



JOURNAL OF Algebra

Journal of Algebra 320 (2008) 1477-1530

www.elsevier.com/locate/jalgebra

# The product in the Hochschild cohomology ring of preprojective algebras of Dynkin quivers

# Ching-Hwa Eu

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 31 March 2007

Available online 13 June 2008

Communicated by Michel Van den Bergh

## Abstract

In this paper, we compute the cup product structure of the preprojective algebra Dynkin quivers of type *D* and *E* over a field of characteristic zero. This is a continuation of the work done in [P. Etingof, C. Eu, Hochschild and cyclic homology of preprojective algebras of ADE quivers, arXiv: math.AG/0609006] where the additive structure of the Hochschild cohomology (together with its grading) was computed. Together with the results in [K. Erdmann, N. Snashall, On Hochschild cohomology of preprojective algebras. I, J. Algebra 205 (2) (1998) 391–412, II, J. Algebra 205 (2) (1998) 413–434] (where the *A*-case was studied), this yields a complete description of the product in the Hochschild cohomology of *ADE* quivers over a field of characteristic zero.

© 2008 Elsevier Inc. All rights reserved.

Keywords: Preprojective algebras; Dynkin quivers; Hochschild cohomology ring; Cup product

#### **Contents**

| 1. | Introdu  | ction                                        |
|----|----------|----------------------------------------------|
| 2. | Prelimin | naries                                       |
|    | 2.1.     | Quivers and path algebras                    |
|    | 2.2.     | The preprojective algebra                    |
|    | 2.3.     | Graded spaces and Hilbert series             |
|    | 2.4.     | Frobenius algebras and Nakayama automorphism |
|    | 2.5.     | Root system parameters                       |
|    |          |                                              |

E-mail address: ceu@math.mit.edu.

| 3.  | Hochschild cohomology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.  | Main results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 5.  | Some basic facts about preprojective algebras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86 |
|     | 5.1. Labeling of quivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86 |
|     | 5.1.1. $Q = D_{n+1} \dots 146$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86 |
|     | 5.1.2. $Q = E_6 \dots 148$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86 |
|     | 5.1.3. $Q = E_7 \dots 148$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87 |
|     | 5.1.4. $Q = E_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|     | 5.2. The Nakayama automorphism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|     | 5.2.1. $Q = D_{n+1}$ , $\hat{n}$ odd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|     | 5.2.2. $Q = D_{n+1}, n \text{ even } \dots 148$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|     | $5.2.3.  \widetilde{Q} = E_6 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|     | 5.2.4. $\tilde{Q} = E_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|     | 5.2.5. $\widetilde{Q} = E_8' \dots 149$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|     | 5.3. Preprojective algebras by numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|     | 5.4. The Schofield resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|     | 5.5. Basis of the preprojective algebra for $Q = D_{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|     | 5.6. Hilbert series of the preprojective algebra for $Q = E_6 \dots 149$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 6.  | $HH^0(A) = Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|     | 6.1. $Q = D_{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|     | $6.2.  Q = E_6                                                                                                                                                                                                                                                                                                                                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|     | $6.3.  Q = E_7                                                                                                                                                                                                                                                                                                                                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|     | $6.4.  Q = E_8 \qquad \qquad$ |    |
| 7.  | $HH^1(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 8.  | $HH^2(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| -   | 8.1. $Q = D_{n+1}$ , $n$ even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|     | 8.2. $Q = E_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 9.  | $HH^3(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|     | 9.1. $Q = D_{n+1}$ , $n$ even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|     | 9.2. $Q = E_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 10. | $HH^4(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|     | 10.1. $Q = D_{n+1}, n \text{ odd}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|     | 10.2. $Q = D_{n+1}$ , $n$ even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|     | 10.3. $Q = E_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|     | 10.4. $Q = E_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|     | $10.5.  Q = E_8                                                                                                                                                                                                                                                                                                                                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 11. | $HH^5(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|     | 11.1. $U^*[-2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|     | 11.2. $Y^*[-h-2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|     | 11.2.1. $Q = E_6, E_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|     | 11.2.2. $Q = D_{n+1}$ , $n$ odd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|     | 11.2.3. $Q = D_{n+1}$ , $n$ even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|     | 11.2.4. $Q = E_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|     | 11.3. Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|     | 11.3.1. $Q = D_{n+1}, n \text{ odd}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|     | 11.3.2. $Q = D_{n+1}$ , $n$ even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|     | 11.3.3. $Q = E_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|     | 11.3.4. $Q = E_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|     | 11.3.5. $Q = E_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 12. | $HH^6(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 13. | Products involving $HH^0(A) = Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |

|            | 13.1.   | $HH^0(A) \times HH^0(A) \rightarrow HH^0(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |         | 13.1.1. $Q = D_{n+1}, n \text{ odd } \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |         | 13.1.2. $Q = D_{n+1}, n \text{ even } \dots $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |         | 13.1.3. $E_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |         | 13.1.4. <i>E</i> <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |         | 13.1.5. $E_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 13.2.   | $HH^0(A) \times HH^1(A) \rightarrow HH^1(A) \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |         | 13.2.1. $Q = D_{n+1} \dots 1509$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |         | 13.2.2. $E_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 13.3.   | $HH^{0}(A) \times HH^{i}(A) \to HH^{i}(A), i = 2 \text{ or } 3 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 13.4.   | $HH^0(A) \times HH^4(A) \rightarrow HH^4(A) \dots 1509$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |         | 13.4.1. $Q = D_{n+1} \dots 1509$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |         | 13.4.2. $Q = E_8 \dots 1509$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 13.5.   | $HH^0(A) \times HH^5(A) \rightarrow HH^5(A) \dots 1509$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |         | 13.5.1. $Q = D_{n+1}, n \text{ odd} \dots $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |         | 13.5.2. $Q = D_{n+1}$ , $n$ even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |         | 13.5.3. $Q = E_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |         | 13.5.4. $Q = E_7 \dots 1510$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14.        | Product | s involving <i>HH</i> <sup>1</sup> ( <i>A</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 14.1.   | $HH^1(A) \times HH^1(A) \xrightarrow{0} HH^2(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 14.2.   | $HH^{1}(A) \times HH^{2}(A) \rightarrow HH^{3}(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |         | 14.2.1. $Q = D_{n+1}$ , $n$ even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |         | 14.2.2. $\widetilde{E}_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 14.3.   | $HH^{1}(A) \times HH^{3}(A) \xrightarrow{0} HH^{4}(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 14.4.   | $HH^1(A) \times HH^4(A) \rightarrow HH^5(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 14.5.   | $HH^{1}(A) \times HH^{5}(A) \to HH^{6}(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |         | 14.5.1. $Q = D_{n+1}, n \text{ odd}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |         | 14.5.2. $Q = D_{n+1}$ , $n$ even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |         | 14.5.3. $Q = E_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |         | 14.5.4. $E_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |         | 14.5.5. E <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15.        | Product | s involving $HH^2(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 15.1.   | $HH^2(A) \times HH^3(A) \rightarrow HH^5(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 15.2.   | $HH^2(A) \times HH^2(A) \rightarrow HH^4(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 15.3.   | $HH^2(A) \times HH^4(A) \xrightarrow{0} HH^6(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 15.4.   | $HH^2(A) \times HH^5(A) \xrightarrow{0} HH^7(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16.        | Product | s involving $HH^3(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 16.1.   | $HH^3(A) \times HH^3(A) \xrightarrow{0} HH^6(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 16.2.   | $HH^{3}(A) \times HH^{4}(A) \xrightarrow{0} HH^{7}(A) \qquad 1525$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 16.3.   | $HH^{3}(A) \times HH^{5}(A) \xrightarrow{f} HH^{8}(A) \qquad .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17.        |         | s involving $HH^4(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 17.        | 17.1.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 17.1.   | $HH^4(A) \times HH^4(A) \xrightarrow{0} HH^8(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18.        |         | $HH^{+}(A) \times HH^{+}(A) \to HH^{+}(A)$ 1526<br>$0 \times HH^{5}(A) \to HH^{10}(A)$ 1526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 18.<br>19. |         | $0 \times HH^{-1}(A) \rightarrow HH^{-1}(A) \qquad 1526$ $1527 \qquad 1527 $ |
| 17.        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 19.1.   | $Q = D_{n+1}, n \text{ odd} $ 1527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 19.2.   | $Q = D_{n+1}, n \text{ even} $ 1528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 19.3.   | $Q = E_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 19.4.   | 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 19.5.   | $U = L_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Acknowledgments | 1530 |
|-----------------|------|
| References      | 1530 |

## 1. Introduction

In this paper, we compute the product structure of the Hochschild cohomology of preprojective algebras of quivers of types D and E over a field of characteristic zero. This is a continuation of [EE2] where the cohomology spaces together with the grading induced by the natural grading (all arrows have degree 1) were computed.

Together with the results in [ES2] where it was done for type A (over a field of any characteristic), this yields a complete description of the product in the Hochschild cohomology ring of preprojective algebras of ADE quivers over a field of characteristic zero.

We note that this description is essentially uniform (i.e. does not refer to particular Dynkindiagrams), while the proof uses case-by-case arguments.

For our computation, the same complex as in [ES2] is used, namely the one which we get by applying the *Hom*-functor to the Schofield resolution (which is periodic with period 6) of the algebra.

To compute the cup product, we use the same method as in [ES2]: via the isomorphism  $HH^i(A) \equiv \underline{Hom}(\Omega^i A, A)$  (where for an A-bimodule M we write  $\Omega M$  for the kernel of its projective cover) and we identify elements in  $HH^i(A)$  with equivalence classes of maps  $\Omega^i(A) \to A$ . For  $[f] \in HH^i(A)$  and  $[g] \in HH^j(A)$ , the product is  $[f][g] := [f \circ \Omega^i g]$  in  $HH^{i+j}(A)$ . We compute all products  $HH^i(A) \times HH^j(A) \to HH^{i+j}(A)$  for  $0 \le i \le j \le 5$ . The remaining ones follow from the perodicity of the Schofield resolution and the graded commutativity of the multiplication. Some computations are similar to those in [ES2] for type A.

In the first part of the paper, we introduce a basis for each cohomology space explicitly (for each quiver). Then in the second part we compute the product in these bases. We use the results about the grading of the cohomology spaces from [EE2] to find the bases and the products.

The main result of the paper is Theorem 4.0.8, which explicitly gives the product structure in Hochschild cohomology of these preprojective algebras. The final section of the paper gives a description of the Hochschild cohomology by generators and relations.

Note that for connected non-Dynkin quivers, the Hochschild cohomology and its product structure were already calculated in [CBEG] where the situation is much easier because the homological dimension of the preprojective algebra is 2.

We leave out long computations in the journal-version and want to refer the reader to the web-version on arXiv: math.RT/0703568.

## 2. Preliminaries

## 2.1. Quivers and path algebras

Let Q be a quiver of ADE type with vertex set I and |I| = r. We write  $a \in Q$  to say that a is an arrow in O.

We define  $Q^*$  to be the quiver obtained from Q by reversing all of its arrows. We call  $\bar{Q} = Q \cup Q^*$  the *double* of Q.

Let C be the adjacency matrix corresponding to the quiver  $\bar{Q}$ .

The concatenation of arrows generate the *nontrivial paths* inside the quiver Q. We define  $e_i$ ,  $i \in I$  to be the *trivial path* which starts and ends at i. The *path algebra*  $P_{\bar{Q}} = \mathbb{C}\bar{Q}$  of  $\bar{Q}$  over

 $\mathbb{C}$  is the  $\mathbb{C}$ -algebra with basis the paths in  $\bar{Q}$  and the product xy of two paths x and y is their concatenation if they are compatible and 0 if not. We define the *Lie bracket* [x, y] = xy - yx.

Let  $R = \bigoplus_{i \in I} \mathbb{C}e_i$ . Then R is a commutative semisimple algebra, and  $P_{\bar{Q}}$  is naturally an R-bimodule.

## 2.2. The preprojective algebra

Given a quiver Q, we define the *preprojective algebra*  $\Pi_Q$  to be the quotient of the path algebra  $P_{\bar{Q}}$  by the relation  $\sum_{a \in Q} [a, a^*] = 0$ .

Given a monomial  $x = \overline{a_1 a_2 \cdots a_n} \in P_{\bar{Q}}$ , we write  $x^*$  to be the monomial  $a_n^* \cdots a_2^* a_1^*$ , and we extend this definition linearly to all elements in  $P_{\bar{Q}}$ .

We introduce a grading, such that each trivial path has degree 0 and each arrow in  $\bar{Q}$  has degree 1.

From now on, we assume that Q is of ADE type, and we write  $A = \Pi_Q$ .

#### 2.3. Graded spaces and Hilbert series

Let  $M = \bigoplus_{d \ge 0} M(d)$  be a  $\mathbb{Z}_+$ -graded vector space, with finite dimensional homogeneous subspaces. We denote by M[n] the same space with grading shifted by n. The graded dual space  $M^*$  is defined by the formula  $M^*(n) = M(-n)^*$ .

