=

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

et L
sl ) JOURNAL OF
-~ ScienceDirect Algebra

S
ELSEVIER Journal of Algebra 320 (2008) 1477-1530 _
www.elsevier.com/locate/jalgebra

The product in the Hochschild cohomology ring
of preprojective algebras of Dynkin quivers

Ching-Hwa Eu

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Received 31 March 2007
Available online 13 June 2008
Communicated by Michel Van den Bergh

Abstract

In this paper, we compute the cup product structure of the preprojective algebra Dynkin quivers of type
D and E over a field of characteristic zero. This is a continuation of the work done in [P. Etingof, C. Eu,
Hochschild and cyclic homology of preprojective algebras of ADE quivers, arXiv: math.AG/0609006]
where the additive structure of the Hochschild cohomology (together with its grading) was computed. To-
gether with the results in [K. Erdmann, N. Snashall, On Hochschild cohomology of preprojective algebras.
I, J. Algebra 205 (2) (1998) 391412, 11, J. Algebra 205 (2) (1998) 413—434] (where the A-case was stud-
ied), this yields a complete description of the product in the Hochschild cohomology of ADE quivers over
a field of characteristic zero.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we compute the product structure of the Hochschild cohomology of preprojec-
tive algebras of quivers of types D and E over a field of characteristic zero. This is a continuation
of [EE2] where the cohomology spaces together with the grading induced by the natural grading
(all arrows have degree 1) were computed.

Together with the results in [ES2] where it was done for type A (over a field of any charac-
teristic), this yields a complete description of the product in the Hochschild cohomology ring of
preprojective algebras of ADE quivers over a field of characteristic zero.

We note that this description is essentially uniform (i.e. does not refer to particular Dynkin-
diagrams), while the proof uses case-by-case arguments.

For our computation, the same complex as in [ES2] is used, namely the one which we get
by applying the Hom-functor to the Schofield resolution (which is periodic with period 6) of the
algebra.

To compute the cup product, we use the same method as in [ES2]: via the isomorphism
HH'(A) = Hom(2' A, A) (where for an A-bimodule M we write 2M for the kernel of
its projective cover) and we identify elements in HH'(A) with equivalence classes of maps
Q7(A) — A. For [f] € HH'(A) and [g] € HH/(A), the product is [f][g] := [f o £2'g] in
HH't7(A). We compute all products HH' (A) x HH’ (A) — HH'tJ (A) for 0 <i < j <5. The
remaining ones follow from the perodicity of the Schofield resolution and the graded commuta-
tivity of the multiplication. Some computations are similar to those in [ES2] for type A.

In the first part of the paper, we introduce a basis for each cohomology space explicitly (for
each quiver). Then in the second part we compute the product in these bases. We use the results
about the grading of the cohomology spaces from [EE2] to find the bases and the products.

The main result of the paper is Theorem 4.0.8, which explicitly gives the product structure in
Hochschild cohomology of these preprojective algebras. The final section of the paper gives a
description of the Hochschild cohomology by generators and relations.

Note that for connected non-Dynkin quivers, the Hochschild cohomology and its product
structure were already calculated in [CBEG] where the situation is much easier because the
homological dimension of the preprojective algebra is 2.

We leave out long computations in the journal-version and want to refer the reader to the
web-version on arXiv: math.RT/0703568.

2. Preliminaries
2.1. Quivers and path algebras

Let Q be a quiver of ADE type with vertex set I and |I| =r. We write a € Q to say that a is
an arrow in Q.

We define Q* to be the quiver obtained from Q by reversing all of its arrows. We call Q =
Q U Q* the double of Q.

Let C be the adjacency matrix corresponding to the quiver Q.

The concatenation of arrows generate the nontrivial paths inside the quiver Q. We define e;,
i € I to be the rrivial path which starts and ends at i. The path algebra Py = CQ of Q over
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C is the C-algebra with basis the paths in Q and the product xy of two paths x and y is their
concatenation if they are compatible and O if not. We define the Lie bracket [x, y] = xy — yx.

Let R = @,.; Ce;. Then R is a commutative semisimple algebra, and P is naturally an
R-bimodule.

iel

2.2. The preprojective algebra

Given a quiver Q, we define the preprojective algebra Il to be the quotient of the path
algebra P by the relation ), pla,a*]=0.

Given a monomial x =ajay---a, € Py, we write x* to be the monomial aj; - - - ajaj, and we
extend this definition linearly to all elements in Py.

We introduce a grading, such that each trivial path has degree 0 and each arrow in Q has
degree 1.

From now on, we assume that Q is of ADE type, and we write A = I1g.

2.3. Graded spaces and Hilbert series

Let M = a>0M(d) be a Z -graded vector space, with finite dimensional homogeneous
subspaces. We denote by M[n] the same space with grading shifted by n. The graded dual space
M* is defined by the formula M*(n) = M (—n)*.

Definition 2.3.1 (The Hilbert series of vector spaces). Let M = P, oM (d) be a Z -graded vec-
tor space, with finite dimensional homogeneous subspaces. We define the Hilbert series hps(t)
to be the series

Iy (t) = ZdimM(d)td.
d=0

Definition 2.3.2 (The Hilbert series of bimodules). Let M = P asoM (d) be a Z-graded bi-
module over the ring R, so we can write M = P M;. ;. We define the Hilbert series Hy (1)
to be a matrix valued series with the entries

i,jel

)
Hy )i, = ZdimM(d),‘,jtd.
d=0

2.4. Frobenius algebras and Nakayama automorphism

Definition 2.4.1. Let A be a finite dimensional unital C-algebra, let A* = Homc (A, C). We
call it Frobenius if there is a linear function f: A — C, such that the form (x, y) := f(xy) is
nondegenerate, or, equivalently, if there exists an isomorphism ¢ : A => A* of left A-modules:
given f, we can define ¢ (a)(b) = f(ba), and given ¢, we define f = ¢ (1).

Remark 2.4.2. If f is another linear function satisfying the same properties as f from above,
then f(x) = f(xa) for some invertible a € A. Indeed, we define the form {a, b} = f(ab). Then
{—, 1} € A*, so there is an a € A, such that ¢(a) = {—, 1}. Then f(x) ={x, 1} =¢(a)(x) =
f(xa).
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Definition 2.4.3. Given a Frobenius algebra .4 (with a function f inducing a bilinear form (—,—)
from above), the automorphism 7 : A — A defined by the equation (x, y) = (y, n(x)) is called
the Nakayama automorphism (corresponding to f).

Remark 2.4.4. We note that the freedom in choosing f implies that 7 is uniquely determined up
to an inner automorphism. Indeed, let ' (x) = f (xa) and define the bilinear form {a, b} = f(ab).
Then

x,y} = f(xy) = f(xya) = (x, ya) = (va, n(x)) = f(van(x)a~'a)

= (y, an(x)ail).
2.5. Root system parameters

Let wq be the longest element of the Weyl group W of Q. Then we define v to be the involution
of I, such that wo(;) = —o,,(;) (Where «; is the simple root corresponding to i € I). It turns out
that n(e;) = e,(;) ([S]; see [ES2]).

Let m;, i =1,...,r, be the exponents of the root system attached to Q, enumerated in in-
creasing order. Let - = m, + 1 be the Coxeter number in Q, i.e. the order of a Coxeter element
in W.

Let P be the permutation matrix corresponding to the involution v. Let r = dimker(P — 1)
and r_ = dimker(P + 1). Thus, r_ is half the number of vertices which are not fixed by v, and
ry=r—r_.

A is finite dimensional, and the following Hilbert series is known from [MOV, Theorem 2.3]:

Ha(t)=(1+ P (1 —Cr+12)7". 2.5.1)

It turns out that the top degree of A is h —2 (i.e. A(d) vanishes for d > h — 2), and for the top
degree A'°P part we get the following decomposition in 1-dimensional submodules:

AP = A(h—2) = @ eiA(h —2)ey ). (2.5.2)
iel
It is known that A is a Frobenius algebra (see e.g. [ES2,MOV]).
3. Hochschild cohomology

The Hochschild cohomology spaces of A were computed in [EE2]. We recall the results:

Definition 3.0.3. We define the spaces
U= @ HH (A)@)2],
d<h-2
L =HH(A)(h —2)[—h +2],
K = HH*(A)[2],
Y = HH(A)(—h — 2)[h +2].
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Theorem 3.0.4.

(1) U has the following Hilbert series:

r

hy(ty= Y 12", (3.0.5)
i=1
mi<h4
(2) We have natural isomorphisms
K =ker(P + 1),

L=(e |v(i)=i),
and

h
dimY:r_,_—r_—#{i: mlzi}

Theorem 3.0.6. For the Hochschild cohomology spaces, we have the following natural isomor-
phisms:
HH°(A)=U[-2]® L[h — 2],
HH'(A) = U[-2],
HH?*(A) = K[-2],
HH3(A) = K*[-2],
HH*(A) = U*[-2],
HH(A) = U*[-2] & Y*[~h — 2],
HH®(A) =U[—2h —2]® Y[—h — 2],
and HH"" (A) = HH' (A)[—2nh] Vi > 1.
Corollary 3.0.7. The center Z = HH°(A) of A has Hilbert series
hz(t)= Y "4 (rp —rt" 2
=1
mi<h
4. Main results

From Theorem 3.0.6, we already know the additive structure of HH*(A). As the main result
of this paper, we present the product structure in HH*(A). The rest of the paper is devoted to
this computation. Since the product HH' (A) x HH/(A) — HH'*/(A) is graded-commutative,
we can assume { < j here.
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Let (U[—2])+ be the positive degree part of U[—2] (which lies in nonnegative degrees).

We have a decomposition HH°(A) = C® (U[-2])+ ® L[—h — 2] where we have the natural
identification (U[—2])(0) = C.

Let

z0=1¢€C c U[-2] c HH°(A) (in lowest degree 0),

6o the corresponding element in HH L(A) (in lowest degree 0),

Vo the dual element of zq in U*[—2] C HH>(A) (in highest degree —4), i.e. ¥o(z0) = 1,

o the corresponding element in U*[—2] C HH*(A) (in highest degree —4), that is the dual
element of 0y, £o(60) = 1, o : HH(A) — HH®(A) the natural quotient map (which induces
the natural isomorphism U[—2] — U[—2h — 2]) and

e ¢ the quotient map L — Y induced by ¢g in Theorem 4.0.8.

Theorem 4.0.8 (The product structure in HH*(A) for quivers of types D and E).

(1) The multiplication by ¢y(z0) induces the natural isomorphisms ¢; : HH'(A) — HH't0(A)
Vi > 1 and the natural quotient map ¢o. Therefore, it is enough to compute products
HH'(A) x HH/ (A) — HH' M/ (A) with 0 <i < j <5.

