebra 314 (2007) 664–692, Theorem 1.2], this implies that, up
to isomorphism, any finite-dimensional simple Lie algebra over an
algebraically closed field of characteristic p > 3 is either classical
or a filtered Lie algebra of Cartan type or a Melikian algebra of
characteristic 5. This result finally settles the classification problem
for finite-dimensional simple Lie algebras over algebraically closed
fields of characteristic �= 2,3.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

This paper concludes the series [P-St 97,P-St 99,P-St 01,P-St 04,P-St 05]. Its goal is to finish the
proof of the following theorem which was announced in [St 04] and [P-St 06]:

Theorem 1.1 (Classification Theorem). Any finite-dimensional simple Lie algebra over an algebraically closed
field of characteristic p > 3 is of classical, Cartan or Melikian type.

For p > 7, the finite-dimensional simple Lie algebras were classified by the second author in the
series of papers [St 89,St 91,St 92,St 93,St 94,St 98]. It should be mentioned that the Classification
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Theory was inspired by the ground-breaking work of Block and Wilson [B-W 82,B-W 88] who handled
the so-called restricted case (also for p > 7).

In what follows, F will denote an algebraically closed field of characteristic p > 3, and L will
always stand for a finite-dimensional simple Lie algebra over F . As usual, we identify L with the
subalgebra ad L of the derivation algebra Der L and denote by L p the semisimple p-envelope of L (it
coincides with the p-closure of ad L in the restricted Lie algebra Der L). Given a torus T of maximal
dimension in L p we let H stand for the centralizer of T in L; that is,

H := cL(T ) = {
x ∈ L

∣∣ [t, x] = 0 ∀t ∈ T
}
.

Let Γ (L, T ) be the set of roots of L relative to T ; that is, the set of all nonzero linear functions
γ ∈ T ∗ for which the subspace Lγ := {x ∈ L | [t, x] = γ (t)x ∀t ∈ T } is nonzero. Then H is a nilpotent
subalgebra of L (possibly zero) and L decomposes as L = H ⊕⊕

γ ∈Γ (L,T ) Lγ . By [P-St 04, Corollary 3.7]
any root γ in Γ (L, T ) is either solvable or classical or Witt or Hamiltonian. Accordingly, the semisimple
quotient L[γ ] = L(γ )/ rad L(γ ) of the 1-section L(γ ) := H ⊕ ⊕

i∈F
×
p

Liγ is either (0) or sl(2) or the

Witt algebra W (1;1) or contains an isomorphic copy of the Hamiltonian algebra H(2;1)(2) as an ideal
of codimension � 1. For α,β ∈ Γ (L, T ) we denote by L(α,β) the 2-section

∑
i, j∈Fp

Liα+ jβ , where
L0 = H by convention.

We say that T is standard if H(1) consists of nilpotent derivations of L and nonstandard otherwise.
In [P-St 04] and [P-St 05], it was shown that if all tori of maximal dimension in L p are standard,
then L is either classical or a filtered Lie algebra of Cartan type. On the other hand, the main results
of [P 94] imply that if L p contains a nonstandard torus of maximal dimension, say T ′ , then there
are α,β ∈ Γ (L, T ′) such that the factor algebra L(α,β)/ rad L(α,β) is isomorphic to the restricted
Melikian algebra M(1,1). In particular, p = 5 in this case.

The main result of the present paper is the following:

Theorem 1.2. If the semisimple p-envelope of L contains nonstandard tori of maximal dimension, then L is
isomorphic to one of the Melikian algebras M(m,n), where (m,n) ∈ N2 .

Together with the main results of [P-St 04] and [P-St 05] Theorem 1.2 implies the Classification
Theorem. In view of [St 04, Corollary 7.2.3] we also obtain:

Corollary 1.3. Any finite-dimensional restricted simple Lie algebra over an algebraically closed field of char-
acteristic p > 3 is, up to isomorphism, either one of W (n;1), n � 1, S(n;1)(1) , n � 3, H(2r;1)(2) , r � 1,

K (2r + 1;1)(1) , r � 1, M(1,1), or has the form (Lie G)(1) , where G is a simple algebraic F -group of adjoint
type.

For the reader’s convenience, we now give a brief overview of the proof of Theorem 1.2. Since our
goal is to show that L ∼= M(m,n), we need to produce a subalgebra L(0) of codimension 5 in L. As in
the previous two papers of the series, local analysis is vital here. All possible types of 2-sections in
simple Lie algebras are described in [P-St 04, Section 4]. The list of 2-sections is long, but a thorough
investigation shows that most of them cannot occur in our situation. We prove in Section 5 that
if T is a nonstandard torus of maximal dimension in L p and α,β ∈ Γ (L, T ) are Fp-independent,
then rad L(α,β) ⊂ T and either L[α,β] ∼= M(1,1) of L[α,β](1) ∼= H(2; (2,1))(2); see Theorem 5.8. In
particular, this implies that all root spaces of L with respect to T are 5-dimensional. This intermediate
result is crucial for the rest of the paper. In order to prove it we have to refine our earlier description
of 2-sections with core of type H(2; (2,1))(2); see Theorem 3.6(5). The proof of Theorem 3.6(5) relies
heavily on a classification of certain toral derivations of H(2; (2,1)). The latter is obtained in Section 2,
the longest section of the paper.

In Section 6, we show the restricted Melikian algebra M(1,1) has no nontrivial central exten-
sions and describe the p-characters of irreducible M(1,1)-modules of dimension � 125. This gives
us important new information on the p-mapping of L p ; see Section 7. To proceed further we need
a sufficiently generic nonstandard torus of maximal dimension in L p . We show in Section 9 that
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there is a nonstandard torus T of maximal dimension in L p for which H3 = [cL(T ), [cL(T ), cL(T )]]
contains no nonzero toral elements. We then use the new information on the p-mapping of L p

to construct for every α ∈ Γ (L, T ) a subalgebra Q (α) ⊂ L(α) such that L(α) = H ⊕ Q (α), and set
L(0) := ∑

α∈Γ (L,T ) Q (α). By construction, L(0) is a subspace of L. In order to show that it is a sub-
algebra, we need to check that [Q (α), Q (β)] ⊂ Q (α) ⊕ ∑

i∈Fp
Q (β + iα) for all Fp-independent

α,β ∈ Γ (L, T ). This is carried out in Section 10. The rest of the proof is routine.
All Lie algebras in this paper are assumed to be finite-dimensional. We adopt the notation in-

troduced in [P-St 97,P-St 99,P-St 01,P-St 04] with the following two exceptions: the divided power
algebra A(m;n) is denoted here by O(m;n), and the Melikian algebra g(m,n) by M(m,n). Given a Lie
subalgebra M of L, we write M p for the p-envelope of M in L p .

2. Toral elements and one-sections in H(2;(2,1))

The Lie algebra H(2; (2,1)) will appear quite frequently in what follows, and to deal with it we
need some refinements of [B-W 88, (10.1.1)], [St 91, (VI.4)] and [P-St 04, Proposition 2.1]. Set S :=
H(2; (2,1))(2) , G := H(2; (2,1)), and denote by S(i) (resp., G(i)) the ith component of the standard
filtration of S (resp., G). Recall that S p = H(2; (2,1))(2) ⊕ F D p

1 ; see [St 04, Theorem 7.2.2(5)], for
instance. By [B-W 88, Proposition 2.1.8(viii)], G = V ⊕ S where

V = F D H
(
x(p2)

1

) ⊕ F D H
(
x(p)

2

) ⊕ D H
(
x(p2−1)

1 x(p−1)
2

)
.

Note that V is a Lie subalgebra of G , and in Der S we have V [p] = V 3 = 0. We denote by G the p-
envelope of G in Der S . As V [p] = 0, it follows from Jacobson’s formula [St 04, p. 17] that G = V ⊕ S p .
We remind the reader that G is a Lie subalgebra of the Hamiltonian algebra H(2) = span{D H ( f ) | f ∈
O(2)} and [

D H ( f ), D H (g)
] = D H

(
D1( f )D2(g) − D2( f )D1(g)

) (∀ f , g ∈ O(2)
)
.

Furthermore, D H ( f ) = D H (g) if and only if f − g ∈ F .

Lemma 2.1. Every toral element t of S p contained in S \ S(0) is conjugate under the automorphism group of S
to an element

tμ = D H
(
x1 + μx(p)

1 + (
x1 + μx(p)

1

)
rx(p−1)

2

)
, r = 1 + μx(p−1)

1 ,

where μ ∈ {0,1}. Each such element is toral.

Proof. (a) Write t = aD1 +bD2 + w with a,b ∈ F and w ∈ S(0) . By our assumption, t is a toral element
of S p ; that is, t[p] = t . Since (aD1 + bD2)

[p] = ap D p
1 and w[p] ∈ S(0) , Jacobson’s formula yields a = 0.

Since t /∈ S(0) , it must be that b �= 0. There exists a special automorphism σ of the divided power
algebra O(2; (2,1)) such that σ(x1) = b−1x1 and σ(x2) = bx2. It induces an automorphism Φσ of the
Lie algebra S via Φσ (E) = σ ◦ E ◦ σ−1 for all E ∈ S; see [St 04, Theorem 7.3.6]. After adjusting t by
Φσ it can be assumed that b = 1. The description of Aut S given in [St 04, Theorems 7.3.5 and 7.3.2]
implies that for any λ ∈ F and any pair of nonnegative integers (m,n) such that either (m,n) = (p2,0)

or m + n � 3, m < p2, n < p and (m,n) �= (p,1) there exists σm,n,λ ∈ Aut S with

σm,n,λ(u) ≡ u + λ
[

D H
(
x(m)

1 x(n)
2

)
, u

]
(mod S(i+m+n−1)) (∀u ∈ S(i)).

Because [
D2, D H

(
x(m)

1 x(n)
2

)] = D H
(
x(m)

1 x(n−1)
2

)
(1 � n � p − 1),
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it is not hard to see that there is g ∈ Aut S such that g(t) = D H (x1 + μx(p)
1 ) + D H ( f x(p−1)

2 ) for some

μ ∈ F and f = ∑p2−1
i=1 λi x

(i)
1 with λi ∈ F . If μ �= 0, then there exists α ∈ F with αp−1μ = 1 and

a special automorphism σ ′ of the divided power algebra O(2; (2,1)) for which σ ′(x1) = αx1 and
σ ′(x2) = x2. It gives rise to an automorphism Φσ ′ of the Lie algebra S such that Φσ ′ (D H (x(r)

1 x(s)
2 )) =

αr−1 D H (x(r)
1 x(s)

2 ) for all admissible r and s; see [St 04, Theorem 7.3.6]. Adjusting t by Φσ ′ we may
assume without loss that μ ∈ {0,1}.

Put r = D1(x1 + μx(p)
1 ) = 1 + μx(p−1)

1 , f ′ := D1( f ), and assume from now on that t = D H (x1 +
μx(p)

1 ) + D H ( f x(p−1)
2 ).

(b) As (ad D H ( f x(p−1)
2 ))(ad D H (x1 + μx(p)

1 ))k(D H ( f x(p−1)
2 )) = 0 for 0 � k � p − 3, D H (x1 +

μx(p)
1 )[p] = D H ( f x(p−1)

2 )[p] = 0, and

[
D H

(
x1 + μx(p)

1

)
, D H

(
ri f x( j)

2

)] = D H
(
ri+1 f x( j−1)

2

)
(1 � i, j � p − 1),

Jacobson’s formula yields

t[p] = (
ad D H

(
x1 + μx(p)

1

))p−1(
D H

(
f x(p−1)

2

))
+ 1

2

[
D H

(
f x(p−1)

2

)
,
(
ad D H

(
x1 + μx(p)

1

))p−2(
D H

(
f x(p−1)

2

))]
= D H

(
r p−1 f

) + 1

2

[
D H

(
f x(p−1)

2

)
, D H

(
r p−2 f x2

)]
= D H

(
r p−1 f

) + 1

2
D H

(
f ′r p−2 f x(p−1)

2

) − 1

2

(
p − 1

1

)
D H

(
f D1

(
r p−2 f

)
x(p−1)

2

)
= D H

(
r p−1 f

) + D H
(

f f ′r p−2x(p−1)
2

) − μD H
(
r p−3x(p−2)

1 f 2x(p−1)
2

)
.

As r p−1 = r−1, the RHS equals t if and only if f = (x1 + μx(p)
1 )r, as claimed. �

Denote by O(2; (2,1))(k)[x1] the subalgebra of O(2; (2,1)) spanned by all x(i)
1 with k � i < p2 and

let O(2; (2,1))[x1] := O(2; (2,1))(0)[x1]. For u ∈ O(2; (2,1))[x1] put u′ := D1(u) and set r̃ := x1 +μx(p)
1 ,

so that tμ = D H (r̃ + rr̃x(p−1)
2 ). Note that r̃′ = r.

Lemma 2.2. Let tμ be as in Lemma 2.1 and put Cμ := cG(tμ).

(i) The Lie algebra Cμ has an abelian ideal C ′
μ of codimension 2 spanned by all D H (u + u′r̃x(p−1)

2 ) with u ∈
O(2; (2,1))[x1] and by D H (x(p2)

1 ). Furthermore, Cμ = Fnμ ⊕ F hμ ⊕ C ′
μ , where nμ = D p

1 + μD H (x(p)
2 )

and hμ = D H (r−1x2 − x(p)
2 ).

(ii) Given a ∈ F and v ∈ O(2; (2,1))[x1] put

ϕa(v) :=
p−1∑
i=0

ai D H
(
r−i vx(i)

2

) + ap−1 D H
(
r̃ v ′x(p−1)

2

)
.

Then for every k ∈ F×
p the k-eigenspace of ad tμ has dimension p2 and is spanned by all ϕk(u) with

u ∈ O(2; (2,1))[x1].
(iii) In G we have h[p]

μ = −μhμ − nμ and n[p]
μ = 0.

(iv) If μ = 0, then Cμ is nilpotent and Ftμ is a maximal torus in G.
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Proof. (i) It is straightforward to see that C ′
μ is abelian and tμ ∈ C ′

μ . Also,

[
D p

1 , tμ
] = μD H

(
rx(p−1)

2

) = −μ
[

D H
(
x(p)

2

)
, tμ

]
,

implying nμ ∈ Cμ . For all u ∈ 〈x(i)
1 |0 � i � p2〉 we have

[
D H

(
r−1x2

)
, D H

(
u + u′r̃x(p−1)

2

)] = −D H
(
r−1u′) + D H

(
r−2(r′u′r̃ − (u′r̃)′r

)
x(p−1)

2

)
,[

D H
(
x(p)

2

)
, D H

(
u + u′r̃x(p−1)

2

)] = −D H
(
u′x(p−1)

2

)
.

As a consequence, [
hμ, D H

(
u + u′r̃x(p−1)

2

)] = −D H
(
r−1u′ + (

r−1u′)′
r̃x(p−1)

2

)
(2.1)

for all u ∈ O(2; (2,1))[x1]. Putting u = r̃ gives hμ ∈ Cμ .

(ii) We claim that for all u ∈ 〈x(i)
1 | 1 � i � p2〉 and all k ∈ F×

p the following relations hold:

[
D H

(
u + u′r̃x(p−1)

2

)
,ϕk(v)

] = kϕk
(
r−1u′v

)
, (2.2)[

D H
(
r−1x2 − x(p)

2

)
,ϕk(v)

] = [
hμ,ϕk(v)

] = −ϕk
(
r−1 v ′). (2.3)

Indeed, since kp−1 = 1, r p = 1, and x(p−2)
2 · x(k)

2 = 0 for 2 � k � p − 1, the LHS of (2.2) equals D H (w),
where

w = D1
(
u + u′r̃x(p−1)

2

) · D2
(
ϕk(v)

) − D2
(
u + u′r̃x(p−1)

2

) · D1
(
ϕk(v)

)
= (

u′ + u′′r̃x(p−1)
2 + u′rx(p−1)

2

) ·
( p−1∑

i=1

kir−i vx(i−1)
2 + r̃ v ′x(p−2)

2

)
− u′r̃x(p−2)

2 · (v ′ + k
(
r−1 v

)′
x2

)
= u′

( p−1∑
i=1

kir−i vx(i−1)
2

)
+ u′r̃ v ′x(p−2)

2

+ ku′′r̃r−1 vx(p−1)
2 + ku′vx(p−1)

2 − u′r̃ v ′x(p−2)
2 + ku′r̃

(
r−1 v

)′
x(p−1)

2

= k
p−2∑
i=0

kir−i(r−1u′v
)
x(i)

2 + k
(
u′′r̃r−1 v + u′v + u′r̃

(
r−1 v

)′)
x(p−1)

2

= k
p−1∑
i=0

kir−i(r−1u′v
)
x(i)

2 + kr̃
(
r−1u′v

)′
x(p−1)

2 .

But then D H (w) = kϕk(r−1u′v) and (2.2) follows. Since(−r−1 v ′)′ = r−2r′v ′ − r−1 v ′′,

the LHS of (2.3) equals D H (y), where

y = (
r−1)′

x2 ·
( p−1∑

i=1

kir−i vx(i−1)
2 + r̃ v ′x(p−2)

2

)

− r−1 ·
( p−1∑

ki i
(
r−1)i−1(−r−2r′)vx(i)

2 +
p−1∑

kir−i v ′x(i)
2

)
− r−1 · (r̃ v ′)′x(p−1)

2 + x(p−1)
2 v ′
i=1 i=0
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= −r−2r′ ·
( p−1∑

i=1

ki ir−i vx(i)
2 − r̃ v ′x(p−1)

2

)

+ r−2r′ ·
( p−1∑

i=1

ki ir−i vx(i)
2

)
+

p−1∑
i=0

kir−i(−r−1 v ′)x(i)
2 − r−1 · (rv ′ + r̃ v ′′)x(p−1)

2 + x(p−1)
2 v ′

= r−2r′r̃ v ′x(p−1)
2 +

p−1∑
i=0

kir−i(−r−1 v ′)x(i)
2 − r−1r̃ v ′′x(p−1)

2

=
p−1∑
i=0

kir−i(−r−1 v ′)x(i)
2 + (

r̃r−2r′v ′ − r̃r−1 v ′′)x(p−1)
2

=
p−1∑
i=0

kir−i(−r−1 v ′)x(i)
2 + r̃

(−r−1 v ′)′
x(p−1)

2 .

This shows that D H (y) = D H (−r−1 v ′), proving (2.3).
Setting u = r̃ in (2.2) now gives [tμ,ϕk(v)] = kϕk(v). Since ϕk(v) �= 0 for all nonzero v ∈

O(2; (2,1))[x1], comparing dimensions yields that Cμ is spanned by hμ , nμ and C ′
μ and that

for every k ∈ F×
p the k-eigenspace of ad tμ has dimension p2 and is spanned by all ϕk(v) with

v ∈ O(2; (2,1))[x1].
(iii) Clearly, n[p]

μ = D p2

1 − μp(x(p−1)
2 D1)

p = 0. Next observe that

[hμ,nμ] = [
D H

(
r−1x2 − x(p)

2

)
, D p

1 + μD H
(
x(p)

2

)] = μD H
((

r−1)′
x2 · x(p−1)

2

) = 0.

We claim that h[p]
μ + μhμ + nμ = 0. If μ = 0, then hμ = D1 − x(p−1)

2 D1 and nμ = D p
1 ; hence, our

claim is true in this case. Assume now that μ �= 0 and set q := hμ + μ−1nμ . Since our remarks at

the beginning of this part imply that q[p] = (hμ + μ−1nμ)[p] = h[p]
μ , we are reduced to showing that

q[p] + μq = 0. As [D H (x(p−1)
1 x2), (ad D1)

i(D H (x(p−1)
1 x2))] = 0 for all i � p − 2, we see that

q[p] = (
μ−1 D p

1 − D1 − μD H
(
x(p−1)

1 x2
))[p] = (−D1 − μD H

(
x(p−1)

1 x2
))[p]

= −D p
1 − (ad D1)

p−1(μD H
(
x(p−1)

1 x2
)) − 1

2

[
μD H

(
x(p−1)

1 x2
)
, (ad D1)

p−2(μD H
(
x(p−1)

1 x2
))]

= −D p
1 + μD1 + μ2 D H

(
x(p−1)

1 x2
) = −μq,

and our claim follows.
(iv) Now suppose μ = 0. Then tμ = D H (x1(1 + x(p−1)

2 )), hμ = D H (x2 − x(p)
2 ) = (x(p−1)

2 − 1)D1 and
nμ = D p

1 . Set C := C0 and C(0) := C ∩ G(0) . By Lemma 2.2(i), which we have already proved, C is

spanned by D p
1 , (x(p−1)

2 − 1)D1 and by all D H (x(k+1)
1 + x(k)

1 r̃x(p−1)
2 ) with 0 � k � p2 − 1. As a conse-

quence, C = F D p
1 ⊕ F (x(p−1)

2 − 1)D1 ⊕ Ftμ ⊕ C(0) . As G(0) is a restricted subalgebra of G, so is C(0) .
From this it is immediate that C(0) is a p-nilpotent subalgebra of G. Note that C ∩ S = Ftμ ⊕ C(0) is an

ideal of C . Since ((x(p−1)
2 − 1)D1)

[p] = −D p
1 and (D p

1 )[p] = 0 (as derivations of S), Jacobson’s formula

implies that C [p] ⊂ F D p
1 ⊕ Ftμ ⊕ C(0) and C [p]2 ⊂ Ftμ ⊕ C(0) . Since C(0) is p-nilpotent and [tμ, C] = 0,

it follows that C [p]e = Ftμ for all e � 0. Hence C is a restricted nilpotent subalgebra of G and Ftμ is
the unique maximal torus of C . �
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If u belongs to the linear span of all x(i)
1 with 2 � i � p2, then r−1u′ ∈ O(2; (2,1))(1) , forcing

(r−1u′)p = 0. For k ∈ F×
p we write Sk for the k-eigenspace of ad tμ . In view of (2.2) we have that

(ad D H (u + r̃u′x(p−1)
2 ))p(Sk) = (0) for all k ∈ F×

p . Since

(
ad D H

(
u + r̃u′x(p−1)

2

))p
(Cμ) ⊂ (

ad D H
(
u + r̃u′x(p−1)

2

))p−1(
C ′

μ

) ⊂ (
C ′

μ

)(1) = (0)

by Lemma 2.2(i), it follows that (ad D H (u + r̃u′x(p−1)
2 ))p = 0. Therefore, for all u as above and c ∈ F

the exponential exp(c ad D H (u + u′r̃x(p−1)
2 )) is well defined as a linear operator on S .

Lemma 2.3. Suppose μ �= 0 and let Z(tμ) denote the stabilizer of tμ in Aut S.

(i) exp(c ad D H (x(m)
1 + x(m−1)

1 r̃x(p−1)
2 )) ∈ Z(tμ) for all 3 � m � p2 .

(ii) For every h ∈ G ∩ Cμ with h /∈ C ′
μ there exist z ∈ Z(tμ) and a ∈ F × such that z(h) = ahμ + btμ +

sD H (x(p2)
1 ) for some b, s ∈ F .

(iii) If h ∈ (G ∩ Cμ) \ C ′
μ , then for every k ∈ F×

p there is vk ∈ 1 + O(2; (2,1))(1)[x1] such that ϕk(vk) is an

eigenvector for ad h and ϕk(vk)
[p] is a nonzero p-semisimple element of G.

(iv) For every h ∈ (G ∩Cμ)\C ′
μ there exists a nonzero x ∈ cS (tμ) such that ad x is not nilpotent and [h, x] = λx

for some nonzero λ ∈ F .

Proof. (a) For 1 � m � p2 set Dm := ad D H (x(m)
1 + x(m−1)

1 r̃x(p−1)
2 ). As (adDm)p = 0 for m � 3, in order

to prove (i) it suffices to show that

p−1∑
i=1

1

i!(p − i)!
[
Di

m(y1),D
p−i
m (y2)

] = 0 (∀y1, y2 ∈ S, ∀m � 3). (2.4)

It follows from Lemma 2.2(i) that D2
m(Cμ) ⊂ (C ′

μ)(1) = (0). Therefore, we just need to show that (2.4)
holds for all y1 = ϕk(v1) and y2 = ϕl(v2), where k, l ∈ F×

p and v1, v2 ∈ O(2; (2,1))[x1].
For 3 � m � p we have (r−1x(m−1)

1 )(p+1)/2 = 0, since O(2; (1,1)) is a subalgebra of O(2; (2,1))

and (m−1)(p+1)
2 > p. In light of (2.2) this gives (ad Dm)(p+1)/2(ϕi(v)) = 0 for all i ∈ F×

p and v ∈
O(2; (2,1))[x1]. Hence (2.4) holds for m � p.