**Definition 2.3.1** (The Hilbert series of vector spaces). Let  $M = \bigoplus_{d \ge 0} M(d)$  be a  $\mathbb{Z}_+$ -graded vector space, with finite dimensional homogeneous subspaces. We define the Hilbert series  $h_M(t)$  to be the series

$$h_M(t) = \sum_{d=0}^{\infty} \dim M(d)t^d.$$

**Definition 2.3.2** (The Hilbert series of bimodules). Let  $M = \bigoplus_{d \ge 0} M(d)$  be a  $\mathbb{Z}_+$ -graded bimodule over the ring R, so we can write  $M = \bigoplus_{i,j \in I} M_{i,j}$ . We define the Hilbert series  $H_M(t)$  to be a matrix valued series with the entries

$$H_M(t)_{i,j} = \sum_{d=0}^{\infty} \dim M(d)_{i,j} t^d.$$

## 2.4. Frobenius algebras and Nakayama automorphism

**Definition 2.4.1.** Let  $\mathcal{A}$  be a finite dimensional unital  $\mathbb{C}$ -algebra, let  $\mathcal{A}^* = Hom_{\mathbb{C}}(\mathcal{A}, \mathbb{C})$ . We call it Frobenius if there is a linear function  $f : \mathcal{A} \to \mathbb{C}$ , such that the form (x, y) := f(xy) is nondegenerate, or, equivalently, if there exists an isomorphism  $\phi : \mathcal{A} \xrightarrow{\simeq} \mathcal{A}^*$  of left  $\mathcal{A}$ -modules: given f, we can define  $\phi(a)(b) = f(ba)$ , and given  $\phi$ , we define  $f = \phi(1)$ .

**Remark 2.4.2.** If  $\tilde{f}$  is another linear function satisfying the same properties as f from above, then  $\tilde{f}(x) = f(xa)$  for some invertible  $a \in \mathcal{A}$ . Indeed, we define the form  $\{a,b\} = \tilde{f}(ab)$ . Then  $\{-,1\} \in \mathcal{A}^*$ , so there is an  $a \in \mathcal{A}$ , such that  $\phi(a) = \{-,1\}$ . Then  $\tilde{f}(x) = \{x,1\} = \phi(a)(x) = f(xa)$ .

**Definition 2.4.3.** Given a Frobenius algebra  $\mathcal{A}$  (with a function f inducing a bilinear form (-,-) from above), the automorphism  $\eta: \mathcal{A} \to \mathcal{A}$  defined by the equation  $(x, y) = (y, \eta(x))$  is called the *Nakayama automorphism* (corresponding to f).

**Remark 2.4.4.** We note that the freedom in choosing f implies that  $\eta$  is uniquely determined up to an inner automorphism. Indeed, let  $\tilde{f}(x) = f(xa)$  and define the bilinear form  $\{a, b\} = \tilde{f}(ab)$ . Then

$$\{x, y\} = \tilde{f}(xy) = f(xya) = (x, ya) = (ya, \eta(x)) = f(ya\eta(x)a^{-1}a)$$
  
=  $(y, a\eta(x)a^{-1}).$ 

## 2.5. Root system parameters

Let  $w_0$  be the longest element of the Weyl group W of Q. Then we define v to be the involution of I, such that  $w_0(\alpha_i) = -\alpha_{v(i)}$  (where  $\alpha_i$  is the simple root corresponding to  $i \in I$ ). It turns out that  $\eta(e_i) = e_{v(i)}$  ([S]; see [ES2]).

Let  $m_i$ , i = 1, ..., r, be the exponents of the root system attached to Q, enumerated in increasing order. Let  $h = m_r + 1$  be the Coxeter number in Q, i.e. the order of a Coxeter element in W.

Let P be the permutation matrix corresponding to the involution  $\nu$ . Let  $r_+ = \dim \ker(P-1)$  and  $r_- = \dim \ker(P+1)$ . Thus,  $r_-$  is half the number of vertices which are not fixed by  $\nu$ , and  $r_+ = r - r_-$ .

A is finite dimensional, and the following Hilbert series is known from [MOV, Theorem 2.3]:

$$H_A(t) = (1 + Pt^h)(1 - Ct + t^2)^{-1}.$$
 (2.5.1)

It turns out that the top degree of A is h-2 (i.e. A(d) vanishes for d>h-2), and for the top degree  $A^{\text{top}}$  part we get the following decomposition in 1-dimensional submodules:

$$A^{\text{top}} = A(h-2) = \bigoplus_{i \in I} e_i A(h-2) e_{\nu(i)}.$$
 (2.5.2)

It is known that A is a Frobenius algebra (see e.g. [ES2,MOV]).

## 3. Hochschild cohomology

The Hochschild cohomology spaces of A were computed in [EE2]. We recall the results:

## **Definition 3.0.3.** We define the spaces

$$U = \bigoplus_{d < h-2} HH^{0}(A)(d)[2],$$

$$L = HH^{0}(A)(h-2)[-h+2],$$

$$K = HH^{2}(A)[2],$$

$$Y = HH^{6}(A)(-h-2)[h+2].$$

#### Theorem 3.0.4.

(1) U has the following Hilbert series:

$$h_U(t) = \sum_{\substack{i=1\\m_i < \frac{h}{2}}}^{r} t^{2m_i}.$$
 (3.0.5)

(2) We have natural isomorphisms

$$K \equiv \ker(P+1),$$
  
 $L \equiv \langle e_i \mid v(i) = i \rangle,$ 

and

$$\dim Y = r_{+} - r_{-} - \# \left\{ i \colon m_{i} = \frac{h}{2} \right\}.$$

**Theorem 3.0.6.** For the Hochschild cohomology spaces, we have the following natural isomorphisms:

$$HH^{0}(A) = U[-2] \oplus L[h-2],$$
  
 $HH^{1}(A) = U[-2],$   
 $HH^{2}(A) = K[-2],$   
 $HH^{3}(A) = K^{*}[-2],$   
 $HH^{4}(A) = U^{*}[-2],$   
 $HH^{5}(A) = U^{*}[-2] \oplus Y^{*}[-h-2],$   
 $HH^{6}(A) = U[-2h-2] \oplus Y[-h-2],$ 

and  $HH^{6n+i}(A) = HH^i(A)[-2nh] \forall i \geqslant 1$ .

**Corollary 3.0.7.** The center  $Z = HH^0(A)$  of A has Hilbert series

$$h_Z(t) = \sum_{\substack{i=1\\m_i < \frac{h}{2}}}^{r} t^{2m_i - 2} + (r_+ - r_-)t^{h-2}.$$

## 4. Main results

From Theorem 3.0.6, we already know the additive structure of  $HH^*(A)$ . As the main result of this paper, we present the product structure in  $HH^*(A)$ . The rest of the paper is devoted to this computation. Since the product  $HH^i(A) \times HH^j(A) \to HH^{i+j}(A)$  is graded-commutative, we can assume  $i \leq j$  here.

Let  $(U[-2])_+$  be the positive degree part of U[-2] (which lies in nonnegative degrees).

We have a decomposition  $HH^0(A) = \mathbb{C} \oplus (U[-2])_+ \oplus L[-h-2]$  where we have the natural identification  $(U[-2])(0) = \mathbb{C}$ .

Let

- $z_0 = 1 \in \mathbb{C} \subset U[-2] \subset HH^0(A)$  (in lowest degree 0),
- $\theta_0$  the corresponding element in  $HH^1(A)$  (in lowest degree 0),
- $\psi_0$  the dual element of  $z_0$  in  $U^*[-2] \subset HH^5(A)$  (in highest degree -4), i.e.  $\psi_0(z_0) = 1$ ,
- $\zeta_0$  the corresponding element in  $U^*[-2] \subset HH^4(A)$  (in highest degree -4), that is the dual element of  $\theta_0$ ,  $\zeta_0(\theta_0) = 1$ ,  $\varphi_0: HH^0(A) \to HH^6(A)$  the natural quotient map (which induces the natural isomorphism  $U[-2] \to U[-2h-2]$ ) and
- $\phi$  the quotient map  $L \to Y$  induced by  $\varphi_0$  in Theorem 4.0.8.

## **Theorem 4.0.8** (The product structure in $HH^*(A)$ for quivers of types D and E).

- (1) The multiplication by  $\varphi_0(z_0)$  induces the natural isomorphisms  $\varphi_i: HH^i(A) \to HH^{i+6}(A)$   $\forall i \geq 1$  and the natural quotient map  $\varphi_0$ . Therefore, it is enough to compute products  $HH^i(A) \times HH^j(A) \to HH^{i+j}(A)$  with  $0 \leq i \leq j \leq 5$ .
- (2) The  $HH^0(A)$ -action on  $HH^i(A)$ :
  - (a)  $((U[-2])_{+}-action)$

The action of  $(U[-2])_+$  on  $U[-2] \subset HH^1(A)$  corresponds to the multiplication

$$(U[-2])_{+} \times U[-2] \to U[-2],$$
$$(u, v) \mapsto u \cdot v$$

in  $HH^0(A)$ , projected on  $U[-2] \subset HH^0(A)$ .  $(U[-2])_+$  acts on  $U^*[-2] = HH^4(A)$  and  $U^*[-2] \subset HH^5(A)$  the following way:

$$(U[-2])_+ \times U^*[-2] \to U^*[-2],$$
$$(u, f) \mapsto u \circ f.$$

where  $(u \circ f)(v) = f(uv)$ .  $(U[-2])_+$  acts by zero on  $L[h-2] \subset HH^0(A)$ ,  $HH^2(A)$ ,  $HH^3(A)$  and  $Y^*[-h-2] \subset HH^5(A)$ .

(b) (L[h-2]-action) L[h-2] acts by zero on  $HH^i(A)$ ,  $1 \le i \le 4$ , and on  $U^*[-2] \subset HH^5(A)$ . The L[h-2]-action on  $HH^5(A)$  restricts to

$$L[h-2] \times Y^*[-h-2] \to U^*[-2],$$
  
 $(a, y) \mapsto y(\phi(a))\psi_0.$ 

(3) (Zero products) All products  $HH^{i}(A) \times HH^{j}(A) \to HH^{i+j}$ ,  $1 \le i \le j \le 5$ , where  $i + j \ge 6$  or i, j are both odd are zero except the pairings

$$HH^1(A) \times HH^5(A) \to HH^6(A)$$

and

$$HH^5(A) \times HH^5(A) \rightarrow HH^{10}(A)$$
.

- (4)  $(HH^1(A)-products)$ 
  - (a) The multiplication

$$HH^{1}(A) \times HH^{4}(A) = U[-2] \times U^{*}[-2] \to HH^{5}(A)$$

is the same one as the restriction of

$$HH^0(A) \times HH^5(A) \rightarrow HH^5(A)$$

on  $U[-2] \times U^*[-2]$ .

- (b) The multiplication of the subspace  $U[-2]_+ \subset HH^1(A)$  with  $HH^i(A)$  where i = 2, 5 is zero.
- (c) The multiplication by  $\theta_0$  induces a symmetric isomorphism

$$\alpha: HH^2(A) = K[-2] \to K^*[-2] = HH^3(A).$$

On  $HH^5(A)$ , it induces a skew-symmetric isomorphism

$$\beta: Y^*[-h-2] \to Y[-h-2] \subset HH^6(A),$$

and acts by zero on  $U^*[-2] \subset HH^5(A)$ .  $\alpha$  and  $\beta$  will be given by explicit matrices  $M_{\alpha}$  and  $M_{\beta}$  later.

(5)  $(HH^2(A)-products)$ 

$$HH^2(A) \times HH^2(A) \to HH^4(A),$$
  
 $(a,b) \mapsto \langle a,b \rangle \zeta_0$ 

is given by  $\langle -, - \rangle = \alpha$  where  $\alpha$  is regarded as a symmetric bilinear form.  $HH^2(A) \times HH^3(A) \rightarrow HH^5(A)$  is the multiplication

$$K[-2] \times K^*[-2] \to HH^5(A),$$
  
 $(a, y) \mapsto y(a)\psi_0.$ 

(6)  $(HH^5(A) \times HH^5(A) \rightarrow HH^{10}(A))$ The restriction of this product to

$$Y^*[-h-2] \times Y^*[-h-2] \to HH^{10}(A),$$
$$(a,b) \mapsto \Omega(a,b)\varphi_4(\zeta_0)$$

is given by  $\Omega(-,-) = -\beta$  where  $\beta$  is regarded as a skew-symmetric bilinear form. The multiplication of the subspace  $U^*[-2] \subset HH^5(A)$  with  $HH^5(A)$  is zero.

## 5. Some basic facts about preprojective algebras

## 5.1. Labeling of quivers

From now on, we use the following labellings for the different types of quivers, as shown in Figs. 1–4.

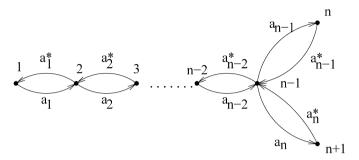



Fig. 1.  $D_{n+1}$ -quiver.