(2) The HHY(A)-action on HH' (A):

(@ ((U[-2])+-action)
The action of (U[—2])4+ on U[-2] C HH'(A) corresponds to the multiplication

(U[—z])+ x U[=2]— U[-2],
(u,v)>u-v
in HH(A), projected on U[—2] C HH?(A).
(U[-2))4 acts on U*[—2] = HH*(A) and U*[—2] C HH?(A) the following way:
(UI-2]), x U*[-2]1 = U*[-2],
u, fr>uof,

where (uo f)(v) = f(uv).
(U[-21)4 acts by zero on L[h — 2] C HH(A), HH?*(A), HH?(A) and Y*[—h — 2] C
HH’(A).
(b) (L[h — 2]-action)
L[h — 2] acts by zero on HH' (A), 1 <i <4, and on U*[—2] C HH>(A).
The L[h — 2]-action on HH?(A) restricts to

Lih — 2] x Y¥[—h — 2] — U*[-2],
(a,y) —~ y(¢(@)vo.

(3) (Zero products) _ . o
All products HH' (A) x HH/ (A) — HH'"/, 1 <i < j <5, wherei + j > 6 ori, j are both
odd are zero except the pairings

HH'(A) x HH’ (A) — HH®(A)
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and
HH’(A) x HH(A) — HH'°(A).

(4) (HH'(A)-products)
(a) The multiplication

HH'(A) x HH*(A) = U[-2] x U*[-2] - HH>(A)
is the same one as the restriction of
HH°(A) x HH>(A) — HH>(A)
on U[-2] x U*[-2].
(b) The multiplication of the subspace U[—2], C HH'(A) with HH' (A) where i =2, 5 is

zero.
(¢c) The multiplication by 6y induces a symmetric isomorphism

o:HH?*(A) = K[-2] — K*[-2] = HH>(A).
On HH(A), it induces a skew-symmetric isomorphism
B:Y*[—h —2]— Y[—h —2] C HH%(A),

and acts by zero on U*[—2] C HH(A). o and B will be given by explicit matrices My,
and Mg later.
(5) (HH?*(A)-products)

HH*(A) x HH?*(A) — HH*(A),
(a,b) = {(a, b)lo

is given by (—,—) = o where « is regarded as a symmetric bilinear form.
HH?(A) x HH?>(A) — HH’(A) is the multiplication

K[-2] x K*[-2] — HH’(A),
(a,y) — y(@)o.

(6) (HH’(A) x HH>(A) — HH'°(A))
The restriction of this product to

Y*[—h —2] x Y*[—h — 2] — HH'0(A),
(a,b) = $2(a, b)p4(Lo)

is given by §2(—,—) = —B where B is regarded as a skew-symmetric bilinear form.
The multiplication of the subspace U*[—2] C HH3(A) with HH3 (A) is zero.
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5. Some basic facts about preprojective algebras

5.1. Labeling of quivers

From now on, we use the following labellings for the different types of quivers, as shown in
Figs. 14.

n+l
Fig. 1. D, 1-quiver.

5.1.1. Q=Dy4
A is the path algebra modulo the relations

aja; =0,
af jaiy1=a;a’, 1<i<n-3
i+14i+1 = did; , Xl x s
* *
ap_1a,_| =aya, =0,

* * *
a,_(ap—1+a,a, =an—2a,_,.

Fig. 2. Eg-quiver.

51.2. Q=E¢
A is the path algebra modulo the relations

ajay = asa; = asas =0,
* ES
aja; = aa;,
ajas = azaj,

asap + azaz +asas = 0.
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Fig. 3. E7-quiver.

513. OQ=E;
A is the path algebra modulo the relations
ajaj =asa; =agag =0,
aja) = axa;,
ayar = aza;,

ajas = asay,

asa3 +ajas + agag =0.

Fig. 4. Eg-quiver.

5.14. Q=Eg
A is the path algebra modulo the relations

apay = asas = asag =0,
asap =aiaj,
ajay = axaj,
ayar = aza;,
asas = asay,

asaz + ajas + agae =0.
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5.2. The Nakayama automorphism

Recall that A is a Frobenius algebra. The linear function f:A — C is zero in the nontop
degree part of A. It maps a top degree element w; € ¢; A'Pe,;) to 1. It is uniquely determined by
the choice of one of these w; and a Nakayama automorphism.

For each quiver, we define a Nakayama automorphism 1 and make a choice of one w; €
eiAtOPe‘v(i).

5.2.1. Q= Dyy1,nodd
We define n by

n(a;) = —aj, (5.2.1)
n(af) =af, (5.2.2)
and
W =aja,_,a;_|ap—1ap—2---aj. (5.2.3)
Let
aG=Da_1-aiaf--ai_jap_1---aiy1 Y1<i<n—2,

* *
an—1 :an_z...alal ...anil’
— * * *
ay = —auy—7 - .alal . .an_2an’

af =aj, ---ay_jap_1---aiay---aj_; V1<i<n-=2,

* *k *
an_] =dau—1 ...alal ...aniz’

* k
= —ayan—> - .alal .o .an_2,

and w; = al?*a_l.* V1 <i <n—1 (where w; coincides with the expression in (5.2.3)), w, =
Ap—1Gn—1, Op+1 = apay. Then w1 = agia; V1 <i<n—2,andw; =a; - (—a;)) VI <i<n—1,
Wy =@y - (—ay) =apy1 - (—Any1), W41 =a’a V1 <i <n.

These w; define the function f (and the bilinear form) associated to the Frobenius algebra A.
Since {ai, ...,an, af,...,a;} in A(h —3) is a dual basis of {ay, ..., a,,af,...,a}} in A(1) and
{—ai,...,—ay,aj,...,ay} in A(1) is a dual basis to {ch,...,a_n,a_T,...,aE} in A(h — 3), it
follows that the Nakayama automorphism associated to our bilinear form is given by Egs. (5.2.1)
and (5.2.2).

5.2.2. Q= Dy41, neven
We define n by

VZ<H—2 U(ai)=—ai»
Vi<n—2: n(a*) =al,

1

n(an—1) = —ay,
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’7(“:—1) =a,,
n(ay) = —au—1,
* *
n(an) =day_1
w1 =aj--a,_,a,_dp—1ap—2---aj. (5.2.4)

Let

ai=D'a_y--ara}--a_jan_1--ais1 V1<i<n—2,

cﬁ=an72~-a1ai‘~~a§:_2a;§,
fl—n=—an—2"'ala>f"'a:_17
a_;‘zafH ceeay_ap—y---araycoal_ V1<i<n—2,
& =an - aal by,
TF = —anan_--aral---a’_,

and w; = afa’ Y1 <i <n — 1 (where w; coincides with the expression in (5.2.4)), w, =
An—1@n—1, On41 = Anay. Then wjp) = a;a; V1 <i <n —2, wy,—1 = a}a} and w1 =ala;

ViI<i<n—2 wp,=a'_a}, opy1 =a}at_ |, 0i=a - (—aj) V1 <i <n—2, w, =3as - (—as),
Wyl =0y - (—ap—1).
Again, these w; define the function f (and the bilinear form) associated to the Frobenius al-

gebra A. Since {aj, ...,cTn,aT,...,a_;lk} in A(h — 3) is a dual basis of {ay,...,ay,af,...,a;}
in A(1) and {-ay,...,—an, —ayp-1,4aj,...a;,a,;_;} in A(l) is a dual basis to {af,...,
an_10y, a_]", e “:71 , a_; }in A(h — 3), it follows that the Nakayama automorphism associated to

our bilinear form is given by n above.

5.23. OQ=Eq
We define n by

n(a) = —aa,
n(ai) =aj.
n(az) = —as,
n(a3) =a3.
n(as) = —as,
n(a3) =a3.

and

w3 =aza3 (a§a2a§a3)2. (5.2.5)
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Let

| = —araiajasazasasaiay,
a; = azajasazasasayayay,
az = aiasajajasazayaiay,
as = —aszasasazayasazazay,

as = ayaja\arazajasazas,

a_]“ = —ajaxaiajasazasasas,
ai = —alaiadiajasazatas,
ai = —ajasazatasaiajasas,
a_jf = —a4azaiasaza;asasas,

“x * % * ok
a3 = asa,a;aaraya;asas

and w; = ajay, wy; = axa;, w3z = a;a_§ (which coincides with the expression in (5.2.5)), w4 =
azaz, ws = a4as. weg = asas. Then wy = a]"a_]“, w3 = ag‘a_’; = ag"a_;‘, w4 = aZa_jf and w; = a_faj{,
Wy =dja} =i - (—ay), w3 =@ - (—3) = @3 - (—ax) = as - (—as), w4 = aja; = a - (=ay),
w5 = a_ja’f, we = a_;‘a;‘.

Again, these w; define the function f (and the bilinear form) associated to the Frobenius

algebra A. Since {ay, ..., as, af, ...,a_;‘} in A(h — 3) is a dual basis of {ay, ..., as,af, ...,a;‘}
in A(1) and {—ay4, —a3, —az, —ay, —as, ajy, a3, a;,aj,a;} in A(1) is a dual basis to {aj, ...,
asaj,...,as}in A(h —3), it follows that the Nakayama automorphism associated to our bilinear

form is given by n above.

524. Q=E;
We define n by

n(a;) = —a;,
k) __ *
n(ai ) =aj,
and
= (aasatas)’ 5.2.6
w4 = (a4a4a3a3) . (5.2.6)
Given the basis {ay, ..., a¢, aT, .. .,ag‘} in A(1), we claim that a dual basis {ay, ..., de, a_T, e
ag}in A(h — 3) is given by
al = —aa3agaea}asa3asa;asasasayayay,

@y = azagasayasazazayasasasazayaia,

* * * * %k k ko k
== _a6a6a4a4a3 a3a4a5 a5a4a3 a2a1 ayaz,

S|
w
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* %k * * * * %
= —a3a,a] 01020304060, 0403 A30, 05 A5,

N
~

as = asazayalalarazagasayasazazazas

)

*k *k k ok ko k 3k *
6 — a4a4a3a3a4a5a5a4a3 a2a1a1a2a3a6,

a_f = —a1a2a30a4 AeA} A403 430, A% A5a403 a5 ,
a_é‘ = —aja1axa3ag asa;asa3a3a; a; asasa;,
a_§* = —ayajaiarazagasayasaiazayasasas,
a} = —alasasdiaiataiarazaiasalasdias,
a_;‘ = —asasaiasalaiarazagdeayasayazay,
a_g = asajasaiazajaiasasaiayaiaiaras

and w; = qja; V1 <i <3, wi+1 = a;a; V4 <i <6, wg = a%*a_;. Then wy = a]ka_i“, w3 = a;a_;,
w4 = a;“a_jf = ag‘a_g (which coincides with the expression (5.2.6)), ws = a;ka_’s" and w; = a_;ka;.*
VI<i<3, wip1=afaf V4<i <6, 041 =a  (—a) VI <i <3, 0, =@ - (—a;) V4 <i <5,
w4 = ag - (—ae).

Again, these w; define the function f (and the bilinear form) associated to the Frobenius al-
gebra A. Since {ch,...,cT6,a]",...,ag} in A(h — 3) is a dual basis of {ay, ..., as,a], ...,ag‘}
in A(1) and {—ay, ..., —ae,a},...,a}} in A(1) is a dual basis to {a,...,aa;,...,a}} in
A(h — 3), it follows that the Nakayama automorphism associated to our bilinear form is given

by 1 above.