If m � p + 2, then (2.2) yields that Di
m(ϕk(v1)) = ϕk(w1) and D

p−i
m (ϕl(v2)) = ϕl(w2) for some

w1 ∈ O(2; (2,1))(i(p+1))[x1] and w2 ∈ O(2; (2,1))((p−i)(p+1))[x1]. As [ϕk(w1),ϕl(w2)] = 0 in this case,
we deduce that (2.4) holds for m � p + 2. As O(2; (2,1))(p2)[x1] = 0, this argument also shows that
(2.4) holds if m = p + 1 and either v1 or v2 belongs to O(2; (2,1))(1)[x1].

Thus, in order to prove (i) it suffices to show that (2.4) holds for m = p + 1 and v1 = v2 = 1.
Suppose the contrary and set

Y :=
p−1∑
i=1

1

i!(p − i)!
[
Di

p+1

(
ϕk(1)

)
,D

p−i
p+1

(
ϕl(1)

)]
.

Arguing as in the preceding paragraph we now observe that Y is a nonzero multiple of either

ϕk+l(x(p2−1)
1 ) (if k + l �= 0) or D H (x(p2−1)

1 (1 − x(p−1)
2 )) (if k + l = 0). In any event, (ad nμ)p−1(Y ) �= 0.

Set Nμ := ad nμ . We know from the proof of Lemma 2.2 that [Nμ,Dp+1] = D1, [D1,Dp+1] = 0
and Nμ(ϕi(1)) = 0 for all i ∈ F×

p . From this it follows that

N p−1
μ (Y ) =

p−1∑
i=1

1

i!(p − i)!

( p−1∑
j=0

(−1) j[N j
μ

(
Di

p+1

(
ϕk(1)

))
, N p−1− j

μ

(
D

p−i
p+1

(
ϕl(1)

))])
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=
p−1∑
i=1

(−1)i[Di
1

(
ϕk(1)

)
,
(
D

p−i−1
1 Dp+1

)(
ϕl(1)

)]

+
p−1∑
i=1

(−1)i−1[(Di−1
1 Dp+1

)(
ϕk(1)

)
,D

p−i
1

(
ϕl(1)

)]
= D

p−1
1

([
ϕk(1),Dp+1

(
ϕl(1)

)]) − [
ϕk(1),

(
D

p−1
1 Dp+1

)(
ϕl(1)

)]
+ D

p−1
1

([
Dp+1

(
ϕk(1)

)
,
(
ϕl(1)

)]) − [(
D

p−1
1 Dp+1

)(
ϕk(1)

)
,ϕl(1)

]
= (

D
p−1
1 Dp+1

)([
ϕk(1),ϕl(1)

]) − l
[
ϕk(1),ϕl

(
x(p)

1

)] − k
[
ϕk

(
x(p)

1

)
,ϕl(1)

]
(we used (2.2) and the equalities r p = 1, kp = k and lp = l). On the other hand, comparing components
of x2-degree 0 and 1 one observes that

[
ϕk(u),ϕl(v)

] =
{

ϕk+l((lu′v − kuv ′)r−1) if k + l �= 0,

kD H ((u′v − uv ′) + (u′v − uv ′)′r̃xp−1
2 ) if k + l = 0

for all u, v ∈ O(2; (2,1))[x1]. But then l[ϕk(1),ϕl(x(p)
1 )] + k[ϕk(x(p)

1 ),ϕl(1)] = 0 and [ϕk(1),ϕl(1)] = 0,

forcing N p−1
μ (Y ) = 0, a contradiction. Statement (i) follows.

(b) Observe that Cμ ∩ G = C ′
μ ⊕ F hμ . If h ∈ Cμ ∩ G and h /∈ C ′

μ , then Lemma 2.2(i) implies that

there are a ∈ F × , b, s ∈ F such that h = ahμ + btμ + sD H (x(p2)
1 ) + ∑p2−1

i=2 ai D H (x(i)
1 + x(i−1)

1 r̃x(p−1)
2 ) for

some ai ∈ F . Since C ′
μ is abelian, r is invertible, and

(exp aiDm)(hμ) = hμ + ai D H
(
r−1(x(m−1)

1 + x(m−2)
1 r̃x(p−1)

2

)) (
3 � m � p2)

by (2.1), we can clear the ai ’s by applying suitable automorphisms from Z(tμ). This proves state-
ment (ii).

In dealing with (iii) we may assume that h = hμ + sD H (x(p2)
1 ) where s ∈ F . In view of (2.3) we

need to find vk = 1 + b1x(1)
1 + b2x(2)

1 + · · · + bp2−1x(p2−1)
1 and ηk ∈ F satisfying the condition

ηkϕk(vk) = [
hμ + sD H

(
x(p2)

1

)
,ϕk(vk)

]
= −ϕk

(
r−1 v ′

k

) + sD H

(
x
(

p2−1
)

1 ·
( p−1∑

i=0

kir−i vkx(i−1)
2 + kp−1r̃ v ′

kx(p−2)
2

))

= −ϕk
(
r−1 v ′

k

) + skϕk
(
x(p2−1)

1 vk
)
.

This holds if and only if

−b1 − b2x1 − · · · − bp2−1x(p2−2)
1 + skx(p2−1)

1 = ηkr
(
1 + b1x(1)

1 + · · · + bp2−1x(p2−1)
1

)
.

Set b0 := 1. Because

r

(
1 +

p2−1∑
i=1

bi x
(i)
1

)
=

(
1 +

p2−1∑
i=1

bi x
(i)
1

)
+ μ

(
x(p−1)

1 +
p−1∑
i=1

bip x(ip+p−1)
1

)

=
(

1 +
p2−1∑

bi x
(i)
1

)
+ μ

p−1∑
bip x(ip+p−1)

1

i=1 i=0
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by Lucas’ theorem, this leads to the system of equations

b0 = 1;
bi = −ηkbi−1, 1 � i � p2 − 1, i /∈ pZ;

bip = −ηk(bip−1 + μbi−1), 1 � i � p − 1;
ηkbp2−1 = sk.

Arguing recursively, one observes that there is a bijection between the solutions to this system and

the roots of a polynomial of the form X p2 + ∑p2−1
i=1 λi X i − sk, where λi ∈ F . Since F is algebraically

closed, it follows that our eigenvalue problem has at least one solution.
(c) In view of our discussion in part (b), ϕk(vk) ≡ D H (x2) + b1 D H (x1) (mod S(0)). Since D H (x2) =

−D1 and S(0) is a restricted subalgebra of G, Jacobson’s formula shows that ϕk(vk)
[p] = −D p

1 + wk

for some wk ∈ S. In particular, ϕk(vk)
[p] �= 0. Note that ϕk(vk)

[p] ∈ Cμ ∩ S p ∩ ker ad h. Now, using
(2.1) it is easy to observe that C ′

μ ∩ ker ad h = Ftμ , whilst from Lemma 2.2 it is immediate that

Cμ ∩ S p = F (μhμ + nμ). Lemma 2.2 also implies that μhμ + nμ = −h[p]
μ and h[p]2

μ = −μph[p]
μ .

Let hs denote the p-semisimple part of h in G, an element of Cμ ∩ ker ad h ∩ S p . Since the above
discussion shows that Cμ ∩ S p ∩ ker ad h has dimension � 2, in order to finish the proof of (iii) we
need to show that tμ and hs are linearly independent.

Suppose the contrary. Then ad h acts nilpotently on C ′
μ . Recall that h ∈ hμ + C ′

μ and C ′
μ is abelian.

So ad hμ acts on C ′
μ nilpotently, too. Since μ �= 0, our earlier remarks and Lemma 2.2(iii) now show

that ad(h[p]
μ ) = −μad hμ−ad nμ acts trivially on C ′

μ . Since this violates (2.1), we reach a contradiction.
Statement (iii) follows.

(d) In proving (iv) we may assume that h = hμ + sD H (x(p2)
1 ); see part (b). We claim that there

exist u = x1 + c1x(2)
1 + · · · + cp2−2x(p2−1)

1 and λ ∈ F × such that

[
h, D H

(
u + u′r̃x(p−1)

2

)] = λD H
(
u + u′r̃x(p−1)

2

)
.

Since C ′
μ is abelian, it follows from (2.1) that

[
h, D H

(
u + u′r̃x(p−1)

2

)] = [
hμ, D H

(
u + u′r̃x(p−1)

2

)] = −D H
(
r−1u′ + (

r−1u′)′
r̃x(p−1)

2

)
.

Thus, we seek u such that r−1u′ = a − λu for some a ∈ F . Since r−1 = 1 − μx(p−1)
1 , this entails that

a = 1, c1 = −λ, and

(
1 − μx(p−1)

1

)(
1 +

p2−2∑
i=1

ci x
(i)
1

)
= 1 + c1

(
x1 +

p2−2∑
i=1

ci x
(i+1)
1

)
. (2.5)

Since x(p−1)
1 · (1 + ∑p2−2

i=1 ci x(i)) = (x(p−1)
1 + ∑p−1

i=1 cip x(ip+p−1)
1 ) by Lucas’ theorem, we see that

ci+1 = c1ci if p � (i + 2). Induction on k shows that ckp+p−1 = ck
1(cp−1

1 + μ)k+1 for 0 � k � p − 1. As

cp2−1 = 0, this yields cp−1
1 (cp−1

1 + μ)p = 0. As c1 = −λ �= 0, we see that c1 must satisfy the equation

X p−1 + μ = 0. Conversely, any root of this equation gives rise to a solution of (2.5) with λ = −c1 �= 0
(recall that μ �= 0 by our assumption). The claim follows.

We now set x := D H (u + u′r̃x(p−1)
2 ), where u is as above. Clearly, x ∈ S . Since r−1u′ − 1 ∈

O(1)(2; (2,1)), it follows from (2.2) that (ad x)p(ϕk(v)) = kpϕ((r−1u′)p v) = kϕk(v) for all v ∈
O(2; (2,1))[x1] and all k ∈ Fp . This implies that ad x is not nilpotent, completing the proof. �
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We now let t be a 2-dimensional torus in G.

Lemma 2.4. There exist nonzero u1, u2 ∈ S such that t = F (D p
1 + u1) ⊕ F u2 .

Proof. Since V [p] = 0, the restricted Lie algebra G/S p is p-nilpotent. As t is a torus, it must be that
t ⊂ S p . Then t ∩ S �= (0), for dim t = 2.

Suppose t ⊂ S . Since S(0)/S(1)
∼= sl(2) and S(−1)/S(0) is a 2-dimensional irreducible module over

S(0)/S(1) , every nonzero element of t ∩ S(0) acts invertibly on S(−1)/S(0) . Therefore, t ∩ S(0) �= (0)

would force t ⊂ S(0) , which is false because S(0) has toral rank 1 in S . On the other hand, if t ∩ S(0) =
(0) (and still t ⊂ S), then t would contain an element of the form D1 +u with u ∈ S(0) . But this would
yield D p

1 ∈ t + S = S , as S(0) is a restricted subalgebra of S p . Therefore, t �⊂ S . Since D1 is nilpotent
and S has codimension 1 in S p , our statement follows immediately. �
Lemma 2.5. Let h = cS (t) and let α ∈ Γ (S, t).

(1) If α vanishes on h, then G(α) is solvable.
(2) If α does not vanish on h, then G(α) ∼= H(2;1).
(3) dim Gγ = p + δγ ,0 for all γ ∈ Γ (G, t) ∪ {0}.
(4) Γ (S, t) ∪ {0} is a two-dimensional vector space over Fp .

Proof. Note that cS p (t) = t + h and t is a standard torus of maximal dimension in S p . Therefore, the
results of [B-W 88, (10.1.1)] and [St 91, (VI)] apply to t.

If α does not vanish on h, then G(α) ∼= H(2;1) by [P-St 04, Proposition 2.1(2)]. Suppose α(h) = 0.
As t is a maximal torus of S p , we have that α(L[p]

iα ) = 0 for all i ∈ F×
p . Then S(α) is nilpotent due to

the Engel–Jacobson theorem. As G/S is nilpotent too, we conclude that G(α) is solvable.
By [B-W 88, (10.1.1(e))], there is a 2-dimensional torus t′ in S p such that all roots in Γ (S, t′)

are proper. Then [St 91, (VI.2(2))] applies showing that all root spaces of G with respect to t′ are
p-dimensional and dim cG(t′) = p + 1. By [P 89], all root spaces of G with respect to t must have
the same property, and dim cG(t) = p + 1 (see also [P-St 99, Corollary 2.11]). As dim S = p3 − 2 and
dim Sγ � p for all γ ∈ Γ (S, t), we derive that |Γ (S, t)| = p2 −1. As a consequence, the set Γ (S, t)∪{0}
is 2-dimensional vector space over Fp . This completes the proof. �
Lemma 2.6. Under the above assumptions on t and S the following hold:

(1) If TR(h, S) = 2, then all roots in Γ (S, t) are Hamiltonian improper.
(2) If TR(h, S) = 1, then Γ (S, t) contains a solvable root.
(3) Suppose that TR(h, S) = 1 and hp ∩ S(0) contains a nonnilpotent element. Then for any solvable α ∈

Γ (S, t) the 1-section G(α) is nilpotent.

Proof. Suppose TR(h, S) = 2. Then no root in Γ (S, t) vanishes on h; hence, all roots in Γ (S, t) are
Hamiltonian by Proposition 2.5(2). If h ∩ S(0) contains a nonnilpotent element, x say, then the image
of x in S(0)/S(1)

∼= sl(2) acts invertibly on S(−1)/S(0) . As h is nilpotent, this would force h ⊂ S(0) , and
hence TR(h, S) = 1, a contradiction. Consequently, t∩ S(0) = (0). By [B-W 88, (10.1.1(d))] (see the proof
on pp. 232–233), every Hamiltonian root is then improper.

Now suppose TR(h, S) = 1. Then the unique maximal torus of hp is spanned by a toral element,
hence it follows from Lemma 2.5(4) that there is a root in Γ (S, t) which vanishes on h. Every such
root is solvable by Proposition 2.5(1).

Finally, suppose that TR(h, S) = 1 and hp ∩ S(0) contains a nonnilpotent element. Since S(0) is a
restricted subalgebra of S p , we then have S(0) ∩ hp ∩ t �= (0). Since t ∩ S = F u2 for some nonzero

u2 ∈ S (see Lemma 2.4), it must be that u2 ∈ S(0) and u[p]
2 ∈ F u2.

If α ∈ Γ (S, t) is solvable, then α(h) = 0 by Lemma 2.5(2). As explained in the proof of Lemma 2.5
the Lie algebra S(α) is nilpotent. There exists an element t ∈ F ×u2 with t[p] = t such that G(α) =
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cG(t). Set W := {v − (ad t)p−1(v) | v ∈ V }. By construction, W ⊂ cG(t) and G = W ⊕ S . Since V ⊂ G(1)

and t ∈ S(0) , we have the inclusion W ⊂ G(1) . In particular, all elements of W act nilpotently on cG(t).
Since S(α) is a nilpotent ideal of G(α), the set (adG(α) S(α))∪ (adG(α)W ) is weakly closed and con-

sists of nilpotent endomorphisms. Since G(α) = W ⊕ S(α), the Engel–Jacobson theorem now shows
that G(α) is nilpotent. �
Lemma 2.7. If t ∈ S p is a toral element not contained in S, then t is conjugate to D p

1 + D1 + D H (x1x2) under
the automorphism group of S.

Proof. By our assumption, t = aD p
1 + w for some a ∈ F × and w ∈ S . Choose α ∈ F satisfying αp = a

and let σα denote the automorphism of S which sends D H (x(i)
1 x( j)

2 ) to αi−1 D H (x(i)
1 x( j)

2 ); see [St 04,
Theorem 7.3.6]. Then σα(t) = −aD H (α−1x2)

p + w ′ for some w ′ ∈ S . Hence we may assume that
a = 1. The description of Aut S given in [St 04, Theorems 7.3.5 and 7.3.2] shows that for any pair of
nonnegative integers (m,n) �= (p,1) such that either p � m < p2 and n < p or (m,n) = (p2,0) and
any λ ∈ F there is σm,n,λ ∈ Aut S such that σm,n,λ(u) ≡ u + λ[D H (x(m)

1 x(n)
2 ), u] (mod Si+(m+n−1)) for all

u ∈ S(i) Using Jacobson’s formula (with u = D1) it is not hard to observe that

σm,n,λ

(
D p

1

) ≡ D p
1 − λD H

(
x(m−p)

1 x(n)
2

)
(mod S(m+n−p−1)).

This implies that there exists g ∈ Aut S such that g(t) = D p
1 + bD1 + D H (x(p2−p)

1 ψ) for some

ψ ∈ F [x1, x2] ⊂ O(2; (1,1)) with ψ(0) = 0. Write ψ = ∑p−1
i=0 ψi x

(i)
1 with ψi ∈ F [x2], where ψ0(0) = 0.

The element g(t) being toral, it must be that b = 1. Note that (ad D H (x(p2−p)
1 ψ))(ad(D p

1 +
D1))

i(D H (x(p2−p)
1 ψ)) = 0 for 0 � i � p − 3 and

(
ad D H

(
x(p2−p)

1 ψ
))(

ad
(

D p
1 + D1

))p−2(
D H

(
x(p2−p)

1 ψ
)) = [

D H
(
x(p2−p)

1 ψ
)
, D H

(
x(p)

1 ψ
)]

.

Because

(
ad D p

1 + ad D1
)p−1 =

p−1∑
i=0

(−1)i(ad D1)
pi(ad D1)

p−i−1 =
p∑

i=1

(−1)i−1(ad D1)
i(p−1)

and D p
1 (ψ) = 0, Jacobson’s formula yields that

g(t)[p] = (
D p

1 + D1
)[p] + (

ad
(

D p
1 + D1

))p−1(
D H

(
x(p2−p)

1 ψ
)) + 1

2

[
D H

(
x(p2−p)

1 ψ
)
, D H

(
x(p)

1 ψ
)]

= D p
1 + D H (ψ) − D H

(
x(p−1)

1 ψ
) +

∑
i�p

D H
(
x(i)

1 qi
)

for some qi ∈ F [x2]. As the RHS equals D p
1 − D H (x2) + D H (x(p2−p)

1 ψ) and x(p−1)
1 ψ = x(p−1)

1 ψ0, we

derive that ψ0 = −x2, ψi = 0 for 1 � i � p − 2, and ψp−1 = ψ0. In other words, ψ = −(1 + x(p−1)
1 )x2

and

g(t) = (
D p

1 + D1
) − D H

(
x(p2−p)

1 x2
) − D H

(
x(p2−1)

1 x2
)
.

Next we show that this element is toral. Note that

(
D p

1 + D1
) − D H

(
x(p2−p)

1 x2
) − D H

(
x(p2−1)

1 x2
) = (

D p
1 + D1

) − [
D p

1 + D1, D H
(
x(p2)

1 x2
)]
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and
(p2−1

p

) − (p2−1
p−1

) = (p−1
1

) − 1 = −2 by Lucas’ theorem. Then

[
D H

(
x(p2−p)

1

(
1 + x(p−1)

1

)
x2

)
, D H

(
x(p)

1

(
1 + x(p−1)

1

)
x2

)] = [
D H

(
x(p2−p)

1 x2
)
, D H

(
x(p)

1 x2
)]

= −2D H
(
x(p2−1)

1 x2
)
.

In view of the earlier computations this gives

(
D p

1 + D1 − D H
(
x(p2−p)

1 x2
) − D H

(
x(p2−1)

1 x2
))[p]

= D p
1 − (

ad
(

D p
1 + D1

))p(
D H

(
x(p2)

1 x2
)) − D H

(
x(p2−p)

1 x2
)

= D p
1 − D H (x2) − D H

(
x(p2−p)

1 x2
) − D H

(
x(p2−1)

1 x2
)
.

So the element D p
1 + D1 − D H ((x(p2−p)

1 + x(p2−1)
1 )x2) is indeed toral.

As a result, all toral elements in S p \ S are conjugate under Aut S . To finish the proof it remains to
note that the element D p

1 + D1 + D H (x1x2) ∈ S p \ S is toral. �
3. Two-sections in simple Lie algebras

In this section our standing hypothesis is that L is a finite-dimensional simple Lie algebra and T is
a torus of maximal dimension in the semisimple p-envelope L p of L. Given α1, . . . ,αs ∈ Γ (L, T ) we
denote by radT L(α1, . . . ,αs) the maximal T -invariant solvable ideal of the s-section L(α1, . . . ,αs) and
put

L[α1, . . . ,αs] := L(α1, . . . ,αs)/ radT L(α1, . . . ,αs). (3.1)

We let S̃ = S̃(α1, . . . ,αs) be the T -socle of L[α1, . . . ,αs], the sum of all minimal T -stable ideals of the
Lie algebra L[α1, . . . ,αs]. Then S̃ = ⊕r

i=1 S̃ i , where each S̃ i is a minimal T -stable ideal of L[α1, . . . ,αs].
It is immediate from the definition that both T and L(α1, . . . ,αs)p act on L[α1, . . . ,αs] as derivations
and preserve S̃ . Thus, there is a natural restricted Lie algebra homomorphism T + L(α1, . . . ,αs)p →
Der S̃ which will be denoted by Ψα1,...,αs . Note that L(α1, . . . ,αs) ∩ kerΨα1,...,αs = radT L(α1, . . . ,αs)

and, moreover, the image of Ψα1,...,αs can be identified with a semisimple restricted Lie subalgebra of
Der S̃ containing L[α1, . . . ,αs] as an ideal.

We often regard the linear functions on T as functions on the nilpotent restricted Lie algebra
cLp (T ) by using the rule γ (x) := (γ (x[p]e

))p−e
for all x ∈ cLp (T ), where e � 0 (this makes sense be-

cause T coincides with the set of all p-semisimple elements of cLp (T )).
Let nil H p denote the maximal p-nilpotent ideal of the restricted Lie algebra H p . According to

[P-St 04, Corollary 3.9], the inclusion H4 ⊂ nil H p holds and all roots in Γ (L, T ) are linear functions
on H .

Lemma 3.1. If δ ∈ Γ (L, T ) has the property that δ(H) �= 0, then δ([Lδ, L−δ]2) = 0 and [Lδ, L−δ]3 ⊂ nil H p.

Proof. This is immediate from [P-St 04, Proposition 3.4]. �
Proposition 3.2. Let t be a torus in L p whose centralizer in L is nilpotent, and assume further that t contains
the all p-semisimple elements of the p-envelope of cL(t) in L p . Let η ∈ Γ (L, t) be such that L(η) is nonsolvable
and denote by S(η) the socle of the semisimple Lie algebra L(η)/ rad L(η). Then the following hold:

(1) the radical rad L(η) is t-stable;
(2) the socle S(η) is a simple Lie algebra invariant under the action of t;
(3) the centralizer cS (t) is a Cartan subalgebra of toral rank 1 in S.
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Proof. The torus t satisfies the conditions of [P-St 04, Theorem 3.6]. Moreover, our first statement
is nothing but [P-St 04, Theorem 3.6(1)]. The last two statements are immediate consequences of
[P-St 04, Theorem 3.6(3)] and [P-St 04, Theorem 3.6(4)]. �
Theorem 3.3. For every γ ∈ Γ (L, T ) the radical rad L(γ ) is T -stable and either L[γ ] is one of (0), sl(2),
W (1;1), H(2;1)(2) , H(2;1)(1) or p = 5, L p possesses nonstandard tori of maximal dimension, and L[γ ] ∼=
H(2;1)(2) ⊕ F (1 + x1)

4∂2 . If γ is nonsolvable, then the derived subalgebra L[γ ](1) is simple.

Proof. This is immediate from [P-St 04, Corollary 3.7]. �
Lemma 3.4. Let g = H(2;1)(2) ⊕ F (1 + x1)

p−1∂2 and h a Cartan subalgebra of g. Then either h is abelian or
h3 contains a nonzero toral element of g.