## 5.1.1. $Q = D_{n+1}$

A is the path algebra modulo the relations

$$a_1^* a_1 = 0,$$

$$a_{i+1}^* a_{i+1} = a_i a_i^*, \quad 1 \le i \le n-3,$$

$$a_{n-1} a_{n-1}^* = a_n a_n^* = 0,$$

$$a_{n-1}^* a_{n-1} + a_n^* a_n = a_{n-2} a_{n-2}^*.$$

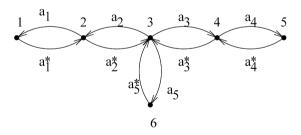



Fig. 2.  $E_6$ -quiver.

## 5.1.2. $Q = E_6$

A is the path algebra modulo the relations

$$a_1a_1^* = a_4a_4^* = a_5a_5^* = 0,$$
  
 $a_1^*a_1 = a_2a_2^*,$   
 $a_4^*a_4 = a_3a_3^*,$   
 $a_2^*a_2 + a_3^*a_3 + a_5^*a_5 = 0.$ 

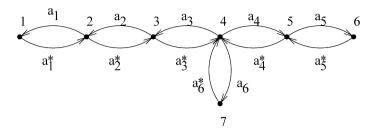



Fig. 3. E7-quiver.

## 5.1.3. $Q = E_7$

A is the path algebra modulo the relations

$$a_1a_1^* = a_5a_5^* = a_6a_6^* = 0,$$

$$a_1^*a_1 = a_2a_2^*,$$

$$a_2^*a_2 = a_3a_3^*,$$

$$a_5^*a_5 = a_4a_4^*,$$

$$a_3^*a_3 + a_4^*a_4 + a_6^*a_6 = 0.$$

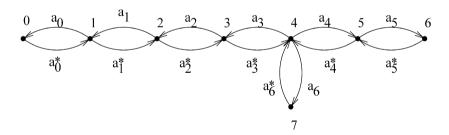



Fig. 4.  $E_8$ -quiver.

## 5.1.4. $Q = E_8$

A is the path algebra modulo the relations

$$a_0a_0^* = a_5a_5^* = a_6a_6^* = 0,$$

$$a_0^*a_0 = a_1a_1^*,$$

$$a_1^*a_1 = a_2a_2^*,$$

$$a_2^*a_2 = a_3a_3^*,$$

$$a_5^*a_5 = a_4a_4^*,$$

$$a_3^*a_3 + a_4^*a_4 + a_6^*a_6 = 0.$$

## 5.2. The Nakayama automorphism

Recall that A is a Frobenius algebra. The linear function  $f: A \to \mathbb{C}$  is zero in the nontop degree part of A. It maps a top degree element  $\omega_i \in e_i A^{\text{top}} e_{\nu(i)}$  to 1. It is uniquely determined by the choice of one of these  $\omega_i$  and a Nakayama automorphism.

For each quiver, we define a Nakayama automorphism  $\eta$  and make a choice of one  $\omega_i \in e_i A^{\text{top}} e_{\nu(i)}$ .

## 5.2.1. $Q = D_{n+1}$ , n odd

We define  $\eta$  by

$$\eta(a_i) = -a_i, \tag{5.2.1}$$

$$\eta(a_i^*) = a_i^*, \tag{5.2.2}$$

and

$$\omega_1 = a_1^* \cdots a_{n-2}^* a_{n-1}^* a_{n-1} a_{n-2} \cdots a_1. \tag{5.2.3}$$

Let

$$\overline{a_i} = (-1)^i a_{i-1} \cdots a_1 a_1^* \cdots a_{n-1}^* a_{n-1} \cdots a_{i+1} \quad \forall 1 \leqslant i \leqslant n-2,$$

$$\overline{a_{n-1}} = a_{n-2} \cdots a_1 a_1^* \cdots a_{n-1}^*,$$

$$\overline{a_n} = -a_{n-2} \cdots a_1 a_1^* \cdots a_{n-2}^* a_n^*,$$

$$\overline{a_i^*} = a_{i+1}^* \cdots a_{n-1}^* a_{n-1} \cdots a_1 a_1^* \cdots a_{i-1}^* \quad \forall 1 \leqslant i \leqslant n-2,$$

$$\overline{a_{n-1}^*} = a_{n-1} \cdots a_1 a_1^* \cdots a_{n-2}^*,$$

$$\overline{a_n^*} = -a_n a_{n-2} \cdots a_1 a_1^* \cdots a_{n-2}^*,$$

and  $\omega_i = a_i^* \overline{a_i^*} \ \forall 1 \leqslant i \leqslant n-1$  (where  $\omega_1$  coincides with the expression in (5.2.3)),  $\omega_n = a_{n-1} \overline{a_{n-1}}$ ,  $\omega_{n+1} = a_n \overline{a_n}$ . Then  $\omega_{i+1} = a_i \overline{a_i} \ \forall 1 \leqslant i \leqslant n-2$ , and  $\omega_i = \overline{a_i} \cdot (-a_i) \ \forall 1 \leqslant i \leqslant n-1$ ,  $\omega_n = \overline{a_n} \cdot (-a_n) = \overline{a_{n+1}} \cdot (-a_{n+1})$ ,  $\omega_{i+1} = \overline{a_i^*} a_i^* \ \forall 1 \leqslant i \leqslant n$ .

These  $\omega_i$  define the function f (and the bilinear form) associated to the Frobenius algebra A. Since  $\{\overline{a_1},\ldots,\overline{a_n},\overline{a_1^*},\ldots,\overline{a_n^*}\}$  in A(h-3) is a dual basis of  $\{a_1,\ldots,a_n,a_1^*,\ldots,a_n^*\}$  in A(1) and  $\{-a_1,\ldots,-a_n,a_1^*,\ldots,a_n^*\}$  in A(1) is a dual basis to  $\{\overline{a_1},\ldots,\overline{a_n},\overline{a_1^*},\ldots,\overline{a_n^*}\}$  in A(h-3), it follows that the Nakayama automorphism associated to our bilinear form is given by Eqs. (5.2.1) and (5.2.2).

# 5.2.2. $Q = D_{n+1}$ , n even

We define  $\eta$  by

$$\forall i \leqslant n-2: \quad \eta(a_i) = -a_i,$$
  
$$\forall i \leqslant n-2: \quad \eta(a_i^*) = a_i^*,$$
  
$$\eta(a_{n-1}) = -a_n,$$

$$\eta(a_{n-1}^*) = a_n^*,$$
  

$$\eta(a_n) = -a_{n-1},$$
  

$$\eta(a_n^*) = a_{n-1}^*,$$

$$\omega_1 = a_1^* \cdots a_{n-2}^* a_{n-1}^* a_{n-1} a_{n-2} \cdots a_1. \tag{5.2.4}$$

Let

$$\overline{a_i} = (-1)^i a_{i-1} \cdots a_1 a_1^* \cdots a_{n-1}^* a_{n-1} \cdots a_{i+1} \quad \forall 1 \le i \le n-2,$$

$$\overline{a_{n-1}} = a_{n-2} \cdots a_1 a_1^* \cdots a_{n-2}^* a_n^*,$$

$$\overline{a_n} = -a_{n-2} \cdots a_1 a_1^* \cdots a_{n-1}^*,$$

$$\overline{a_i^*} = a_{i+1}^* \cdots a_{n-1}^* a_{n-1} \cdots a_1 a_1^* \cdots a_{i-1}^* \quad \forall 1 \le i \le n-2,$$

$$\overline{a_{n-1}^*} = a_{n-1} \cdots a_1 a_1^* \cdots a_{n-2}^*,$$

$$\overline{a_n^*} = -a_n a_{n-2} \cdots a_1 a_1^* \cdots a_{n-2}^*$$

and  $\omega_i = a_i^* \overline{a_i^*} \ \forall 1 \leqslant i \leqslant n-1$  (where  $\omega_1$  coincides with the expression in (5.2.4)),  $\omega_n = a_{n-1} \overline{a_{n-1}}$ ,  $\omega_{n+1} = a_n \overline{a_n}$ . Then  $\omega_{i+1} = a_i \overline{a_i} \ \forall 1 \leqslant i \leqslant n-2$ ,  $\omega_{n-1} = a_n^* \overline{a_n^*}$  and  $\omega_{i+1} = \overline{a_i^*} a_i$   $\forall 1 \leqslant i \leqslant n-2$ ,  $\omega_n = \overline{a_{n-1}^*} a_n^*$ ,  $\omega_{n+1} = \overline{a_n^*} a_{n-1}^*$ ,  $\omega_i = \overline{a_i} \cdot (-a_i) \ \forall 1 \leqslant i \leqslant n-2$ ,  $\omega_n = \overline{a_5} \cdot (-a_6)$ ,  $\omega_{n+1} = \overline{a_n} \cdot (-a_{n-1})$ .

Again, these  $\omega_i$  define the function f (and the bilinear form) associated to the Frobenius algebra A. Since  $\{\overline{a_1},\ldots,\overline{a_n},\overline{a_1^*},\ldots,\overline{a_n^*}\}$  in A(h-3) is a dual basis of  $\{a_1,\ldots,a_n,a_1^*,\ldots,a_n^*\}$  in A(1) and  $\{-a_1,\ldots,-a_n,-a_{n-1},a_1^*,\ldots,a_n^*,a_{n-1}^*\}$  in A(1) is a dual basis to  $\{\overline{a_1},\ldots,\overline{a_{n-1}}\overline{a_n},\overline{a_1^*},\ldots,\overline{a_{n-1}^*},\overline{a_n^*}\}$  in A(h-3), it follows that the Nakayama automorphism associated to our bilinear form is given by  $\eta$  above.

5.2.3.  $Q = E_6$  We define  $\eta$  by

$$\eta(a_1) = -a_4, 
\eta(a_1^*) = a_4^*, 
\eta(a_2) = -a_3, 
\eta(a_2^*) = a_3^*, 
\eta(a_5) = -a_5, 
\eta(a_5^*) = a_5^*,$$

and

$$\omega_3 = a_3^* a_3 \left( a_2^* a_2 a_3^* a_3 \right)^2. \tag{5.2.5}$$

Let

$$\overline{a_1} = -a_2 a_3^* a_4^* a_4 a_3 a_5^* a_5 a_3^* a_4^*, 
\overline{a_2} = a_3^* a_4^* a_4 a_3 a_5^* a_5 a_3^* a_4^* a_4, 
\overline{a_3} = a_5^* a_5 a_3^* a_4^* a_4 a_3 a_2^* a_1^* a_1, 
\overline{a_4} = -a_3 a_5^* a_5 a_3^* a_4^* a_4 a_3 a_2^* a_1^*, 
\overline{a_5} = a_2^* a_1^* a_1 a_2 a_3^* a_4^* a_4 a_3 a_5^*, 
\overline{a_1^*} = -a_1 a_2 a_3^* a_4^* a_4 a_3 a_5^* a_5 a_3^*, 
\overline{a_2^*} = -a_1^* a_1 a_2 a_3^* a_4^* a_4 a_3 a_5^* a_5, 
\overline{a_3^*} = -a_4^* a_4 a_3 a_5^* a_5 a_3^* a_4^* a_4 a_3, 
\overline{a_4^*} = -a_4 a_3 a_5^* a_5 a_3^* a_4^* a_4 a_3 a_2^*, 
\overline{a_5^*} = a_5 a_2^* a_1^* a_1 a_2 a_3^* a_4^* a_4 a_3$$

and  $\omega_1 = a_1 \overline{a_1}$ ,  $\omega_2 = a_2 \overline{a_2}$ ,  $\omega_3 = a_2^* \overline{a_2^*}$  (which coincides with the expression in (5.2.5)),  $\omega_4 = a_3 \overline{a_3}$ ,  $\omega_5 = a_4 \overline{a_4}$ .  $\omega_6 = a_5 \overline{a_5}$ . Then  $\omega_2 = a_1^* \overline{a_1^*}$ ,  $\omega_3 = a_3^* \overline{a_3^*} = a_5^* \overline{a_5^*}$ ,  $\omega_4 = a_4^* \overline{a_4^*}$  and  $\omega_1 = \overline{a_1^*} a_4^*$ ,  $\omega_2 = \overline{a_2^*} a_3^* = \overline{a_1} \cdot (-a_4)$ ,  $\omega_3 = \overline{a_2} \cdot (-a_3) = \overline{a_3} \cdot (-a_2) = \overline{a_5} \cdot (-a_5)$ ,  $\omega_4 = \overline{a_3^*} a_2^* = \overline{a_4} \cdot (-a_1)$ ,  $\omega_5 = \overline{a_4^*} a_1^*$ ,  $\omega_6 = \overline{a_5^*} a_5^*$ .

Again, these  $\omega_i$  define the function f (and the bilinear form) associated to the Frobenius algebra A. Since  $\{\overline{a_1}, \ldots, \overline{a_5}, \overline{a_1^*}, \ldots, \overline{a_5^*}\}$  in A(h-3) is a dual basis of  $\{a_1, \ldots, a_5, a_1^*, \ldots, a_5^*\}$  in A(1) and  $\{-a_4, -a_3, -a_2, -a_1, -a_5, a_4^*, a_3^*, a_2^*, a_1^*, a_5^*\}$  in A(1) is a dual basis to  $\{\overline{a_1}, \ldots, \overline{a_5}, \overline{a_1^*}, \ldots, \overline{a_5^*}\}$  in A(h-3), it follows that the Nakayama automorphism associated to our bilinear form is given by  $\eta$  above.