525 Q=Eg
We define n by

n(a;) = —ai,
n(a;) =af,
and
w4 = (aja4a§‘a3)7. (5.2.7)
Then

ap = a1a2a3a; aeay Asag deds A3a3 A3a, 4403 A3a; a3ay ds asasay ayag ag,

a1 = —ara3ag aea} asag Aeds a3as a3ay asas a3as aay as dsasas a, ay agao,
a7 = a3a4A6a) A4a; A6a3 A3a5 430, A403 4303 430, A5 45040345 A1 Ay dod

a3 = —agae} asag ey a3as a3ay a4a;a3a; aza, as asasa ay dy dagaodds,
as = —agaea3a3a;as3a; a4a;a3as aza; ds asasas asay agaod daazag dedy ,

as = asa3a;aiagaoaarazag dedy ag deds a3as a3ay asasa3as azads,



1492 C.-H. Eu / Journal of Algebra 320 (2008) 1477-1530

= a}a4a; aeaia3aya3a;asaya3asazay as dsasas ay al asaod) arasag ,

Apa1a2a3ag Aea} asag Aeas A3as A3a; d4ds a3a3a3ay ds dsasas dy dy

ajya0a)a2a3ag aeay asag deds a3a; a3ay a4a3 a3as a3a, as asasas as,

ajagapaiara3ag aeay asag Aeasa3asa3ay asay a3as azay ds asasas,

ayayagapaarazagasay asagasas d3a azay asa; azas aza, dsasds,

—a4ag a5 4303 A3} 4403 43034303 A5 A50405 05 A dgad1d2a3dg de,

asasaiasajagaoalarazag ey dg e a3dsa3ay; asas azas asdy,

S 8 8| 8 8| | 8 8
ouxl okl Sl S S S Sl S

(6030303430} A405 430330} A3 A50405 05 4] Ay Ad1a2a30g A} d4

and w; = aja; VO <i <3, wijr+1 = a;a; V4 <i <6, wg = a;“a_é‘. Then wy = aTa_]", w3 = a%‘a_;,

*a*

w4 = aZ‘a_Z‘ = ag‘a_g (which coincides with the expression (5.2.7)), ws = a;“a_g‘ and w; = a}a;
VO<i <3, wip1 =ajaf V4 <i <6, w41 =8 - (—a;) YO<i <3, 0, =a; - (—a;) V4<i <5,
w4 =ag - (—ag).

Again, these w; define the function f (and the bilinear form) associated to the Frobenius
algebra A. Since {ag, .. .,ch),a_(’)“, e, a_g} in A(h — 3) is a dual basis of {a, ..., a6, a3, ..., a;}
in A(1) and {—ao, ..., —as,af, ...,at} in A(1) is a dual basis to {ao, ..., a,aj,...,a;} in
A(h — 3), it follows that the Nakayama automorphism associated to our bilinear form is given
by 1 above.

5.3. Preprojective algebras by numbers

We summarize useful numbers associated to preprojective algebras, by quiver:

(0] Exponents m; h deg A™P Degrees HH'(A)
Dusiven 132l noome2 g )
Eg 1,4,5,7,8,11 12 10 0,6,8,10

E; 1,5,7,9,11,13,17 18 16 0,8,12,16

Eg 1,7,11,13,17,19,23,29 30 28 0,12,20,24,28

We see that for quivers of types D and E, the degrees of the space U (which are 2m;, m; < %)
are even and range from 0 to h — 2.
We get the following degree ranges for the Hochschild cohomology:

HH°(A) =U[-2]® L[h —2], 0 < degHH’(A) <h -2,
HH'(A) =U[-2], 0<degHH'(A) <h —4,
HH?*(A) = K[-2], deg HH?*(A) = -2,

HH3(A) = K*[-2], deg HH?(A) = -2,

HH*(A) = U*[-2], —h < degHH*(A) < —4,
HH’(A) =U*[-2]® Y*[—h —2], —h —2 < degHH’(A) < —4,

HH®(A) =U[-2h —2]® Y[—h —2], —2h <degHH®(A) < —h—2.
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5.4. The Schofield resolution

‘We recall the Schofield resolution of A from [S].

Define the A-bimodule N obtained from A by twisting the right action by 1, i.e., N'= A as
a vector space, and Va,b € A,y € N: a-y-b=ayn(b). Introduce the notation ¢, = 1 ifa € Q,
€, = —1if a € Q*. We write B for a set of all homogeneous basis elements of A, let (x;)x,cp be
a homogeneous basis of A and (x;“) x;eB the dual basis under the form attached to the Frobenius

algebra A. Let V be the bimodule spanned by the arrows of Q.
We start with the following exact sequence:

0— NTh]4> Py 2 Py 45 py 205 4 0,
where P, = AQpr A[2], Pi=AQrV Qr A, Ph=AQRr A,

do(u @ v) =uv,
duUP@ VW) =uv@w —u  vw,
dz(u®v):Zeaua®a*®v+26au®a®a*v,
acQ aeQ
i@=a) x®x

x;eB

where B is a homogeneous basis of A.

Since % = 1, we can make a canonical identification A = N ®4 N (via x > x ® 1), so by
tensoring the above exact sequence with N, connecting with the original exact sequence and
repeating this process, we get the Schofield resolution

..._>P6d—6>Psd—5>—>P4d—4>P3d—3>P2d—2>P1d—l>Pod—o>A_>0»
with
P 3= (P @ N)[h].

We will work with the Hochschild cohomology complex obtained from this resolution, which
is given explicitly in [EE2, Subsection 4.5]. This allows us to identify HH' (A) with quotients of
subsets of AR, AR (V ® A)® and (V @ N)E, where denote UX as the space of R-invariants
in U. For an element v in AR, NR (V ® A)X or (V ® M), we denote its cohomology class
by [v].

5.5. Basis of the preprojective algebra for Q = Dy 11

We need to work with the Hilbert series and with an explicit basis of A. We do this for each
type of quiver separately.

We write B for a set of all homogeneous basis elements of A, B; _ for a homogeneous basis
of e;A, B_ ; for a homogeneous basis of Ae;, B; ; for a basis of e; Ae; and B; j(d) for a basis
of é; Ae j (d )
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A basis of A is given by the following elements:
Fork,j<n-—1:

Bin = {(ak_la;{‘_l)la}: ceak_sar  |0<I<k—1},

Buns1 = {(@-1aiy) 0} - a}_yay [0<1 <k -1},

n—1
I > n Odd,
Byn =1 (an—1aana;_)) ’0<1< { s
> n even
n—1
I 5 n Odd,
Butin+1 = (ana::f]an—la;,k) ‘ 0<I< { n_>2 s
> n even

1
Boiin= ana;’:_l(an_la;ana;_l) ‘ 0<IL

N

1
k % %
By g1 = an_lan(anan_lan_lan) ‘Ogl

By = {an_lan_z .- ~aj(aj_1aj-‘_1)l | 0<!
Buy1,j = {anan_2~~aj(aj_1a;_l)l | 0<I<j—1}.

Fork<j<n-—1,

By, j= {(ak_la,f_l)la}f . -a;-‘_l | 0<I!/<minfk—1,n—j— 1}}
U {(akfla,f_l)la,f~~a;l'<_1a,,,1an,2~~aj ’0<l<k— 1}
U {(ak_la;:_l)la,’:~~-a;fanan_2~--aj |0§l<k—1+j —n}.

For j <k<n-—1,

Bij = {ax—1---aj(ata;)’ | 0<I < minfn —k — 1, j —1}}

Ulaf @} yai_an-tan—---aj(ata;) |0<I<j—1}

U{af--at_patanan—z---aj(ata;) [0<I<j—1+k—n).
5.6. Hilbert series of the preprojective algebra for Q = E¢

We give the columns of the Hilbert series H4(¢) which can be calculated from (2.5.1):

1+1°
412 +17
2, 4 6, .8
t“+tT 40+t
(HA(t)i’l)]<i<6= B35 d ,
t* 4110
3417
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t+12 417
14+2 4044260418
t4+203 4200 +207 +1°
(HA(t)i,2)1<l<6= 2t S|
JERPE S
244648

P2t 410 448
4203 4205+ 217 +4°
14262 4+ 314 + 315 428 4410
(HA(t)i’3)1<i<6 - F+203 4209 + 217 + 49 ’
N A AL
t+23 420 +17 410

t3~|-[5+l9
2424 4108 4410
203 +205 + 217 + 49
(Ha®it)icoco= 12 4 12548 |
41 +17
241441648

1+ 110
P41
24 444 464 8
0+t
(HA(t)i,S)lgig6= t+ts+t7 ’
1410
rP+1

3417
N AN
t+83+205 +17 40
(Ha®i6)1cico= [ 12 g 446 4 8
417
14t* 4164410

6. HH'(A) =27

From the Hilbert series (Corollary 3.0.7) we see that we have one (unique up to a con-
stant factor) central element of degree 2m; — 2 for each exponent m; < % We will denote
a degi(< h — 2) central element by z;.

From (2.5.2) and from the Hilbert series we can also see that the top degree (= degh — 2)
center is spanned by one element w; in each e; Ae;, such that v(i) =1i.

The w; € L[h — 2] are already given in Section 2.4, and we will find the z; € U[—2] for each
Dynkin quiver separately.

6.1. 0= Dy11

We define the nonzero elements
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bio=ei,
b j :a;"-~-a;‘+j_1ai+j_1 Nt (Where 1<j<min{i—1,n-1 —i}),
ci,j=a;’ ~~a:_2(an,2a:_2)]an,2 coea; (where1<i<n—2,1<j<i—1),

J .
Cn—1,j = (an—2a:_2) , I<j<n=-2,

/ * * * x il .

c;=a; -~-an_2an_lan,1(an,2an_2) ap_o---a;, 1<i<n—1,
do = ey,

i = (an—rajana;_})" for1<j< >
d) =

0_eﬂ+17
4, = (ana’ N for1<j <o

= (anan_lanflan) orl <j< 3

and extend this notation for any other j, where b; ;, ¢; j, d; and d} are zero.
The exponents m; are 1,3, ...,2n — 1,n and h = 2n. From Corollary 3.0.7 we get the Hilbert
series of Z, depending on the parity of n, since r. =n + 1 for n odd and ry =n — 1 for n even:

nodd: hz®) =1+ +83+ 204+ (n+ ¥ 2,
neven: hy(t) =14+t 4+ + .+t 44 (n— 1?2

The central elements of degree 4 < 2n — 2 are

n—1-2j 2j-1

!