Proof. We regard g as a restricted Lie subalgebra of g̃ := H(2;1). Recall that g̃ = H(2;1)(2) ⊕
FDH (x(p)

1 ) ⊕ FDH (x(p)
2 ) ⊕ FDH (x(p−1)

1 x(p−1)
2 ). Since g̃[p] ⊂ H(2;1)(2) by Jacobson’s formula, h coin-

cides with cg(y) for some nonzero toral element y ∈ H(2;1)(2) . By a result of Demuškin, there is
σ ∈ Aut H(2;1)(2) such that either σ(y) = D H ((1 + x1)x2) or σ(y) is a nonzero multiple of D H (x1x2);
see [St 04, Theorem 7.5.8]. In the latter case, there exist a,b ∈ F such that σ(h) is contained in the
span of aD H (x(p)

1 ) + bD H (x(p)
2 ) and all D H (x(i)

1 x(i)
2 ) with 1 � i � p − 1, hence is abelian. Then h is

abelian, too. So assume we are in the former case. Then there are a,b, c ∈ F such that σ(h) coin-
cides with the span of all D H ((1 + x1)

i x(i)
2 ) with 1 � i � p − 2 and z := a(1 + x1)

p−1 D2 + bD H (x(p)
2 ) +

cD H ((1 + x1)
p−1x(p−1)

2 ). If a = 0, then it is easy to check that σ(h) is abelian, whilst if a �= 0, then

(ad z)2(D H ((1 + x1)
3x(3)

2 )) is a nonzero multiple of σ(y). This completes the proof. �
Next we recall our results on 2-sections of L with respect to T . Let α,β ∈ Γ (L, T ) be such that

L(α,β) is nonsolvable. As explained in [P-St 04, p. 793], the T -socle S̃ = S̃(α,β) is either a unique
minimal ideal of L[α,β] or S̃ = S̃1 ⊕ S̃2, where TR(̃Si) = 1 for i = 1,2 and each S̃ i is T -stable. More-
over, in the latter case the following holds:

Theorem 3.5. (Cf. [P-St 04, Theorem 4.1].) If S̃ = S̃1 ⊕ S̃2 , then there exist δ1, δ2 ∈ Γ (L, T ) such that

L[δ1](1) ⊕ L[δ2](1) ⊂ L[α,β] ⊂ L[δ1] ⊕ L[δ2].

When the T -socle S̃ is a minimal ideal of L[α,β], we have two possibilities: either TR(̃S) = 2 or
TR(̃S) = 1.

Theorem 3.6. Suppose S̃ is the unique minimal ideal of L(α,β) and TR(̃S) = 2. Then S̃ is simple, Ψα,β(Lγ ) ⊂ S̃
for all γ ∈ Γ (L, T ), and one of the following holds:

(1) S̃ is one of W (2;1), S(3;1)(1) , H(4;1)(1) , K (3;1)(1) and L[α,β] = S̃;
(2) S̃ is one of W (1;2), H(2;1;Φ(τ))(1) , H(2;1;Δ) and

L[α,β] = S̃ + Ψα,β(T ) ∩ L[α,β];

(3) S̃ ∼= M(1,1) and L[α,β] = S̃;
(4) S̃ is a classical Lie algebra of type A2 , B2 or G2 and L[α,β] = S̃;
(5) S̃ = H(2; (2,1))(2) and Ψα,β(T ) ⊂ S̃ p . Moreover,

H
(
2; (2,1)

)(2) ⊂ L[α,β] ⊂ H
(
2; (2,1)

)(2) ⊕ FDH
(
x(p2)

1

) ⊕ FDH
(
x(p2−1)

1 x(p−1)
2

)
.

In cases (1), (3), (4) the Lie algebra L[α,β] is simple, and L[α,β](1) is simple in all cases.
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Proof. If S̃ is not isomorphic to H(2; (2,1))(2) , then the statement follows immediately from [P-St 04,
Theorem 4.2]. So assume S̃ ∼= H(2; (2,1))(2) . Then [P-St 04, Theorem 4.2] says that L[α,β] ⊂ G where
G is the p-envelope of G = H(2; (2,1)) in Der S̃ . Recall that Ψα,β : T + L(α,β)p → Der S̃ is a restricted
Lie algebra homomorphism. Hence S̃ p lies in the image of Ψα,β . In the present case, Der S̃ = G ⊕
F (x1 D1 + x2 D2); see [B-W 88, Proposition 2.1.8(vii)] for instance. If Ψα,β(T ) �⊂ G, then there is a
surjective restricted Lie algebra homomorphism Ψα,β(T + L(α,β)p) � F (x1 D1 + x2 D2) whose kernel
contains S̃ p . But then [St-F, Lemma 2.4.4(2)] yields that the restricted Lie algebra Ψα,β(T + L(α,β)p)

contains 3-dimensional tori, a contradiction. Consequently, Ψα,β(T + L(α,β)p) ⊂ G, forcing Ψα,β(T ) ⊂
G[p] ⊂ S̃ p .

Let t′ be an optimal 2-dimensional torus in S̃ p . By [B-W 88, Lemma 1.7.2(b)], there is a torus T ′ of
maximal dimension in T + L(α,β)p such that Ψα,β(T ′) = t′ . Let H ′ denote the centralizer of T ′ in L.
Note that L(α,β) = L(α′, β ′) for some α′, β ′ ∈ Γ (L, T ′) (this follows from the main result of [P 89]
and [P-St 99, Corollary 2.10]). Each iα′ + jβ ′ with i, j ∈ Fp can be viewed as a linear function of t′ .

Since t′ is optimal, t′ ∩ S̃ = t′ ∩ S̃(0) is spanned by a nonzero toral element, t2 say; see [St 92,
(VI.1)]. Since Γ (̃S, t′) ∪ {0} is a 2-dimensional vector space over Fp , by Lemma 2.5(4), there is δ′ ∈
Γ (L(α,β), T ′) such that δ′(t2) = 0. Since, then, δ′ also vanishes on c̃S (t

′), the Engel–Jacobson theorem
yields that S̃(δ′) is nilpotent. Since G/̃S is solvable, G(δ′) must be, also. But then L(δ′) is solvable,
too. As explained in [St 92, (VI.4)] the union

⋃
i∈F

×
p

S̃ iδ′ contains a nonnilpotent element of G. Hence⋃
i∈F

×
p

Liδ′ contains a nonnilpotent element of L p . Since Liδ′ ⊂ rad L(δ′) for all i ∈ F×
p , it follows from

[P-St 04, Proposition 3.8] that δ′ vanishes on H ′ .
Recall that S̃ p = FDp

1 ⊕ S̃ and G = S p ⊕ V , where V is the F -span of D H (x(p2)
1 ), D H (x(p)

2 )

and D H (x(p2−1)
1 x(p−1)

2 ). Hence G3 ⊂ S̃ . Pick a toral element t1 ∈ t′ \ S̃ (such an element exists by
Lemma 2.4). By Lemma 2.7, we may assume that t1 = D p

1 + D1 + D H (x1x2) (one should keep in
mind here that S̃(0) is invariant under all automorphisms of S; see [St 04, Theorem 4.2.6]). Set
V ′ := (Id − (ad t2)

p−1)(Id − (ad t1)
p−1)(V ). Then

c̃S (t
′) ⊂ Ψα,β(H ′) ⊂ cG(t′) = c̃S p

(t′) ⊕ V ′, cG(t′)3 ⊂ c̃S (t
′) ⊂ Ψα,β(H ′).

The elements (Id− (ad t1)
p−1)(D H (x(p2)

1 )) and (Id− (ad t1)
p−1)(D H (x(p2−1)

1 x(p−1)
2 )) lie in G(p−2) ⊂ G(1)

whereas [t1, D H (x(p)
2 )] = 0. Consequently, (Id − (ad t1)

p−1)(V ) ⊂ G(1) . As ad t2 preserves G(1) we get
V ′ ⊂ G(1) .

We claim that L[α,β] ⊂ G . Indeed, suppose the contrary. Recall that G = S̃ ⊕ V ′ � L[α,β]+ V ′ and
G = S̃ ⊕ FDp

1 ⊕ V ′ . Then G = L[α,β] + V ′ , hence

t′ ⊂ cG(t′) = cL[α,β]+V ′ (t′) = Ψα,β(H ′) + V ′.

Since (Ψα,β(H ′) + V ′)3 ⊂ Ψα,β(H ′), Jacobson’s formula and induction on k enable us to deduce that

(Ψα,β(H ′)+ V ′)[p]k ⊂ (V ′)[p]k +∑k
i=0Ψα,β(H ′)[p]k

for all k � 0. From our earlier remarks we know that

V ′ ⊂ G(1) consists of p-nilpotent elements of G. Therefore, (Ψα,β(H ′)+ V ′)[p]e ⊂ ∑e
i=0 Ψα,β(H ′)[p]i

for
all sufficiently large e. Since H ′ is nilpotent, this forces t′ = (t′)[p]e ⊂ (Ψα,β(H ′))[p]e

for e � 0. But then
δ′ vanishes on t′ . By contradiction, the claim follows.

Suppose L[α,β] �⊂ H(2; (2,1))(2) ⊕ FDH (x(p2)
1 ) ⊕ F D H (x(p2−1)

1 x(p−1)
2 ) and pick μ ∈ F × . Recall the

elements tμ ∈ S̃ and hμ ∈ cG(tμ) from Lemma 2.1. Our present assumption on L[α,β] implies that
cL[α,β](tμ) � C ′

μ; see Lemma 2.2(i). As L[α,β] ⊂ G by our remarks earlier in the proof, L[α,β] con-
tains an element from (G ∩ Cμ) \ C ′

μ; call it h. In view of Lemma 2.3(ii), we may assume that

h = hμ + sD H (x(p2)
1 ) for some s ∈ F .

Let h0 denote the p-semisimple part of h in the p-envelope of L[α,β] in G. It is immediate from
Lemma 2.3(iv) that the elements h0 and tμ are linearly independent. This implies that tμ := F h0 ⊕ Ftμ
is a torus of maximal dimension in G. Recall that the restricted Lie algebra homomorphism Ψα,β

takes T + L(α,β)p into G. Hence it follows from [St-F, Lemma 2.4.4(2)] that there exists a torus of
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maximal dimension T ′′ in L p contained in T + L(α,β)p and such that tμ = Ψα,β(T ′′) and T ∩ kerα ∩
kerβ ⊂ T ∩ T ′′ . We denote by H ′′ the centralizer of T ′′ in L. By construction, there exists h̃ ∈ H ′′ with
Ψα,β(h̃) = h.

Set T0 := T ∩ kerα ∩ kerβ . Because L(α,β) = cL(T0), it is straightforward to see that L(γ ′′) =
L(α,β)(γ ′′) for every γ ′′ ∈ Γ (L, T ′′) with γ ′′(T0) = 0. Since Ψα,β(T ′′) = tμ , there exists δ′′ ∈ Γ (L, T ′′)
such that δ′′(T0) = 0, δ′′(tμ) = 0 and δ′′(h0) �= 0; see Lemma 2.5(4). Then C ′

μ ⊂ Ψα,β((L(α,β))(δ′′)) ⊂
Cμ and δ′′(h̃) �= 0. Since (L(α,β))(δ′′) = L(δ′′) by the preceding remark, Lemma 2.2(i) shows that δ′′
is a solvable root which does not vanish on H ′′ . In view of [P-St 04, Proposition 3.8], this entails that
every root space Liδ′′ = (rad L(δ′′))iδ′′ , where i ∈ Fp , consists of p-nilpotent elements of L p . Since Ψα,β

is a restricted Lie algebra homomorphism, this means that for every λ ∈ F × all λ-eigenvectors of the
linear operator (ad h)|C ′

μ
must act nilpotently on S̃ . As this contradicts Lemma 2.3(iv), we now derive

that our present assumption is false. Thus, L[α,β] ⊂ H(2; (2,1))(2) ⊕ FDH (x(p2)
1 )⊕ F D H (x(p2−1)

1 x(p−1)
2 ),

completing the proof. �
If S̃ is a minimal ideal of L[α,β] and TR(̃S) = 1, then [P-St 04, Theorem 4.4] implies the following:

Theorem 3.7. Suppose S̃ is a unique minimal ideal of L(α,β) and TR(̃S) = 1. Then there exists δ ∈ Fpα +Fpβ

such that Ψα,β(Lγ ) ⊂ S̃ for all γ ∈ Γ (L, T ) \ Fpδ. Moreover, one of the following holds:

(1) L[α,β] = L[η] for some η ∈ Γ (L, T ) ∩ (Fpα + Fpβ);
(2) S̃ ∼= H(2;1)(2) , L[α,β] ⊂ Der H(2;1)(2) and dimΨα,β(T ) = 2;
(3) S ⊗ O(m;1) ⊂ L[α,β] ⊂ (Der S) ⊗ O(m;1) � (Id ⊗ W (m;1)), where S is one of sl(2), W (1;1),

H(2;1)(2) , S̃ ∼= S ⊗ O(m;1), and m > 0.

In cases (1) and (2) one can take δ = 0, i.e. Ψα,β(Lγ ) ⊂ S̃ for all γ ∈ Γ (L, T ).

More information on the two-sections of L can be found in [P-St 04, Section 4].

4. Nonstandard tori of maximal dimension

From now on we assume that T is a nonstandard torus of maximal dimension in the semisimple
p-envelope L p of L. In light of [P 94, Theorem 1] this implies that p = 5. As explained in Section 2,
the linear functions on T can be regarded as functions on the nilpotent restricted Lie algebra cLp (T ).
Set H := cL(T ) and define

Ω = Ω(L, T ) := {
δ ∈ Γ (L, T )

∣∣ δ
(

H3) �= 0
}
.

As T is a torus of maximal dimension in L p , it is immediate from [P 94, Theorem 1(ii)] that there
exist Fp-independent roots α,β ∈ Γ (L, T ) for which L[α,β] ∼= M(1,1). By Lemmas 4.1 and 4.4 of
[P 94], we then have iα + jβ ∈ Ω for all nonzero (i, j) ∈ F2

p . In particular, Ω �= ∅. In view of Schue’s
lemma [St 04, Proposition 1.3.6(1)], this yields

Lγ =
∑
δ∈Ω

[Lδ, Lγ −δ]
(∀γ ∈ Γ (L, T ) ∪ {0}). (4.1)

Because of [P 94, Theorem 1(ii)] we can also assume that TR(L) � 3. Our main goal in this section
is to give a preliminary description of the 2-sections of L relative to T . More precisely, we will go
through all possible types of 2-sections (described in Section 3) and eliminate some of them by using
our assumption on T .

Lemma 4.1. For any nonsolvable α ∈ Ω there exists β ∈ Γ (L, T ) such that L[α,β] ∼= M(1,1) and
α([Liα, L−iα], [Lβ, L−β ]) �= 0 for some i ∈ F×

p .
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Proof. Since α is nonsolvable and α(H3) �= 0, Theorem 3.3 implies that L[α] ∼= H(2;1)(2) ⊕
F (1 + x1)

4∂1. By [P-St 04, Theorem 3.5], there is k ∈ F×
p for which the set Ω1 := {δ ∈ Γ (L, T ) |

δ([Lkα, L−kα]) �= 0} is nonempty. Since Ψα(H) ∩ H(2;1)(2) has codimension one in Ψα(H), Schue’s
lemma [St 04, Proposition 1.3.6(1)] implies that there exists β ∈ Ω1 with the property that

Ψα(H) = Ψα(H) ∩ H(2;1)(2) + Ψα

([Lβ, L−β ]).
Hence there exist h1 ∈ L(α)(∞) ∩ H and h2 ∈ [Lβ, L−β ] with α([h2, [h2,h1]]) �= 0. Note that
β([h2, [h2,h1]]) ∈ β([Lβ, L−β ]2) = 0 by Lemma 3.1. In particular, α and β are linearly independent
over Fp . Since β ∈ Ω1, we then have

β
([

h2, [h2,h1]
]) = 0; α

([
h2, [h2,h1]

]) �= 0; β
([Lkα, L−kα]) �= 0. (4.2)

We now look more closely at the T -semisimple quotient L[α,β] of the 2-section L(α,β). Since α
is nonsolvable, L[α,β] �= (0). Let S̃ denote the p-envelope of the T -socle S̃ of L[α,β] in Der S̃ , and set
u := Ψα,β([h2, [h2,h1]]). Given x ∈ S̃ we write xs for the p-semisimple part of x in S̃. Because the roots
α,β are Fp-independent, h1 ∈ L(α)(∞) ∩ H = ∑

j∈F
×
p
[L jα, L− jα] and h2 ∈ [Lβ, L−β ], it follows from

Theorems 3.3, 3.5, 3.6 and 3.7 that u ∈ S̃ . Now relations (4.2) enable us to find v ∈ S̃ ∩Ψα,β([Lkα, Lkα])
such that the span of us and vs is 2-dimensional. This yields Ψα,β(T ) ⊂ S̃ showing that TR(̃S) = 2.
Since β([Lkα, L−kα]) �= 0, we also deduce that there are Fp-independent δ1, δ2 ∈ Γ (L, T ) for which
[Ψα,β(Lδ1 ),Ψα,β(Lδ2 )] �= 0. In view of Theorem 3.5, this implies that S̃ is a minimal ideal of L[α,β].

Theorem 3.6 now says that S̃ is a simple Lie algebra and Ψα,β(Lγ ) ⊂ S̃ for all γ ∈ Γ (L, T ) ∩
(Fpα + Fpβ). Since α(H, [Lkα, L−kα]) �= 0, the torus Ψα,β(T ) ⊂ S̃ = S̃ p is nonstandard. Applying [P 94,
Theorem 1(ii)] we conclude that L[α,β] ∼= M(1,1), finishing the proof. �
Proposition 4.2. If α ∈ Ω and β ∈ Γ (L, T ), then one of the following occurs:

(1) L[α,β] = (0).
(2) L[α,β] = L[δ] for some δ ∈ Γ (L, T ).
(3) L[δ1](1) ⊕ L[δ2](1) ⊂ L[α,β] ⊂ L[δ1] ⊕ L[δ2] for some δ1, δ2 ∈ Γ (L, T ).
(4) S ⊗ O(m;1) ⊂ L[α,β] ⊂ (Der S) ⊗ O(m;1) � (Id ⊗ W (m;1)), where S is one of sl(2), W (1;1),

H(2;1)(2) , S̃ ∼= S ⊗ O(m;1), and m > 0.
(5) H(2; (2,1))(2) ⊂ L[α,β] ⊂ H(2; (2,1)) and S̃ = H(2; (2,1))(2) = L[α,β](1) . Furthermore, each η ∈

Γ (L[α,β],Ψα,β(T )) is Hamiltonian, η(Ψα,β(T ) ∩ S̃) �= 0, and Γ (L[α,β],Ψα,β(T )) = (Fpα ⊕ Fpβ) \
{0}.

(6) L[α,β] ∼= M(1,1).

Proof. (a) Set T := Ψα,β(T ) and H := Ψα,β(H). If Γ (L[α,β], T ) = ∅, then L(α,β) is solvable, forcing
L[α,β] = (0). If ∅ �= Γ (L[α,β], T ) ⊂ Fpδ for a single root δ, then for any δ′ ∈ (Fpα ⊕ Fpβ) \ Fpδ we
have that Lδ′ ⊂ radT L(α,β). Then L[α,β] = L[δ]. So we may assume from now that Γ (L[α,β], T )

contains two roots independent over Fp . Then L[α,β] is described in Theorems 3.5, 3.6 and 3.7. Let
S̃ be the T -socle of L[α,β]. If S̃ is not a minimal ideal of L[α,β], then Theorem 3.5 says that we are
in case (3) of this proposition. Thus, we may assume further that S̃ is a minimal ideal of L[α,β].

(b) Suppose TR(̃S) = 2. Then L[α,β] is described in Theorem 3.6. Since α(H3) �= 0, there exists
η ∈ Γ (̃S, T ) with η(H3) �= 0. In cases (1)–(4) of Theorem 3.6 we have H3 ⊂ (T + H ∩ S̃)3 = (H ∩ S̃)3,
implying that H ′ = c̃S (T ) acts nontriangulably on S̃ . But then [P 94, Theorem 1(ii)] shows that S̃ ∼=
M(1,1). This brings up case (6) of this proposition.

(c) Suppose L[α,β] is as in case (5) of Theorem 3.6. Then S̃ ∼= H(2; (2,1))(2) and L[α,β] ⊂
H(2; (2,1))(2) ⊕ FDH (x(p2)

1 ) ⊕ FDH (x(p2−1)
1 x(p−1)

2 ). Furthermore, T ⊂ S̃ p . If no root in Γ (̃S, T ) vanishes
on T ∩ S̃ , then Lemma 2.5(2) shows that we are in case (5) of this proposition. So assume for a con-
tradiction that there is δ ∈ Γ (̃S, T ) with δ(T ∩ S̃) = 0. By Lemma 2.4, we have T ∩ S̃ = F u2 �= (0).
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Since δ vanishes on u2 ∈ T ∩ S̃ , we may assume without loss that u2 is a toral element. As before, we
put G = H(2; (2,1)) and G = S̃ p ⊕ V , where V ⊂ Der S̃ is defined in Section 2. Since α ∈ Ω , the Lie
algebra H3 acts nonnilpotently on S .

(c1) We first suppose that T ∩ S̃ �⊂ S(0) . Then we can find Ψα,β such that T ∩ S̃ = Ftμ where μ ∈ F ;
see Lemma 2.1. Thus, no generality will be lost by assuming that u2 = tμ . But then it follows from
Lemma 2.2(i) that

H ⊂ Cμ ∩ (
H

(
2; (2,1)

)(2) ⊕ FDH
(
x(p2)

1

) ⊕ FDH
(
x(p2−1)

1 x(p−1)
2

)) = C ′
μ

and [H, H] ⊂ [C ′
μ, C ′

μ] = (0). Since H acts nontriangulably on S̃ , this is impossible.

(c2) Now suppose that T ∩ S̃ ⊂ S(0) . Then T ∩ S(0) contains a nonzero p-semisimple element,
say t; see Lemma 2.4. It follows from Lemma 2.4 and our earlier remarks that G = T + G . As gr t ∈
G(0)/G(1)

∼= sl(2) acts invertibly on G(−1) = G/G(0) , this implies that H ⊂ T + cG(T ) = T + cG(1)
(T ).

But then H(1) ⊂ G(1) acts nilpotently on G , a contradiction.
As a result, no root in Γ (̃S, T ) vanishes on H ∩ S̃ and we are in case (5) of this proposition; see

Lemma 2.5(2).
(d) If L[α,β] is as in case (1) of Theorem 3.7, then it is listed in the present proposition as

type (2). If L[α,β] is as in case (2) of Theorem 3.7, then S̃ = H(2;1)(2) , L[α,β] ⊂ Der H(2;1)(2) ,
and T is a 2-dimensional torus in Der S̃ . It is well known that any 2-dimensional torus in Der S̃ is
self-centralizing; see [St 92, (III.1)] for instance. But then γ (H (1)) = 0 for all γ ∈ Fpα ⊕ Fpβ . Thus,
this case cannot occur in our situation. Finally, case (3) of Theorem 3.7 is listed as type (4) in the
present proposition. �
Corollary 4.3. Let α ∈ Ω and β ∈ Γ (L, T ). If L[α,β] is as in cases (1)–(3), (5) or (6) of Proposition 4.2, then∑

i∈F
×
p
(rad L(γ ))iγ ⊂ radT L(α,β) for all nonzero γ ∈ Fpα + Fpβ .

Proof. If L[α,β] is of type (1) or (2), then all 1-sections of L[α,β] are semisimple and there is
nothing to prove. If L[α,β] is of type (3), then there are hi ∈ H ∩ L[δi] such that δi(hi) �= 0, where
i = 1,2 (recall that H = Ψαβ(H)). It follows that rad L[α,β](δi) ⊂ H + L[δi](1). As each L[δi](1) is
simple, we get rad(L[α,β](γ )) ⊂ H for all nonzero γ ∈ Fpα ⊕ Fpβ . If L[α,β] is of type (5) or (6),
then all T -roots of L[α,β] are Hamiltonian and the corresponding root spaces are 5-dimensional
(see Lemma 2.5 and [P 94, Lemmas 4.1 and 4.4]). Hence in these cases rad(L[α,β](γ )) ⊂ H for all
γ ∈ (Fpα ⊕ Fpβ) \ {0}. �
Lemma 4.4. The following hold for every γ ∈ Γ (L, T ) with γ (H) �= 0:

(a) All elements in
⋃

i∈F
×
p
(H3 ∩ [(rad L(γ ))iγ , L−iγ ]) are p-nilpotent in L p .

(b) If γ ∈ Ω , then all elements in
⋃

i∈F
×
p
((rad L(γ ))iγ ∪ [(rad L(γ ))iγ , L−iγ ]) are p-nilpotent in L p .