5.2.4.  $Q = E_7$  We define  $\eta$  by

$$\eta(a_i) = -a_i,$$
  
$$\eta(a_i^*) = a_i^*,$$

and

$$\omega_4 = \left(a_4^* a_4 a_3^* a_3\right)^4. \tag{5.2.6}$$

Given the basis  $\{a_1, \ldots, a_6, a_1^*, \ldots, a_6^*\}$  in A(1), we claim that a dual basis  $\{\overline{a_1}, \ldots, \overline{a_6}, \overline{a_1^*}, \ldots, \overline{a_6^*}\}$  in A(h-3) is given by

$$\overline{a_1} = -a_2 a_3 a_6^* a_6 a_4^* a_4 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^*,$$

$$\overline{a_2} = a_3 a_6^* a_6 a_4^* a_4 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^* a_1,$$

$$\overline{a_3} = -a_6^* a_6 a_4^* a_4 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^* a_1 a_2,$$

$$\overline{a_4} = -a_3^* a_2^* a_1^* a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_3^* a_3 a_4^* a_5^* a_5,$$

$$\overline{a_5} = a_4 a_3^* a_2^* a_1^* a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_3^* a_3 a_4^* a_5^*,$$

$$\overline{a_6} = a_4^* a_4 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^* a_1 a_2 a_3 a_6^*,$$

$$\overline{a_1^*} = -a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^*,$$

$$\overline{a_2^*} = -a_1^* a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^*,$$

$$\overline{a_3^*} = -a_2^* a_1^* a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_3^* a_3 a_4^* a_5^* a_5 a_4,$$

$$\overline{a_4^*} = -a_5^* a_5 a_4 a_3^* a_2^* a_1^* a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_3^* a_3^*,$$

$$\overline{a_5^*} = -a_5 a_4 a_3^* a_2^* a_1^* a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_3^* a_3 a_4^*,$$

$$\overline{a_6^*} = a_6 a_1^* a_4 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_3^* a_1^* a_1 a_2 a_3$$

and  $\omega_i = a_i \overline{a_i} \ \forall 1 \leqslant i \leqslant 3$ ,  $\omega_{i+1} = a_i \overline{a_i} \ \forall 4 \leqslant i \leqslant 6$ ,  $\omega_4 = a_3^* \overline{a_3^*}$ . Then  $\omega_2 = a_1^* \overline{a_1^*}$ ,  $\omega_3 = a_2^* \overline{a_2^*}$ ,  $\omega_4 = a_4^* \overline{a_4^*} = a_6^* \overline{a_6^*}$  (which coincides with the expression (5.2.6)),  $\omega_5 = a_5^* \overline{a_5^*}$  and  $\omega_i = \overline{a_i^*} a_i^*$   $\forall 1 \leqslant i \leqslant 3$ ,  $\omega_{i+1} = \overline{a_i^*} a_i^* \ \forall 4 \leqslant i \leqslant 6$ ,  $\omega_{i+1} = \overline{a_i} \cdot (-a_i) \ \forall 1 \leqslant i \leqslant 3$ ,  $\omega_i = \overline{a_i} \cdot (-a_i) \ \forall 4 \leqslant i \leqslant 5$ ,  $\omega_4 = \overline{a_6} \cdot (-a_6)$ .

Again, these  $\omega_i$  define the function f (and the bilinear form) associated to the Frobenius algebra A. Since  $\{\overline{a_1},\ldots,\overline{a_6},\overline{a_1^*},\ldots,\overline{a_6^*}\}$  in A(h-3) is a dual basis of  $\{a_1,\ldots,a_6,a_1^*,\ldots,a_6^*\}$  in A(1) and  $\{-a_1,\ldots,-a_6,a_1^*,\ldots,a_6^*\}$  in A(1) is a dual basis to  $\{\overline{a_1},\ldots,\overline{a_6}\overline{a_1^*},\ldots,\overline{a_6^*}\}$  in A(h-3), it follows that the Nakayama automorphism associated to our bilinear form is given by  $\eta$  above.

5.2.5.  $Q = E_8$  We define  $\eta$  by

$$\eta(a_i) = -a_i,$$
  
$$\eta(a_i^*) = a_i^*,$$

and

$$\omega_4 = \left(a_4^* a_4 a_3^* a_3\right)^7. \tag{5.2.7}$$

Then

$$\overline{a_0} = a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^* a_0^*,$$

$$\overline{a_1} = -a_2 a_3 a_6^* a_6 a_4^* a_4 a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^* a_0^* a_0,$$

$$\overline{a_2} = a_3 a_6^* a_6 a_4^* a_4 a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^* a_0^* a_0 a_1,$$

$$\overline{a_3} = -a_6^* a_6 a_4^* a_4 a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^* a_0^* a_0 a_1 a_2,$$

$$\overline{a_4} = -a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^* a_0^* a_0 a_1 a_2 a_3 a_6^* a_6 a_4^* a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a_3^$$

$$\overline{a_6} = a_4^* a_4 a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^* a_0^* a_0 a_1 a_2 a_3 a_6^*,$$

$$\overline{a_0^*} = a_0 a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^*,$$

$$\overline{a_1^*} = a_0^* a_0 a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_2^*,$$

$$\overline{a_2^*} = a_1^* a_0^* a_0 a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^*,$$

$$\overline{a_3^*} = a_2^* a_1^* a_0^* a_0 a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a_3^* a_3 a_4^* a_5^* a_5 a_4 a_3^* a_3^* a_3^* a_3^* a_4^* a_4^* a_5^* a_5 a_4 a_3^* a_2^* a_1^* a_0^* a_0 a_1 a_2 a_3 a_6^* a_6 a_4^* a_6^* a_6 a_3^* a_3 a_3^* a_3 a_4^* a_4 a_3^* a_3 a$$

and  $\omega_i = a_i \overline{a_i} \ \forall 0 \leqslant i \leqslant 3$ ,  $\omega_{i+1} = a_i \overline{a_i} \ \forall 4 \leqslant i \leqslant 6$ ,  $\omega_4 = a_3^* \overline{a_3^*}$ . Then  $\omega_2 = \underline{a_1^*} \overline{a_1^*}$ ,  $\omega_3 = \underline{a_2^*} \overline{a_2^*}$ ,  $\omega_4 = a_4^* \overline{a_4^*} = a_6^* \overline{a_6^*}$  (which coincides with the expression (5.2.7)),  $\omega_5 = a_5^* \overline{a_5^*}$  and  $\omega_i = \overline{a_i^*} a_i^*$   $\forall 0 \leqslant i \leqslant 3$ ,  $\omega_{i+1} = \overline{a_i^*} a_i^* \ \forall 4 \leqslant i \leqslant 6$ ,  $\omega_{i+1} = \overline{a_i} \cdot (-a_i) \ \forall 0 \leqslant i \leqslant 3$ ,  $\omega_i = \overline{a_i} \cdot (-a_i) \ \forall 4 \leqslant i \leqslant 5$ ,  $\omega_4 = \overline{a_6} \cdot (-a_6)$ .

Again, these  $\omega_i$  define the function f (and the bilinear form) associated to the Frobenius algebra A. Since  $\{\overline{a_0}, \ldots, \overline{a_6}, \overline{a_0^*}, \ldots, \overline{a_6^*}\}$  in A(h-3) is a dual basis of  $\{a_0, \ldots, a_6, a_0^*, \ldots, a_6^*\}$  in A(1) and  $\{-a_0, \ldots, -a_6, a_0^*, \ldots, a_6^*\}$  in A(1) is a dual basis to  $\{\overline{a_0}, \ldots, \overline{a_6}, \overline{a_0^*}, \ldots, \overline{a_6^*}\}$  in A(h-3), it follows that the Nakayama automorphism associated to our bilinear form is given by  $\eta$  above.

## 5.3. Preprojective algebras by numbers

We summarize useful numbers associated to preprojective algebras, by quiver:

| $\overline{Q}$                                 | Exponents $m_i$              | h          | deg A <sup>top</sup> | Degrees $HH^0(A)$                                              |
|------------------------------------------------|------------------------------|------------|----------------------|----------------------------------------------------------------|
| $D_{n+1} \frac{n \text{ odd}}{n \text{ even}}$ | $1,3,\ldots,2n-1,n$          | 2 <i>n</i> | 2n - 2               | $0, 4, \dots, 2n - 6, 2n - 2$<br>$0, 4, \dots, 2n - 4, 2n - 2$ |
| $\overline{E_6}$                               | 1, 4, 5, 7, 8, 11            | 12         | 10                   | 0, 6, 8, 10                                                    |
| $\overline{E_7}$                               | 1, 5, 7, 9, 11, 13, 17       | 18         | 16                   | 0, 8, 12, 16                                                   |
| $\overline{E_8}$                               | 1, 7, 11, 13, 17, 19, 23, 29 | 30         | 28                   | 0, 12, 20, 24, 28                                              |

We see that for quivers of types D and E, the degrees of the space U (which are  $2m_i$ ,  $m_i < \frac{h}{2}$ ) are even and range from 0 to h-2.

We get the following degree ranges for the Hochschild cohomology:

$$\begin{array}{ll} HH^0(A) = U[-2] \oplus L[h-2], & 0 \leqslant \deg HH^0(A) \leqslant h-2, \\ HH^1(A) = U[-2], & 0 \leqslant \deg HH^1(A) \leqslant h-4, \\ HH^2(A) = K[-2], & \deg HH^2(A) = -2, \\ HH^3(A) = K^*[-2], & \deg HH^3(A) = -2, \\ HH^4(A) = U^*[-2], & -h \leqslant \deg HH^4(A) \leqslant -4, \\ HH^5(A) = U^*[-2] \oplus Y^*[-h-2], & -h-2 \leqslant \deg HH^5(A) \leqslant -4, \\ HH^6(A) = U[-2h-2] \oplus Y[-h-2], & -2h \leqslant \deg HH^6(A) \leqslant -h-2. \end{array}$$

## 5.4. The Schofield resolution

We recall the Schofield resolution of A from [S].

Define the A-bimodule  $\mathcal N$  obtained from A by twisting the right action by  $\eta$ , i.e.,  $\mathcal N=A$  as a vector space, and  $\forall a,b\in A,y\in \mathcal N\colon a\cdot y\cdot b=ay\eta(b)$ . Introduce the notation  $\epsilon_a=1$  if  $a\in Q$ ,  $\epsilon_a=-1$  if  $a\in Q^*$ . We write B for a set of all homogeneous basis elements of A, let  $(x_i)_{x_i\in B}$  be a homogeneous basis of A and  $(x_i^*)_{x_i\in B}$  the dual basis under the form attached to the Frobenius algebra A. Let V be the bimodule spanned by the arrows of  $\bar Q$ .

We start with the following exact sequence:

$$0 \to \mathcal{N}[h] \xrightarrow{i} P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} A \to 0,$$

where  $P_2 = A \otimes_R A[2]$ ,  $P_1 = A \otimes_R V \otimes_R A$ ,  $P_0 = A \otimes_R A$ ,

$$d_0(u \otimes v) = uv,$$

$$d_1(u \otimes v \otimes w) = uv \otimes w - u \otimes vw,$$

$$d_2(u \otimes v) = \sum_{a \in \bar{Q}} \epsilon_a ua \otimes a^* \otimes v + \sum_{a \in \bar{Q}} \epsilon_a u \otimes a \otimes a^*v,$$

$$i(a) = a \sum_{v \in R} x_i \otimes x_i^*,$$

where B is a homogeneous basis of A.

Since  $\eta^2 = 1$ , we can make a canonical identification  $A = \mathcal{N} \otimes_A \mathcal{N}$  (via  $x \mapsto x \otimes 1$ ), so by tensoring the above exact sequence with  $\mathcal{N}$ , connecting with the original exact sequence and repeating this process, we get the Schofield resolution

$$\cdots \rightarrow P_6 \xrightarrow{d_6} P_5 \xrightarrow{d_5} \rightarrow P_4 \xrightarrow{d_4} P_3 \xrightarrow{d_3} P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} A \rightarrow 0$$

with

$$P_{i+3} = (P_i \otimes_R \mathcal{N})[h].$$

We will work with the Hochschild cohomology complex obtained from this resolution, which is given explicitly in [EE2, Subsection 4.5]. This allows us to identify  $HH^i(A)$  with quotients of subsets of  $A^R$ ,  $\mathcal{N}^R$ ,  $(V \otimes A)^R$  and  $(V \otimes \mathcal{N})^R$ , where denote  $U^R$  as the space of R-invariants in U. For an element v in  $A^R$ ,  $\mathcal{N}^R$ ,  $(V \otimes A)^R$  or  $(V \otimes \mathcal{N})^R$ , we denote its cohomology class by [v].

## 5.5. Basis of the preprojective algebra for $Q = D_{n+1}$

We need to work with the Hilbert series and with an explicit basis of A. We do this for each type of quiver separately.