24j = Z bizj+ Z Cn—1-i2j—i +dj+d;.
i=2j+1 i=0

The top degree central elements are w; = cl{ (1 <i<n—1), and additionally w, = d,lgl s
—wy+1 =d,_, if nis odd.

n—1
2

For j +k < % we get the following product:
2424k = ZA(j+k)-

Ifnisoddand j +k = %, the multiplication becomes

/
2424k =dn51 +d, =wp —wpy1.
2

6.2. Q=Fs

The Coxeter number is & = 12, and the exponents m; < % =6are 1,4, 5, ry =2. For the
center, we get the following Hilbert series (from Corollary 3.0.7):

hz(t) =1+1° 413 +2¢1°,
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From the degrees, we see that the product of any two positive degree central elements is
always 0. The central elements are zo = 1, z¢, 28, @3 and ws.

We give the central elements zg and zg explicitly (it can be easily checked that they are cen-
tral):

Proposition 6.2.1.

(1) The central element of deg6 is
26 = ajarazazaya —as (a§a3)2a§‘ — asasazazasas + a3 (ajaz)zag‘ — agazayarazay,
(2) the central element of deg 8 is
78 = —arasasazazasasa; — asds (aé‘a3)2a;‘a5 — azasasayaraiasas.
63. 0=EFE;

The Coxeter number is & = 18, the exponents m; < % =9are 1,5,7, r =7, and the Hilbert
series of the center is (see Corollary 3.0.7):

hz(t) =1+ +2 4+ 710,

The center is spanned by zo = 1, zg, 212, @1, . . ., 7. The only interesting product to compute
is zé which lies in the top degree.
We give zg and z17 explicitly:

Proposition 6.3.1.

(1) The central element of degree 8 is

2
78 = —a1a2a3a¢A6a3a5a] — 203 (ajfcm) aza; — azagaeayasagdeds

2
* * * * * * * * * * *
— a4a4(a3a3) a,a4 — a4a,0405060, 040, + 60, A408A6A,A40g .

(2) The central element of degree 12 is

2 2
12 = —as (ajfawé%) ayasai — ajasagas (affa4) agasayas
2 2
+ a4(aga6aja4) agasay + a6(a2{a4a2a6) aasag.
Proposition 6.3.2. We get

2
g=w1 + w3 —w7.



1498 C.-H. Eu / Journal of Algebra 320 (2008) 1477-1530

64. Q=Ejg

The Coxeter number & = 30, and the exponents m; < % =15are 1,7, 11,13, r = 8. For the

center, we get the following Hilbert series (from Corollary 3.0.7):
hy(f) =141+ 120 4124 4 828
The center is spanned by zg = 1, 212, 220, 224, @1, - . . , wg. The only interesting product is Z%z-
Proposition 6.4.1.
(1) The central element of degree 12 is
212 = A142a304 A6 a4a4 A6a3 a5 AT + arazajas (a§a3)2a1‘a4a§a§
+ a3 (aZa;;a’gaé)zaIawg‘ + (a;a3a2‘a4a§ka3)2 —ay (agaﬁaja4)2aga6aj
+ asasagas (a2a4)2ag‘a6aja§ —ag (aja4a>6ka6)2aja4a’6*.
(2) The central element of degree 20 is
220 = —a1a2a3 (af{a4)2 (a§a3)3 (aj{a4)2a§a§a]k — mas (ag‘a6aja4)2 (aj{awé‘aﬁ)za;a;
+az (a2a6a2a4)4a2a6a§" - (aj{a;;a%kaﬁ)s + (agas (ajfa4)2)3ag‘a6
- (a§a6a2a4)5 —ay (a:a4a2a6a2a4)3a§f — ag (aIa4ag‘a6)4aIa4ag.
(3) The central element of degree 24 is
224 = Z%Q.
7. HH'(A)

Recall Theorem 3.0.6 where we know that HH' (A) is isomorphic to the nontopdegree part of
HH(A). In fact, HH'(A) is generated by the central elements in the following way:

Proposition 7.0.2. HH' (A) is spanned by maps

h:(AQVR®A)— A,
Or(1®a; ® 1) =0,
(1 ®@af ®1)=afz.

Proof. These maps clearly lie in kerdJ: Recall

ARA D AQV @A,

XQyr—> Zeaxa®a*®y+26ax®a®a*y,
acQ acQ
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then

d;‘oek(l®1)=9k(zeaa®a*®1+26al®a®a*>
aeQ acQ

* * *
= Zaiai k — Zai a;jzx = Z[ai,ai ]zk =0.

iel iel iel

We will later see in section 10 that HH*(A) is generated by ¢ where £ (6x) = 1 under the
duality HH*(A) = (HH'(A))* established in [EE2], so 6y is nonzero in HH'(A). O

8. HH*(A)

We know from Theorem 3.0.6 that HH2(A) = K[—2] lies in degree —2, i.e. in the lowest
degree of AR[=2] (using the identifications in [EE2, Section 4.5]), that is in R[—2]. Since the
image of d; lies in degree > —2, HH?*(A) = kerds.

Proposition 8.0.3. HH?(A) is given by the kernel of the matrix Ha(1), where we identify C! =
R=@Dic; Rei.

Proof. Recall

di(y) =Y xiyxf=Y_ Y xyx}.

x;€B J.kel xi€Bjk

For each x; € ey Aej, we see that x;e;x] = §jjwy.

It follows that for y = ) ", .; Aje; the map is given by

d3(y) = Z Wi o;,

iel
where the vectors A = (A;);e; € C! and = (1;)ies € C! satisfy the equation
Hay(1)h = 1. (8.0.4)
So the kernel of d5 is given by the kernel of Ha(1). O

Now, we find the elements in HH?(A) for the quivers separately.
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8.1. Q= Dy41, neven

2.2 22 2 1 1

2 4 4 4 4 2 2

2 4 6 6 6 3 3

2 4 6 8 ... ... 8 4 4
HaD=|: : + + ™. : : : (8.1.1)

4 6 8 ... ... 2m—=1) n—1 n-1

1 2 3 4 ... ... n—1 1 2

1 23 4 ... ... n-—1 1 1

with kernel (e, — e,11). So a basis of HH2(A) is given by

{fn =[e, — en—i—l]}-

82. Q=EFE¢
2 3 4 3 2 2
36 8 6 3 4
4 8 12 8 4 6
Hy(l) = 36 8 6 3 4 (8.2.1)
2 3 4 3 2 2
2 4 6 4 2 4

with kernel (e; — es, ex — e4). So a basis of HHZ(A) is given by
{1 =le1 —es], fo=1[e2 —eal}.
9. HH*(A)
We know that HH>(A) lives in degree —2. Using the notations and identifications in [EE2,
Subsection 4.5], we see that the kernel of d has to be the top degree part of N R[—h] (since
Ima@k lives in degree —2), so

HH?(A) = NR[~h](-2)/Imdj.

Proposition 9.0.2. HH3(A) is given by the cokernel of the matrix Hx(1), where we identify
(CI = A®P = @iel e,'Ampev(,-).

Proof. This follows immediately from the discussion in the previous section because d5 is given
by Ha(l). O

Note that HH>(A) = (HH?(A))* under the duality in [EE2]. We choose a basis ; of HH>(A),
so that &; (fj) = Si’j.
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9.1. Q= Dy41, neven

From H,4(1) in (8.1.1) we see that:

d32e1 — e2) =201,
d;(—e,-_l +2¢i —ei+1) =2w; V2<Li<n-—-2,
di((=n — Dep— +2(n — Dep—1 —2(n — Dey) = (n — Dwy—1,

d;(zen —epn—1) = Wy + W1,

SO
HH*(A) = (N®YP[=hl/ (01 =02 =+ = wp—1 =0, 0y + wp41 =0)
with basis
{hn = [wnl]}.
9.2. Q=Es

From H4 (1) in (8.2.1) we see that:

d3i(2e1 — e2) = w1 + ws,

di(—e1 +2e2 — e3) = w2 + wa,
di(—2es +2e3 — eg) =2w3,
d3(—e3 + 2e6) = 2ws,

50
HH? (A) = (NR)P[=h]/ (03 = 0 = o1 + 05 = 03 + w3 =0)
with basis
{1 =lw1], hy =[w2]}.
10. HH*(A)

We have HH*(A) = U*[-2], so its top degree is —4, and its generators sit in degrees —4 —
deg z; for each central element, one in each degree.

Proposition 10.0.1. Let ¢ € kerds be a top degree element in (V ® MYR[—h — 2], such that
m(Lo) is nonzero, where m is the multiplication map. Then HH*(A) is generated by elements
Sk € kerds which satisfy Sxzx = Co.
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Proof. If x € N'R[—h] lies in degree —4, then m(d} (x)) =0, so & is nonzero in HH*(A).

For every nontopdegree central element z; we can find a ¢ satisfying the properties above,
which is done for each quiver separately below.

For any central element z € A, we have that dj(zy) = dj (y)z. If & = dj(y), then by con-
struction o = 2k = dj{ (zry) which is a contradiction.

So these ¢ are all nonzero in HH*(A), and also generate this cohomology space. [

A basis of HH*(A) is given by these ¢, and we choose them so that {x(6x) = 1 under the
duality HH*(A) = (HH'(A))* in [EE2].

10.1. Q= Dyy1, nodd

*
—an®an —19n— l(a ana 1an 1

We define
n=3
Zo= [a;f_l ®an_1a2an(az_1an_1a:an) 2
n=3
+an— l®a ana, 1(an 1(1 apa, _ 1) 2 ]
1 n=3_
§4k=§[a,’f_1®an71a2‘an( _\An—1a;ay) >
3
+an— 1®‘1 and, _ 1(an la ana )T
)73
5

N‘
w
_1

%
—ap ®a,_ap-1a, (an a,_qap-14a,

10.2. Q = Dy41, n even

We define
n—2
2y
to=a;_, ® an_1(ajana_jan—1) 2
* * 52—k
+tan-1®a, (a"an—lanflan) ]’
1 n=2_p
Lok = E[a;‘,l ® an—i1(afanay_an—1) ?
n—2
2k
+ an—1 @ a; (ana;_ an—1a;) >
n—2
LB
—ay Qay(a;_ an—1a5ay) °
n=2_p
—an®a,_ (ap—1ajana;_y) 7 .
10.3. Q= Eg
We define

%0 =[a3 ® a3 (a30203a3)" + a3 ® a3 (a2a3a3a3) ],
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1

l6 = Z[—a%‘ ® azayar — a3 @ ayaras + a; Q arayar + ax @ ayaraj
— a; ®a2a§“a3 —az ®a’3*a3a§“ +a§‘ ®a3a§<a3 + a3 ®a§‘a3a§],
1

=3l @n+a®an-gen-neq)

104. Q = Er

We define

0 = [a} ® asajas (a;ka4a§‘a3)3 + a4 ® ajaza) (a4a§‘a3af{)3],
lg = %[af{ ® asaiazajasazaz + as Q aazajasaiazay
—a; ® azajasazazayas —az ® aja4a§‘a3a;ka4a§‘],
1= %[ai Q asaias + as ® ajazal — ai ® azajas — a3 Q ajasaj ).
105 0= Eg
We define
0 = [a} ® asajas (aIa4a§‘a3)6 + as @ ajaza; (a4a§‘a3af{)6],
1 * * * * 3 * * * *\3
fn=73 [a} ® asajaz(afasasas)” + as ® ajazaj(asaiasay)
— a3 Q@ azajas (a§a3a1a4)3 — a3 ® ajasa3 (a3a1a4a§k)3],
t20 = %[a?f ® ayazazajasazas + as ® asazagasazazay

— a3 @ azajasaiazazas —az @ ai‘a4a§a3a2a4a§k],
1
04 = E[aj ® asajaz + ay ® djaza; — ai ® azajas — a3 @ ajasds).
11. HH%(A)
We have HH> (A) = U*[—2] ® Y*[—h — 2]. We discuss these two subspaces separately.