Proof. We will treat both cases simultaneously. Set

Ω ′ :=
{
α ∈ Γ (L, T )

∣∣∣ α( ⋃
i∈F

×
p

(
H3 ∩ [(

rad L(γ )
)

iγ , L−iγ
]) �= 0

)}
,

Ω ′′ :=
{
α ∈ Γ (L, T )

∣∣∣ α( ⋃
i∈F

×
p

((
rad L(γ )

)[p]
iγ ∪ [(

rad L(γ )
)

iγ , L−iγ
])) �= 0

}
.
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Assume for a contradiction that either Ω ′ �= ∅ or γ ∈ Ω and Ω ′′ �= ∅. Note that Ω ′ ⊂ Ω ′′ ∩ Ω . Since
γ (H) �= 0, Schue’s lemma [St 04, Proposition 1.3.6(1)] shows that there exists μ ∈ Ω ′ or μ ∈ Ω ′′ for
γ ∈ Ω such that

γ
([Lμ, L−μ]) �= 0. (4.3)

In both cases, the type of L[γ ,μ] is determined by Proposition 4.2. If L[γ ,μ] is as in cases (1),
(2), (3), (5) or (6) of Proposition 4.2, then

∑
i∈F

×
p
(rad L(γ ))iγ ⊂ radT L(γ ,μ) by Corollary 4.3. Since

μ ∈ Ω ′′ in both cases, this yields L±μ ⊂ radT L(γ ,μ). Easy induction on n based on (4.3) now gives

∑
i∈F

×
p

(
rad L(γ )

)
iγ ⊂

⋂
n�1

(
radT L(γ ,μ)

)(n) = (0).

Since this contradicts our assumption that either Ω ′ or Ω ′′ is nonempty, L[γ ,μ] must be of type (4).
Then the minimal ideal of L[γ ,μ] has the form S̃ = S ⊗ O(m;1), where S is a restricted simple Lie
algebra of absolute toral rank 1 and m > 1. According to [P-St 99, Theorem 3.2] we can choose Ψγ ,μ

such that T = Ψγ ,μ(T ) has the form F (h0 ⊗ 1) ⊕ F (d ⊗ 1 + IdS ⊗ t0) for some d ∈ Der S and some
nonzero toral elements t0 ∈ W (m;1) and h0 ∈ S .

Since TR(L[γ ,μ]) = 2, the roots γ and μ span the dual space of T . Therefore, γ (h0 ⊗ 1) �= 0 or
μ(h0 ⊗ 1) �= 0. It is straightforward to see that γ vanishes on all (rad L(γ ))

[p]
iγ and [(rad L(γ ))iγ , L−iγ ]

with i ∈ F×
p . Because μ ∈ Ω ′′ , this observation in conjunction with (4.3) shows that Ψγ ,μ(Liγ + jμ) ⊂

S ⊗ O(m;1) for all nonzero (i, j) ∈ (Fp)2. There are in both cases

x ∈
⋃

i∈F
×
p

((
rad L(γ )

)[p]
iγ ∪ [(

rad L(γ )
)

iγ , L−iγ
])

and h ∈ [Lμ, L−μ]

such that γ (x[p]) = 0, μ(x[p]) �= 0 and γ (h) �= 0. But then 2 � TR(S ⊗ O(m;1)) = TR(S) = 1, a contra-
diction. �
Proposition 4.5. Let α ∈ Ω and β ∈ Γ (L, T ) be such that L[α,β] is as in case (4) of Proposition 4.2. Then
S̃ ∼= S ⊗ O(1;1), where S = H(2;1)(2) , and Ψα,β can be chosen such that T := Ψα,β(T ) = F (h0 ⊗ 1) ⊕
F (IdS ⊗ (1 + x1)∂1) for some nonzero toral element h0 ∈ S. Furthermore, Ω �= Γ (L, T ) and the following hold
for γ ∈ Γ (L[α,β], T ):

γ ∈ Ω ⇔ γ (h0 ⊗ 1) �= 0;
γ /∈ Ω ⇒ α

(
L[p]
γ

) �= 0 or β
(
L[p]
γ

) �= 0.

Proof. By our assumption, S̃ = S ⊗O(m;1) where m � 1, S is one of sl(2), W (1;1), H(2;1)(2) . Recall
that Ψα,β takes T + L(α,β)p into Der(S ⊗ O(m;1)). Let

π : Der
(

S ⊗ O(m;1)
) = (Der S) ⊗ O(m;1) �

(
IdS ⊗ W (m;1)

)
� W (m;1)

denote the canonical projection. According to [P-St 99, Theorem 3.2], we can choose Ψα,β such that

T := Ψα,β(T ) = F (h0 ⊗ 1) ⊕ F (d ⊗ 1 + IdS ⊗ t0),

where F h0 is a maximal torus of S , d ∈ Der S and t0 is a toral element of W (m;1). Moreover, if
t0 ∈ W (m;1)(0), then t0 = ∑m

i=1 si xi∂i , where si ∈ Fp , and if t0 /∈ W (m;1)(0) , then d = 0 and t0 =
(1 + x1)∂1.
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Our argument is quite long and will be split into two parts, each part consisting of several in-
termediate statements. Given a subset X of T + L(α,β)p we denote by X the set {Ψα,β(x) | x ∈ X}.
If {x1, . . . , xm} is a generating set of the maximal ideal O(m;1)(1) , then we sometimes invoke the
notation O(m;1) = F [x1, . . . , xm].

Part A. We first consider the case where t0 ∈ W (m;1)(0) .

Claim 1. π(H) ⊂ W (m;1)(0).

Indeed, suppose the contrary. Then Schue’s lemma [St 04, Proposition 1.3.6(1)] shows that there
exists κ ∈ Γ (L, T ) with κ(H) �= 0 such that π([Lκ , L−κ ]) �⊂ W (m;1)(0) . Then there is E ∈ [Lκ , L−κ ]
such that E = E ′ + IdS ⊗π(E) with E ′ ∈ (Der S)⊗O(m;1) and π(E) ≡ ∑m

i=1 ai∂i �≡ 0 (mod W (m;1)(0))

for some ai ∈ F . No generality will be lost by assuming that a1 �= 0. Then

0 = [
t0,π(E)

] ≡
m∑

i=1

ai si∂i
(
mod W (m;1)(0)

)
,

forcing s1 = 0. But then h0 ⊗ xp−1
1 ∈ H and

(ad E)p−1(h0 ⊗ xp−1
1

) ∈ F ×(h0 ⊗ 1) + S ⊗ O(m;1)(1),

which implies that [Lκ , L−κ ]3 �⊂ nil H p . As this contradicts Lemma 3.1, the claim follows.

Claim 2. There exists ν ∈ Γ (L[α,β], T ) with π(Lν) �⊂ W (m;1)(0) and ν(h0 ⊗ 1) = 0.

Indeed, S̃ is derivation simple and π(T + H) ⊂ W (m;1)(0) by our general assumption in this part
and Claim 1. Hence there is ν ∈ Γ (L[α,β], T ) with π(Lν) �⊂ W (m;1)(0) . Since π([h0 ⊗ 1, Lν ]) = 0, it
must be that ν(h0 ⊗ 1) = 0.

Claim 3. If γ ∈ Γ (L[α,β], T ), then γ ∈ Ω ⇔ γ (h0 ⊗ 1) �= 0.

Let γ be any root in Γ (L[α,β], T ) with γ (h0 ⊗ 1) = 0. As h0 ⊗ 1 ∈ T is a nonzero toral element,
γ ∈ F×

p ν , where ν is the root from Claim 2. Hence there is E ∈ Liγ for some i ∈ F×
p , such that π(E) /∈

W (m;1)(0) . As before, we have that π(E) ≡ ∑m
i=1 ai∂i �≡ 0 (mod W (m;1)(0)), and it can be assumed

that a1 �= 0. Then h0 ⊗ x1 ∈ S̃−iγ . Note that h0 ⊗O(m;1) is an abelian ideal of the centralizer of h0 ⊗ 1
in Der S̃ . Consequently, h0 ⊗ x1 ∈ rad(L[α,β](γ ))−iγ and

a1h0 ⊗ 1 ≡ [E,h0 ⊗ x1]
(
mod S ⊗ O(m;1)(1)

)
.

It follows that [Liγ , (rad L(γ ))−iγ ] contains an element which is not p-nilpotent in L p . Then γ /∈ Ω

by Lemma 4.4. Since α ∈ Ω , these considerations show that α(h0 ⊗ 1) �= 0. As a consequence,

iα + jγ ∈ Ω ⇔ (iα + jγ )
(

H3) �= 0 ⇔ i ∈ F×
p ⇔ (iα + jγ )(h0 ⊗ 1) �= 0,

hence the claim.

Claim 4. The Lie algebra π(H)3 consists of p-nilpotent elements of W (m;1).

Otherwise, there is y ∈ H3 with y[p]e ∈ T \ F (h0 ⊗1), so that y[p]e = b1(h0 ⊗1)+b2(d⊗1+ IdS ⊗t0)

for some b1 ∈ F and b2 ∈ F × . Let ν ∈ Γ (L[α,β], T ) be as in Claim 2. Then ν(h0 ⊗1) = 0 and ν(d ⊗1+
IdS ⊗ t0) �= 0, forcing ν(y[p]e

) �= 0. It follows that ν ∈ Ω . This contradicts Claim 3, however.



3578 A. Premet, H. Strade / Journal of Algebra 320 (2008) 3559–3604
Claim 5. d ∈ F h0.

Claim 1 in conjunction with our standing hypothesis in this part shows that there is a Lie algebra
homomorphism

Ψ : (Der S) ⊗ O(m;1) + (H + T ) → Der S

whose kernel is spanned by (Der S) ⊗ O(m;1)(1) and those elements of H + T which map (Der S) ⊗
O(m;1) into (Der S) ⊗ O(m;1)(1) . Suppose d /∈ F h0. Then Ψ (T ) = F h0 ⊕ Fd. Since d is a semisimple
derivation of S , it follows that S = H(2;1)(2) and Ψ (T ) is a torus of maximal dimension in Der S .
Since every such torus is self-centralizing in Der S , by [St 92, (III.1)], it must be that H ⊂ T + kerΨ .
Note that

(H + T ) ⊂ (Der S) ⊗ O(m;1) + F (IdS ⊗ t0) + IdS ⊗ π(H)

and F (IdS ⊗ t0) + IdS ⊗ π(H) ⊂ kerΨ by our assumption on t0 and Claim 1. Hence

H ⊂ (T + kerΨ ) ∩ H ⊂ (kerΨ ) ∩ (H + T ) + T

⊂ (Der S) ⊗ O(m;1)(1) + F (IdS ⊗ t0) + IdS ⊗ π(H) + T ,

forcing H3 ⊂ (Der S) ⊗ O(m;1)(1) + IdS ⊗ π(H)3. In view of Claim 4 the Lie algebra on the right acts
nilpotently on S ⊗ O(m;1). But then H3 acts nilpotently on L[α,β], a contradiction.

As a consequence, H ∩ (S ⊗ O(m;1)) = cS (h0) ⊗ AnnO(m;1)(t0) and we may take d = 0.

Claim 6. Let ν be as in Claim 2. Then

H ∩ S̃ ⊂ Ψα,β

([(
rad L(ν)

)
−ν

, Lν

]) + H ∩ (
S ⊗ O(m;1)(1)

)
.

By definition, there is E ∈ Lν such that

π(E) ≡
m∑

i=1

ai∂i �≡ 0
(
mod W (m;1)(0)

)
, a1 �= 0.

We have shown in the course of the proof of Claim 3 that cS (h0)⊗ x1 ⊂ rad L(ν)−ν . Then cS (h0)⊗ F ⊂
[E, S̃−ν ] + H ∩ (̃S ∩ O(m;1)(1)). As a consequence,

H ∩ S̃ = cS (h0) ⊗ AnnO(m;1)(t0) ⊂ cS (h0) ⊗ F + cS (h0) ⊗ O(m;1)(1)

⊂ [
Lν,

(
rad L(ν)

)
−ν

] + H ∩ (
S ⊗ O(m;1)(1)

)
.

Claim 7. If ν is as in Claim 2, then ν(H) = 0.

As S ⊗ F is T -stable and S is not nilpotent, there is μ ∈ Γ (̃S, T ) with (S ⊗ F )μ �= (0). Then
μ(IdS ⊗ t0) = 0 and hence μ(h0 ⊗ 1) �= 0. It follows that

L[α,β](μ) ⊂ S ⊗ O(m;1) + H ⊂ (Der S) ⊗ O(m;1) + IdS ⊗ W (m;1)(0).
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Let Φ : L[α,β](μ) → Der S denote the natural T -equivariant Lie algebra homomorphism with kerΦ =
L[α,β](μ) ∩ ((Der S) ⊗ O(m;1)(1) + IdS ⊗ W (m;1)(0)) and S ⊂ imΦ . Then [St 04, Theorems 1.2.8
and 1.3.11] show that

TR(kerΦ) � TR
(
L[α,β](μ)

) − TR(S) � TR
(
L(μ)

) − TR(S) � 1 − TR(S) � 0,

implying that kerΦ is a nilpotent ideal of L[α,β](μ). As Φ(L[α,β](μ)) contains S , it is semisimple,
hence isomorphic to L[μ]. Note that μ ∈ Ω by Claim 3. As L[μ] �= (0), Theorem 3.3 says that p = 5
and Φ(L[α,β](μ)) ∼= H(2;1)(2) ⊕ F (1 + x1)

4∂2. In particular, μ is Hamiltonian. Observe that

(
ad(1 + x1)

4∂2
)2

D H
(
(1 + x1)

3x3
2

) = D H
(
(1 + x1)x2

)
. (4.4)

By (the proof of) Lemma 3.4, we may assume that h0 = D H ((1 + x1)x2). Then (4.4) shows that there
exists D ∈ Φ(H) such that [D, [D, cS(h0)]] �⊂ nil cS (h0).

Note that nil cS (h0) has codimension 1 in cS (h0). As kerΦ acts nilpotently on L[α,β](μ), there is
D̃ ∈ H with μ([D̃, [D̃, S̃ ∩ H]]) �= 0. Since H ∩ (S ⊗ O(m;1)(1)) is an ideal of H , Claim 6 entails that
Ψα,β([(rad L(ν))−ν, Lν ])∩ H3 does not consist of p-nilpotent elements of L p . In view of Lemma 4.4(1),
this yields that ν(H) = 0.

Since t0 ∈ W (m;1)(0) , the 2-section L[α,β] is semisimple (not just T -semisimple), and S̃ is the
unique minimal ideal of L[α,β]. On the other hand, applying Proposition 3.2 with t = T ∩ kerν shows
that the unique minimal ideal of L[α,β] is a simple Lie algebra (notice that cL(t) = L(ν) is nilpotent
by the Engel–Jacobson theorem). But then m = 0, a contradiction. This means that the case where
t0 ∈ W (m;1)(0) cannot occur.

Part B. Thus, we may assume that t0 /∈ W (m;1)(0) . Because of [P-St 99, Theorem 3.2] it can be
assumed further that T = F (h0 ⊗ 1) ⊕ F (IdS ⊗ (1 + x1)∂1). Then H ∩ S̃ = cS (h0) ⊗ F [x2, . . . , xm].
Since α and β are Fp-independent, there exists λ ∈ Fpα + Fpβ such that λ(h0 ⊗ 1) = 0 and
λ(IdS ⊗ (1 + x1)∂1) = 1. Note that

F h0 ⊗ (1 + x1)
i ⊂ S̃ iλ ⊂ (

rad L(λ)
)

iλ ∀i ∈ F×
p . (4.5)

Hence (rad L(λ))iλ contains nonnilpotent elements of L p for all i ∈ F×
p . Lemma 4.4(b) yields λ /∈ Ω .

Since S ⊗ F is T -stable and not nilpotent, there is κ ∈ Γ (L[α,β], T ) with (S ⊗ F )κ �= (0). As κ(IdS ⊗
(1 + x1)∂1) = 0, it must be that κ(h0 ⊗ 1) �= 0.

Claim 1. If γ ∈ Γ (L[α,β], T ), then γ ∈ Ω ⇔ γ (h0 ⊗ 1) �= 0.

As α ∈ Ω and λ /∈ Ω , one has iα + jλ ∈ Ω for all i ∈ F×
p and j ∈ Fp . So

iα + jλ ∈ Ω ⇔ i �= 0 ⇔ (iα + jλ)(h0 ⊗ 1) �= 0 ∀i, j ∈ Fp .

Since α and λ are Fp-independent, their Fp-span contains Γ (L[α,β], T ).
It follows from Claim 1 and (4.5) that Γ (L[α,β], T ) \ Ω = F×

p λ and Lγ contains nonnilpotent

elements of L p for all γ ∈ Γ (L[α,β], T ) \ Ω . Thus, it remains to show that m = 1.

Claim 2. The subspace
∑m

j=2 S ⊗ x jO(m;1) is H-invariant.

Note that L[α,β](κ) = H + S ⊗ F [x2, . . . , xm]. In particular, κ is nonsolvable. Let ψ : L[α,β](κ) �
L[κ] denote the canonical homomorphism. By Theorem 3.3, the Lie algebra L[κ](1) is simple. As the
ideal S ⊗ F [x2, . . . , xm] is perfect, ψ maps it onto L[κ](1) . As a consequence, S ⊗ F [x2, . . . , xm](1) =
kerψ ∩ (S ⊗ F [x2, . . . , xm]), showing that S ⊗ F [x2, . . . , xm](1) is H-invariant.
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Claim 3. S ∼= H(2;1)(2) and [D, [D,h]] acts nonnilpotently on S̃ for some D ∈ H and h ∈ H ∩ S̃ .

We have seen in the proof of Claim 2 that

L[κ] = ψ
(
L[α,β](κ)

) ∼= L[α,β](κ)/ rad
(
L[α,β](κ)

) ∼= S + H/
(

H ∩ rad L(κ)
)
.

Our choice of κ and Claim 1 imply that κ ∈ Ω . So Theorem 3.3 implies that L[κ] ∼= H(2;1)(2) ⊕ F�D
and there exists h̃ ∈ ∑

i∈F
×
p
[Liκ , L−iκ ] such that [�D, [�D,Ψκ(h̃)]] acts nonnilpotently on L[κ]. Pick D ∈

ψ−1(�D) ∩ H and set h := Ψα,β(h̃). Standard toral rank considerations show that kerψ acts nilpotently
of L[α,β](κ) (see the proof of Claim 7 in Part A for a similar argument). In light of the preceding
remark this implies that κ([D, [D,h]]) �= 0.

Claim 4. m = 1.

We first note that L[α,β] ⊂ L(λ) + (Der S) ⊗ O(m;1). If all derivations from the set
⋃

i∈F
×
p

IdS ⊗
π(Liλ) preserve the ideal I := ∑m

j=2 S ⊗ x jO(m;1) of (Der S) ⊗ O(m;1), then Claim 2 entails that I is

a nilpotent T -stable ideal of L[α,β]. Since L[α,β] is T -semisimple, this would force m = 1.
So assume for a contradiction that there exists E ∈ Lkλ for some k ∈ F×

p such that IdS ⊗ π(E) does

not preserve I . Since π(E) is an eigenvector for (1 + x1)∂1 with eigenvalue k �= 0, it has the form

π(E) = f1(x2, . . . , xm)(1 + x1)
k+1∂1 +

m∑
j=2

f j(x2, . . . , xm)(1 + x1)
k∂ j

for some f1, . . . , fm ∈ F [x2, . . . , xm]. As π(E) does not stabilize I , it must be that f j0 (0) �= 0 for
some j0 � 2. After renumbering we may assume that j0 = 2. Since cS (h0) ⊗ (1 + x1)

p−kx2 ⊂ S̃−kλ ⊂
(rad L(λ))−kλ , we have that

cS (h0) ⊗ F ⊂ [E, S̃−kλ] + (
S ⊗ F [x1, . . . , xm](1)

) ∩ H

= [E, S̃−kλ] + cS (h0) ⊗ F [x1, . . . , xm](1).

From this it follows that

H ∩ S̃ = cS (h0) ⊗ F [x1, . . . , xm] ⊂ [
Lkλ,

(
rad L(λ)

)
−kλ

] + cS (h0) ⊗ F [x2, . . . , xm](1).

The subspace I ∩ H = cS (h0) ⊗ F [x2, . . . , xm](1) is H-invariant by Claim 2 and acts nilpotently on
L[α,β](κ). These observations in conjunction with Claim 3 imply that (ad D)2([Lkλ, (rad L(λ))−kλ]) ⊂
H3 ∩ [Lkλ, (rad L(λ))−kλ] does not consist of nilpotent derivations of S̃ . But then λ(H) = 0 by
Lemma 4.4(a).

We now set t := T ∩ kerλ. Since L(λ) = cL(t) is nilpotent by the Engel–Jacobson theorem, Propo-
sition 3.2 says that L(α,β)/ rad L(α,β) has a unique minimal ideal, S ′ say, which is a simple
Lie algebra. Then S ′ must be the image of S̃ = S ⊗ O(m;1) under the natural homomorphism
φ : L[α,β] � L(α,β)/ rad L(α,β). As a consequence, kerφ ∩ S̃ coincides with the radical of S̃ . As the
latter equals S ⊗ O(m;1)(1) , we derive that S ⊗ O(m;1)(1) = kerφ ∩ S̃ is an ideal of L[α,β]. On the
other hand, π(E) /∈ W (m;1)(0) . This shows that our present assumption is false and m = 1.

The proof of the proposition is now complete. �
Corollary 4.6. Let α ∈ Ω, β ∈ Γ (L, T ) and suppose L[α,β] is as in case (4) of Proposition 4.2. Then∑

i∈F
×(rad L(γ ))iγ ⊂ radT L[α,β] for all γ ∈ Ω ∩ (Fpα + Fpβ).

p
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Proof. Pick γ ∈ Ω ∩ (Fpα + Fpβ) and view it as a T -root of L[α,β]. In the present case L[α,β](γ ) =
H + S̃(γ ) and S̃ = H(2;1)(2) ⊗ O(1;1); see Proposition 4.5. Furthermore, in the notation of Propo-
sition 4.5 we have that γ = iκ + jλ for some i ∈ F×

p and j ∈ Fp , where κ,λ ∈ T ∗ are such that
κ(h0 ⊗ 1) = r ∈ F×

p , κ(IdS ⊗ (1 + x1)∂1) = 0, λ(h0 ⊗ 1) = 0 and λ(IdS ⊗ (1 + x1)∂1) = 1. Let S� denote
the �-eigenspace of adS h0. Then

S̃(γ ) =
⊕
k∈Fp

Skir ⊗ (1 + x1)
kj ∼=

⊕
k∈Fp

Skir = H(2;1)(2)

as Lie algebras. Hence rad(L[α,β](γ )) = rad(H + S̃(γ )) ⊂ H . The result follows. �
We are now in a position to prove our first result on the global structure of L.

Theorem 4.7. If α ∈ Ω , then α is Hamiltonian, dim Lα = 5, and rad L(α) ⊂ H.

Proof. For γ ∈ Γ (L, T ) put Rγ := (rad L(γ ))γ . Let μ ∈ Ω be such that rad L(μ) �⊂ H . By Theorem 3.3,
the radical of L(μ) is T -stable. Hence there is a ∈ F×

p such that (rad L(μ))aμ �= (0). Put ν := aμ and
note that ν ∈ Ω . For k ∈ Z+ define

I0 := Rν, Ik :=
∑

γ1,...,γk

[
Lγ1 ,

[· · · [Lγk , Rν ] · · ·]], I :=
∑
k�0

Ik.

Clearly, I is an ideal of L containing Rν . We intend to show that I � L. As a first step we are going to
use induction on k to prove the following:

Claim. If ν + γ1 + · · · + γk ∈ Ω , then [Lγ1 , [· · · [Lγk , Rν ] · · ·]] ⊂ Rν+γ1+···+γk .

The claim is obviously true for k = 0, and it also holds for k = 1 thanks to Corollaries 4.3 and 4.6.
Suppose it is true for all k < n and let γ1, . . . , γn ∈ Γ (L, T ) be such that ν + γ1 + · · · + γn ∈ Ω . If
ν + γi ∈ Ω or ν + γi /∈ Γ (L, T ) for some i � n, then applying Corollaries 4.3 and 4.6 gives

[
Lγ1 ,

[· · · [Lγn , Rν ] · · ·]] ⊂ [
Lγ1 ,

[· · · [L̂γi · · ·
[
Lγn , [Lγi , Rν ]] · · ·] · · ·]] + In−1

⊂ [
Lγ1 ,

[· · · [L̂γi · · · [Lγn , Rν+γi ] · · ·
] · · ·]] + In−1.