We write B for a set of all homogeneous basis elements of A,  $B_{i,-}$  for a homogeneous basis of  $e_i A$ ,  $B_{-,j}$  for a homogeneous basis of  $Ae_j$ ,  $B_{i,j}$  for a basis of  $e_i Ae_j$  and  $B_{i,j}(d)$  for a basis of  $e_i Ae_j(d)$ .

A basis of *A* is given by the following elements: For  $k, j \le n - 1$ :

$$B_{k,n} = \left\{ \left( a_{k-1} a_{k-1}^* \right)^l a_k^* \cdots a_{n-2}^* a_{n-1}^* \ \middle| \ 0 \leqslant l \leqslant k-1 \right\},$$

$$B_{k,n+1} = \left\{ \left( a_{k-1} a_{k-1}^* \right)^l a_k^* \cdots a_{n-2}^* a_n^* \ \middle| \ 0 \leqslant l \leqslant k-1 \right\},$$

$$B_{n,n} = \left\{ \left( a_{n-1} a_n^* a_n a_{n-1}^* \right)^l \ \middle| \ 0 \leqslant l \leqslant \left\{ \frac{n-1}{2} \quad n \text{ odd}, \right\},$$

$$B_{n+1,n+1} = \left\{ \left( a_n a_{n-1}^* a_{n-1} a_n^* \right)^l \ \middle| \ 0 \leqslant l \leqslant \left\{ \frac{n-1}{2} \quad n \text{ odd}, \right\},$$

$$B_{n+1,n+1} = \left\{ a_n a_{n-1}^* a_{n-1} a_n^* \right)^l \ \middle| \ 0 \leqslant l \leqslant \left\{ \frac{n-3}{2} \quad n \text{ odd}, \right\},$$

$$B_{n+1,n} = \left\{ a_n a_{n-1}^* \left( a_{n-1} a_n^* a_n a_{n-1}^* \right)^l \ \middle| \ 0 \leqslant l \leqslant \left\{ \frac{n-3}{2} \quad n \text{ odd}, \right\},$$

$$B_{n,n+1} = \left\{ a_{n-1} a_n^* \left( a_n a_{n-1}^* a_{n-1} a_n^* \right)^l \ \middle| \ 0 \leqslant l \leqslant \left\{ \frac{n-3}{2} \quad n \text{ odd}, \right\},$$

$$B_{n,n+1} = \left\{ a_{n-1} a_{n-2} \cdots a_j \left( a_{j-1} a_{j-1}^* \right)^l \ \middle| \ 0 \leqslant l \leqslant j-1 \right\},$$

$$B_{n+1,j} = \left\{ a_n a_{n-2} \cdots a_j \left( a_{j-1} a_{j-1}^* \right)^l \ \middle| \ 0 \leqslant l \leqslant j-1 \right\}.$$

For  $k \le j \le n-1$ ,

$$B_{k,j} = \left\{ \left( a_{k-1} a_{k-1}^* \right)^l a_k^* \cdots a_{j-1}^* \mid 0 \leqslant l \leqslant \min\{k-1, n-j-1\} \right\}$$

$$\cup \left\{ \left( a_{k-1} a_{k-1}^* \right)^l a_k^* \cdots a_{n-1}^* a_{n-1} a_{n-2} \cdots a_j \mid 0 \leqslant l \leqslant k-1 \right\}$$

$$\cup \left\{ \left( a_{k-1} a_{k-1}^* \right)^l a_k^* \cdots a_n^* a_n a_{n-2} \cdots a_j \mid 0 \leqslant l \leqslant k-1+j-n \right\}.$$

For  $j < k \le n - 1$ ,

$$B_{k,j} = \left\{ a_{k-1} \cdots a_j \left( a_j^* a_j \right)^l \mid 0 \leqslant l \leqslant \min\{n - k - 1, j - 1\} \right\}$$

$$\cup \left\{ a_k^* \cdots a_{n-2}^* a_{n-1}^* a_{n-1} a_{n-2} \cdots a_j \left( a_j^* a_j \right)^l \mid 0 \leqslant l \leqslant j - 1 \right\}$$

$$\cup \left\{ a_k^* \cdots a_{n-2}^* a_n^* a_n a_{n-2} \cdots a_j \left( a_j^* a_j \right)^l \mid 0 \leqslant l \leqslant j - 1 + k - n \right\}.$$

5.6. Hilbert series of the preprojective algebra for  $Q = E_6$ 

We give the columns of the Hilbert series  $H_A(t)$  which can be calculated from (2.5.1):

$$(H_A(t)_{i,1})_{1 \leqslant i \leqslant 6} = \begin{pmatrix} 1 + t^6 \\ t + t^5 + t^7 \\ t^2 + t^4 + t^6 + t^8 \\ t^3 + t^5 + t^9 \\ t^4 + t^{10} \\ t^3 + t^7 \end{pmatrix},$$

$$(H_{A}(t)_{i,2})_{1\leqslant i\leqslant 6} = \begin{pmatrix} t+t^5+t^7\\ 1+t^2+t^4+2t^6+t^8\\ t+2t^3+2t^5+2t^7+t^9\\ t^2+2t^4+t^6+t^8+t^{10}\\ t^3+t^5+t^9\\ t^2+t^4+t^6+t^8 \end{pmatrix},$$

$$(H_{A}(t)_{i,3})_{1\leqslant i\leqslant 6} = \begin{pmatrix} t^2+t^4+t^6+t^8\\ t+2t^3+2t^5+2t^7+t^9\\ 1+2t^2+3t^4+3t^6+2t^8+t^{10}\\ t+2t^3+2t^5+2t^7+t^9\\ t^2+t^4+t^6+t^8\\ t+t^3+2t^5+t^7+t^9 \end{pmatrix},$$

$$(H_{A}(t)_{i,4})_{1\leqslant i\leqslant 6} = \begin{pmatrix} t^3+t^5+t^9\\ t^2+2t^4+t^6+t^8+t^{10}\\ t+2t^3+2t^5+2t^7+t^9\\ 1+t^2+t^4+2t^6+t^8\\ t+t^5+t^7\\ t^2+t^4+t^6+t^8 \end{pmatrix},$$

$$(H_{A}(t)_{i,5})_{1\leqslant i\leqslant 6} = \begin{pmatrix} t^4+t^{10}\\ t^3+t^5+t^9\\ t^2+t^4+t^6+t^8\\ t+t^5+t^7\\ t^2+t^4+t^6+t^8 \end{pmatrix},$$

$$(H_A(t)_{i,6})_{1 \leqslant i \leqslant 6} = \begin{pmatrix} t^3 + t^7 \\ t^2 + t^4 + t^6 + t^8 \\ t + t^3 + 2t^5 + t^7 + t^9 \\ t^2 + t^4 + t^6 + t^8 \\ t^3 + t^7 \\ 1 + t^4 + t^6 + t^{10} \end{pmatrix}.$$

# 6. $HH^0(A) = Z$

From the Hilbert series (Corollary 3.0.7) we see that we have one (unique up to a constant factor) central element of degree  $2m_i - 2$  for each exponent  $m_i < \frac{h}{2}$ . We will denote a deg i(< h - 2) central element by  $z_i$ .

From (2.5.2) and from the Hilbert series we can also see that the top degree (= deg h - 2) center is spanned by one element  $\omega_i$  in each  $e_i A e_i$ , such that  $\nu(i) = i$ .

The  $\omega_i \in L[h-2]$  are already given in Section 2.4, and we will find the  $z_i \in U[-2]$  for each Dynkin quiver separately.

6.1. 
$$Q = D_{n+1}$$

We define the nonzero elements

$$b_{i,0} = e_i,$$

$$b_{i,j} = a_i^* \cdots a_{i+j-1}^* a_{i+j-1} \cdots a_i \quad \text{(where } 1 \leqslant j \leqslant \min\{i-1, n-1-i\}\text{)},$$

$$c_{i,j} = a_i^* \cdots a_{n-2}^* \left(a_{n-2} a_{n-2}^*\right)^j a_{n-2} \cdots a_i \quad \text{(where } 1 \leqslant i \leqslant n-2, \ 1 \leqslant j \leqslant i-1\text{)},$$

$$c_{n-1,j} = \left(a_{n-2} a_{n-2}^*\right)^j, \quad 1 \leqslant j \leqslant n-2,$$

$$c_i' = a_i^* \cdots a_{n-2}^* a_{n-1}^* a_{n-1} \left(a_{n-2} a_{n-2}^*\right)^{i-1} a_{n-2} \cdots a_i, \quad 1 \leqslant i \leqslant n-1,$$

$$d_0 = e_n,$$

$$d_j = \left(a_{n-1} a_n^* a_n a_{n-1}^*\right)^j \quad \text{for } 1 \leqslant j \leqslant \frac{n}{2},$$

$$d_0' = e_{n+1},$$

$$d_j' = \left(a_n a_{n-1}^* a_{n-1} a_n^*\right)^j \quad \text{for } 1 \leqslant j \leqslant \frac{n}{2}$$

and extend this notation for any other j, where  $b_{i,j}$ ,  $c_{i,j}$ ,  $d_j$  and  $d'_i$  are zero.

The exponents  $m_i$  are 1, 3, ..., 2n - 1, n and h = 2n. From Corollary 3.0.7 we get the Hilbert series of Z, depending on the parity of n, since  $r_+ = n + 1$  for n odd and  $r_+ = n - 1$  for n even:

n odd: 
$$h_Z(t) = 1 + t^4 + t^8 + \dots + t^{2n-6} + (n+1)t^{2n-2}$$
,  
n even:  $h_Z(t) = 1 + t^4 + t^8 + \dots + t^{2n-4} + (n-1)t^{2n-2}$ .

The central elements of degree 4j < 2n - 2 are

$$z_{4j} = \sum_{i=2i+1}^{n-1-2j} b_{i,2j} + \sum_{i=0}^{2j-1} c_{n-1-i,2j-i} + d_j + d'_j.$$

The top degree central elements are  $\omega_i = c_i'$   $(1 \le i \le n-1)$ , and additionally  $\omega_n = d_{\frac{n-1}{2}}$ ,  $-\omega_{n+1} = d_{\frac{n-1}{2}}'$  if n is odd.

For  $j + k < \frac{n-1}{2}$  we get the following product:

$$z_{4j}z_{4k} = z_{4(j+k)}$$
.

If *n* is odd and  $j + k = \frac{n-1}{2}$ , the multiplication becomes

$$z_{4j}z_{4k} = d_{\frac{n-1}{2}} + d'_{\frac{n-1}{2}} = \omega_n - \omega_{n+1}.$$

6.2. 
$$Q = E_6$$

The Coxeter number is h = 12, and the exponents  $m_i < \frac{h}{2} = 6$  are 1, 4, 5,  $r_+ = 2$ . For the center, we get the following Hilbert series (from Corollary 3.0.7):

$$h_Z(t) = 1 + t^6 + t^8 + 2t^{10}$$
.

From the degrees, we see that the product of any two positive degree central elements is always 0. The central elements are  $z_0 = 1$ ,  $z_6$ ,  $z_8$ ,  $\omega_3$  and  $\omega_6$ .

We give the central elements  $z_6$  and  $z_8$  explicitly (it can be easily checked that they are central):

## **Proposition 6.2.1.**

(1) The central element of deg 6 is

$$z_6 = a_1 a_2 a_3^* a_3 a_2^* a_1^* - a_2 (a_3^* a_3)^2 a_2^* - a_5^* a_5 a_3^* a_3 a_5^* a_5 + a_3 (a_2^* a_2)^2 a_3^* - a_4 a_3 a_2^* a_2 a_3^* a_4^*,$$

(2) the central element of deg 8 is

$$z_8 = -a_2 a_5^* a_5 a_3^* a_3 a_5^* a_5 a_2^* - a_5^* a_5 (a_3^* a_3)^2 a_5^* a_5 - a_3 a_5^* a_5 a_2^* a_2 a_5^* a_5 a_3^*.$$

6.3. 
$$Q = E_7$$

The Coxeter number is h = 18, the exponents  $m_i < \frac{h}{2} = 9$  are 1, 5, 7,  $r_+ = 7$ , and the Hilbert series of the center is (see Corollary 3.0.7):

$$h_Z(t) = 1 + t^8 + t^{12} + 7t^{16}$$
.

The center is spanned by  $z_0 = 1, z_8, z_{12}, \omega_1, \dots, \omega_7$ . The only interesting product to compute is  $z_8^2$  which lies in the top degree.