11.1. U*[-2]

In U*[—2], like in HH*(A), we have generators coming from the center in some dual sense.
We have dg (U*[-2]) =0.

Proposition 11.1.1. Let Y be a top degree element [w;] in some eiNRe;[—h—2). Then HHS(A)
is generated by Y, € N'R which satisfy Vizx = ¥o.
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Proof. If ZaeQa ® x4 € V® NR lies in degree —4, then the image of di(x) =) ,ax, —
xqn(a), under the linear map f (which is associated to A as a Frobenius algebra) is zero where
f(wi) = 1. So Vg is nonzero in HH> (A).

For every nontopdegree central element z; we can find a ¢ satisfying the properties above,
which is done for each quiver separately in Subsection 11.3.

For any central element z € A, we have that d5 (zy) = d3 (y)z. If Y = d3(y), then by con-
struction Yo = ¥, zx = dj (zxy) which is a contradiction.

So these ¥ are nonzero in HH> (A) and generate this cohomology space. [

The relation ax, = x,1(a) then gives us that all w;’s are equivalent in HH>(A).
11.2. Y*[—h —2]
We have to introduce some new notations.
Definition 11.2.1. We define F to be the set of vertices in / which are fixed by v, i.e.
F=liel|v@i)=i}.

Definition 11.2.2. Let n;; be the restriction of n on e; Ae; (i, j € F). Let nfj =dimker(n;; — 1)
and ”z_/ =dimker(n;; + 1).
We define the signed truncated dimension matrix (HZ),-, jer in the following way:
n o+ -
(HA)ij =Ny

Now we can make the following statement:

Proposition 11.2.3. Y*[—h — 2] is given by the kernel of the matrix H'|, where we identify
CF = @ieF Re;.

Proof. Y*[—h — 2] is the kernel of the restriction dg|nr&[—p—2)(—h—2)=Rp[—h—2] = AR[—2h],
where Rp is the linear span of ¢;’s, such that i is fixed by v,

ds =Y xjyn(xf) =D nGxpyx},

x;€B x;€B
then
d: Rp[—h —2] — (AP)*[—2n]
can also be written as a matrix multiplication
H}:CF—cCF
under the identifications Rp = CF' = @, pe;APe;. O

We compute the matrices HZ and their kernels for each quiver separately.
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Recall that diimY =ry —r— — #{m; | m; = 4} = dim Rp — #{m; | m; = 4}. We will find Y*
explicitly for each quiver.

11.2.1. Q=Eq, Eg

% is not an exponent, so Y* = Rp.

11.2.2. Q = Dy41, n odd

All basis elements of e; Ae; given in Section 5.5 are eigenvectors of 7;.

For any of these basis elements x, n(x) = (—1)"*x where n, is the number of no-star letters
in the monomial expression of x. So HZ can be computed directly, and we get

2 0 2.0 1 1
0 0 00 0 0
Hi=12 0 2 0 1 1.
0 0 00 0 0
+1 —1
n n
1o Lo -5 5

and the kernel is given by

n—1
<€2k1 —ey1, ey, (en+euy1) —eg ‘k < T>

11.2.3. Q= D,+1, neven
Since F ={I1,...,n — 1}, we work only with ey Ae; for j,k <n — 1, and we have to work
with a modified basis, so that they are all eigenvectors of 1:
Fork<j<n-—1,
B j= {(ak_la,’{il)la,f -~~a}11 | 0<I<minfk—1,n—j— l}}
1
U {(ak_la,ffl) ag -+ (a:qan_l — a:an)an_gaj | 0<I<k—- 1}

U (a6, af -+ (a5 1an-1 +agan)an—a; [0<I <k =1+ —n}.

For j <k<n-—1,

Bij = {ax-1---aj(ata;)’ |0<I<minfn —k — 1, j — 1}}
@] {a;:"'a::—2(a;zk—la"—1 _a;an)an—Z"'aj(a;faj)l |0<l < ] - 1}

U {a;:...a;’:iz(a;!;ilan_l +a:;an)an_2.~-aj(a7aj)l |0 gl < ] -1 +k _n}
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From that, we can calculate the matrix:

20 - 20 2
00 - 000
PO ERE A
A7 12 o 2.0 2
0 0 000
20 2.0 2

and we get immediately its kernel

n
<€2k+1 —ey,ex ‘ 1<k < §>.

11.24. Q=E;

We do not use an explicit basis of A here. All we have to know is the number of no-star letters
in the monomial basis elements which can be directly obtained from the Hilbert series Hy4 () in
the following way: given a monomial x of length [ in ey Ae;, ny; the number of arrows in Q on
the shortest path from j to k of length d(k, j), x contains ny_; + % arrows in Q.

So we obtain the formula

Ha()yg,
n 1\ sJ
(HA)"J_( D A Py

where we can get H4 (+/—1) from (2.5.1) and compute

3.0 3 000 -3
0 0 0 000 O
3.0 3 000 -3
Hl=0 0 0 000 0|,
0 0 0 000 O
0 0 0 000 O
-3 0 =300 0 3

and its kernel is

(e1 +e7,e2,e3+ €7, e4, €5, €6).
11.3. Result

Now we give explicit bases for each quiver where v; € U*[—2] satisfy the properties given in
Section 11.1 and &; € Y*[—h — 2] are taken from Section 11.2.

Note the duality HH®(A) = (HH?(A))* which was established in [EE2], ¢o(z0) €
U[—-2h — 2], po(w;i) € Y[—h — 2]. We choose g such that ¥o(¢o(z0)) = 1 (from that follows
Vi (®o(zk)) = zk Vi (®0(20)) = Yo(gpo(z0)) = 1) and &; such that &; (¢o(w;)) = &i;.
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11.3.1. Q = Dy41, n odd
We define

* * ok
Vak = [(an—lanflana”) ’ ]’

eak—1 = [ear—1 — e1], ek = [eax], en=[(en+eny)) —e1]. k<

11.3.2. Q= D;,+1, neven

We define
n=2_
Vax = [} an1 (a3ana;_an1) T 1],
&2k+1 = [e2ky1 — e1], ey =lexn], 1<k< % -1
11.3.3. O = Eq
We define
¥o = [a5a3 (a3ara3as)’],
Ve = [—ajazaiar],
Yy = [aja3 — ajas],
e3 =[es], &6 =[ec].
11.3.4. 0 =E;
‘We define
o= [(@fasajan)’].
s = [(afasaias)’],
Y12 = [ajasaias],
=[e1 +e7], & =[ez], &3 =[e3 +e7],
&4 = [e4], g5 = [es], g6 = [ec].
11.3.5. Q = Eg
‘We define
~[(ajasasan)’]
vz = (a} a4a§‘a3)4],
== [(614614(13613)2],
[a a4a3a3],
= [e1], & =[ez], e3 = [es], &4 = [e4],

= [es], g6 = [es], g7 =[e7], eg = [eg].

1507
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12. HH%(A)
HH®(A) = U[-2h —2]® Y[-h — 2] = HHO(A)/Im(dg‘), and Im(dg) is spanned by the
columns of the matrices HZ which were computed in the previous section.

This gives us the following result:

Proposition 12.0.1. HH®(A) is a quotient of HHOY(A). In particular,

HH(A), Q = E, Es,
HH(A)/ (X" 22 0; =0, 05 = wnt1), Q= Duy1, nodd,
HH®(A) = odd
HH(A)/ "2 wi =0), Q = D,1, n even,
odd
HH'(A) /(01 4+ w3 — w7 =0), 0=Ej.

13. Products involving HH(A) = Z

Recall the decomposition HHy(A) = C & (U[-2])4+ & L[h — 2]. It is clear that the C-part
acts on HH' (A) as the usual multiplication with C, with z¢ as identity. From the periodicity of
the Schofield resolution with period 6, it follows that the multiplication with ¢(zg) € HH®(A)
gives the natural isomorphism HH' (A) — HH'1O(A) fori > 1.

We summarize all products not involving the C-part.

13.1. HH°(A) x HH°(A) — HH(A)
This is already done in the HH?(A)-section of this paper. We state the results:

13.1.1. Q= Dy41, nodd
The products are

Z4(j+k) j+k<%,
24j2uk = | Op — Onp1, j k=151
. n—1

13.1.2. Q= Dy+1, n even
The products are

. -1
+ky,  J k<5,

7474k =

13.1.3. E¢
All products are zero.

13.14. E7
The only nonzero product is z3 = ] + w3 — w7.
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13.1.5. Eg
The only nonzero product is zfz =2Zz24.

13.2. HH°(A) x HH'(A) — HH'(A)

From the definition of the maps 6 (which are generated by the central elements zi), it follows
that the Z-action is natural, i.e. the multiplication rule is the same as with the zz counterpart:
2k00 = 6.

We state the other nonzero products:

13.2.1. Q= Dy
We have z404 = O4(j1x) if j +k < %

13.2.2. Eg
We have 712012 = 624.

13.3. HH°(A) x HH'(A) — HH'(A), i =2 or 3

HH?*(A) = K[-2] and HH?(A) = K*[—2] live in only one degree, so (U[—2])+ C HH’(A)
acts by zero.

13.4. HHY(A) x HH*(A) — HH*(A)

We defined ¢, such that zz ¢ = ¢o holds. By degree arguments, only these other products are
nonzero:

134.1. Q= Dyy

For [ <k, z418ax = Sak—1) (since za(k—1)(z418ak) = (Zak—1)241)Sak = Lo, and S4¢k—yy is (up to a
multiple) the only one element of degree —4 — 4(k — ) in HH*(A)).

13.42. Q= Fy
We have 21224 = £12 (since z12(212824) = (212212)$24 = o, and 12 is (up to a multiple) the
only element of degree —16 in HH*(A)).

13.5. HH(A) x HH>(A) — HH?(A)

By definition, zx ¥, = ¥ holds. Since v; € U*[—2] corresponds to ¢; € U*[—2] in HH*(A)
with the rule zx Yy = Yo corresponding to zx{x = {o above, the multiplication rules of v with
elements in HHY(A) can be derived from above.

Products involving w; € L[h — 2] ¢ HH(A) and
gj = ZkeF Aker € Y*[—h — 2] are easy to calculate: w;e; = A;[w;] = A; .

Proposition 13.5.1. The multiplication (U[—2])+) x Y*[—h — 2] — HH>(A) is zero.