In this case the claim holds by our induction hypothesis. So assume from now that ν+γi ∈ Γ (L, T )\Ω

for all i � n. We may also assume that ν̃ := ν + γ1 + · · · + γn is not solvable, for otherwise we are
done. According to Lemma 4.1 there is κ ∈ Γ (L, T ) such that L[ν̃, κ] ∼= M(1,1). Moreover, it follows
from [P 94, Lemmas 4.1 and 4.4] that the radical of every 1-section L[ν̃, κ](δ) is contained in Ψν̃,κ (T )

and

(Fp ν̃ + Fpκ) \ {0} ⊂ Ω. (4.6)

Take an arbitrary κ ′ ∈ (Fp ν̃ + Fpκ) \ Fp ν̃ . It follows from (4.6) that ν̃ + Fpκ
′ ⊂ Γ (L, T ). Note that the

rule

γ � γ ′ ⇔ (γ − γ ′)|H3 = 0

defines an equivalence relation on the set of all F -valued functions on H . Since γi � −ν for all i � n,
we have that ν̃ � (1 − n)ν . If ν + κ ′ � 0, then ν̃ + (1 − n)κ ′ /∈ Ω . As ν̃ + (1 − n)κ ′ �= 0 by our choice
of κ ′ , this is not true; see (4.6). Thus, ν +κ ′ �� 0, showing that ν +κ ′ ∈ Ω whenever ν +κ ′ ∈ Γ (L, T ).
But then [Rν, Lκ ′ ] ⊂ Rν+κ ′ by Corollaries 4.3 and 4.6. As ν + γi � 0 and κ ′ ∈ Ω by (4.6), we also have
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that ν + (γi + κ ′) ∈ Ω whenever ν + (γi + κ ′) ∈ Γ (L, T ) for all i � n. So arguing as above one now
obtains that [[Lγi , Lκ ′ ], Rν ] ⊂ Rν+γi+κ ′ . This implies that

[[
Lγ1 ,

[· · · [Lγn , Rν ] · · ·]], Lκ ′
] ⊂ R ν̃+κ ′ ⊂ rad L(ν̃, κ ′).

As M(1,1) is a simple Lie algebra, Schue’s lemma [St 04, Proposition 1.3.6(1)] yields[
Ψν̃,κ ′

([
Lγ1 ,

[· · · [Lγn , Rν ] · · ·]]),M(1,1)
] = (0),

forcing [Lγ1 , [· · · [Lγn , Rν ] · · ·]] ⊂ (rad L(ν̃, κ ′))ν̃ ⊂ (rad L(ν̃))ν̃ = R ν̃ . This completes the induction step.
As a consequence, Iγ ⊂ Rγ for all γ ∈ Ω . On the other hand, it follows from [P 94, Lemma 3.8]

that Ω contains at least one Hamiltonian root, λ say. Then Iλ �= Lλ , implying I �= L. Then I = (0),
proving that rad L(μ) ⊂ H for all μ ∈ Ω . As a consequence, all roots in Ω are nonsolvable.

Now let α ∈ Ω . Because α is nonsolvable, it follows from Theorem 3.3 that α is Hamiltonian. Since
rad L(α) ⊂ H , this gives dim Lα = 5. �
5. Further reductions

In this section we are going to prove that no root in Γ (L, T ) vanishes on H3. Theorem 4.7 will
play a crucial role in our arguments.

Lemma 5.1. If γ ∈ Γ (L, T ) does not vanish on H, then γ ∈ Ω .

Proof. Suppose there is β ∈ Γ (L, T ) \ Ω such that β(H) �= 0. By (4.1), there is α ∈ Ω such that
β([Lα, L−α]) �= 0. Then [Lβ, [Lα, L−α]] = Lβ , implying that α +β ∈ Γ (L, T ) or −α +β ∈ Γ (L, T ). Since
β /∈ Ω by our assumption, we have that α + β ∈ Ω or −α + β ∈ Ω . Theorem 4.7 then shows that
{α,α + β} or {α,−α + β} consists of nonsolvable roots. Then L[α,β] cannot be of type (1) or (2) of
Proposition 4.2.

Suppose L[α,β] is as in case (3) of Proposition 4.2 and set δ1 := α, δ2 := α + β if α + β ∈ Γ (L, T )

and δ1 := α, δ2 := α − β if −α + β ∈ Γ (L, T ). In either case, we can find elements h1,h2 ∈ H3 such
that δi(h j) = δi j for i, j ∈ {1,2}. As a consequence, α(h2) = 0 and β(h2) �= 0. But then β ∈ Ω , a con-
tradiction.

Suppose L[α,β] is as in case (4) of Proposition 4.2. Then Proposition 4.5 applies. As α ∈ Ω , Propo-
sition 4.5 says that α(h0 ⊗ 1) �= 0. This forces Ψα,β(L±α) ⊂ S̃ . Since β([Lα, L−α]) �= 0, we now deduce
that β does not vanish on Ψα,β(H)∩ S̃ . This forces β(h0 ⊗ 1) �= 0. Applying Proposition 4.5 once again
we obtain β ∈ Ω , a contradiction.

Suppose L[α,β] is of type (5) of Proposition 4.2. Then S̃ = H(2; (2,1))(2) and L[α,β] ⊂ H(2; (2,1)).
In this case Ψα,β(H)3 ⊂ S̃ , and it follows from Lemma 2.5 and Demuškin’s description of max-
imal tori in H(2;1)(2) that Ψα,β(H) ∩ S̃ is abelian and nil(Ψα,β(H) ∩ S̃) has codimension 1 in
Ψα,β(H) ∩ S̃; see [St 04, Theorem 7.5.8] for instance. As α ∈ Ω , this means that Ψα,β(H) ∩ S̃ =
Ψα,β(H)3 + nil(Ψα,β(H) ∩ S̃). As a consequence, γ ∈ Γ (L[α,β],Ψα,β(T )) is in Ω if and only if
γ (Ψα,β(H)∩ S̃) �= 0. As α ∈ Ω , Theorem 4.7 implies that α does not vanish on [Ψα,β(Lα),Ψα,β(L−α)].
As Ψα,β(L±α) ⊂ S̃ , this shows that

Ψα,β(H) ∩ S̃ = [
Ψα,β(Lα),Ψα,β(L−α)

] + nil
(
Ψα,β(H) ∩ S̃

)
.

But then β(Ψα,β(H)∩ S̃) �= 0 by our choice of β , implying that β ∈ Ω . Since this contradicts our choice
of β , we derive that L[α,β] cannot be of type (5).

If L[α,β] is as in case (6) of Proposition 4.2, then (Fpα + Fpβ) \ {0} ⊂ Ω by [P 94, Lemmas 4.1
and 4.4]. So this case cannot occur either, and our proof is complete. �
Proposition 5.2. If μ ∈ Γ (L, T ) vanishes on H, then Lμ consists of p-nilpotent elements of L p .
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Proof. Suppose for a contradiction that there is μ ∈ Γ (L, T ) with μ(H) = 0 such that α(L[p]
μ ) �= 0

for some α ∈ Γ (L, T ). It follows from (4.1) that every root is the sum of two roots in Ω . Therefore,
we may assume that α ∈ Ω . Since α is nonsolvable by Theorem 4.7, there exists β ∈ Ω such that
L[α,β] ∼= M(1,1) and α([Liα, L−iα], [Lβ, L−β ]) �= 0 for some i ∈ F×

p ; see Lemma 4.1. Lemma 5.1 shows
that β ∈ Ω .

We now consider the T -semisimple 3-section L[α,β,μ]. Set T := Ψα,β,μ(T ), H := Ψα,β,μ(H) and
S̃ := S̃(α,β,μ). Given a Lie subalgebra M of L[α,β,μ] we denote by M[p] the p-envelope of M in
Der S̃ . Note that the restricted Lie algebra T + L[α,β,μ][p] ⊂ Der S̃ is centerless. As T is a torus of
maximal dimension in T + L(α,β,μ)p , it follows from [St 04, Theorem 1.2.8(4a)] that T is a torus
of maximal dimension in T + L[α,β,μ][p] . Let J be a minimal T -invariant ideal of L[α,β,μ]. Then
TR( J ) � TR(L[α,β,μ]) � 3; see [St 04, Theorems 1.2.7(1) and 1.3.11(3)].

(a) Suppose TR( J ) = 3. Then it follows from [St 04, Theorem 1.2.9(3)] that the restricted Lie algebra
(T + L[α,β,μ][p])/ J [p] is p-nilpotent. From this it is immediate that T ⊂ J [p], J = S̃ and L[α,β,μ] =
H + S̃ . By Block’s theorem, S̃ = S ⊗O(m;1), where S is a simple Lie algebra and m ∈ Z+ . Let π denote
the canonical projection

Der
(

S ⊗ O(m;1)
) = (Der S) ⊗ O(m;1) � IdS ⊗ W (m;1) � W (m;1).

In the present situation [P-St 99, Theorem 2.6] implies that the torus T is conjugate under Aut(S ⊗
O(m;1)) to T0 ⊗ F for some torus T0 in S p . Hence we can choose Ψα,β,μ such that T = T0 ⊗ F .
Then L[α,β,μ](α) = H + S(α)⊗O(m;1). Since α is nonsolvable, there is a surjective homomorphism
ψ : L[α,β,μ](α) � L[α] �= (0). By Theorem 3.3, (imψ)(1) is a simple Lie algebra and the unique min-
imal ideal of imψ . Since T0 is a torus of maximal dimension in S p , Theorem 3.3 also applies to the
1-section S[α]. So it must be that (imψ)(1) ∼= S[α](1) . As a consequence,

S̃(α)(1) ∩ kerψ = (
rad S(α) ∩ S(α)(1)

) ⊗ F + S(α)(1) ⊗ O(m;1)(1)

is H-invariant. As S(α) is not solvable, it follows that π(H) ⊂ W (m;1)(0) . But then S ⊗ O(m;1)(1) is
an ideal of L[α,β,μ]. As L[α,β,μ] is T -semisimple and T = T0 ⊗ F , we now obtain that m = 0 and
L[α,β,μ] = H + S̃ .

As a consequence, Ψα,β,μ(Lγ ) ⊂ S̃ for all γ ∈ Γ (L[α,β,μ], T ). This implies that L[α,β] ∼= M(1,1)

is a homomorphic image of the 2-section S̃(α,β), showing that H ∩ S̃ is a nontriangulable subalgebra
of S̃ . We now set t := Ψα,β,μ(T ∩ kerμ) and h := S̃(μ). Then S̃ is simple, t is a torus of dimension
at most 2 in S̃ p , and H ∩ S̃ ⊂ h. This inclusion in conjunction with our assumption on μ and the
Engel–Jacobson theorem shows that h is a nontriangulable nilpotent subalgebra of S̃ . But then [P 94,
Theorem 1(ii)] yields S̃ ∼= M(1,1). As TR(M(1,1)) = 2 by [P 94, Lemma 4.3], we reach a contradiction
thereby establishing that TR( J ) � 2.

(b) We now put T ′ := T ∩ J [p] and observe that

dim T ′ � TR
(

J [p], T + L[α,β,μ][p]
) = TR( J [p]) �= 0;

see [St 04, Theorems 1.2.9 and 1.2.8(2)] (one should also keep in mind that T + L[α,β,μ][p] is cen-
terless).

Suppose μ(T ′) �= 0. Then Ψα,β,μ(Liμ) ⊂ J for all i ∈ F×
p and hence Ψα,β,μ(Lα) ⊂ J by our choice

of α. Since L[α,β] ∼= M(1,1) is simple, it follows that Ψα,β,μ(Liα+ jβ) ⊂ J for all nonzero (i, j) ∈ F2
p .

As a consequence, the p-envelope of H ∩ J in J [p] contains a torus of dimension at least 2. This torus
must be smaller than T ′ , because μ vanishes on H . But then TR( J ) > 2 which is not true.

Thus, μ(T ′) = 0. Then α(T ′) �= 0 or β(T ′) �= 0. Relying on the simplicity of L[α,β] ∼= M(1,1) and
arguing as before, we derive that J (α,β)/ rad J (α,β) ∼= M(1,1). As μ(T ′) = 0, it follows that dim T ′ =
TR( J ) = 2. By Block’s theorem, J = J ′ ⊗ O(k;1) for some simple Lie algebra J ′ and some k ∈ Z+ . The
above shows that TR( J ′) = 2. The natural homomorphism J � J/ J ′ ⊗ O(k;1)(1)

∼= J ′ maps J (α,β)

onto a subalgebra g of J ′ such that g/ radg ∼= M(1,1). As TR( J ′) = 2, this implies that J p contains a
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nonstandard 2-dimensional torus. Applying [P 94, Theorem 1(ii)] now yields J ′ ∼= M(1,1). Since this
holds for every minimal T -invariant ideal of L[α,β,μ] and TR(L[α,β,μ]) � 3, we may conclude at
this point that the T -socle S̃ = S̃(α,β,μ) = S ⊗ O(m;1) is the unique minimal ideal of L[α,β,μ].

Recall that all derivations of S = M(1,1) are inner; see [St 04, Theorem 7.1.4] for instance. In this
situation [P-St 99, Theorem 3.2] says that Ψα,β,μ can be chosen such that T = (T0 ⊗ 1) + F (IdS ⊗ t0),

where T0 is a 2-dimensional torus in S p = S and t0 ∈ W (m;1). Furthermore, L[α,β,μ] = M(1,1) ⊗
O(m;1)� IdS ⊗ d for some Lie subalgebra d of W (m;1). Note that T ′ = T ∩ S̃ = T0 ⊗ 1. Using the sim-
plicity of L[α,β] and arguing as before, we observe that Ψα,β,μ(Liα+ jβ) ⊂ S̃ for all nonzero (i, j) ∈ F×

p .
By the choice of β , we then have α([̃Siα, S̃−iα], [̃Sβ, S̃−β ]) �= 0 for some i ∈ F×

p . This means that T0 is
a nonstandard torus in S = M(1,1).

If t0 /∈ W (m;1)(0) , then we may assume further that t0 = (1 + x1)∂1; see [P-St 99, Theorem 3.2].
Choose h,h′ ∈ cS (T0) such that [h,h′] acts nonnilpotently on S . Recall that μ(T0 ⊗ F ) = 0. Then
μ(IdS ⊗ t0) �= 0 and hence there exists r ∈ F×

p such that h ⊗ (1+ x1) ∈ S̃rμ and h′ ⊗ (1+ x1)
p−1 ∈ S̃−rμ .

Clearly, the element

[
h ⊗ (1 + x1),h′ ⊗ (1 + x1)

p−1] ∈ [̃Srμ, S̃−rμ]

acts nonnilpotently on S̃ .
Suppose t0 ∈ W (m;1)(0) . Since S̃ is (IdS ⊗ (Ft0 + d))-simple, there is r ∈ Fp such that drμ �⊂

W (m;1)(0) (here d0 = π(H) is the centraliser of t0 in d). On the other hand, looking at the 1-
section L[α,β,μ](α) = H + S(α) ⊗ O(m;1) and applying Theorem 3.3 to L[α] �= (0) one observes
that π(H) ⊂ W (m;1)(0) (see part (a) for a similar argument). So it must be that t0 �= 0 and r ∈ F×

p .
Let E ∈ Lrμ be such that π(Ψα,β,μ(E)) ≡ ∑m

j=1 ai∂i (mod W (m;1)(0)), where not all a j are
zero. We may assume after renumbering and rescaling that a1 = 1. In the present situation
[P-St 99, Theorem 3.2] says that Ψα,β,γ can be chosen such that t0 = ∑m

j=1 si x j∂ j for some s j ∈ Fp .
As [t0,π(Ψα,β,μ(E))] is a nonzero multiple of π(Ψα,β,μ(E)), it must be that s1 �= 0. Therefore,
cS (T0) ⊗ x1 ⊂ S̃−rμ , implying that [Ψα,β,μ(Lrμ), S̃−rμ] contains nonnilpotent elements of S̃ .

(c) We have thus shown that there is r ∈ F×
p such that [Lrμ, L−rμ] contains nonnilpotent elements

of L p . Therefore, the set

Ω1 := {
γ ∈ Γ (L, T )

∣∣ γ ([Lrμ, L−rμ]) �= 0
}

is nonempty. By Lemma 5.1, we have the inclusion Ω1 ⊂ Ω . Also, μ /∈ Ω1, because μ(H) = 0. Since
μ �= 0, there is γ ∈ Γ (L, T ) such that μ(L[p]

γ ) �= 0.

Suppose γ ∈ Ω . Since μ(L[p]
γ ) �= 0, all elements from μ + Fpγ are in Γ (L, T ). Since μ(H) = 0,

we then have μ + F×
p γ ⊂ Ω . Since all roots in Ω are nonsolvable by Theorem 4.7, the T -semisimple

2-section L[γ ,μ] cannot be as in cases (1), (2) or (3) of Proposition 4.2. If L[γ ,μ] is of type (4), then
Proposition 4.5 implies that Ψγ ,μ(Lγ ) ⊂ S̃ . As μ(L[p]

γ ) �= 0, this forces Ψγ ,μ(Liμ) ⊂ S̃ for all i ∈ F×
p .

Since μ vanishes on H , it follows from the description of Ψγ ,μ(T ) given in Proposition 4.5 that

∑
i∈F

×
p

Ψγ ,μ(Liμ) ⊂ cH(2;1)(2) (h0) ⊗ O(1;1).

As the subalgebra on the right is abelian and Ψγ ,μ(Liγ ) �= (0) for all i ∈ F×
p , this contradicts our choice

of μ. So L[γ ,μ] is not of that type. If L[γ ,μ] is as in case (5) or case (6) of Proposition 4.2, then
Corollary 4.3 shows that no root in Γ (L[γ ,μ],Ψγ ,μ(T )) = (Fpγ ⊕ Fpμ) \ {0} vanishes on Ψγ ,μ(H).
As μ(H) = 0, this is false.
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Thus, γ /∈ Ω . Schue’s lemma [St 04, Proposition 1.3.6(1)] yields Lγ = ∑
δ∈Ω1

[Lδ, Lγ −δ]. If
x1 . . . , xd ∈ Lγ , then

(
d∑

j=1

x j

)[p]
≡

d∑
j=1

x[p]
j (mod H),

by Jacobson’s formula. Note that the set H ∪ (
⋃

δ∈Ω1,k�1[Lδ, L−δ][p]k
) is weakly closed. Since μ van-

ishes on H , the Engel–Jacobson theorem implies that there is κ ∈ Ω1 such that μ([Lκ , Lγ −κ ][p]) �= 0.
Note that κ and γ −κ are both in Ω , hence Ψγ ,κ,μ(Lκ ) �= (0) and Ψγ ,κ,μ(Lγ −κ ) �= (0) by Theorem 4.7.
Let S̃ = S̃(γ ,κ,μ) and let J be any minimal ideal of L[γ ,κ,μ]. Put T1 := Ψγ ,κ,μ(T ) ∩ J [p] , where
J [p] is the p-envelope of J in Der S̃ . Since J [p] is centerless, it follows from [St 04, Theorem 1.2.8(a)]
that T1 is a torus of maximal dimension in J [p] .

Suppose μ(T1) = 0. Then either κ(T1) �= 0 or (γ − κ)(T1) �= 0, for T1 �= (0). In any event,
Ψγ ,κ,μ([Lκ , Lγ −κ ]) ⊂ J and therefore μ( J [p]

γ ) �= 0. But then μ(T1) �= 0, a contradiction. Thus,
μ(T1) �= 0, forcing

∑
i∈F

×
p

Ψγ ,κ,μ(Liμ) ⊂ J . As κ ∈ Ω1, this yields
∑

i∈F
×
p

Ψγ ,κ,μ(Liκ ) ⊂ J . As

a result, the nilpotent subalgebra J (μ) acts nontriangulably on J . As κ([Lrμ, L−rμ]) �= 0 and
Ψγ ,κ,μ([Lκ , Lγ −κ ][p]) ⊂ J [p] , we have that TR( J ) = dim T1 � 2 (one should keep in mind that μ

vanishes on H but not on [Lκ , Lγ −κ ][p]).
Since κ ∈ Ω , we can now argue as in part (a) of this proof to deduce that TR( J ) � 2. As a result,

TR( J ) = 2 for any minimal ideal J of L[γ ,κ,μ]. As TR(L[γ ,κ,μ]) � 3, this shows that S̃ = S ⊗O(m;1)

is the unique minimal ideal of L[γ ,κ,μ] and TR(̃S) = TR(S) = 2. According to [P-St 99, Theorem 2.6],
we can choose Ψγ ,κ,μ such that

Ψγ ,κ,μ(T ) = (
T ′

0 ⊗ 1
) + F (d ⊗ 1 + IdS ⊗ t0), T ′

0 ⊂ S p, d ∈ Der S, t0 ∈ W (m;1).

Moreover, if d is an inner derivation of S , then we can assume further that d = 0. Since T1 = T ′
0 ⊗ 1,

we get dim T ′
0 = 2. Set t := T ′

0 + Fd, a torus in Der S . The subalgebra S ⊗ F of S̃ is invariant under the
action of Ψγ ,κ,μ(T ). Given δ ∈ Γ ((S ⊗ F ),Ψγ ,,κ,μ(T )) we denote by δ̄ the unique t-root in Γ (S, t) for
which S δ̄ ⊗ F = (S ⊗ F )δ .

(d) Suppose t0 ∈ W (m;1)(0) . Because S̃ and S ⊗ O(m;1)(1) are both T -invariant, T acts on
S ∼= S̃/(S ⊗ O(m;1)(1)) as the torus t ⊂ Der S . Since S̃κ �= (0) and κ ∈ Ω1, we also have that
Ψγ ,κ,μ(L±rμ) �= (0). We mentioned above that Ψγ ,κ,μ(L±rμ) ⊂ S̃ . Define t0 := t ∩ ker μ̄. Then
dim t0 � 2 and cS (t0) = S(μ̄). Because S p ⊗ O(m;1)(1) is p-nilpotent and S̃(μ) acts nontriangula-
bly on S̃ by our discussion in part (c), the subalgebra S(μ̄) is nilpotent and acts nontriangulably on S .
Applying [P 94, Theorem 2(ii)] now yields S ∼= M(1,1). But then all derivations of S are inner; see
[St 04, Theorem 7.1.4] for example. Then d = 0 and t is a torus of maximal dimension in S p . It fol-
lows that S(μ̄) = cS (t0) is a Cartan subalgebra of toral rank 1 in S . Since such Cartan subalgebras are
triangulable by [P 94, Theorem 2], our assumption on t0 is false.

Thus, t0 /∈ W (m;1)(0) . Recall that μ and κ are both nonzero on T1 = T ′
0 ⊗ 1. Since μ vanishes on

H and the nonsolvable root κ does not vanish on Ψγ ,κ,μ([Liκ , L−iκ ]) ⊂ Ψγ ,κ,μ(H)∩ S̃ for some i ∈ F×
p ,

the roots μ and κ are linearly independent on T1. Hence

Ψγ ,κ,μ(T ) = T1 ⊕ (
Ψγ ,κ,μ(T ) ∩ kerμ ∩ kerκ

)
,

implying that π(Ψγ ,κ,μ(T )∩ kerμ∩ kerκ) �⊂ W (m;1)(0) . In that case [P-St 99, Theorem 2.6] says that
Ψγ ,κ,μ can be selected such that d = 0, t0 = (1 + x1)∂1, and Ψγ ,κ,μ(T ) ∩ kerμ ∩ kerκ = F (IdS ⊗ t0).

Then S̃(κ,μ) = S ⊗ F [x2, . . . , xm] and the evaluation map ev : S̃(κ,μ) � S , taking s ⊗ f ∈ S ⊗
F [x2, . . . , xm] to f (0)s ∈ S , is T -equivariant. As before, S(μ̄) acts nontriangulably on S . Since in the
present case t is a torus of maximal dimension in S p , its 1-section S(μ̄) has toral rank 1 in S . Since
such a Cartan subalgebra must act triangulably on S by [P 94, Theorem 2], we reach a contradiction,
thereby proving the proposition. �
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Corollary 5.3. The following are true:

(i) Γ (L, T ) = Ω .
(ii) If α,β ∈ Γ (L, T ), then L[α,β] is not as in case (4) of Proposition 4.2.

Proof. (1) Suppose Γ (L, T ) �= Ω and let λ ∈ Γ (L, T ) \ Ω . Take any α ∈ Ω and consider the T -
semisimple 2-section L[α,λ]. By Theorem 4.7, L(α) is not solvable, hence L[α,λ] is not as in case (1)
of Proposition 4.2. Because of Lemma 5.1 we have λ(H) = 0, hence L(λ) is solvable. If L[α,λ] is as in
cases (2), (3), (5) or (6) of Proposition 4.2, then Lλ ⊂ radT L(α,λ) by Corollary 4.3, hence

[Lα, Lλ] ⊂ (
radT L(α,λ)

) ∩ Lα+λ ⊂ (
radT L(α + λ)

)
α+λ

= (0)

by Theorem 4.7 (because α +λ ∈ Ω). If L[α,λ] is as in case (4) of Proposition 4.2, then it follows from
Proposition 4.5 that Lλ contains nonnilpotent elements of L p . Since this contradicts Proposition 5.2,
we see that L[α,λ] is not of that type. As a consequence, [Lα, Lλ] = 0 for all α ∈ Ω. But then (4.1)
yields that Lλ is contained in the center of L. This contradiction proves the first statement.