We give  $z_8$  and  $z_{12}$  explicitly:

## Proposition 6.3.1.

(1) The central element of degree 8 is

$$z_8 = -a_1 a_2 a_3 a_6^* a_6 a_3^* a_2^* a_1^* - a_2 a_3 (a_4^* a_4)^2 a_3^* a_2^* - a_3 a_6^* a_6 a_4^* a_4 a_6^* a_6 a_3^*$$
$$- a_4^* a_4 (a_3^* a_3)^2 a_4^* a_4 - a_4 a_4^* a_4 a_6^* a_6 a_4^* a_4 a_4^* + a_6 a_4^* a_4 a_6^* a_6 a_4^* a_4 a_6^*.$$

(2) The central element of degree 12 is

$$z_{12} = -a_3 (a_4^* a_4 a_6^* a_6)^2 a_4^* a_4 a_3^* - a_4^* a_4 a_6^* a_6 (a_4^* a_4)^2 a_6^* a_6 a_4^* a_4$$
$$+ a_4 (a_6^* a_6 a_4^* a_4)^2 a_6^* a_6 a_4^* + a_6 (a_4^* a_4 a_6^* a_6)^2 a_4^* a_4 a_6^*.$$

## **Proposition 6.3.2.** We get

$$z_8^2 = \omega_1 + \omega_3 - \omega_7.$$

6.4. 
$$Q = E_8$$

The Coxeter number h = 30, and the exponents  $m_i < \frac{h}{2} = 15$  are 1, 7, 11, 13,  $r_+ = 8$ . For the center, we get the following Hilbert series (from Corollary 3.0.7):

$$h_Z(t) = 1 + t^{12} + t^{20} + t^{24} + 8t^{28}$$

The center is spanned by  $z_0 = 1$ ,  $z_{12}$ ,  $z_{20}$ ,  $z_{24}$ ,  $\omega_1, \ldots, \omega_8$ . The only interesting product is  $z_{12}^2$ .

## Proposition 6.4.1.

(1) The central element of degree 12 is

$$z_{12} = a_1 a_2 a_3 a_6^* a_6 a_4^* a_4 a_6^* a_6 a_3^* a_2^* a_1^* + a_2 a_3 a_4^* a_4 \left(a_3^* a_3\right)^2 a_4^* a_4 a_3^* a_2^*$$

$$+ a_3 \left(a_4^* a_4 a_6^* a_6\right)^2 a_4^* a_4 a_3^* + \left(a_3^* a_3 a_4^* a_4 a_3^* a_3\right)^2 - a_4 \left(a_6^* a_6 a_4^* a_4\right)^2 a_6^* a_6 a_4^*$$

$$+ a_5 a_4 a_6^* a_6 \left(a_4^* a_4\right)^2 a_6^* a_6 a_4^* a_5^* - a_6 \left(a_4^* a_4 a_6^* a_6\right)^2 a_4^* a_4 a_6^*.$$

(2) The central element of degree 20 is

$$z_{20} = -a_1 a_2 a_3 (a_4^* a_4)^2 (a_3^* a_3)^3 (a_4^* a_4)^2 a_3^* a_2^* a_1^* - a_2 a_3 (a_6^* a_6 a_4^* a_4)^2 (a_4^* a_4 a_6^* a_6)^2 a_3^* a_2^*$$

$$+ a_3 (a_6^* a_6 a_4^* a_4)^4 a_6^* a_6 a_3^* - (a_4^* a_4 a_6^* a_6)^5 + (a_6^* a_6 (a_4^* a_4)^2)^3 a_6^* a_6$$

$$- (a_6^* a_6 a_4^* a_4)^5 - a_4 (a_4^* a_4 a_6^* a_6 a_4^* a_4)^3 a_4^* - a_6 (a_4^* a_4 a_6^* a_6)^4 a_4^* a_4 a_6^*.$$

(3) The central element of degree 24 is

$$z_{24} = z_{12}^2.$$

## 7. $HH^{1}(A)$

Recall Theorem 3.0.6 where we know that  $HH^1(A)$  is isomorphic to the nontopdegree part of  $HH^0(A)$ . In fact,  $HH^1(A)$  is generated by the central elements in the following way:

**Proposition 7.0.2.**  $HH^1(A)$  is spanned by maps

$$\theta_k : (A \otimes V \otimes A) \to A,$$
  

$$\theta_k (1 \otimes a_i \otimes 1) = 0,$$
  

$$\theta_k (1 \otimes a_i^* \otimes 1) = a_i^* z_k.$$

**Proof.** These maps clearly lie in ker  $d_2^*$ : Recall

$$A \otimes A \xrightarrow{d_2} A \otimes V \otimes A,$$
  
$$x \otimes y \longmapsto \sum_{a \in \tilde{Q}} \epsilon_a x a \otimes a^* \otimes y + \sum_{a \in \tilde{Q}} \epsilon_a x \otimes a \otimes a^* y,$$

then

$$d_2^* \circ \theta_k(1 \otimes 1) = \theta_k \left( \sum_{a \in \bar{Q}} \epsilon_a a \otimes a^* \otimes 1 + \sum_{a \in \bar{Q}} \epsilon_a 1 \otimes a \otimes a^* \right)$$
$$= \sum_{i \in I} a_i a_i^* z_k - \sum_{i \in I} a_i^* a_i z_k = \sum_{i \in I} [a_i, a_i^*] z_k = 0.$$

We will later see in section 10 that  $HH^4(A)$  is generated by  $\zeta_k$  where  $\zeta_k(\theta_k) = 1$  under the duality  $HH^4(A) = (HH^1(A))^*$  established in [EE2], so  $\theta_k$  is nonzero in  $HH^1(A)$ .  $\square$ 

## 8. $HH^{2}(A)$

We know from Theorem 3.0.6 that  $HH^2(A) = K[-2]$  lies in degree -2, i.e. in the lowest degree of  $A^R[-2]$  (using the identifications in [EE2, Section 4.5]), that is in R[-2]. Since the image of  $d_2^*$  lies in degree > -2,  $HH^2(A) = \ker d_3^*$ .

**Proposition 8.0.3.**  $HH^2(A)$  is given by the kernel of the matrix  $H_A(1)$ , where we identify  $\mathbb{C}^I = R = \bigoplus_{i \in I} Re_i$ .

Proof. Recall

$$d_3^*(y) = \sum_{x_i \in B} x_i y x_i^* = \sum_{j,k \in I} \sum_{x_i \in B_{j,k}} x_i y x_i^*.$$

For each  $x_i \in e_k A e_j$ , we see that  $x_i e_l x_i^* = \delta_{jl} \omega_k$ .

It follows that for  $y = \sum_{i \in I} \lambda_i e_i$  the map is given by

$$d_3^*(y) = \sum_{i \in I} \mu_i \omega_i,$$

where the vectors  $\lambda = (\lambda_i)_{i \in I} \in \mathbb{C}^I$  and  $\mu = (\mu_i)_{i \in I} \in \mathbb{C}^I$  satisfy the equation

$$H_A(1)\lambda = \mu. \tag{8.0.4}$$

So the kernel of  $d_3^*$  is given by the kernel of  $H_A(1)$ .  $\square$ 

Now, we find the elements in  $HH^2(A)$  for the quivers separately.

8.1.  $Q = D_{n+1}$ , n even

$$H_{A}(1) = \begin{pmatrix} 2 & 2 & 2 & 2 & \dots & \dots & 2 & 1 & 1 \\ 2 & 4 & 4 & 4 & \dots & \dots & 4 & 2 & 2 \\ 2 & 4 & 6 & 6 & \dots & \dots & 6 & 3 & 3 \\ 2 & 4 & 6 & 8 & \dots & \dots & 8 & 4 & 4 \\ \vdots & \vdots & \vdots & \vdots & \ddots & & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 2 & 4 & 6 & 8 & \dots & \dots & 2(n-1) & n-1 & n-1 \\ 1 & 2 & 3 & 4 & \dots & \dots & n-1 & \frac{n}{2} & \frac{n}{2} \\ 1 & 2 & 3 & 4 & \dots & \dots & n-1 & \frac{n}{2} & \frac{n}{2} \end{pmatrix}$$

$$(8.1.1)$$

with kernel  $\langle e_n - e_{n+1} \rangle$ . So a basis of  $HH^2(A)$  is given by

$${f_n = [e_n - e_{n+1}]}.$$

8.2.  $Q = E_6$ 

$$H_A(1) = \begin{pmatrix} 2 & 3 & 4 & 3 & 2 & 2 \\ 3 & 6 & 8 & 6 & 3 & 4 \\ 4 & 8 & 12 & 8 & 4 & 6 \\ 3 & 6 & 8 & 6 & 3 & 4 \\ 2 & 3 & 4 & 3 & 2 & 2 \\ 2 & 4 & 6 & 4 & 2 & 4 \end{pmatrix}$$
(8.2.1)

with kernel  $\langle e_1 - e_5, e_2 - e_4 \rangle$ . So a basis of  $HH^2(A)$  is given by

$${f_1 = [e_1 - e_5], f_2 = [e_2 - e_4]}.$$

# 9. $HH^{3}(A)$

We know that  $HH^3(A)$  lives in degree -2. Using the notations and identifications in [EE2, Subsection 4.5], we see that the kernel of  $d_4^*$  has to be the top degree part of  $\mathcal{N}^R[-h]$  (since Im  $d_3^*$  lives in degree -2), so

$$HH^{3}(A) = \mathcal{N}^{R}[-h](-2)/\operatorname{Im} d_{3}^{*}.$$

**Proposition 9.0.2.**  $HH^3(A)$  is given by the cokernel of the matrix  $H_A(1)$ , where we identify  $\mathbb{C}^I = A^{\text{top}} = \bigoplus_{i \in I} e_i A^{\text{top}} e_{\nu(i)}$ .

**Proof.** This follows immediately from the discussion in the previous section because  $d_3^*$  is given by  $H_A(1)$ .  $\square$ 

Note that  $HH^3(A) = (HH^2(A))^*$  under the duality in [EE2]. We choose a basis  $h_i$  of  $HH^3(A)$ , so that  $h_i(f_i) = \delta_{i,j}$ .

9.1.  $Q = D_{n+1}$ , n even

From  $H_A(1)$  in (8.1.1) we see that:

$$d_3^*(2e_1 - e_2) = 2\omega_1,$$

$$d_3^*(-e_{i-1} + 2e_i - e_{i+1}) = 2\omega_i \quad \forall 2 \le i \le n-2,$$

$$d_3^*((-n-1)e_{n-2} + 2(n-1)e_{n-1} - 2(n-1)e_n) = (n-1)\omega_{n-1},$$

$$d_3^*(2e_n - e_{n-1}) = \omega_n + \omega_{n+1},$$

so

$$HH^{3}(A) = (\mathcal{N}^{R})^{\text{top}}[-h]/(\omega_{1} = \omega_{2} = \dots = \omega_{n-1} = 0, \ \omega_{n} + \omega_{n+1} = 0)$$

with basis

$$\{h_n = [\omega_n]\}.$$

9.2.  $Q = E_6$ 

From  $H_A(1)$  in (8.2.1) we see that:

$$d_3^*(2e_1 - e_2) = \omega_1 + \omega_5,$$
  

$$d_3^*(-e_1 + 2e_2 - e_3) = \omega_2 + \omega_4,$$
  

$$d_3^*(-2e_2 + 2e_3 - e_6) = 2\omega_3,$$
  

$$d_3^*(-e_3 + 2e_6) = 2\omega_6,$$

so

$$HH^{3}(A) = (\mathcal{N}^{R})^{\text{top}}[-h]/(\omega_{3} = \omega_{6} = \omega_{1} + \omega_{5} = \omega_{2} + \omega_{3} = 0)$$

with basis

$${h_1 = [\omega_1], h_2 = [\omega_2]}.$$

## 10. $HH^4(A)$

We have  $HH^4(A) = U^*[-2]$ , so its top degree is -4, and its generators sit in degrees  $-4 - \deg z_k$  for each central element, one in each degree.

**Proposition 10.0.1.** Let  $\zeta_0 \in \ker d_5^*$  be a top degree element in  $(V \otimes \mathcal{N})^R[-h-2]$ , such that  $m(\zeta_0)$  is nonzero, where m is the multiplication map. Then  $HH^4(A)$  is generated by elements  $\zeta_k \in \ker d_5^*$  which satisfy  $\zeta_k z_k = \zeta_0$ .

**Proof.** If  $x \in \mathcal{N}^R[-h]$  lies in degree -4, then  $m(d_4^*(x)) = 0$ , so  $\zeta_0$  is nonzero in  $HH^4(A)$ .

For every nontopdegree central element  $z_k$  we can find a  $\zeta_k$  satisfying the properties above, which is done for each quiver separately below.

For any central element  $z \in A$ , we have that  $d_4^*(zy) = d_4^*(y)z$ . If  $\zeta_k = d_4^*(y)$ , then by construction  $\zeta_0 = \zeta_k z_k = d_4^*(z_k y)$  which is a contradiction.

So these  $\zeta_k$  are all nonzero in  $HH^4(A)$ , and also generate this cohomology space.  $\square$ 

A basis of  $HH^4(A)$  is given by these  $\zeta_k$ , and we choose them so that  $\zeta_k(\theta_k) = 1$  under the duality  $HH^4(A) = (HH^1(A))^*$  in [EE2].