We will show this for any quiver separately.
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13.5.1. Q= Dy41, nodd
For I <k, zaryar = Yag—)-

The nonzero products involving w; € L[h — 2] C HHY(A) and gj € Y*[—h —2] are
W2k—182k—1 = W2EWU = WyEp = Wpt1En = W1E2%—1 = ®1&x = Yo,
W182k—1 = W18, = — Y.

We show (U[-2])+ x Y*[—h — 2] 9, HH5(A): by degree argument, zare; = AV2,—2—ak-
Then zop—2—ak(zak&i) = AZon—2—akV¥an—2—ak = Ao, and by associativity this equals
(Z22n—2-4k74k )€ = (wy — Wy41)€i =0,50 A =0.

13.5.2. Q= Dy41, n even
For | <k, zai\Wrar = Va1
The nonzero products involving w; € L[h — 2] C HHO(A) and g; € Y*[—h — 2] are
W2k 4182k+1 = W2k = VY0,

w182k+1 = — Y.

We show (U[—2])+ x Y*[—h — 2] 9 HHS (A): by degree argument, z4x&; = AY2,—2_a. Then
2on—2—ak (Zak€i) = AZon—2—ax Yan—2—ak = Ao, and this equals (z2,—2—4xz4k)e; =0, s0 A =0.

13.5.3. Q=Es
The nonzero products involving w; € L[h — 2] ¢ HH°(A) and gj € Y*[—h —2] are

@383 = w6 = Y.
By degree argument, (U[—2])+ X Y*[—h — 2] S HHS (A).

13.54. Q=Ey
The nonzero products involving w; € L[h — 2] C HHY(A) and gj € Y*[—h —2] are

WIE] = 2€) = W3E3 = W4€4 = W5E5 = WEEG = WTE] = W73 = Y.

We show (U[—2])+ x Y*[—h —2] S HHS (A): by degree argument, only products involving zg
may eventually be nontrivial,

zgei = Aypg, L eC.
Then
z8(z8¢i) = Azg¥s = Ao,
and by associativity this equals
2361 = (01 + w3 — w7)e; =0,

so A =0.
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14. Products involving HH 1(4)
14.1. HH'(A) x HH'(A) & HH?(A)

This follows by degree argument since deg HH' (A) > 0, deg HH*(A) = —2.
14.2. HH'(A) x HH*(A) — HH?(A)

HHZ(A) and HH3(A) are trivial for Q = D,,+1 where n is odd and for Q = E7, Eg.
We know that HH' (A) is generated by maps 6, and HH>(A) by f; (i # v(i)), and we lift

fi:AQ A[2] - A,
1®1|—>ei—ev(i)

to

fitA® ARRI> A® A,
1@l e ®e —eni) ey

Then

fids(1®1) = fz( Z X ®Xj) = Z xjei @ eix] — Xjen() ® eyi)X].

xjeB xj€B

To compute the lift £2f;, we need to find out the preimage of ij e ® eix;‘ —Xxjeni) ® ev(i)x}‘
under d;.

Definition 14.2.1. Let by, ..., by be arrows, p the monomial +by - - - by and define
UV =2(1®b1®by-- b +b1 @by Qb3 by +---+b1-- b1 @b 1),

and fori < j,
- J
vp =Y by bt @by @b by
I=i

We will use the following lemma in our computations.
Lemma 14.2.2. In the above setting,
di(vp) =Fb1-- bk @1 —=1Qby---by).

From that, we see immediately that when assuming all x; are monomials (which we can do),
then
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2 ) ) _ (1,deg(xj)) (1 deg(-xj)) o
f’( Z X ®xj> _dl( Z vx‘,-e,-x;f xje,,(,)x ) +1® Z Xjeix, x]ev(l)xj)’

x;€B x;€B x;€B
=0
so we have
Rfi2°(A) > 2(A),
(, deg(x,)) (1,deg(x;))
1@l Z Uy, eixy vxjev(i)x7 ’
X;€B
Then
(1,deg(x;)) (1,deg(x;)) | _ Ny ¥ Nxixk
0k< Z Trjex; T Uxjens >_Zk< Z SO Z S(x])x]xj>’
x;€B xj€B_ Xj€B—v()

where s(x;) is the number of arrows in Q* in the monomial expression of x;.
So we get

(Qkon,-)(I(X)l)zzk( Z s(xj)xjx;f— Z s(xj)xjx;'f).

x]'EB,.,' XjEB,.U(,')

Under our identification in [EE2, Subsection 4.5],

Qkf,‘=|:Zk<Z D osGpor=Y Y s(xj)w,ﬂeHH%A).

lel xjeBl,i lel XjEB/,U(,')
All products are zero if z lies in a positive degree, so we only have to calculate the products
where £ = 0.
We make the following
Proposition 14.2.3. The multiplication with 0y induces a symmetric isomorphism

o HH*(A) = K[-2] = K*[-2] = HH*(A).

Now we have to work with explicit basis elements x; € Ae;, i # v(i), so we treat the Dynkin
quivers separately and find the matrix M, which represents this map.

14.2.1. Q =Dy+1, n even
We can work with the basis given in Section 5.5 and compute

n
00 fn = 5([wn+1] — [@y]) = —nh, (14.2.4)

because of the relation [w; ] + [wy+1] =0 in HH3(A). a is given by the matrix

My = (—n).
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14.2.2. Eq

We will write out the basis elements of Aey, Aes:
B = 61,a1a2a5a5a2a1)

By =

*
1
* %k * k %k * * * %k * * * * %k
azal,613(13612611,(13(1303(13612(11,asa5a3a3a3a3azal),

* % * * % * * * * %

(aSClzal 5 a3a5(15612a1 5 a3(15(15a303615 a5a2a1 >,
* %k * * * k %k

(a4a3a2a1 5 a4a3a5a5a3a3a5 asazal >,

Be1 = a5a2a1,a5a3a3a5a5a2a1>
and
eiAes =(n(x) | x € ey Aer),

where 1(a) = —e,a and for any arrow a :i — j, a is the arrow j — i, so n preserves the number
of star letters of a monomial x. From this, we obtain

o f1 = —4lwi] — 2[w2] + 2[ws] + 4ws] = —8h| — 4hy

because of the relations [w1] + [w4] = [w2] + [w3] =0 in HH3(A).
We do the same thing for Ae; and Aey:
Bio= <a1, ajaxazasas, a1a2a§a5a§‘a3a;),
Byr = <ez, axa;, aasasay, a>az;a3asasa; , a,asasaz asds, a2a§a5a§ka3a;"a5a§),
B3, = <a’2k, asasay,ayasa;, asasaiaza;, aydzasasas,
aiasaiasazazas, asasayazasasas, a;‘a5a§ka3a;‘a5a§a3a§>,
Bip= <a3a§k, azaiasay,azaiaza;, azayazasasa;
azaiasaiazasasa;, a3a§‘a3a§a5a§ka3a;‘a5a§‘),
Bs, = <a4a3a§k, asazaiasa;, a4a3a§‘a5a§<a3a§‘a5a;>,
Bsr = <asa§, asaiazay, asayazaiasas, asa§a3a§a5a§‘a3a;‘>,

and we get the basis elements for e; Ae3 from n(x;) where x; € e,(;)Ae4. Since n preserves the
number of star-letters of a monomial, we can immediately calculate

00 f2 = —2[w1] — 4lwz] + 4ws] + 2[ws] = —4h1 — 8hy

because of the relations [w1]+ [w4] = [w2] + [@3] = 0 in HH>(A).
So « is given by the symmetric, nondegenerate matrix

-8 —4
M, =(_4 _8>. (14.2.5)
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14.3. HH'(A) x HH?(A) & HH*(A)

This follows by degree argument: degHH'(A) > 0, degHH’(A) = —2, but
deg HH*(A) < —4.

14.4. HH'(A) x HH*(A) — HH>(A)

Proposition 14.4.1. Given 6; € HH'(A) and ;; € HH*(A), we get the following cup product:
Ok = Y12k- (14.4.2)

Proof. It is enough to show 6p¢o = Yo: z1(6081) = Boloo implies that (689&;) = Yy, and the

equation above follows from 6y = z;6p.
Letin general x =) 0a®xq € HH*(A). Then x represents the map

x=AQVQN[h]— A,
1®a,-®1»—>—xa?,
1®a @1+ x4,

and it lifts to

AQVQRN[h]— AR A,
1®a® 1> —1® xg*,
1a* @1 1® x,.

Then

()?od5)(l®l):)E(Zeaa@)a*@1+Zeal®a®a*>

aeQ dEQ
=) a®x— ) 1®@xn@+ Y a*@xp— ) 1@xon(a”)
aeQ acQ acQ aeQ
=Za®xa— Z 1 ®avaa*®xa* — Z 1 ®a*xyx
acQ acQ aeQ acQ

=d1(21®a®xa+l®a*®xa*)’
aeQ

so we have

Qx:2°(A) > 2(A),

1®1|—>Zl®a®xa+l®a*®xa*,
aeQ
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and this gives us
Goox)(1®1) =Y a*xe,
aeQ
so the cup product is
O x =Y a*xgn. (14.4.3)
acQ

It can be easily checked by using explicit elements that the RHS is 1 for x = ¢p, but we the
reason here why this is true: for x =) acd @ ® Xa = {0, the RHS becomes

Z a*xgx = Z (Cl*, xa*)[a)t(a)]v
acQ agQ

where (—,—):A x A — C is the bilinear form attached to A as a Frobenius algebra (see 2.4).
But under the bilinear form on V ® A, given in [EE2, Subsection 4.3] which induces the
duality HH*(A) = (HH' (A))*,

(@ ® x4, b ® xp) =04,p+€a(Xa, Xp),

D (@ xar) = (60, 50) = 1.
aeQ

So for x = ¢y, Eq. (14.4.3) becomes

Boo = (o, Co)¥o = Yo, (14.4.4)
because [w;] = Yo in HH>(A) foralli € [. O
14.5. HH'(A) x HH’(A) — HH®(A)

We know that
0 < deg(HH'(A)) <h—4,
—h —2 < deg(HH’(A)) < -2,
—2h < deg(HH®(A)) < —h -2,

so the product is trivial unless we pair the lowest degree parts of HH 1 (A) (generated by 6p) and
HH’(A) (which is Y*[—h — 2]). The product will then live in degree —h — 2 which is the top
degree part of HH®(A), the space Y[—h — 2].

Given an element v € HH>(A)(—h — 2) which has the form

Y:AQNh+2]— A,

1®1I—>ZM€,’ER,
ieF
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this lifts to

V:AQNh+2] > AR A,

1® 1+ Z)\,‘e,’ Re;.
iel

Then

Baso0) =i X w0 ) =i X np o))

xjeB xjeB
=Y hin(x)e; ® eix’
xjeB ieF
(T Tl ) 416 X Yhn e
=d V(e in(xj)eix;,
ieF xjeB xjEB i€F

=0

so Y lifts to

2y :2%A) — 2(4),

| (Ldeg(x))
@1 D Myt -

ieF xjeB

We get

Gooy)1@ D)= > Aisx)nlx)x?,

ieFxjeB_;

where s(x) is the number of arrows in Q* in the monomial expression of x; (or in general if x;
is a homogeneous polynomial where each monomial term has the same number of arrows in Q*,
then s(x;) is the number of Q*-arrows in each monomial term).