(2) If L[α,β] is as in case (4) of Proposition 4.2, then Proposition 4.5 implies that one of the roots
in Γ (L, T ) ∩ (Fpα + Fpβ) is not contained in Ω . Since this is impossible by part (1), our proof is
complete. �
Corollary 5.4. For every α ∈ Γ (L, T ) the radical of L(α) lies in the center of H.

Proof. Recall that rad L(α) ⊂ H by Theorem 4.7 and Corollary 5.3. Set

Ω2 := {
γ ∈ Γ (L, T )

∣∣ γ ([
H, rad L(α)

]) �= 0
}
.

Suppose Ω2 �= ∅ and let β ∈ Ω2. Since α,β ∈ Ω by Corollary 5.3, Proposition 4.2 applies to L[α,β].
Since α vanishes on [H, rad L(α)], the roots α and β are Fp -independent. As α and β are both
nonsolvable by Theorem 4.7, L[α,β] cannot be as in case (1) or case (2) of Proposition 4.2. It cannot
be governed by case (5) or case (6) either, because in case (5) the radical of L[α,β](α) is trivial
by Proposition 2.5(2) and in case (6) the radical of L[α,β](α) is contained in Ψα,β(T ); see [P 94,
Lemmas 4.1 and 4.4].

Thus, L[α,β] is as in case (3) of Proposition 4.2. But then L[α,β] = L[α,β](α) + L[α,β](β) and
[Lα, Lβ ] ⊂ radT L(α,β). Since (α + β)([H, rad L(α)]) �= 0, and L(α + β) is solvable, it must be that
α + β /∈ Γ (L, T ). We now derive that [Lα, Lβ ] = (0) for all β ∈ Ω2. In view of Schue’s lemma [St 04,
Proposition 1.3.6(1)], this means that Lα lies in the center of L.

This contradiction shows that Ω2 = ∅. Hence the ideal Hα := [H, rad L(α)] of H consists of p-
nilpotent elements of L p . Now let β be any root in Γ (L, T ). Since Hα ⊂ H(1) , it follows from
Theorem 3.3 and (the proof of) Lemma 3.4 that Ψβ(Hα) = (0). Then [Hα, L(β)] ⊂ rad L(β), forcing
[Hα, Lβ ] = (0); see Theorem 4.7. As a result, [Hα, L] = (0), and hence Hα = (0) by the simplicity of L.
This proves the corollary. �

We are finally in a position to describe the 2-sections of L with respect to T . Let z(H) denote the
center of H = cL(T ).

Theorem 5.5. The following are true:

(i) H4 = (0) and H [p] ⊂ T .
(ii) dim H2 = 3 and dim H3 = 2.

(iii) H3 ⊂ T and dim H/z(H) = 3.
(iv) z(H) = H ∩ T .
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Proof. (a) Let α ∈ Γ (L, T ). Then α ∈ Ω by Corollary 5.3(i). It is immediate from Theorem 3.3 that
H4 ⊂ rad L(α). Then [H4, Lα] ⊂ (rad L(α))α = (0) by Theorem 4.7. Since this holds for every root α
and L is simple, we derive H4 = (0).

Let N(H p) denote the set of all p-nilpotent elements of H p . Since dim Lγ = 5 for all γ ∈ Γ (L, T )

any p-nilpotent element x ∈ N(H p) has the property that (ad x)5(
∑

γ ∈Γ (L,T ) Lγ ) = 0. Then x[p] = 0

by the simplicity of L. The Jordan–Chevalley decomposition in H p now yields (H p)[p] ⊂ T , forcing
H [p] ⊂ T . As a result, statement (i) follows, and we also deduce that N(H p) = {x ∈ H p | x[p] = 0} and
H p ⊂ H + T .

Since H4 = (0) and [T , H] = 0, Jacobson’s formula implies that (x + y)[5] = x[5] + y[5] for all
x, y ∈ H p . Therefore, N(H p) is a subspace of H . By the Jordan–Chevalley decomposition in H p , we
also get H p ⊂ N(H p) ⊕ T .

(b) Since Γ (L, T ) = Ω , it follows from Theorem 3.3 and (the proof of) Lemma 3.4 that H2 +
rad L(α) has codimension 2 in H for every α ∈ Γ (L, T ). Since rad L(α) ⊂ z(H) by Corollary 5.4, there
exist x, y ∈ H such that H = F x + F y + H2 + z(H). As a consequence, H2 = F [x, y] + H3 and H3 =
F [x, [x, y]] + F [y, [y, x]] + H4. As H4 = (0), this gives dim H3 � 2 and dim H2 = 1 + dim H3.

Let α,β ∈ Γ (L, T ) be such that L[α,β] ∼= M(1,1) (such a pair of roots exists by [P 94, Theo-
rem 1(ii)]). It is immediate from [P 94, Lemmas 4.1 and 4.4] that dim Ψα,β(H3) = 2. Hence dim H3 � 2.
In conjunction with the above remarks, this gives dim H3 = 2 and dim H2 = 3. Statement (ii) follows.

(c) Since H4 = (0), we have that H3 ⊂ z(H). If the nilpotent Lie algebra H/z(H) has codimension
< 3 in H , then it is abelian. In this case H2 ⊂ z(H), forcing H3 = (0). This contradiction shows that
z(H) has codimension � 3 in H . Since H3 �= (0) has codimension 1 in H2, the equality H2 ∩z(H) = H3

holds. Therefore,

3 � dim H/z(H) = dim H/
(

H2 + z(H)
) + dim H2/H3

� dim H/
(

H2 + rad L(α)
) + dim H2/H3 = 3.

This implies that z(H) has codimension 3 in H .
Let h ∈ z(H) and write h = hs + hn with hs ∈ T and hn ∈ N(H p). In view of our earlier remarks,

hn ∈ z(H)∩ (T + H). Because Γ (L, T ) = Ω , Theorem 3.3 shows that for every γ ∈ Γ (L, T ) the element
Ψγ (hn) ∈ Ψγ (T ) + Ψγ (H) = Ψγ (H) of L[γ ] ∼= H(2;1)(2) ⊕ F (1 + x1)

4∂2 is p-nilpotent in L[γ ] and
commutes with Ψα(H). Arguing as in the proof of Lemma 3.4 it is now straightforward to see that
Ψγ (hn) = 0. Then [hn, L(γ )] ⊂ rad L(γ ). In view of Theorem 4.7, this entails that [hn, Lγ ] = 0 for all
γ ∈ Γ (L, T ). As a consequence, hn = 0, forcing z(H) = H ∩ T . Combined with our remarks in part (b)
this gives (iii), completing the proof. �
Corollary 5.6. Let α,β ∈ Γ (L, T ). Then case (3) of Proposition 4.2 does not occur for L[α,β].

Proof. Indeed, otherwise the T -socle of L[α,β] has the form S1 ⊕ S2 = S1(δ1) ⊕ S2(δ2). Then
Ψα,β(H) ∩ Si(δi) ∼= Ψδi (H) for i = 1,2. As δ1, δ2 ∈ Ω by Corollary 5.3(i), it follows from Theorem 3.3
that Si(δi) ∼= H(2;1)(2) ⊕ F (1 + x2)

4∂2 and Ψδi (H) is a nonabelian Cartan subalgebra of Si(δi). Then
Lemma 3.4 implies that dimΨδi (H2) = 2. As a consequence, Ψα,β(H2) ∩ Si(δi) is 2-dimensional for
i = 1,2. But then dim H2 � 4 contrary to Theorem 5.5(ii). The result follows. �
Corollary 5.7. The following are true:

(1) Γ (L, T ) ∪ {0} is an Fp-subspace of T ∗ .
(2) The p-envelope of H3 in L p coincides with T .
(3) H p = H + T .

Proof. (1) Since every γ ∈ Γ (L, T ) is Hamiltonian by Theorem 4.7, we have F×
p γ ⊂ Γ (L, T ). Let

α,β ∈ Γ (L, T ) be Fp-independent. Then Γ (L[α,β],Ψα,β(T )) contains two nonsolvable roots. In view
of Corollary 5.6, this implies that L[α,β] is determined by case (5) or case (6) of Proposition 4.2. In
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both cases, Γ (L[α,β],Ψα,β(T ))∪{0} = Fpα +Fpβ; see Lemma 2.5(4) and [P 94, Lemmas 4.1 and 4.4].
As a consequence, α + β ∈ Γ (L, T ). Statement (1) follows.

(2) By Theorem 5.5(3), H3 ⊂ T . Denote by T0 the p-envelope of H3 in T and suppose that T0 �= T .
Then T0 is a proper subtorus of T . By part (1), there exists γ ∈ Γ (L, T ) such that γ (T0) = 0. Then
γ (H3) = 0 contrary to Corollary 5.3(i). Therefore, (H3)p = T .

(3) It is immediate from Theorem 5.5(i) that H p ⊂ H + T . Since T = (H3)p ⊂ H p by part (2), we
now derive that H p = H + T . �

We now summarize the results of this section:

Theorem 5.8. Let L, T and H be as above. Then the following hold:

(1) Γ (L, T ) ∪ {0} is an Fp -subspace of T ∗ and no root in Γ (L, T ) vanishes on H3 .
(2) H3 ⊂ T , z(H) = H ∩ T , H p = H + T , dim H/(H ∩ T ) = 3, dim H2 = 3, and dim H3 = 2. The p-envelope

of H3 in L p coincides with T .
(3) rad L(α) = H ∩ T ∩ kerα, dim Lα = 5, and L[α] ∼= H(2;1)(2) ⊕ F (1 + x1)

4∂2 for every α ∈ Γ (L, T ).
(4) If α,β ∈ Γ (L, T ) are Fp-independent, then either L[α,β] ∼= M(1,1) or

H
(
2; (2,1)

)(2) ⊂ L[α,β] ⊂ H
(
2; (2,1)

)
.

Furthermore, L[α,β] ∼= L(α,β)/H ∩ T ∩ kerα ∩ kerβ .

Proof. Parts (1) and (2) are just reformulations of our earlier results. In order to get (3) and (4) it
suffices to observe that rad L(α) ⊂ z(H) = H ∩ T ; see Corollary 5.4 and Theorem 5.5(iv). �
6. Some properties of the restricted Melikian algebra

In order to proceed further with our investigation, we now need more information on central
extensions and irreducible representations of the Melikian algebra M(1,1).

Proposition 6.1. Every Melikian algebra M(n), where n = (n1,n2), possesses a nondegenerate invariant sym-
metric bilinear form.

Proof. Adopt the notation of [St 04, Section 4.3] and consider the natural grading

M(n) = M−3 ⊕ M−2 ⊕ M−1 ⊕ M0 ⊕ M1 ⊕ · · · ⊕ Ms, s = 3
(
5n1 + 5n2

) − 7

of the Melikian algebra M = M(n). Recall that M0 = ⊕2
i, j=1 xi∂ j ∼= gl(2), M−3 = F∂1 ⊕ F∂2 and

Ms = F x(τ (n))∂̃1 ⊕ F x(τ (n))∂̃2, where τ (n) = (5n1 − 1,5n2 − 1). Both M−3 and Ms are 2-dimensional
irreducible M0-modules. Using the multiplication table [St 04, (4.3.1)], it is easy to observe that

[
x1∂1, x(τ (n))∂̃1

] = (−2 + 2)x(τ (n))∂̃1 = 0,
[
x2∂1, x(τ (n))∂̃1

] = 0,[
x2∂2, x(τ (n))∂̃1

] = (−1 + 2)x(τ (n))∂̃1.

This shows that x(τ (n))∂̃1 is a primitive vector of weight (0,1) for the Borel subalgebra b := F x1∂1 ⊕
F x2∂2 ⊕ F x2∂1 of M0. Now let f be the linear function on M−3 such that f (∂1) = 0 and f (∂2) = 1.
Then (x1∂1)( f ) = − f ◦ (x1∂1) = 0, (x2∂2)( f ) = − f ◦ (x2∂2) = f and (x2∂1)( f ) = − f ◦ (x2∂1) = 0, show-
ing that f ∈ (M−3)

∗ is a primitive vector of weight (0,1) for the Borel subalgebra b. From this it is
immediate that (M−3)

∗ ∼= Ms as M0-modules. As M is an irreducible graded Mp-module, [P 85,
Lemma 4] shows that there exists a module isomorphism θ :M ∼−→ M∗ sending Mi onto (Ms−3−i)

∗
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for all i ∈ {−3, . . . , s} (as usual, we identify (Mi)
∗ with the subspace of M∗ consisting of all linear

functions vanishing on all Mk with k �= i).
Define a bilinear form b :M × M → F by setting b(x, y) := (θ(x))(y) for all x, y ∈ M. Since θ is an

isomorphism of M-modules, the form b is nondegenerate and M-invariant. Next we define a bilinear
skew-symmetric form b′ on M by setting b′(x, y) := b(x, y)−b(y, x) for all x, y ∈ M. As M is a simple
Lie algebra, the invariant form b′ is either nondegenerate or zero. As dimM = 5n1+n2+1 is odd, it must
be that b′ = 0. Therefore, the form b is symmetric. �

From now on we denote by M the restricted Melikian algebra M(1,1).

Proposition 6.2. If M̃ is a Lie algebra with center z = z(M̃) such that M̃/z ∼= M, then M̃(1) ∼= M and M̃ =
M̃(1) ⊕ z.

Proof. We need to show that the second cohomology group H2(M, F ) vanishes. Let b be the nonde-
generate bilinear form from the proof of Proposition 6.1. By a standard argument explained in detail
in [P 94, p. 681], for every 2-cocycle ϕ :M × M → F there exists a derivation d ∈ DerM such that
b(d(x), y) = −b(x,d(y)) and ϕ(x, y) = b(d(x), y) for all x, y ∈ M. Moreover, ϕ is a 2-coboundary if
and only if the derivation d is inner. Since Der M = adM by [St 04, Theorem 7.1.4], for instance, we
now obtain H2(M, F ) = 0, as desired. �

If V is an irreducible module over a finite-dimensional restricted Lie algebra L over F , then there
exists a linear function χ = χV ∈ L∗ such that for every x ∈ L the central element xp − x[p] of U (L)

acts on V as the scalar operator χ(x)p IdV . The linear function χ is called the p-character of V . Given
f ∈ L∗ we denote by zL( f ) the stabilizer of f in L. Recall that zL( f ) = {x ∈ L | f ([x,L]) = 0} is a
restricted subalgebra of even codimension in L.

For our constructions in the final sections of this work we need some information on the p-
characters of irreducible representations of dimension � 125 of the restricted Melikian algebra M =⊕s

i=−3 Mi .

Proposition 6.3. If V is an irreducible M-module of dimension � 125, then the p-character of V vanishes on
the subspace

⊕
i�−2 Mi . If V has a nonzero p-character, then dim V = 125.

Proof. Write M∗ = ⊕s
i=−3(Mi)

∗ , where (Mi)
∗ = { f ∈ M∗ | ⊕

j �=i M j ⊂ ker f } and s = 3(5 + 5) −
7 = 23. Let χ be the p-character of the M-module V . If χ = 0, then there is nothing to prove;
so suppose χ �= 0. Then χ = ∑d

i=−3 χi , where χi ∈ (Mi)
∗ and χd �= 0.

(a) We first suppose that d > 0 and let 2q = codimMzM(χd). Then [P-Sk 99, Proposition 5.5] yields
that 5q | dim V . Since dim V � 53, it follows that zM(χd) has codimension � 6 in M. Let b be the
M-invariant nondegenerate bilinear form from the proof of Proposition 6.1. Then χd = b(z, ·) = θ(z)
for some nonzero z ∈ Ms−3−d and zM(χd) = cM(z). It follows that the set

X := {
x ∈ Ms−3−d

∣∣ codimMcM(x) � 6
}

is nonzero. It is straightforward to see that X is a Zariski closed, conical subset of Ms−3−d invariant
under the subgroup Aut0 M of all automorphisms of M preserving the natural grading of M. Let P(X)

be the closed subset of the projective space P(Ms−3−d) corresponding to X and let T denote the 2-
dimensional torus of the algebraic group Aut0M whose group of rational characters is described in
[Sk 01, p. 72]. Note that the Lie algebra of T equals F (ad x1∂1) ⊕ F (ad x2∂2).

The connected abelian group T acts regularly on X, hence fixes a point in P(X) by Borel’s theorem.
This means that there exists a nonzero x0 ∈ Ms−3−d such that cM(x0) has codimension � 6 in M and
T · x0 ⊂ F x0. Let n0 denote the normalizer of F x0 in M and set t := F (x1∂1)⊕ F (x2∂2), a 2-dimensional
torus in M. By our choice of x0 (and T) we have that [t, x0] ⊂ F x0.
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Suppose [t, x0] �= 0. Then n0 � cM(x0). As a consequence, n0 is a proper subalgebra of codimension
� 5 in M. By a result of Kuznetsov [Kuz 91, Theorem 4.7], every proper subalgebra of M has codimen-
sion � 5 and every subalgebra of codimension 5 contains

⊕
i�1 Mi (see also [St 04, Theorem 4.3.3]

and [Sk 01, Section 1]). Since the subalgebra
⊕

i�1 Mi of n0 acts nilpotently on M, it must annihilate
F x0. On the other hand, it is immediate from the simplicity of the graded Lie algebra M that the
graded subspace AnnM(

⊕
i>0 Mi) coincides with Ms . So x0 ∈ Ms forcing d = −3, a contradiction.

Now suppose [t, x0] = 0. Using [St 04, (4.3.1)] one checks immediately that cM(t) = t ⊕ F x3
1x3

2 ⊕
F x4

1x3
2∂̃1 ⊕ F x3

1x4
2∂̃2. In view of [St 04, p. 200], we have that t ⊂ M0, x2

1x2
2 ∈ M10 and F x4

1x3
2∂̃1 ⊕

F x3
1x4

2∂̃2 ⊂ M20. As d > 0 by our present assumption, we have s − 3 − d = 23 − 3 − d < 20. Rescal-
ing x0 if need be we thus may assume that either x0 = x2

1x2
2 or x0 = x1∂1 + αx2∂2 for some α ∈ F

(by symmetry). Applying [St 04, (4.3.1)] it is easy to observe that cMi (x2
1x2

2) = (0) for i < 0 and
cM0 (x2

1x2
2) = t. This shows that the case x0 = x2

1x2
2 is impossible (as cM(x0) has codimension � 6

in M). If x0 = x1∂1 + αx2∂2, then [x0,M] contains all xi
1∂1 with i ∈ {0,2,3,4} and all x j

1x2∂2 with
j ∈ {1,2,3,4}. It follows that codimM cM(x0) � 8 in this case, showing that the case where d > 0
cannot occur.

(b) Thus d � 0. Recall from [Sk 01, p. 72] that the group of rational characters of T has Z-basis
{ε1, ε2} and the T-weight vectors ∂1, ∂2 ∈ M−3, 1 ∈ M−2, ∂̃1, ∂̃2 ∈ M−1 and x1∂2, x2∂1 ∈ M0 have
weights −2ε1 − ε2,−ε1 − 2ε2,−ε1 − ε2,−ε1,−ε2 and ε1 − ε2,−ε1 + ε2, respectively.

Assume that χ0(x1∂2) �= 0 and consider the cocharacter ε∗
1 : F × → Aut M such that (ε∗

1(t))(x) = tnx
for all t ∈ F × and all weight vectors x ∈ Mnε1+mε2 , where m,n ∈ Z. Let M = ⊕

i∈Z
M(i) be the Z-

grading of M induced by ε∗
1 . Since d � 0 and χ0(x1∂2) �= 0 by our assumption, we have that χ =

χ(−2) + χ(−1) + χ(0) + χ(1), where χ(i) ∈ M(i)∗ and χ(1) �= 0. Applying [P-Sk 99, Proposition 5.5]
to the graded Lie algebra

⊕
i∈Z

M(i) we deduce that zM(χ(1)) has codimension � 6 in M. Since
in the present case x1∂1 ∈ nM(Fχ(1)) \ zM(χ(1)), the normalizer nM(Fχ(1)) has codimension � 5
in M. Using Kuznetsov’s description of subalgebras of codimension 5 in M and arguing as in part (a)
we now obtain that χ(1) = b(y, ·) for some y ∈ Ms . Since in the present case s − 3 − d �= s, we reach
a contradiction, thereby showing that χ0(x1∂2) = 0. Arguing in a similar fashion one obtains that χ0
vanishes on x2∂1.

(c) Thus we may assume from now that d � 0 and χ0 vanishes on F (x1∂2) ⊕ F (x2∂1). In this
situation [P-Sk 99, Proposition 5.5] is no longer useful, so we have to argue differently. Denote by g

the Lie subalgebra of M generated by the graded components M±1. Using [St 04, (4.3.1)] it is easy
to check that M1 = F x1 ⊕ F x2, M2

1 = F (x1∂̃1 + x2∂̃2), M3
1 = F (x2

1∂1 + x1x2∂2) ⊕ F (x1x2∂1 + x2
2∂2) and

M4
1 = (0). Then it is immediate from [St 04, Theorem 5.4.1] that g is a 14-dimensional simple Lie

algebra of type G2. We identify χ with its restriction to g, denote by G the simple algebraic group
Aut g, and regard L := Aut0 M as a Levi subgroup of G. Clearly, T is a maximal torus of G contained
in L. Also, Lie(G) = adg and 5 is a good prime for the root system Φ = Φ(G,T). Since the Killing form
κ of the Lie algebra g is nondegenerate, we may identify g with g∗ via the G-equivariant map sending
x ∈ g to the linear function κ(x, ·) ∈ g∗ .

Let P be the parabolic subgroup of G with Lie(P) = ad(
⊕

i�0 gi), where gi = g∩Mi , and let Φ+ be
a positive system in Φ containing the T-weights of

⊕
i>0 gi . Let {α1,α2} be the basis of simple roots

of Φ contained in Φ+ . Adopting Bourbaki’s numbering we will assume that g0 is spanned by t and
root vectors e±α2 and g1 is spanned by root vectors eα1 and eα1+α2 . We stress that α1 is a short root
of Φ .

Since g(χ0) = χ0 for all g ∈ T and χ−1 + χ−2 + χ−3 is a linear combination of T-weight vectors
corresponding to positive roots, the Zariski closure of T · χ contains χ0. It follows that dim G · χ �
dim G · χ0. Since χ0 vanishes on all root vectors eα ∈ g with α ∈ Φ and 5 is a good prime for Φ ,
the stabilizer ZG(χ0) of χ0 in G is a Levi subgroup of G; see [P 95, (3.1)] and references therein.
Since the g-module V has p-character χ , the Kac–Weisfeiler conjecture proved in [P 95] shows that
5(dim G·χ)/2 | dim V .

Suppose χ0 �= 0. Then ZG(χ0) is a proper Levi subgroup of G. Since any Levi subgroup of G is
conjugate to a standard Levi subgroup, this implies that dim ZG(χ0) � 4. As a consequence,

dim G · χ � dim G · χ0 = dim G − dim ZG(χ0) � 10.
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But then 55 | dim V , a contradiction. Thus, χ = κ(y1 + y2 + y3, ·) for some yi ∈ gi .
Suppose y1 �= 0. Since y is a nilpotent element of g, all nonzero scalar multiples of y are

G-conjugate. From this it is immediate that the Zariski closure of G · y contains y1, implying
dim G · y � dim G · y1. As all nonzero elements of g1 are conjugate under the action of L, we may
assume that y1 = eα1 . As dim cg(eα1) = 6, it follows that

dim G · χ = dim G · y � dim G · y1 = dim G − dim ZG(y1) � dim G − dim cg(y1) = 8.

Applying [P 95, Theorem I] now gives 54 | dim V . Since this is false, it must be that y1 = 0. If y2 �= 0,
then y2 is a nonzero multiple of e2α1+α2 (for g2 = [M1,M1] = F e2α1+α2 ). As y = y2 + y3, it is easy
to see that the orbit P · y contains e2α1+α2 . As 2α1 + α2 is a short root of Φ , we can argue as before
to obtain 54 | dim V , a contradiction.