10.1. 
$$Q = D_{n+1}$$
,  $n \text{ odd}$ 

We define

$$\zeta_{0} = \left[ a_{n-1}^{*} \otimes a_{n-1} a_{n}^{*} a_{n} \left( a_{n-1}^{*} a_{n-1} a_{n}^{*} a_{n} \right)^{\frac{n-3}{2}} + a_{n-1} \otimes a_{n}^{*} a_{n} a_{n-1}^{*} \left( a_{n-1} a_{n}^{*} a_{n} a_{n-1}^{*} \right)^{\frac{n-3}{2}} \right],$$

$$\zeta_{4k} = \frac{1}{2} \left[ a_{n-1}^{*} \otimes a_{n-1} a_{n}^{*} a_{n} \left( a_{n-1}^{*} a_{n-1} a_{n}^{*} a_{n} \right)^{\frac{n-3}{2} - k} + a_{n-1} \otimes a_{n}^{*} a_{n} a_{n-1}^{*} \left( a_{n-1} a_{n}^{*} a_{n} a_{n-1}^{*} \right)^{\frac{n-3}{2} - k} - a_{n}^{*} \otimes a_{n} a_{n-1}^{*} a_{n-1} \left( a_{n}^{*} a_{n} a_{n-1}^{*} a_{n-1} \right)^{\frac{n-3}{2} - k} - a_{n} \otimes a_{n-1}^{*} a_{n-1} a_{n}^{*} \left( a_{n} a_{n-1}^{*} a_{n-1} a_{n}^{*} \right)^{\frac{n-3}{2} - k} \right].$$

10.2.  $Q = D_{n+1}$ , n even

We define

$$\zeta_{0} = \left[ a_{n-1}^{*} \otimes a_{n-1} \left( a_{n}^{*} a_{n} a_{n-1}^{*} a_{n-1} \right)^{\frac{n-2}{2}-k} \right.$$

$$\left. + a_{n-1} \otimes a_{n}^{*} \left( a_{n} a_{n-1}^{*} a_{n-1} a_{n}^{*} \right)^{\frac{n-2}{2}-k} \right],$$

$$\zeta_{4k} = \frac{1}{2} \left[ a_{n-1}^{*} \otimes a_{n-1} \left( a_{n}^{*} a_{n} a_{n-1}^{*} a_{n-1} \right)^{\frac{n-2}{2}-k} \right.$$

$$\left. + a_{n-1} \otimes a_{n}^{*} \left( a_{n} a_{n-1}^{*} a_{n-1} a_{n}^{*} \right)^{\frac{n-2}{2}-k} \right.$$

$$\left. - a_{n}^{*} \otimes a_{n} \left( a_{n-1}^{*} a_{n} a_{n}^{*} a_{n} a_{n-1}^{*} \right)^{\frac{n-2}{2}-k} \right.$$

$$\left. - a_{n} \otimes a_{n-1}^{*} \left( a_{n-1} a_{n}^{*} a_{n} a_{n-1}^{*} \right)^{\frac{n-2}{2}-k} \right].$$

10.3.  $Q = E_6$ 

We define

$$\zeta_0 = \left[ a_3^* \otimes a_3 \left( a_2^* a_2 a_3^* a_3 \right)^2 + a_3 \otimes a_2^* \left( a_2 a_3^* a_3 a_2^* \right)^2 \right],$$

$$\zeta_6 = \frac{1}{4} \left[ -a_3^* \otimes a_3 a_2^* a_2 - a_3 \otimes a_2^* a_2 a_2^* + a_2^* \otimes a_2 a_2^* a_2 + a_2 \otimes a_2^* a_2 a_3^* a_3 - a_2 \otimes a_3^* a_3 a_3^* + a_3^* \otimes a_3 a_3^* a_3 + a_3 \otimes a_3^* a_3 a_2^* \right],$$

$$\zeta_8 = \frac{1}{2} \left[ a_3^* \otimes a_3 + a_3 \otimes a_2^* - a_2^* \otimes a_2 - a_2 \otimes a_3^* \right].$$

10.4.  $Q = E_7$ 

We define

$$\begin{split} \zeta_0 &= \left[ a_4^* \otimes a_4 a_3^* a_3 \left( a_4^* a_4 a_3^* a_3 \right)^3 + a_4 \otimes a_3^* a_3 a_4^* \left( a_4 a_3^* a_3 a_4^* \right)^3 \right], \\ \zeta_8 &= \frac{1}{2} \left[ a_4^* \otimes a_4 a_3^* a_3 a_4^* a_4 a_3^* a_3 + a_4 \otimes a_3^* a_3 a_4^* a_4 a_3^* a_3 a_4^* \\ &- a_3^* \otimes a_3 a_4^* a_4 a_3^* a_3 a_4^* a_4 - a_3 \otimes a_4^* a_4 a_3^* a_3 a_4^* a_4 a_3^* \right], \\ \zeta_{12} &= \frac{1}{2} \left[ a_4^* \otimes a_4 a_3^* a_3 + a_4 \otimes a_3^* a_3 a_4^* - a_3^* \otimes a_3 a_4^* a_4 - a_3 \otimes a_4^* a_4 a_3^* \right]. \end{split}$$

10.5.  $O = E_8$ 

We define

$$\zeta_{0} = \left[ a_{4}^{*} \otimes a_{4} a_{3}^{*} a_{3} \left( a_{4}^{*} a_{4} a_{3}^{*} a_{3} \right)^{6} + a_{4} \otimes a_{3}^{*} a_{3} a_{4}^{*} \left( a_{4} a_{3}^{*} a_{3} a_{4}^{*} \right)^{6} \right],$$

$$\zeta_{12} = \frac{1}{2} \left[ a_{4}^{*} \otimes a_{4} a_{3}^{*} a_{3} \left( a_{4}^{*} a_{4} a_{3}^{*} a_{3} \right)^{3} + a_{4} \otimes a_{3}^{*} a_{3} a_{4}^{*} \left( a_{4} a_{3}^{*} a_{3} a_{4}^{*} \right)^{3} \right],$$

$$- a_{3}^{*} \otimes a_{3} a_{4}^{*} a_{4} \left( a_{3}^{*} a_{3} a_{4}^{*} a_{4} \right)^{3} - a_{3} \otimes a_{4}^{*} a_{4} a_{3}^{*} \left( a_{3} a_{4}^{*} a_{4} a_{3}^{*} \right)^{3} \right],$$

$$\zeta_{20} = \frac{1}{2} \left[ a_{4}^{*} \otimes a_{4} a_{3}^{*} a_{3} a_{4}^{*} a_{4} a_{3}^{*} a_{3} + a_{4} \otimes a_{3}^{*} a_{3} a_{4}^{*} a_{4} a_{3}^{*} a_{3} a_{4}^{*} a$$

# 11. $HH^{5}(A)$

We have  $HH^5(A) = U^*[-2] \oplus Y^*[-h-2]$ . We discuss these two subspaces separately.

11.1. 
$$U^*[-2]$$

In  $U^*[-2]$ , like in  $HH^4(A)$ , we have generators coming from the center in some dual sense. We have  $d_6^*(U^*[-2]) = 0$ .

**Proposition 11.1.1.** Let  $\psi_0$  be a top degree element  $[\omega_i]$  in some  $e_i \mathcal{N}^R e_i [-h-2]$ . Then  $HH^5(A)$  is generated by  $\psi_k \in \mathcal{N}^R$  which satisfy  $\psi_k z_k = \psi_0$ .

**Proof.** If  $\sum_{a\in\bar{Q}}a\otimes x_a\in V\otimes\mathcal{N}^R$  lies in degree -4, then the image of  $d_5^*(x)=\sum_a ax_a-x_a\eta(a)$ , under the linear map f (which is associated to A as a Frobenius algebra) is zero where  $f(\omega_i)=1$ . So  $\psi_0$  is nonzero in  $HH^5(A)$ .

For every nontopdegree central element  $z_k$  we can find a  $\zeta_k$  satisfying the properties above, which is done for each quiver separately in Subsection 11.3.

For any central element  $z \in A$ , we have that  $d_5^*(zy) = d_5^*(y)z$ . If  $\psi_k = d_5^*(y)$ , then by construction  $\psi_0 = \psi_k z_k = d_4^*(z_k y)$  which is a contradiction.

So these  $\psi_k$  are nonzero in  $HH^5(A)$  and generate this cohomology space.  $\Box$ 

The relation  $ax_a = x_a \eta(a)$  then gives us that all  $\omega_i$ 's are equivalent in  $HH^5(A)$ .

11.2. 
$$Y^*[-h-2]$$

We have to introduce some new notations.

**Definition 11.2.1.** We define F to be the set of vertices in I which are fixed by  $\nu$ , i.e.

$$F = \{ i \in I \mid v(i) = i \}.$$

**Definition 11.2.2.** Let  $\eta_{ij}$  be the restriction of  $\eta$  on  $e_i A e_j$   $(i, j \in F)$ . Let  $n_{ij}^+ = \dim \ker(\eta_{ij} - 1)$  and  $n_{ij}^- = \dim \ker(\eta_{ij} + 1)$ .

We define the signed truncated dimension matrix  $(H_A^{\eta})_{i,j\in F}$  in the following way:

$$\left(H_A^{\eta}\right)_{ij} = n_{ij}^+ - n_{ij}^-.$$

Now we can make the following statement:

**Proposition 11.2.3.**  $Y^*[-h-2]$  is given by the kernel of the matrix  $H_A^{\eta}$ , where we identify  $\mathbb{C}^F = \bigoplus_{i \in F} Re_i$ .

**Proof.**  $Y^*[-h-2]$  is the kernel of the restriction  $d_6^*|_{\mathcal{N}^R[-h-2](-h-2)=R_F[-h-2]} \to A^R[-2h]$ , where  $R_F$  is the linear span of  $e_i$ 's, such that i is fixed by v,

$$d_6^*(y) = \sum_{x_j \in B} x_j y \eta(x_j^*) = \sum_{x_j \in B} \eta(x_j) y x_j^*,$$

then

$$d_6^*: R_F[-h-2] \to (A^{\text{top}})^R[-2h]$$

can also be written as a matrix multiplication

$$H_A^\eta:\mathbb{C}^F\to\mathbb{C}^F$$

under the identifications  $R_F = \mathbb{C}^F = \bigoplus_{i \in F} e_i A^{\text{top}} e_i$ .  $\square$ 

We compute the matrices  $H_A^{\eta}$  and their kernels for each quiver separately.

Recall that dim  $Y = r_+ - r_- - \#\{m_i \mid m_i = \frac{h}{2}\} = \dim R_F - \#\{m_i \mid m_i = \frac{h}{2}\}$ . We will find  $Y^*$  explicitly for each quiver.

11.2.1. 
$$Q = E_6, E_8$$
  
 $\frac{h}{2}$  is not an exponent, so  $Y^* = R_F$ .

## 11.2.2. $Q = D_{n+1}$ , n odd

All basis elements of  $e_k A e_i$  given in Section 5.5 are eigenvectors of  $\eta_{ki}$ .

For any of these basis elements x,  $\eta(x) = (-1)^{n_x} x$  where  $n_x$  is the number of no-star letters in the monomial expression of x. So  $H_A^{\eta}$  can be computed directly, and we get

$$H_A^{\eta} = \begin{pmatrix} 2 & 0 & \cdots & 2 & 0 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 2 & 0 & \cdots & 2 & 0 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 1 & 0 & \cdots & 1 & 0 & \frac{n+1}{2} & -\frac{n-1}{2} \\ 1 & 0 & \cdots & 1 & 0 & -\frac{n+1}{2} & \frac{n+1}{2} \end{pmatrix},$$

and the kernel is given by

$$\left\langle e_{2k-1} - e_1, \ e_{2k}, (e_n + e_{n+1}) - e_1 \ \middle| \ k \leqslant \frac{n-1}{2} \right\rangle$$

## 11.2.3. $Q = D_{n+1}$ , n even

Since  $F = \{1, ..., n-1\}$ , we work only with  $e_k A e_j$  for  $j, k \le n-1$ , and we have to work with a modified basis, so that they are all eigenvectors of  $\eta$ :

For 
$$\underline{k \leqslant j \leqslant n-1}$$
,

$$B_{k,j} = \left\{ \left( a_{k-1} a_{k-1}^* \right)^l a_k^* \cdots a_{j-1}^* \mid 0 \leqslant l \leqslant \min\{k-1, n-j-1\} \right\}$$

$$\cup \left\{ \left( a_{k-1} a_{k-1}^* \right)^l a_k^* \cdots \left( a_{n-1}^* a_{n-1} - a_n^* a_n \right) a_{n-2} a_j \mid 0 \leqslant l \leqslant k-1 \right\}$$

$$\cup \left\{ \left( a_{k-1} a_{k-1}^* \right)^l a_k^* \cdots \left( a_{n-1}^* a_{n-1} + a_n^* a_n \right) a_{n-2} a_j \mid 0 \leqslant l \leqslant k-1+j-n \right\}.$$

For  $j < k \le n - 1$ ,

$$B_{k,j} = \left\{ a_{k-1} \cdots a_j \left( a_j^* a_j \right)^l \mid 0 \leqslant l \leqslant \min\{n - k - 1, j - 1\} \right\}$$

$$\cup \left\{ a_k^* \cdots a_{n-2}^* \left( a_{n-1}^* a_{n-1} - a_n^* a_n \right) a_{n-2} \cdots a_j \left( a_j^* a_j \right)^l \mid 0 \leqslant l \leqslant j - 1 \right\}$$

$$\cup \left\{ a_k^* \cdots a_{n-2}^* \left( a_{n-1}^* a_{n-1} + a_n^* a_n \right) a_{n-2} \cdots a_j \left( a_j^* a_j \right)^l \mid 0 \leqslant l \leqslant j - 1 + k - n \right\}.$$

From that, we can calculate the matrix:

$$H_A^{\eta} = \begin{pmatrix} 2 & 0 & \cdots & 2 & 0 & 2 \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 2 & 0 & \cdots & 2 & 0 & 2 \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 2 & 0 & \cdots & 2 & 0 & 2 \end{pmatrix},$$

and we get immediately its kernel

$$\left\langle e_{2k+1}-e_1,e_{2k} \mid 1 \leqslant k \leqslant \frac{n}{2} \right\rangle.$$

11.2.4. 
$$Q = E_7$$

We do not use an explicit basis of A here. All we have to know is the number of no-star letters in the monomial basis elements which can be directly obtained from the Hilbert series  $H_A(t)$  in the following way: given a monomial x of length l in  $e_kAe_j$ ,  $n_{kj}$  the number of arrows in Q on the shortest path from j to k of length d(k, j), x contains  $n_{k,j} + \frac{l-d(k,j)}{2}$  arrows in Q.