Under our identifications in [EE2, Subsection 4.5],

QOWZZ Z Ais(xj)n(xj)x; = Z Z Ais(xj)n(x)xy.

ieF xjeB_; i,keF xj€Byi

To simplify this computation, we will choose a basis, such that all x; € ey Ae; for some k, [ € 1
and that additionally x; is an eigenvector of  for k, [ € F (since 7 is an involution on e Ae; for
k,l € F). Let B,:fl be a basis of (exAe;)+ = ker(nle, a¢, — 1) and B,;l a basis of (exAe))_ =
ker(r”ekAL’] + D).

Let us define

ko= Y s = Y s(x)). (14.5.1)

. + . =
xj€B xj€By
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Then the above equation becomes

Qo =Y Ju Y keigo(wr). (14.5.2)

leF  keF

Proposition 14.5.3. The multiplication by 6y induces a skew-symmetric isomorphism
B:Y*[—h —2] = Y[—h —2].

We will treat the Dynkin quivers separately and find the matrix Mg which represents 8 for each
of these quivers.

14.5.1. Q = Dy41, n odd
We use the same basis as given in Section 5.5. Recall that these basis elements have the
property n(x) = (—1)"*x where n, is the number of Q-arrows in the monomial expression of x.
We can compute that for k,/ <n — 1,

n—k+I1—1, kodd, [odd,
P l—n, k odd, [even,
kE=Y i, k even, [ odd,
0 k even, [ even,
n—%1" kodd,
Kkn =Kkntl =
=5 k even,
n—51 lodd,
Kn,l = Kn+1,1 = I
55 k even,
n—1
Knon = Kn+1,n+1 = RN

2
n—1
Kn+1,n=Kn,n+1=_( ) )

Y*[—h — 2] has basis exc+1 = [eae1 — 1] (0 <k < 252), ex = [en] (k < “51), &0 = [en +
en+1 — e1], and we can calculate the products

Boeaks = ) (ki k41 — Ki,1)Po(@;)

ieF
n—2 2k
=2k Y go(@i) —n Y go(w;) + kpo(@y + wnt1),
oad Gren
Ooeok =Y (ki 2k 1) p0(@i)
ieF
2k—1 n—2
=Qk—n) > go@) +2k D @o(@y) + keo(wn + wns1).

i=1 i=2k+1
odd odd
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Ooen =Y (ki + Knt1,1 — Ki1)g0(@;)

ieF
n—2 n—1 n—
=(n—1) ;%(wi) —n ;} $0(@i) + ——P0(@n + @nt).
odd even

We use the defining relations in Y[—h — 2],

n—2
o(w1) = —<P0<Z§00(wi) - <po(wn)>,

i=3
odd

®o(@n+1) = @o(wn)
to write the RHS of the above cup product calculations in terms of the basis (w;)2<i<n:

2k

Boe2k+1 = —n Z po(w;),

i=2
even

n—2

boeak =n Y o(i) +ngo(wn),

i=2k+1
odd

n—1

Oon =—n Y _ po(wi).

i=2
even

B is given by the skew-symmetric, nondegenerate matrix

0O —n 0 —n -n 0 —n 0 —n
n 0 0 O 0O 0 0 0 O
0O 0 0 -—n -n 0 —-n 0 —n
n 0 n O 0O 0 0 0 O
0O 0 0 O -n 0 —-n 0 —n
My = f f f f
n 0 n O 0O 0 0 0 O
0O 0 0 O 0 0 —n 0 —n
n 0 n O 0O n O 0 O
0O 0 0 o0 0O 0 0 0 -n
n 0 n O 0O n 0 n O
with respect to the chosen basis 2, €3, ..., &, of Y*[—h — 2] and the dual basis gy(w3), go(w3),

., 0o(wy) of Y[—h —2].
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14.5.2. Q = Dy41, n even
We use the same basis as in Section 11.2.3 for our computations.
Fork,l<n-—1,

n—k+1—-1, kodd, [odd,

o — l—n, k odd, [even,
kE= i, k even, [ odd,
0, k even, [even.

Y*[—h — 2] has basis ey, = [eax], €2k+1 = [€2k+1 —e1] (1 <k < %), and we calculate the
products

Boeakr1 =Y _(kiok+1 — Ki.1)po(@r)

ieF
n—1 2%
=2k go(w) —n Y _ golwi),
odd even

Boeak = Y (ki 2%)p0(ei)

ieF
2k—1 n—2
=@k—n) Y [w]+2k Y o),
i=1 i=2k+1
odd

and we use the defining relation of Y[—h — 2],

n—2

po(@) == ¢(w)
oad

to write the results of the cup product calculations in terms of the basis ¢g(w2), go(w3), ...,
oo(wn—1). We get

2
Boeakr1=—nY_ poi),
i=2
even
n—1
boeok =n Y go(i).

i=2k+1
odd
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B is given by the matrix

0 —n 0 —n . ... —n 0 —n 0 -—n
n 0 0 O e 0O 0 0 0 O
0O 0 0 —-n .. ... —n 0 —n 0 -—n
n 0 n O e 0O 0 0 0 O
0O 0 0 o0 -n 0 —-n 0 -—n
Mp = f f f L
n 0 n O 0O 0 0 0 O
0O 0 0 O 0 0 —n 0 -—n
n 0 n O 0O n O O O
0O 0 0 O 0O 0 0 0 —n
n 0 n O 0O n 0 n O
with respect to the basis €, €3, ..., &,—1 and its dual basis go(w2), po(w3), ..., @o(wy—1).
14.5.3. Q=Fs

We work with the bases

n 2
By = {63,a§ka3 —asas, (a§a3 — a%‘ag) ,asasaiaszasas,
ajasazazaiasaias, a§a3a§a5a§a3a;a5a§ka3},
— * * * * * * * k
By, = {a5a5, asazaias,aiasayas, ayazaiasaias,
* K[ % % \2 o« * K[ % * o \2
aiasazajy (a3a3 - a2a2) ,ajazasasazay (a3a3 - a2a2) },
*
6 3= a5a3a3a5a5 a5a3a%a5a5a3a3 asa3a3a505a3a3 (a3a3 Clzaz)},

as,asasas, a5a3a3(a3a3 aé"az)},

2 x
a a5613a3(15 5 a3a3a5 a5a3a3(15 5 a3 a3615a5 (a3a3) (15 },

€6 a5a3a3a505(d3613) aS}’

=1
{
(a2, atasa, (akas — alar)atasal),
{a3
{
{asa

asajazal, as(ajas)’as ).

We immediately get the matrix

(k33 K36\ _ (0 —6
- K63 K66 “\6 0

which represents the 8 with respect to the basis €3, & and dual basis ¢o(w3), @o(ws).
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14.54. E7

For E7 and Eg we do not have to work with an explicit basis to calculate «; ; since for any
basis element x, 1(x) = £x. It is enough to know the following: given any monomial x € exAe;
of length /, ny_ ; the number of arrows x € Q and d(k, j) the distance between the vertices k, j,

we know that x contains ny_; + = d(k I=dkD) arrows in Qandd(k, j) —ng j + d( I2dk)) arrows in Q
We can derive the followmg formula
; . Hx(1) 1 d Hy(t)
(1) o, ) A 2
Ki,j = (=1)"J ((d(k,]) nk,j)td(k’j) o 2tdt AED) i . (1454
The resulting matrix is
12 6 9 3 0 3 -9
-6 0 3 00 0 -3
I5 -3 12 3 0 3 -12
(Kk,j)k,j = -3 0 -3 0 0 0 —6
0 0 0O 00 -9 O
-3 0 -3 0 9 0 -6
—-15 3 —-12 6 0 6 12
A basis of Y*[—h — 2] is given by
e1=ler +e7l, &2 = [ea], &3 =[e3 +e7], &4 = [ea], &5 = [es], g6 = [ec].
(Boei)1<1<6 18 given by
3 6 0 3 0 3 wo(w1)
-9 0 0 0 0 O @o(w2)
3 -3 0 3 0 3 @o(w3)
-9 0 -9 0 0 O @o(wa)
0 0 0O 0 0 -9 o (ws)
-9 0 -9 0 9 O 0o (we)
-3 3 0 6 0 6 @o(w7)

Now use the defining relation of Y[—h — 2],

@o(w7) = @o(w1) + @o(w3)

to obtain the matrix

0 9 0 90 9
90 0 0 0 0
0 0 0 90 9

Ms=1_9 0 —9 0 0 o0
0 0 0 00 —9
90 -9 09 0

which represents 8 with respect to the basis €1, ..., g¢ and its dual basis ¢o(w1), ..., go(we).
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14.5.5. Eg
We can use (14.5.4) and get the matrix

15 0 15 0 O 0 -—15
—15 0 0 0O 0 o0 0 0
0 0 15 0 0 0 -15
—-15 0 —-15 0 0 O 0 0
Mp=Wei=1"6 0 0o 0 0 0 0 -5
0 0 0 0O 0 0 —-15 0
0 0 0 0O o0 15 0 -—15
15 0 15 0 15 0 15 0
which represents 8 with respect to the basis €1, ..., g and its dual basis ¢g(w1), ..., go(ws).

Remark 14.5.5. With respect to our chosen bases (&;);ec;r and ¢o(w;);cy’, such that the vertex
set I’ C I, together with the arrows in I form a connected subquiver Q’, M s can be written in
this general form:

h
Mg=3-(C)". (14.5.6)

where we call (C')¢ the signed adjacency matrix of the subquiver Q’, that is

0 if i, j are not adjacent,
(Chij=1+1 ifarrowi « j liesin Q*, (14.5.7)
—1 ifarrowi <« j liesin Q.

In the D,,41-case, we have

0 1 0 0
-1 0 1 O 0
0o -1 0 1 O 0
Mﬁzn )
0
0 0 -1 0

in the Eg-case, we have
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in the E7-case, we have

0 -1 0 0 0 0
1 0 -1 0 0 0
01 0 -1 0 0
Ms=91o o 1 o 1 of -
0 0 0 -1 0 1
0 0 0 0 —-10
and in the Eg-case, we have
0 -1 0 0 0 0 0 0\!
1 0 -1 0 0 0 00
01 0 -1 0 0 00
0 0 1 0 -1 0 00
Mp=15-1g 0 0 1 0 1 01
00 0 0 -1 0 10
0O 0 0 0 0 —-1100
0 0 0 0 —-1 0 00

15. Products involving HH?(A)

We start with HH2(A) x HH3(A) — HH>(A) first and then deduce HH%(A) x HH%(A) —
HH*(A) from associativity.