As a result, y = y3. Then χ = χ−3 vanishes on
⊕

i�−2 Mi as stated. If χ �= 0, then we can assume
that y = e3α1+2α2 (for all nonzero elements in g3 = [e2α1+α2 ,M1] are conjugate under the action
of L). Since dim cg(e3α1+2α2 ) = 8, it follows from [P 95, Theorem I] that 53 | dim V . Then dim V = 125,
completing the proof. �
7. Melikian pairs

Set Γ := Γ (L, T ). According to Theorem 5.8(4), if α,β ∈ Γ are Fp -independent, then either
L[α,β] ∼= M or H(2; (2,1))(2) ⊂ L[α,β] ⊂ H(2; (2,1)). If L[α,β] ∼= M we say that (α,β) ∈ Γ 2 is a
Melikian pair. Recall from Theorem 5.8(2) that H3 is a 2-dimensional subspace of T .

Lemma 7.1. A pair (α,β) ∈ Γ 2 is Melikian if and only if H3 ∩ kerα �= H3 ∩ kerβ , i.e. if and only if α|H3 and
β|H3 are linearly independent over F .

Proof. Suppose H(2; (2,1))(2) ⊂ L[α,β] ⊂ H(2; (2,1)). Recall from Section 2 that H(2; (2,1)) =
H(2; (2,1))(2) ⊕ V and V 3 = (0). Then L[α,β]3 ⊂ H(2; (2,1))(2) , forcing Ψα,β(H)3 ⊂ H(2; (2,1))(2) .
But then Ψα,β(H3) ⊂ Ψα,β(T ) ∩ H(2; (2,1))(2) has dimension � 1 by Lemma 2.4. In view of Theo-
rem 5.8(4) and the inclusion H3 ⊂ T , this means that H3 ∩ kerα ∩ kerβ has codimension � 1 in H3.
It follows that α and β are linearly dependent as linear functions on H3.

Now suppose that L[α,β] ∼= M. In view of Theorem 5.8(1), both α and β are in Ω . Therefore,
Ψα,β(T ) is a nonstandard 2-dimensional torus in L[α,β] ∼= Der L[α,β]. Applying [P 94, Lemmas 4.1
and 4.4] now gives dimΨα,β(H)3 = 2, which in conjunction with Theorem 5.8(5) yields that H3 ∩
kerα ∩ kerβ has codimension � 2 in H3. So α and β must be linearly independent on H3. �
Corollary 7.2. For any α ∈ Γ there exists β ∈ Γ such that (α,β) is a Melikian pair.

Proof. It follows from Theorem 5.8 that H3 ∩ kerα = Ft for some nonzero t ∈ H3. Since H3 ⊂ T and
L is centerless, there is a β ∈ Γ with β(t) �= 0. Then (α,β) is a Melikian pair by Lemma 7.1. �
Lemma 7.3. If (α,β) is a Melikian pair, then

L p(α,β) = L(α,β)(1) ⊕ T ∩ kerα ∩ kerβ, L p(α,β)(1) = L(α,β)(1) ∼= M.

Proof. (a) Since radT L(α,β) = H ∩ T ∩ kerα ∩ kerβ by Theorem 5.8(5), we have that radT L(α,β) =
z(L(α,β)). Hence

(0) → H ∩ T ∩ kerα ∩ kerβ → L(α,β) → M → (0)

is a central extension M. By Proposition 6.2, this extension splits; that is, L(α,β) = L(α,β)(1) ⊕ H ∩
T ∩ kerα ∩ kerβ and L(α,β)(1) ∼= M.
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(b) Note that L p(α,β) = H̃ + L(α,β), where H̃ = cLp (T ), and [H̃, L(α,β)(1)] ⊂ L(α,β)(1) . Hence
H̃ acts on L(α,β)(1) as derivations. As all derivations of L(α,β)(1) ∼= M are inner by [St 04, Theo-
rem 7.1.4], it must be that H̃ = H ′ ⊕ H̃0, where H̃0 = cH̃ (L(α,β)(1)) and H ′ = L(α,β)(1) ∩ H . From
part (a) of this proof it follows that H ⊂ T + H ′ . Consequently, [H, H̃0] = 0.

Put Γ ′ := {γ | γ (H ′) �= 0} and let μ be any root in Γ ′ . Recall that dim Lμ = 5; see Theorem 5.8(3).
As H ′ is a nontriangulable Cartan subalgebra of L(α,β)(1) ∼= M by [P 94, Lemmas 4.1 and 4.4], the H ′-
module Lμ is irreducible. But then H̃0 acts on Lμ as scalar operators. On the other hand, it follows
from Schue’s lemma [St 04, Proposition 1.3.6(1)] that L is generated by the root spaces Lγ with
γ ∈ Γ ′ . It follows that H̃0 acts semisimply on L, implying H̃0 ⊂ T . From this it is immediate that
H̃0 = T ∩ kerα ∩ kerβ . As a result,

L p(α,β) = L(α,β)(1) + H̃0 = L(α,β)(1) ⊕ T ∩ kerα ∩ kerβ,

finishing the proof. �
Let (α,β) be a Melikian pair. Note that T0 := T ∩ kerα ∩ kerβ is a restricted ideal of L p(α,β)

and T = H3 ⊕ T0. So the Lie algebra L p(α,β)/T0 inherits a pth power map from L p(α,β). Since
L p(α,β)/T0 ∼= M by Lemma 7.3 and both Lie algebras are centerless and restricted, every isomorphism
between L p(α,β)/T0 and M is an isomorphism of restricted Lie algebras. Any such isomorphism
maps the torus T /T0 of the restricted Lie algebra L p(α,β)/T0 onto a 2-dimensional nonstandard
torus of M. According to [P 94, Lemmas 4.1 and 4.4], any such torus is conjugate under AutM to the
torus t := F (1 + x1)∂1 ⊕ F (1 + x2)∂2.

Recall from Section 6 the natural grading of the Lie algebra M. For i � −3, we set M(i) := ⊕
j�i Mi .

The decreasing filtration (M(i))i�−3 of the Lie algebra M can be regarded as a standard (Weisfeiler)
filtration of M associated with its maximal subalgebra M(0) . It is referred to as the natural filtration
of M, because M(0) is the only subalgebra of codimension 5 and depth 3 in M. All components M(i)
of this filtration are invariant under the automorphism group of M; see [St 04, Theorem 4.3.3(2) and
Remark 4.3.4] for more detail. Note that M = t ⊕ M(−2).

Regard M̃ := M ⊕ T0 as a direct sum of Lie algebras and define a pth power map u �→ up on M̃

by setting up = u[p] for all u ∈ M and up = 0 for all u ∈ T0 (here u �→ u[p] is the pth power map
on M). The above discussion in conjunction with Lemma 7.3 shows that there exists a Lie algebra
isomorphism

Φ : L p(α,β)
∼−→ M̃ = M(−2) ⊕ Φ(T ) (7.1)

such that

Φ
(
L(α,β)(1)

) = M, Φ
(

H3) = t, Φ|T0 = IdT0 . (7.2)

Note that Φ maps L p(α,β)(1) onto M̃(1) = M. We stress that H3 is not a restricted subalgebra of
L p(α,β), whilst Φ(H3) is a maximal torus of M̃. There exists a p-linear mapping Λ :M̃ → z(M̃) = T0
such that

Λ(u) = Φ−1(u)[p] − Φ−1(up)
(∀u ∈ M̃),

where Φ−1(u) �−→ Φ−1(u)[p] is the pth power map in L p .

Lemma 7.4. The p-linear mapping Λ vanishes on the subspace M(−2) of M̃.

Proof. Suppose Λ(u) �= 0 for some u ∈ M(−2) . Then there is γ ∈ Γ which does not vanish on
Λ(u) ∈ T0 \ {0}. Since Λ(u) ⊂ T ∩ kerα ∩ kerβ , the root γ is Fp-independent of α and β . Let
M(γ ;α,β) := ⊕

i, j∈F
Lγ +iα+ jβ . By Theorem 5.8, M(γ ;α,β) is a 125-dimensional submodule of the
p
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(T + L(α,β)p)-module L. The map ad ◦ Φ−1 gives M(γ ;α,β) an M-module structure. Note that T0
acts on M(γ ;α,β) as scalar operators. This means that the M-module M(γ ;α,β) has a p-character;
we call it χ . It is straightforward to see that Λ(x) = χ(x)p for all x ∈ M. But then χ does not vanish
on M(−2) . Since dim M(γ ;α,β) = 125, this contradicts Proposition 6.3. The result follows. �

We now set (L p(α,β)(1))(i) := Φ−1(M(i)) for all i � −3. Then the following hold:

• (L p(α,β)(1))(−3) = L p(α,β)(1);
• (L p(α,β)(1))(0) is a subalgebra of codimension 5 in L p(α,β)(1);
• u[p] ∈ L p(α,β)(1) for all u ∈ (L p(α,β)(1))(−2);
• (L p(α,β)(1))(0) is a restricted subalgebra of L p(α,β).

Since the natural filtration of M is invariant under all automorphisms of M (see [St 04, Re-
mark 4.3.4(3)]), the above definition of the subspaces (L p(α,β)(1))(i) is independent of the choice
of Φ satisfying (7.1) and (7.2).

8. Describing L p(α)

Fix α ∈ Γ and pick β ∈ Γ be such that (α,β) is a Melikian pair; see Corollary 7.2. As before, we
put T0 := T ∩ kerα ∩ kerβ and let Φ be a map satisfying (7.1) and (7.2). It gives rise to the restricted
Lie algebra isomorphism

�Φ : L p(α,β)/T0
∼−→ M = M(−2) ⊕ �Φ(

H3), �Φ(
H3) = t.

By Theorem 5.8(1), no root in Γ vanishes on H3. As dim H3 = 2, there exists a nonzero hα ∈ H3

such that F hα = H3 ∩ kerα. As �Φ(F hα) is a 1-dimensional subtorus of the nonstandard torus t, it
follows from [Sk 01, Theorem 2.1] that there is an automorphism of M which maps t onto itself and
F �Φ(hα) onto F (1 + x1)∂1. Hence we may assume without loss of generality that

Φ
(
L p(α)

) = cM
(
(1 + x1)∂1

) ⊕ T0, Φ(T ) = t ⊕ T0, �Φ(hα) = (1 + x1)∂1. (8.1)

For f ∈ O(2; (1,1))(0) set f (k) := f k/k! for 0 � k � 4 and f (k) := 0 for k < 0 and k � 5. Direct compu-
tations show that cM((1 + x1)∂1) has basis

{
x(r)

2 ∂2, x(r)
2 (1 + x1)∂1, x(r)

2 (1 + x1)
2, x(r)

2 (1 + x1)
3∂̃2, x(r)

2 (1 + x1)
4∂̃1

∣∣ 0 � r � 4
}
.

Using the multiplication table in [St 04, (4.3.1)] it is easy to observe that

[
x(r)

2 ∂2, x(s)
2 ∂2

] =
[(

r + s − 1

r

)
−

(
r + s − 1

s

)]
x(r+s−1)

2 ∂2;
[
x(r)

2 (1 + x1)∂1, x(s)
2 ∂2

] = −
(

r + s − 1

s

)
x(r+s−1)

2 (1 + x1)∂1;[
x(r)

2 (1 + x1)∂1, x(s)
2 (1 + x1)∂1

] = 0;[
x(r)

2 (1 + x1)
2, x(s)

2 ∂2
] = −

[(
r + s − 1

s

)
− 2

(
r + s − 1

s − 1

)]
x(r+s−1)

2 (1 + x1)
2;

[
x(r)

2 (1 + x1)
2, x(s)

2 (1 + x1)∂1
] = −

[
2

(
r + s

s

)
− 2

(
r + s

s

)]
x(r+s)

2 (1 + x1)
2 = 0;

[
x(r)

2 (1 + x1)
2, x(s)

2 (1 + x1)
2] = 2

[
−

(
r + s − 1

r

)
+

(
r + s − 1

s

)]
x(r+s−1)

2 (1 + x1)
4∂̃1;
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[
x(r)

2 (1 + x1)
3∂̃2, x(s)

2 ∂2
] = −

(
r + s

r

)
x(r+s−1)

2 (1 + x1)
3∂̃2;

[
x(r)

2 (1 + x1)
3∂̃2, x(s)

2 (1 + x1)∂1
] =

(
r + s − 1

r

)
x(r+s−1)

2 (1 + x1)
4∂̃1;

[
x(r)

2 (1 + x1)
3∂̃2, x(s)

2 (1 + x1)
2] = −

(
r + s

r

)
x(r+s)

2 ∂2;[
x(r)

2 (1 + x1)
3∂̃2, x(s)

2 (1 + x1)
3∂̃2

] = 0;[
x(r)

2 (1 + x1)
4∂̃1, x(s)

2 ∂2
] = −

[(
r + s − 1

s

)
+ 2

(
r + s − 1

s − 1

)]
x(r+s−1)

2 (1 + x1)
4∂̃1;

[
x(r)

2 (1 + x1)
4∂̃1, x(s)

2 (1 + x1)∂1
] = −

[
3

(
r + s

r

)
+ 2

(
r + s

s

)]
x(r+s)

2 ∂̃1 = 0;
[
x(r)

2 (1 + x1)
4∂̃1, x(s)

2 (1 + x1)
2] = −

(
r + s

r

)
x(r+s)

2 (1 + x1)∂1;
[
x(r)

2 (1 + x1)
4∂̃1, x(s)

2 (1 + x1)
3∂̃2

] =
(

r + s

r

)
x(r+s)

2 (1 + x2)
2;[

x(r)
2 (1 + x1)

4∂̃1, x(s)
2 (1 + x1)

4∂̃1
] = 0.

In order to obtain a more invariant description of L p(α) we now consider a vector space R = R ′ ⊕C

over F with dim C = dim T − 2 such that R ′ has basis {x(i)
1 x( j)

2 | 0 � i, j � 4,1 � i + j � 7} ∪ {x(5)
2 } ∪ {z}.

We give R a Lie algebra structure by setting

[
x(i)

1 x( j)
2 , x(k)

1 x(l)
2

] :=
[(

i + k − 1

i − 1

)(
j + l − 1

j

)
−

(
i + k − 1

i

)(
j + l − 1

j − 1

)]
x(i+k−1)

1 x( j+l−1)
2

for all i, j,k, l with 3 � i + j + k + l � 7 such that ( j, l) �= (0,0) whenever i + k = 5, and by requiring
that [F z + C, R] = 0 and

[
x(i)

1 x( j)
2 , x(k)

1 x(l)
2

] :=
{

0 if i + j + k + l � 2,

(−1)i z if j = l = 0 and i + k = 5.

The Lie algebra R is a (nonsplit) central extension of H(2;1)(2) ⊕ FDH (x(5)
2 ). Computations show that

[
x1x(r)

2 , x1x(s)
2

] =
[(

r + s − 1

r

)
−

(
r + s − 1

s

)]
x1x(r+s−1)

2 ;

[−x(4)
1 x(r−1)

2 , x1x(s)
2

] =
{

−(r+s−1
s

)
(−x(4)

1 x(r+s−2)
2 ) if r + s � 2,

−z if r = 1, s = 0;[−x(4)
1 x(r−1)

2 ,−x(4)
1 x(s−1)

2

] = 0;[
x(2)

1 x(r)
2 , x1x(s)

2

] = −
[(

r + s − 1

s

)
− 2

(
r + s − 1

s − 1

)]
x(2)

1 x(r+s−1)
2 ;[

x(2)
1 x(r)

2 ,−x(4)
1 x(s−1)

2

] = 0;[
x(2)

1 x(r)
2 , x(2)

1 x(s)
2

] = 2

[
−

(
r + s − 1

r

)
+

(
r + s − 1

s

)]
x(3)

1 x(r+s−1)
2 ;

[
x(r+1)

2 , x1x(s)
2

] = −
(

r + s

r

)
x(r+s)

2 ;
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[
x(r+1)

2 ,−x(4)
1 x(s−1)

2

] =
(

r + s − 1

r

)
x(3)

1 x(r+s−1)
2 ;

[
x(r+1)

2 , x(2)
1 x(s)

2

] = −
(

r + s

r

)
x1x(r+s)

2 ;
[
x(r+1)

2 , x(s+1)
2

] = 0;[
x(3)

1 x(r)
2 , x1x(s)

2

] = −
[(

r + s − 1

s

)
+ 2

(
r + s − 1

s − 1

)]
x(3)

1 x(r+s−1)
2 ;

[
x(3)

1 x(r)
2 ,−x(4)

1 x(s−1)
2

] = 0;
[
x(3)

1 x(r)
2 , x(2)

1 x(s)
2

] =
{

−(r+s
r

)
(−x(4)

1 x(r+s−1)
2 ) if r + s � 1,

−z if r = s = 0;[
x(3)

1 x(r)
2 , x(s+1)

2

] =
(

r + s

r

)
x(2)

1 x(r+s)
2 ;

[
x(3)

1 x(r)
2 , x(3)

1 x(s)
2

] = 0.

By comparing the displayed multiplications tables it is straightforward to see that the following state-
ment holds:

Proposition 8.1. Any linear map Θ ′ : cM̃((1 + x1)∂1) → R which takes T0 isomorphically onto C and satisfies
the conditions

Θ ′(x(r)
2 (1 + x1)∂1

) =
{

−x(4)
1 x(r−1)

2 if 1 � r � 4,

z if r = 0,

Θ ′(x(r)
2 ∂2

) = x1x(r)
2 , 0 � r � 4,

Θ ′(x(r)
2 (1 + x1)

2) = x(2)
1 x(r)

2 , 0 � r � 4,

Θ ′(x(r)
2 (1 + x1)

3∂̃2
) = x(r+1)

2 , 0 � r � 4,

Θ ′(x(r)
2 (1 + x1)

4∂̃1
) = x(3)

1 x(r)
2 , 0 � r � 4,

is an isomorphism of Lie algebras.

We now fix Θ ′ described in Proposition 8.1 and set Θ := Θ ′ ◦ Φ|Lp(α) , where Φ : L p(α,β)
∼−→ M̃

is a Lie algebra isomorphism satisfying (7.1), (7.2) and (8.1). Clearly, Θ : L p(α)
∼−→ R is a Lie algebra

isomorphism. We give R a pth power map by setting

r p := Θ
(
Θ−1(r)[p]) (∀r ∈ R). (8.2)

This turns Θ into an isomorphism of restricted Lie algebras. Because the p-linear map Λ : M̃ → T0
vanishes on the subspace M(−2) of M̃ by Lemma 7.4 and Θ is defined via Φ , the explicit description
of Θ ′ in Proposition 8.1 shows that the map (8.2) has the following properties:

(
x(r+1)

2

)p = 0 if 0 � r � 4;(
x1x(r)

2

)p = 0 if r �= 0,1;(
x(2)

1 x(r)
2

)p = 0 if 0 � r � 4;
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(
x(3)

1 x(r)
2

)p = 0 if 0 � r � 4;(
x(4)

1 x(r−1)
2

)p = 0 if 1 � r � 4;
(x1x2)

p = x1x2, i.e. x1x2 is toral (8.3)

(we refer to [Sk 01] for more detail on the p-structure in the restricted Melikian algebra). Note that
(x1)

p and zp lie in Θ(T ) = F z ⊕ C . Moreover, F z = Θ(H3 ∩ kerα) coincides the image of F (1 + x1)∂1
under Φ−1 and Θ ′((1 + x2)∂2) = x1 + x1x2.

We stress that all constructions of Sections 7 and 8 depend on the choice of a Melikian pair.

9. The subalgebra Q (α)

The results obtained so far apply to all nonstandard tori of maximal dimension in L p . However,
such tori need not be conjugate under the automorphism group of L. In order to identify L with
one of the Melikian algebras, we will require a sufficiently generic nonstandard torus of maximal
dimension in L p .

Proposition 9.1. There exists a nonstandard torus T ′ of maximal dimension in L p for which (cL(T ′))3 contains
no nonzero toral elements of L p .

Proof. Let T and Γ be as Section 8 and let (α,β) ∈ Γ 2 be a Melikian pair. Choose an isomorphism
Φ : L p(α,β)

∼−→ M̃ satisfying (7.1) and (7.2). Then H3 = Φ−1(t). Set qi := Φ−1(xi∂i), ni = Φ−1(∂i) and

hi := n[p]
i , where i = 1,2. As the elements xi∂i are toral in M, Lemma 7.4 says that both q1 and q2 are

toral elements of L p . Note that T = F (q1 + n1) ⊕ F (q2 + n2) ⊕ T0, where T0 = T ∩ kerα ∩ kerβ .
As Φ is a Lie algebra isomorphism, it is straightforward to see that [qi,ni] = −ni and hi ∈ T0 for

i = 1,2. So it follows from Jacobson’s formula that (qi + ni)
[p]k = qi + ni + ∑k−1

j=0 h[p] j

i for all k � 1.

Since (H3)p = T by Theorem 5.8(3) and H3 = F (q1 + n1) ⊕ F (q2 + n2), it follows that the p-closure of
F h1 + F h2 coincides with T0.

Recall that dim T0 � 1. Let {t1, . . . , ts} be a basis of T0 consisting of toral elements of L p . For
x = ∑s

j=1 α jt j ∈ T0 define Supp(x) := { j | α j �= 0}. Write h1 = ∑s
j=1 λiti and h2 = ∑s

j=1 μ jt j with
λ j,μ j ∈ F . Since the [p]th powers of h1 and h2 span T0, it must be that

Supp(h1) ∪ Supp(h2) = {1, . . . , s}.

In particular, h1 �= 0 or h2 �= 0. Recall from Section 6 the maximal torus T of the group Aut0 M of
all automorphisms of M preserving the natural grading of M. For every σ ∈ Aut0 M the subalgebra
Φ−1(σ (t)+ T0) is a nonstandard torus of maximal dimension in L p and the elements (Φ−1 ◦σ)(x1∂1)

and (Φ−1 ◦σ)(x2∂2) are toral in L p by Lemma 7.4. Since the group Aut0 M acts transitively on the set
of bases of M−3, there is τ ∈ Aut0 M such that the elements ((Φ−1 ◦ τ )(∂1))

[p] and ((Φ−1 ◦ τ )(∂2))
[p]

are both nonzero. Replacing t by τ (t) and renumbering the ti ’s if necessary, we thus may assume that
λ1 and μ1 are both nonzero.

Since F is infinite, there exist a,b ∈ F × such that the elements apλ1 and bpμ1 of F are linearly
independent over Fp . Applying a suitable automorphism from the subgroup T of Aut0 M one observes
that t′ := F (a + x1)∂1 ⊕ F (b + x2)∂2, is a 2-dimensional nonstandard torus in M and t′ = (cM(t′))3

(alternatively, one can apply [P 94, Lemmas 4.1 and 4.4]). This entails that

T ′ := Φ−1(t′ ⊕ T0) = F (q1 + an1) ⊕ F (q2 + bn2) ⊕ T0

is a nonstandard torus of maximal dimension in L p with F (q1 + an1) ⊕ F (q2 + bn2) = (cL(T ′))3. Sup-
pose

(
x(q1 + an1) + y(q2 + bn2)

)[p] = x(q1 + an1) + y(q2 + bn2) (9.1)
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for some x, y ∈ F . Applying Φ to both sides of (9.1) gives(
x(a + x1)∂1 + y(b + x2∂2)

)[p] = x(a + x1)∂1 + y(b + x2)∂2.

As both (a + x1)∂1 and (b + x2)∂2 are toral elements of M, we get x, y ∈ Fp . Hence

x(q1 + an1) + y(q2 + bn2) = (
x(q1 + an1) + y(q2 + bn2)

)[p]

= x
(
q1 + an1 + aph1

) + y
(
q2 + bn2 + bph2

)
,

implying xaph1 + ybph2 = 0. As a consequence, xapλ j + ybpμ j = 0 for all j � s. But then apλ1 and
bpμ1 are linearly dependent over Fp , a contradiction. We conclude that (cL(T ′))3 contains no nonzero
toral elements of L p . �

Retain the notation introduced in Sections 7 and 8. In view of Proposition 9.1, we may assume
that for every α ∈ Γ no nonzero element of H3 ∩ kerα is toral in L p .

The map Θ : L p(α)
∼−→ R defined in Section 8 induces a natural Lie algebra isomorphism

�Θ : L p(α)/z
(
L p(α)

) ∼−→ R/z(R) ∼= H(2;1)(2) ⊕ FDH
(
x(5)

2

)
.

Let (R/z(R))(i) denote the ith component of the standard filtration of the Cartan type Lie algebra
R/z(R), where i � −1, and denote by L p(α)(i) the inverse image of (R/z(R))(i) under �Θ . We thus
obtain a filtration {L p(α)(i) | i � −1} of the Lie algebra L p(α) with

⋂
i�−1 L p(α)(i) = T ∩ kerα and

dim(L p(α)/L p(α)(0)) = 2. This filtration is, in fact, independent of the choice of �Θ , because (R/z(R))(0)

is the unique subalgebra of codimension 2 in the Cartan type Lie algebra R/z(R). Since �Θ is a
restricted Lie algebra isomorphism, all L p(α)(i) are restricted subalgebras of L p(α). We denote by
nil[p](L p(α)(i)) the maximal ideal of L p(α)(i) consisting of p-nilpotent elements of L p .

Definition 9.1. Define

W := {
u ∈ L p(α)(1) ∩ L p(α)(0)

∣∣ u[p] ∈ L p(α)(1)
};

P := {
u ∈ W

∣∣ [u, W ] ⊂ W
};

Q (α) := P + nil[p]
(
L p(α)(3)

)
.

Because of the uniqueness of the filtration {L p(α)(i) | i � −1} this definition is independent of the
choices made earlier. The main result of this section is the following:

Proposition 9.2. If (α,β) is a Melikian pair in Γ 2 , then

Q (α) = L p(α) ∩ (
L p(α,β)(1)

)
(0)

.

Proof. (a) Choose any Lie algebra isomorphism Φ : L p(α,β)
∼−→ M̃ = M⊕ T0 satisfying (7.1), (7.2) and

(8.1). Then Φ(L p(α) ∩ (L p(α,β)(1))(0)) is spanned by{
x(r)

2 ∂2, x(r)
2 (1 + x1)∂1, x(r)

2 (1 + x1)
2, x(r)

2 (1 + x1)
3∂̃2, x(r)

2 (1 + x1)
4∂̃1

∣∣ 1 � r � 4
}
.

Let Θ = Φ ◦ Θ ′ : L p(α)
∼−→ R be the isomorphism associated with Φ . The explicit formulae for Θ ′

yield that Θ(L p(α) ∩ (L p(α,β)(1))(0)) is spanned by the set{
x1x(r)

2 , x(2)
1 x(r)

2 , x(3)
1 x(r)

2

∣∣ 1 � r � 4
} ∪ {

x(4)
1 x(r)

2

∣∣ 0 � r � 3
} ∪ {

x(r)
2

∣∣ 2 � r � 5
};

see Proposition 8.1.
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(b) Next we are going to determine Θ(W ), Θ(P ) and Θ(Q (α)) by using Definition 9.1. First we
observe that

Θ
(
L p(α)(1) ∩ L p(α)(0)

) = F z ⊕
( ⊕

0�i, j�4, 2�i+ j�7

F x(i)
1 x( j)

2

)
;

see Proposition 8.1. It is immediate from Eqs. (8.3) that

(
x(i)

1 x( j)
2

)p ∈ Θ
(
L p(α)(1) ∩ L p(α)(0)

)
whenever i + j � 2.

Recall that Θ is an isomorphism of restricted Lie algebras. In conjunction with Jacobson’s formula,
this shows that Θ(W ) is a subspace of R . As a consequence, we have the inclusion⊕

0�i, j�4, 2�i+ j�7

F x(i)
1 x( j)

2 ⊂ Θ(W ).

On the other hand, if z ∈ Θ(W ), then the definition of Θ ′ and our assumption on Φ yield H3 ∩
kerα ⊂ W . Then hα ∈ W . As F hα = H3 ∩ kerα = FΘ−1(z), our assumption on hα in (8.1) yields
hα = Φ−1((1 + x1)∂1). It follows that h[p]

α − hα ∈ L p(α)(1) ∩ T0. As h[p]
α �= hα by our choice of T , this

entails L p(α,β)(1) ∩ T0 �= (0) contradicting Lemma 7.3. We conclude that

Θ(W ) =
⊕

0�i, j�4, 2�i+ j�7

F x(i)
1 x( j)

2 .

Let u = ∑
i, j si, j x

(i)
1 x( j)

2 ∈ Θ(P ). Since x(2)
1 , x(3)

1 ∈ Θ(W ) and [x(2)
1 , x(3)

1 ] = z, it follows readily from
the definition of P that s2,0 = s3,0 = 0. The multiplication table for R given Section 8 now shows that
Θ(P ) is spanned by

{
x(4)

1 , x(2)
2 , x(3)

2

} ∪ {
x(i)

1 x2, x(i)
1 x(2)

2 , x(i)
1 x(3)

2

∣∣ 1 � i � 4
} ∪ {

x(i)
1 x(4)

2

∣∣ 0 � i � 3
}
.

(c) Finally, the nilpotent subalgebra Θ(L p(α)(3)) is spanned by

{
x(i)

1 x(4)
2

∣∣ 0 � i, j � 4; 5 � i + j � 7
} ∪ {

x(5)
2 , z

} ∪ C .

By (8.3), the Lie product of any two elements in this set is p-nilpotent in R . Since Θ is an isomor-
phism of restricted Lie algebras, it follows that Θ(nil[p](L p(α)(3))) is spanned by {x(i)

1 x(4)
2 | 0 � i, j �

4;5 � i + j � 7} ∪ {x(5)
2 }. Comparing the spanning set of Θ(L p(α) ∩ (L p(α,β)(1))(0)) from part (a) of

this proof with that of Θ(Q (α)) = Θ(P ) + Θ(nil[p](L p(α)(3))) we now obtain that

Θ
(
L p(α) ∩ (

L p(α,β)(1)
)
(0)

) = Θ
(

Q (α)
)
.

Since Θ is an isomorphism, the proposition follows. �
Remark 9.3. Proposition 9.2 implies that Q (α) is a subalgebra of L(α).

At the end of Section 8 we mentioned that Θ ′((1 + x2)∂2) = x1(1 + x2). In what follows we require
some computations in the subalgebra Θ(H) ⊂ cR(x1(1 + x2)). It follows from the multiplication table
for R that cR(x1(1 + x2)) contains x(2)

1 (1 + x2)
2 and x(3)

1 (1 + x2)
3. Set w := x2 − x(2)

2 + 2x(3)
2 − x(4)

2 − x(5)
2

and observe that
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[
x1(1 + x2), w

] = [x1, w] + [x1x2, w] = (−x2 + 2x(2)
2 − x(3)

2 − x(4)
2

)
+

(
x2 −

(
2

1

)
x(2)

2 + 2

(
3

1

)
x(3)

2 −
(

4

1

)
x(4)

2

)
= 0. (9.2)

Applying Proposition 8.1 it is now easy to see that

3⊕
i=1

F x(i)
1 (1 + x2)

i ⊕ F w ⊕ F z ⊂ Θ
(
L p(α,β)(1) ∩ H p

) ⊂ Θ(H).

Direct computations show that

[
x(2)

1 (1 + x2)
2, w

] = x1(1 + x2)
2(1 − x2 + 2x(2)

2 − x(3)
2 − x(4)

2

)
= x1(1 + x2)

6 = x1(1 + x2); (9.3)[
x(3)

1 (1 + x2)
3, w

] = x(2)
1 (1 + x2)

3(1 − x2 + 2x(2)
2 − x(3)

2 − x(4)
2

)
= x(2)

1 (1 + x2)
7 = x(2)

1 (1 + x2)
2. (9.4)

Proposition 9.4. Let α be an arbitrary root of Γ . Then for any r ∈ F×
p there exists a linear map lrα : Lrα → H

such that x − lrα(x) ∈ Q (α) for all x ∈ Lrα . Furthermore, H ∩ Q (α) = (0) and L(α) = H + Q (α).

Proof. In order to perform computations in L p(α) we are going to invoke the isomorphism Θ =
Θ ′ ◦ Φ; see Proposition 8.1. Recall that

Θ(T ) = F x1(1 + x2) ⊕ F z ⊕ C .

Replacing α by an F×
p -multiple of α, if necessary, we may assume that α(x1(1 + x2)) = 1. Using the

multiplication table for R it is then straightforward to see that

Θ(Lrα) =
⊕3

i=1
F x(i)

1 (1 + x2)
r+i ⊕ F

(
x(4)

1 (1 + x2)
r−1 − r−1z

) ⊕ F
(
(1 + x2)

r − 1
)

for all r ∈ F×
p and that Θ(H) is sandwiched between

⊕3
i=1 F x(i)

1 (1 + x2)
i ⊕ F w ⊕ F z and Θ(H p) =⊕3

i=1 F x(i)
1 (1 + x2)

i ⊕ F w ⊕ F z ⊕ C . We now define a linear map lrα : Lrα → H by the formula lrα =
Θ−1 ◦ mr ◦ Θ , where mr is the linear map from Θ(Lrα) into Θ(H) given by

mr
(
x(4)

1 (1 + x2)
r−1 − r−1z

) = −r−1z;
mr

(
x(i)

1 (1 + x2)
r+i) = x(i)

1 (1 + x2)
i, 1 � i � 3;

mr
(
(1 + x2)

r − 1
) = rw.

Using the spanning set of Θ(Q (α)) from the proof of Proposition 9.2 one observes that w − x2 ∈
Θ(Q (α)) and x(i)

1 (1 + x2)
i − x(i)

1 ∈ Θ(Q (α)) for 1 � i � 3. By the same token, one finds that the

subspace
⊕3

i=1 F x(i)
1 ⊕ F x2 ⊕ F z ⊕ C of R complements Θ(Q (α)). Since x(4)

1 (1 + x2)
r−1 ∈ Θ(Q (α)) for

all r ∈ F×
p , this implies that y − mr(y) ∈ Θ(Q (α)) for all y ∈ Θ(Lrα) and R = Θ(H p) ⊕ Θ(Q (α)).

As a result, x − lrα(x) ∈ Q (α) for all r ∈ F×
p and all x ∈ Lrα . Consequently, L p(α) = H p ⊕ Q (α).

Since Q (α) ⊂ L(α), this yields L(α) = H ⊕ Q (α) and the proposition follows. �
Proposition 9.5. Let N(H) denote the set of all p-nilpotent elements of L p contained in H. Then the following
hold:
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(1) N(H) is a 3-dimensional subspace of H.
(2) There exists a unique 2-dimensional subspace H(−1) in N(H) satisfying the condition [H(−1), H(−1)] ⊂

N(H). Moreover, [H(−1), [H(−1), H(−1)]] = H3 .
(3) For every α ∈ Γ the subspace H(−1) + Q (α) is stable under the adjoint action of Q (α).

Proof. Jacobson’s formula together with (8.3) and the multiplication table for R shows that the sub-
space N := F x(2)

1 (1 + x2)
2 ⊕ F x(3)

1 (1 + x2)
3 ⊕ F w consists of p-nilpotent elements of R . On the other

hand, it is clear from our remarks in the proof of Proposition 9.4 that Θ(H p) = Θ(T )⊕ N . Since Θ(T )

is a torus, this entails that N coincides with the set of all p-nilpotent elements of the restricted Lie
algebra Θ(H p). Since Θ : L p(α)

∼−→ R is an isomorphism of restricted Lie algebras, we deduce that
N(H) = Θ−1(N) is a 3-dimensional subspace of H .

The elements D H (x(2)
1 (1 + x2)

2) and D H (x(3)
1 (1 + x2)

3) of the Hamiltonian algebra H(2;1)(2) com-
mute. Therefore, in our central extension R we have the equality

[
x(2)

1 (1 + x2)
2, x(3)

1 (1 + x2)
3] = [

x(2)
1 , x(3)

2

] = z. (9.5)

Now take any linearly independent elements u1 = a1x(2)
1 (1 + x2)

2 + b1x(3)
1 (1 + x2)

3 + c1 w and u2 =
a2x(2)

1 (1 + x2)
2 + b2x(3)

1 (1 + x2)
3 + c2 w in N such that [u1, u2] ∈ N . Then (9.5) together with (9.3) and

(9.4) yields

N � [u1, u2] = (a1b2 − a2b1)z + (a1c2 − a2c1)x1(1 + x2) + (b1c2 − b2c1)x(2)
1 (1 + x2)

2,

forcing a1b2 = a2b1 and a1c2 = a2c1. If a1 �= 0, then u2 = a2
a1

u2 which is false. Therefore, a1 = 0.

Arguing similarly, one obtains a2 = 0. This shows that H(−1) := Θ−1(F x(3)
1 (1 + x2)

3 ⊕ F w) is the only
2-dimensional subspace of N(H) with the property that [H(−1), H(−1)] ⊂ N(H). Combining (9.4), (9.3)
and (9.5) one derives that [H(−1), [H(−1), H(−1)]] = H3.

Using the spanning set for Θ(Q (α)) displayed in part (a) the proof of Proposition 9.2 and the
multiplication table for R , it is routine to check that

[
Θ

(
Q (α)

)
, F x(3)

1 (1 + x2)
3 ⊕ F w

] ⊂ Θ
(

Q (α)
) + F x(3)

1 (1 + x2)
3 ⊕ F w.

This implies that H(−1) + Q (α) is invariant under the adjoint action of Q (α). �
10. Conclusion

For any γ ∈ Γ we fix a map lγ : Lγ → H satisfying the conditions of Proposition 9.4. Given x ∈ Lγ

we set x̃ := x − lγ (x), an element of Q (α). Define

L(0) :=
∑
γ ∈Γ

Q (γ ),

a subspace of L. We are going to show that L(0) is actually a subalgebra of L. Since it follows from
Remark 9.3 that [Q (γ ), Q (γ )] ⊂ L(0) for all γ ∈ Γ , we just need to check that [Q (α), Q (β)] ⊂ L(0)

for all Fp-independent α,β ∈ Γ .

Lemma 10.1. Let (α,β) be an arbitrary Melikian pair in Γ 2 and let x ∈ Lα , y ∈ Lβ . Then [x̃, ỹ] ∈ L(0) and

[x̃, ỹ] ≡ [̃x, y] (
mod Q (α) + Q (β)

)
.
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Proof. Set Δ := {α} ∪ (β + Fpα). Proposition 9.4 says that L(δ) = H ⊕ Q (δ) for any δ ∈ Δ. In conjunc-
tion with Proposition 9.2, this gives

(
L p(α,β)(1)

)
(δ) = (

H ∩ L p(α,β)(1)
) ⊕ Q (δ) (∀δ ∈ Δ). (10.1)

Recall that Φ : L p(α,β)(1) ∼−→ M is a Lie algebra isomorphism taking H ∩ L p(α,β)(1) onto cM(t) and
(L p(α,β)(1))(0) onto M(0) . Therefore,

dim H ∩ L p(α,β)(1) = 5, dim
(
L p(α,β)(1)

)
(0)

= 120. (10.2)

Combining (10.2) and (10.1) we now deduce that for every δ ∈ Δ the subalgebra Q (δ) = L p(δ) ∩
(L p(α,β)(1))(0) has codimension 5 in the 1-section (L p(α,β)(1))(δ). Since L p(α,β)(1) ∼= M, it follows
from [P 94, Lemmas 4.1 and 4.4], for instance, that dim(L p(α,β)(1))(δ) = 25. Therefore, dim Q (δ) = 20
for all δ ∈ Δ.

For any μ ∈ Δ one has

Q (μ) ∩
( ∑

δ∈Δ\{μ}
Q (δ)

)
⊂ Q (μ) ∩

( ∑
δ∈Δ\{μ}

L(δ)

)
⊂ Q (μ) ∩ H = (0).

This shows that the sum Q (α) + ∑4
j=0 Q (β + jα) is direct. But then

dim

(
Q (α) ⊕

4⊕
j=0

Q (β + jα)

)
= 6 · 20 = 120 = dim

(
L p(α,β)(1)

)
(0)

,

implying that (L p(α,β)(1))(0) = Q (α) + ∑
j∈Fp

Q (β + jα). As a consequence,

[
Q (α), Q (β)

] ⊂ [(
L p(α,β)(1)

)
(0)

,
(
L p(α,β)(1)

)
(0)

] ⊂ (
L p(α,β)(1)

)
(0)

= Q (α) +
4⊕

j=0

Q (β + jα) ⊂ L(0). (10.3)

This shows that [x̃, ỹ] ∈ L(0) . Computing modulo Q (α) + Q (β) we get

[x̃, ỹ] = ([x, y] − lα+β

([x, y]) − [
x, lβ(y)

] + lα
([

x, lβ(y)
]) − [

lα(x), y
] + lβ

([
lα(x), y

])
+ [

lα(x), lβ(y)
]) + (

lα+β

([x, y]) − lα
([

x, lβ(y)
]) − lβ

([
lα(x), y

]))
= [̃x, y] − ˜[

x, lβ(y)
] − ˜[

lα(x), y
] + h̃

≡ [̃x, y] + h̃,

where h̃ = lα+β([x, y]) − lα([x, lβ(y)]) − lβ([lα(x), y]) + [lα(x), lβ(y)]. As [̃x, y] ∈ L(0) , it must be that
h̃ ∈ H ∩ L(0) = H ∩ (

∑
γ ∈Γ Q (γ )). Expressing h̃ = ∑

γ ∈Γ (vγ − lγ (v)) with vγ ∈ Lγ we see that vγ = 0

for all γ , whence lγ (vγ ) = 0 and h̃ = 0. The result follows. �
Theorem 10.2. L(0) is a proper subalgebra of L.
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Proof. By our earlier remark in this section, we need to show that [Q (α), Q (β)] ⊂ L(0) for all pairs
(α,β) ∈ Γ 2 such that α and β are Fp-independent. If (α,β) is a Melikian pair, this follows from
Lemma 10.1.

Take any Fp-independent α,β ∈ Γ for which (α,β) is not a Melikian pair. Then H3 ∩ kerα =
H3 ∩ kerβ; see Lemma 7.1. Recall that H3 ∩ kerα = F hα for some nonzero hα ∈ H3. Put Γ (α) := {γ ∈
Γ | γ (hα) �= 0}. Since H3 ⊂ T , the set Γ (α) is nonempty. Then it follows from Schue’s lemma [St 04,
Proposition 1.3.6(1)] that

Lβ =
∑

γ ∈Γ (α)

[Lγ , Lβ−γ ]. (10.4)

Let γ be an arbitrary root in Γ (α). Since α(hα) = β(hα) = 0, it is immediate from Lemma 7.1 that
(α,γ ) and (α,β − γ ) are Melikian pairs in Γ 2.

Suppose (α + γ ,β − γ ) is not a Melikian pair. Then (β − γ )(hα+γ ) = 0 by Lemma 7.1. As
(β − γ )(hα) = −γ (hα) �= 0 and dim H3 = 2 by Theorem 5.8(2), this yields H3 = F hα ⊕ F hα+γ . Also,
(α + β)(hα) = 0 and (α + β)(hα+γ ) = ((α + γ ) + (β − γ ))(hα+γ ) = 0 by our assumption on (α + γ ,

β −γ ). This shows that α +β vanishes on H3 and hence on (H3)p = T ; see Theorem 5.8(2). But then
α + β = 0, a contradiction. Thus, (α + γ ,β − γ ) is a Melikian pair.

If (γ ,α + β − γ ) is not a Melikian pair, then γ (hα+β−γ ) = 0. As γ ∈ Γ (α), we then have H3 =
F hα ⊕ F hα+β−γ . But then α + β = γ + (α + β − γ ) vanishes on (H3)p , a contradiction. So (γ ,α +
β − γ ) is a Melikian pair, too.

We now take arbitrary u ∈ Lα and v ∈ Lβ . By (10.4), there exist γ1, . . . , γN ∈ Γ (α) such that
v = ∑N

i=1[xi, yi] for some xi ∈ Lγi and yi ∈ Lβ−γi , where 1 � i � N . Applying Lemma 10.1 and the
preceding remarks we obtain

[ũ, ṽ] ∈
N∑

i=1

[
ũ, [x̃i, ỹi]

] +
N∑

i=1

[
Q (α), Q (γi) + Q (β − γi)

]

⊂
N∑

i=1

([[ũ, x̃i], ỹi
] + [

x̃i, [ũ, ỹi]
]) + L(0)

⊂
N∑

i=1

([
Q (α + γi), Q (β − γi)

] + [
Q (γi), Q (α + β − γi)

]) + L(0) ⊂ L(0).

Consequently, [Q (α), Q (β)] ⊂ L(0) in all cases. The argument at the end of the proof of Lemma 10.1
shows that L(0) ∩ H = (0). Hence L(0) is a proper subalgebra of L. �

Recall the subspace H(−1) from Proposition 9.5(2). According to Proposition 9.5(3), [Q (γ ), H(−1)] ⊂
H(−1) + Q (γ ) ⊂ H(−1) + L(0) for all γ ∈ Γ . In view of Theorem 10.4, this means that

[
L(0), H(−1) + L(0)

] =
[ ∑

γ ∈Γ

Q (γ ), H(−1) +
∑
δ∈Γ

Q (δ)

]
⊂ H(−1) + L(0).

Thus, L(−1) := H(−1) + L(0) is stable under the adjoint action of the subalgebra L(0) .
We have finally come to the end of this tale. Let L′ denote the subalgebra of L generated by L(−1) .

Proposition 9.5(2) shows that H3 ⊂ L′ . Then the p-envelope of L′ in L p contains (H3)p = T ; see
Theorem 5.8(2). As a consequence, L′ is T -stable. Let γ be any root in Γ . Then [T , x − lγ (x)] ⊂ L′ for
all x ∈ Lγ , implying Lγ ⊂ L′ . As this holds for all γ ∈ Γ and L is simple, we deduce that L′ = L.

It follows from Theorem 10.4 that L(−1) � L(0) . We now consider the standard filtration of L as-
sociated with the pair (L(−1), L(0)) (it is defined recursively by setting L(i) := {x ∈ L(i−1) | [x, L(i−1)] ⊂
L(i−1)} and L(−i) := [L(−1), L(−i+1)] + L(−i+1) for all i > 0). Since L is simple and finite-dimensional,



A. Premet, H. Strade / Journal of Algebra 320 (2008) 3559–3604 3603
this filtration is exhaustive and separating. Let G = ⊕
i∈Z

Gi denote the associated graded Lie algebra,
where Gi = gri(L) = L(i)/L(i+1) .

Since L(−1) = H(−1) + L(0) , we have that L(−i) = L(0) +∑i
j=1(H(−1))

j for all i > 0. Since (H(−1))
3 ⊂

H3 ⊂ z(H) by Theorem 5.8(2), this shows that L(−4) = L(−3) , i.e. G−4 = (0). As dim H(−1) = 2, we
obtain by the same token that dim G−2 � 1 and dim G−3 � 2.

Let (α,β) be any Melikian pair in Γ 2. By our remarks in the proof of Lemma 10.1, (L p(α,β)(1)) ∩
L(0) = (L p(α,β)(1))(0) , while from the explicit description of Θ(H(−1)) in the proof of Propositions 9.5
and 8.1 we see that

H(−1) + (
L p(α,β)(1)

)
(0)

= (
L p(α,β)(1)

)
(−1)

. (10.5)

In particular, H(−1) ⊂ L p(α,β)(1) . It follows that the filtration of L p(α,β)(1) ∼= M induced by that of L
has the property that

L(i) = (
L p(α,β)(1) ∩ L(i)

) + L(i−1), i = −1,−2,−3.

In view of (10.5), this entails that dim G−1 = dim G−3 = 2 and dim G2 = 1.

As dim G−1 = 2, and G0 acts faithfully on G−1, we have an embedding G0 ⊂ gl(2). As
(L p(α,β)(1))(0) acts on (L p(α,β)(1))(−1)/(L p(α,β)(1))(0) as gl(2), it follows from (10.5) that (L(0) ∩
L p(α,β)(1))/(L(1) ∩ L p(α,β)(1)) ∼= gl(2). As a consequence, G0 ∼= gl(2). Finally, (10.5) yields that
L p(α,β)(1) ∩ L(4) �= (0), giving G4 �= (0).

Applying [St 04, Theorem 5.4.1] we now obtain that the graded Lie algebra G is isomorphic to a
Melikian algebra M(m,n) regarded with its natural grading. By a result of Kuznetsov [Kuz 91], any
filtered deformation of the naturally graded Lie algebra M(m,n) is isomorphic to M(m,n); see [St 04,
Theorem 6.7.3]. Thus, L ∼= M(m,n), completing the proof of Theorem 1.2.

Corollary 10.3. Let L be a finite-dimensional simple Lie algebra of Cartan type over an algebraically closed field
of characteristic p > 3 and let T be a torus of maximal dimension in L p ⊂ Der L. Then the centralizer of T in
L p acts triangulably on L.

Proof. This is an immediate consequence of [P-St 04, Theorem A] and Theorem 1.2. �
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