15.1. HH%*(A) x HH?(A) — HH’(A)
We will prove the following general proposition:
Proposition 15.1.1. For the basis elements f; € HH*(A), hje HH?(A), the cup product is
filj = é8ijvo. (15.1.2)
Proof. Recall the maps

hji:AQN — A,
1®1r—>a)j
and lift it to
hi:AQN - A®A,
I1®1-1®w;.

Then

hijdi(1®a® D) =hj@a®1-1®a)=a®@w;=d(1®a®w)),
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SO
Qhj:24A) - 2(4),
1®a®1|—>1®a®wj.
Then we have

th(d5(1®1))=9hj( > eaa®a*®1+26al®a®a*)
acQQ acQ

=) @®d" ®@wj=d(1®w)),
aeQ

SO

2%h;: 2%(A) — 2%(4),

1®1 1®w;.
This gives us
[(2%0) A1) = fi(l ®w)) = 8;jw;,
i.e. the cup product
fihj =éijlw;] = 8;jo. O

15.2. HH*(A) x HH*(A) — HH*(A)

Since degHHz(A) = —2, their product has degree —4 (i.e. lies in span(gp)), so it can be
written as

HH?*(A) x HH*(A) — HH*(A),
(a,b) = {a, b)¢o,

where (—,—) : HH>(A) x HH?(A) — C is a bilinear form. We prove the following proposition:

Proposition 15.2.1. The cup product HH2(A) x HH*(A) — HH*(A) is given by (—,—) = «,
where a ( from Proposition 14.2.3) is regarded as a symmetric bilinear form.

Proof. We use (14.4.2) to get
60(f; fi) =60({fi. fi)0) = (fi. fi)Vo. (15.2.2)

On the other hand, by Propositions 14.2.3 and 15.1.1,

O f)fi =a(fi)fi= D (Ma)ihi f; = (Ma)jivro = (Ma)ijho. (15.2.3)
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By associativity of the cup product, we can equate (15.2.2) and (15.2.3) to get
(fi, fj) = (Ma)ij. O (15.2.4)
15.3. HH?(A) x HH*(A) & HH(A)
This computation uses the Batalin—Vilkovisky structure on Hochschild cohomology: We have

deg HH?>(A) = —2, deg HH*(A) > —h and deg HH®(A) < —h — 2. So we know by degree argu-
ment that

0, l>h—4,
fk§l= {Zs)"sw(wS)9 |=h—4. (15.3.1)

We use [Eu3, (6.0.12)] and the isomorphism HH'(A) = HHg;12_;(A) to get for the Gersten-
haber bracket on HH*(A):

[fe: @l = A(fis) — A(fi) & — fe A
—_— —_——

=0 =0
1
- sz <5 + m>hﬂ—1 (p(wy)).

The Gerstenhaber bracket has to be independent of the choice of m > 0. This implies that the
RHS has to be zero, so all Ay = 0. This shows that

Ji&n—a=0, (15.3.2)
so we have that the cup product of HH 2(A) with HH*(A) is zero.
15.4. HH*(A) x HH3(A) % HH(A)

Let a € HH*(A) and b € HH’(A) be homogeneous elements, then ab = A6y € HH(A) =
U[—2h — 2], » € C. Then

Mo = Mz = A0k Lk = Ab(agy) =0,
the last equality coming from the product a¢y € HH 2(A) UHH*(A) =0.
16. Products involving HH 3 (A)
16.1. HH3(A) x HH3(A) & HHO(A)
This follows by degree argument: deg HH>(A) = —2, deg HH%(A) < —h — 2 < —4.
16.2. HH3(A) x HH*(A) % HH(A)

This follows by degree argument: deg HH>(A) = —2, deg HH*(A) > —h, deg HH' (A) <
—h—4<—-h-2.
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16.3. HH3(A) x HH®(A) % HHB(A)

This follows by degree argument: deg HH>(A) = —2, deg HH>(A) > —h — 2, deg HH3(A) =
—2h—2<—h—4.

17. Products involving HH*(A)
17.1. HH*(A) x HH*(A) S HH3(A)

This follows by degree argument: deg HH*(A) > —h, deg HH(A) = —2h —2 < —2h.
17.2. HH*(A) x HH®(A) % HH(A)

This is clear for Q = D41, n odd, Q = E7, Eg where HH9(A) =K[-2h —-2]=0.

Let Q = D, .1, nevenor Q = Eg. Let a € HH*(A), b € HH>(A). The product HH?(A) x
HH3(A) — HH>(A), (x,y) — (x, y)¢o induces a nondegenerate bilinear form (—,—). If ab €
HH®(A) = HH3(A)[—2h] is nonzero, then we can find a c € HH?(A), such that c(ab) = ¢o. But
this equals (ca)b = 0 since HH2(A) x HH*(A) % HH®(A) which gives us a contradiction.

18. HH®(A) x HH5(A) —» HH'(A)

Proposition 18.0.1. The multiplication of the subspace U[—21* with HH>(A) is zero.
The pairing on Y*[—h — 2] is

Y*[—h —2] x Y*[—h — 2] - HH'%(A),
(a,b) —~ 2(a, b)s(%o), (18.0.2)

where the skew-symmetric bilinear form §2(—,—) is given by the matrix —Mg from Subsec-
tion 14.5.

Proof. We have degHH5(A) > —h—2and degHHlO(A) < —2h — 4, so we can get a nonzero
multiplication only by pairing bottom degree parts of HH>(A) which is ¥*[—h — 2]. The product
lies in the top degree part of HH'9(A) = HH*(A)[—2h] which is spanned by ¢4 (o). This gives
us the pairing of the form (18.0.2).

We want to find the matrix (£2(g;, €;));,j where &; are a basis of Y*[—h — 2], given in the
section about HH> (A). Recall that the multiplication HH L(A) x HH?(A) — HH®(A) was given
by a skew-symmetric matrix ((Mp);,j)i, jeF, so that Gye; = ZkeF(Mﬂ)k,i‘PO(wk)~

We multiply ¢;¢; = §2(&;, £)94(Zo) with 6y (see 14.4.2):
Oo(eie;) = $2(ei, €)ps(Yo). (18.0.3)

Using associativity, this equals

(Boei)e; = Z(Mﬂ)k,iwo(wk)&/ = (Mp) j.ivo = —(Mp)i, je5(Yo)- (18.0.4)
keF
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We see from Egs. (18.0.3) and (18.0.4) that
§2(gi, ej) = —(Mp)i,;.
This completes the cup product computation of HH*(A). O
19. Presentation of HH*(A)

For each quiver, we give a presentation of HH*(A) as an algebra over C by generators and
relations. We write X for the element ¢o(zo) € HHO(A).

19.1. Q = Dy41, nodd
HH*(A) is generated by
1,24, 1,..., 04,60, 20—6,82,...,6n, X

with relations (Vi, j =2,...,n,Vk,I=1,...,n)

ntl 2 2
(z4) 7 =05 =85,_¢ =248: =0,

n—2
n—1
zaop = Oowp = oo = =X Y o =Xz,7 =0,
m=1
m odd

n—3

2
wigj =8ijz4" B0l2n—6,
n=3

giej=—80(¢i,e))Xz,” Lon—s,

where §2(—,—) is a skew-symmetric bilinear form given by the matrix

0 —n 0 —n -n 0 —-n 0 -—n
n 0 0 O O 0 0 0 o
0O 0 0 -—n -n 0 —-n 0 —n
n 0 n O O 0 0 0 o
0O 0 O

n 0 n O 0 O

0O 0 0 o0 0O 0 —n 0 —n
n 0 n O 0O n O O O
0O 0 0 o0 0O 0 0 0 -—n
n 0 n O 0O n 0 n O
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19.2. Q= Dy41, n even
HH*(A) is generated by
15 245 a)17 ey a)nfl’ 007 fna ;2}1747 827 ) 5}’!717 X

with relations (Vi, j =2,...,n—1,Vk,l=1,...,n—1)

(24)? =03 =24 fn =304 =Con-afn =0,

748 = fn&i =0,
n—1
Z4wy = Opwy = frnwp = Son—awp = wpwp = X Z wn =0,

m=1
m odd
n—2
f=-nz,> tons
n—2
wigj =38ijz,” Oolon—4,
n—=2

giej =—(i,e))Xz," Lon—s,

where §2(—,—) is a skew-symmetric bilinear form given by the matrix

O —-»n 0 —n ... ... .—n 0 —n 0 -—n
n 0 O O ... ... 0 O O 0 o
o 0 0 -n ... ... =n 0 —-n 0 -—n
n 0 n O ... ... 0 O O O O
o o 0 o ... ....-.n 0 —n 0 -n
n 0 n O O 0 0 0 o
0O 0 0 o0 0 0 —n 0 -—n
n 0 n O 0O n O O O
0O 0 0 o0 0O 0 0 0 -—n
n 0 n O 0 n 0 n O

19.3. Q = Eg
HH*(A) is generated by
1, z6, 28, w3, ws, 00, [1, f2, 86, (8, €3, €6, X
with relations (for u, v € {6, 8}, k,l € {3,6}, i, j € {1,2})
Zuzv =03 = 2ufi = Culo = Cu fi = 2uk = figx =0,

2y = Oowi = fiwr = §wp = wjwr =0,
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7868 = 266, wyel = 81002883,

Jfifi={fi, fi)z8ss,

where (—,—) is the symmetric bilinear form, given by the matrix
(= 3)
-4 -8)°
exer = —S2(ex, €1) X 2883,
where §2(—,—) is a skew-symmetric bilinear form, given by the matrix
(s 7)
6 0 )
194. Q=E4
HH*(A) is generated by
1, 28,212, @1, ..., ws, 00, {8, 12, €15 - - -, €6, X
with relations (for u, v € {8, 12}, k,l € {1, ..., 6})
ZuZ12 = 93 =270 =2z,6,=0,
Zuwi = Bowr = wjwi = Xz§ =0,
2888 = 212412, wiél = kiboz12812,

erel = —82(ek, 1) Xz212812,

where £2(—,—) is a skew-symmetric bilinear form, given by the matrix
0 9 0 9 0 9
-9 0 0 0 O0 O
0o 0 0 90 9
-9 0 -9 0 0 O
0o 0 0 0 0 -9
-9 0 -9 0 9 O
19.5. Q=FEg

HH*(A) is generated by

1,z12, 220, @1, - .., 8, 00, $20, 24, €15 -+ -, €6, X

1529
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with relations (for u, v € {12,20}, k,l € {1,...,8})
w220 =63 =70 = zuex =23, =0,
Zu@k = bpwp = wjw =0,
232824 = 220820, wie] = 8100220420,
erer = — 82 (&, €1) X 220620,

where §2(—,—) is a skew-symmetric bilinear form, given by the matrix

0O 15 0 15 0 O 0 —15
—-15 0 0 0 0 O 0 0
0 0 0O 15 0 O 0 —I5
-5 0 —-15 0 0 O 0 0
0 0 0 0 0 O 0 -I5
0 0 0 0O 0 0 -—-15 0
0 0 0 0o o0 15 0 -—I5
5 0 15 0 15 0 15 0
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