So we obtain the formula

$$(H_A^{\eta})_{k,j} = (-1)_{k,j}^n \frac{H_A(t)_{k,j}}{t^{d(k,j)}} \Big|_{t=\sqrt{(-1)}},$$

where we can get  $H_A(\sqrt{-1})$  from (2.5.1) and compute

and its kernel is

$$\langle e_1 + e_7, e_2, e_3 + e_7, e_4, e_5, e_6 \rangle$$
.

#### 11.3. Result

Now we give explicit bases for each quiver where  $\psi_i \in U^*[-2]$  satisfy the properties given in Section 11.1 and  $\varepsilon_i \in Y^*[-h-2]$  are taken from Section 11.2.

Note the duality  $HH^6(A) = (HH^5(A))^*$  which was established in [EE2],  $\phi_0(z_0) \in U[-2h-2]$ ,  $\varphi_0(\omega_i) \in Y[-h-2]$ . We choose  $\psi_0$  such that  $\psi_0(\varphi_0(z_0)) = 1$  (from that follows  $\psi_k(\varphi_0(z_k)) = z_k \psi_k(\varphi_0(z_0)) = \psi_0(\varphi_0(z_0)) = 1$ ) and  $\varepsilon_i$  such that  $\varepsilon_i(\phi_0(\omega_j)) = \delta_{ij}$ .

11.3.1.  $Q = D_{n+1}$ ,  $n \ odd$ We define

$$\psi_{4k} = \left[ \left( a_{n-1}^* a_{n-1} a_n^* a_n \right)^{\frac{n-1}{2} - k} \right],$$

$$\varepsilon_{2k-1} = [e_{2k-1} - e_1], \qquad \varepsilon_{2k} = [e_{2k}], \qquad \varepsilon_n = \left[ (e_n + e_{n+1}) - e_1 \right], \quad k \leqslant \frac{n-1}{2}.$$

11.3.2.  $Q = D_{n+1}$ , *n* even We define

$$\psi_{4k} = \left[ a_{n-1}^* a_{n-1} \left( a_n^* a_n a_{n-1}^* a_{n-1} \right)^{\frac{n-2}{2} - k} \right],$$

$$\varepsilon_{2k+1} = \left[ e_{2k+1} - e_1 \right], \qquad \varepsilon_{2k} = \left[ e_{2k} \right], \quad 1 \leqslant k \leqslant \frac{n}{2} - 1.$$

11.3.3.  $Q = E_6$  We define

$$\psi_0 = [a_3^* a_3 (a_2^* a_2 a_3^* a_3)^2],$$

$$\psi_6 = [-a_3^* a_3 a_2^* a_2],$$

$$\psi_8 = [a_3^* a_3 - a_2^* a_2],$$

$$\varepsilon_3 = [e_3], \quad \varepsilon_6 = [e_6].$$

11.3.4.  $Q = E_7$  We define

$$\psi_{0} = \left[ \left( a_{4}^{*}a_{4}a_{3}^{*}a_{3} \right)^{4} \right],$$

$$\psi_{8} = \left[ \left( a_{4}^{*}a_{4}a_{3}^{*}a_{3} \right)^{2} \right],$$

$$\psi_{12} = \left[ a_{4}^{*}a_{4}a_{3}^{*}a_{3} \right],$$

$$\varepsilon_{1} = \left[ e_{1} + e_{7} \right], \qquad \varepsilon_{2} = \left[ e_{2} \right], \qquad \varepsilon_{3} = \left[ e_{3} + e_{7} \right],$$

$$\varepsilon_{4} = \left[ e_{4} \right], \qquad \varepsilon_{5} = \left[ e_{5} \right], \qquad \varepsilon_{6} = \left[ e_{6} \right].$$

11.3.5.  $Q = E_8$  We define

$$\psi_{0} = \left[ \left( a_{4}^{*}a_{4}a_{3}^{*}a_{3} \right)^{7} \right],$$

$$\psi_{12} = \left[ \left( a_{4}^{*}a_{4}a_{3}^{*}a_{3} \right)^{4} \right],$$

$$\psi_{20} = \left[ \left( a_{4}^{*}a_{4}a_{3}^{*}a_{3} \right)^{2} \right],$$

$$\psi_{24} = \left[ a_{4}^{*}a_{4}a_{3}^{*}a_{3} \right],$$

$$\varepsilon_{1} = [e_{1}], \qquad \varepsilon_{2} = [e_{2}], \qquad \varepsilon_{3} = [e_{3}], \qquad \varepsilon_{4} = [e_{4}],$$

$$\varepsilon_{5} = [e_{5}], \qquad \varepsilon_{6} = [e_{6}], \qquad \varepsilon_{7} = [e_{7}], \qquad \varepsilon_{8} = [e_{8}].$$

## 12. $HH^{6}(A)$

 $HH^6(A) = U[-2h-2] \oplus Y[-h-2] = HH^0(A)/\operatorname{Im}(d_6^*)$ , and  $\operatorname{Im}(d_6^*)$  is spanned by the columns of the matrices  $H_A^\eta$  which were computed in the previous section.

This gives us the following result:

**Proposition 12.0.1.**  $HH^6(A)$  is a quotient of  $HH^0(A)$ . In particular,

$$HH^{6}(A) = \begin{cases} HH^{0}(A), & Q = E_{6}, E_{8}, \\ HH^{0}(A)/(\sum_{\substack{i=1\\odd}}^{n-2} \omega_{i} = 0, \omega_{n} = \omega_{n+1}), & Q = D_{n+1}, n \text{ odd}, \\ HH^{0}(A)/(\sum_{\substack{i=1\\odd}}^{n-1} \omega_{i} = 0), & Q = D_{n+1}, n \text{ even}, \\ HH^{0}(A)/(\omega_{1} + \omega_{3} - \omega_{7} = 0), & Q = E_{7}. \end{cases}$$

## 13. Products involving $HH^0(A) = Z$

Recall the decomposition  $HH_0(A) = \mathbb{C} \oplus (U[-2])_+ \oplus L[h-2]$ . It is clear that the  $\mathbb{C}$ -part acts on  $HH^i(A)$  as the usual multiplication with  $\mathbb{C}$ , with  $z_0$  as identity. From the periodicity of the Schofield resolution with period 6, it follows that the multiplication with  $\varphi(z_0) \in HH^6(A)$  gives the natural isomorphism  $HH^i(A) \to HH^{i+6}(A)$  for  $i \ge 1$ .

We summarize all products not involving the C-part.

13.1. 
$$HH^0(A) \times HH^0(A) \rightarrow HH^0(A)$$

This is already done in the  $HH^0(A)$ -section of this paper. We state the results:

13.1.1. 
$$Q = D_{n+1}$$
,  $n$  odd  
The products are

$$z_{4j}z_{4k} = \begin{cases} z_{4(j+k)}, & j+k < \frac{n-1}{2}, \\ \omega_n - \omega_{n+1}, & j+k = \frac{n-1}{2}, \\ 0, & j+k > \frac{n-1}{2}. \end{cases}$$

13.1.2. 
$$Q = D_{n+1}$$
,  $n$  even

The products are

$$z_{4j}z_{4k} = \begin{cases} z_{4(j+k)}, & j+k < \frac{n-1}{2}, \\ 0, & j+k \geqslant \frac{n-1}{2}. \end{cases}$$

## 13.1.3. $E_6$

All products are zero.

#### 13.1.4. E<sub>7</sub>

The only nonzero product is  $z_8^2 = \omega_1 + \omega_3 - \omega_7$ .

## 13.1.5. $E_8$

The only nonzero product is  $z_{12}^2 = z_{24}$ .

13.2. 
$$HH^0(A) \times HH^1(A) \rightarrow HH^1(A)$$

From the definition of the maps  $\theta_k$  (which are generated by the central elements  $z_k$ ), it follows that the Z-action is natural, i.e. the multiplication rule is the same as with the  $z_k$  counterpart:  $z_k\theta_0=\theta_k$ .

We state the other nonzero products:

13.2.1. 
$$Q = D_{n+1}$$
  
We have  $z_{4j}\theta_{4k} = \theta_{4(j+k)}$  if  $j + k < \frac{n-1}{2}$ .

## 13.2.2. $E_8$

We have  $z_{12}\theta_{12} = \theta_{24}$ .

13.3. 
$$HH^0(A) \times HH^i(A) \rightarrow HH^i(A)$$
,  $i = 2$  or 3

 $HH^2(A) = K[-2]$  and  $HH^3(A) = K^*[-2]$  live in only one degree, so  $(U[-2])_+ \subset HH^0(A)$  acts by zero.

13.4. 
$$HH^0(A) \times HH^4(A) \rightarrow HH^4(A)$$

We defined  $\zeta_k$ , such that  $z_k \zeta_k = \zeta_0$  holds. By degree arguments, only these other products are nonzero:

13.4.1. 
$$Q = D_{n+1}$$

For l < k,  $z_{4l}\zeta_{4k} = \zeta_{4(k-l)}$  (since  $z_{4(k-l)}(z_{4l}\zeta_{4k}) = (z_{4(k-l)}z_{4l})\zeta_{4k} = \zeta_0$ , and  $\zeta_{4(k-l)}$  is (up to a multiple) the only one element of degree -4 - 4(k-l) in  $HH^4(A)$ ).

13.4.2. 
$$Q = E_8$$

We have  $z_{12}\zeta_{24} = \zeta_{12}$  (since  $z_{12}(z_{12}\zeta_{24}) = (z_{12}z_{12})\zeta_{24} = \zeta_0$ , and  $\zeta_{12}$  is (up to a multiple) the only element of degree -16 in  $HH^4(A)$ ).

13.5. 
$$HH^0(A) \times HH^5(A) \rightarrow HH^5(A)$$

By definition,  $z_k \psi_k = \psi_0$  holds. Since  $\psi_i \in U^*[-2]$  corresponds to  $\zeta_i \in U^*[-2]$  in  $HH^4(A)$  with the rule  $z_k \psi_k = \psi_0$  corresponding to  $z_k \zeta_k = \zeta_0$  above, the multiplication rules of  $\psi_k$  with elements in  $HH^0(A)$  can be derived from above.

Products involving  $\omega_i \in L[h-2] \subset HH^0(A)$  and  $\varepsilon_j = \sum_{k \in F} \lambda_k e_k \in Y^*[-h-2]$  are easy to calculate:  $\omega_i \varepsilon_j = \lambda_i [\omega_i] = \lambda_i \psi_0$ .

**Proposition 13.5.1.** The multiplication  $((U[-2])_+) \times Y^*[-h-2] \to HH^5(A)$  is zero.

We will show this for any quiver separately.

13.5.1.  $Q = D_{n+1}$ , n odd

For l < k,  $z_{4l} \psi_{4k} = \psi_{4(k-l)}$ .

The nonzero products involving  $\omega_i \in L[h-2] \subset HH^0(A)$  and  $\varepsilon_i \in Y^*[-h-2]$  are

$$\omega_{2k-1}\varepsilon_{2k-1} = \omega_{2k}\varepsilon_{2k} = \omega_n\varepsilon_n = \omega_{n+1}\varepsilon_n = \omega_1\varepsilon_{2k-1} = \omega_1\varepsilon_n = \psi_0,$$

$$\omega_1 \varepsilon_{2k-1} = \omega_1 \varepsilon_n = -\psi_0.$$

We show  $(U[-2])_+ \times Y^*[-h-2] \xrightarrow{0} HH^5(A)$ : by degree argument,  $z_{4k}\varepsilon_i = \lambda \psi_{2n-2-4k}$ . Then  $z_{2n-2-4k}(z_{4k}\varepsilon_i) = \lambda z_{2n-2-4k}\psi_{2n-2-4k} = \lambda \psi_0$ , and by associativity this equals  $(z_{2n-2-4k}z_{4k})\varepsilon_i = (\omega_n - \omega_{n+1})\varepsilon_i = 0$ , so  $\lambda = 0$ .

13.5.2.  $Q = D_{n+1}$ , n even

For l < k,  $z_{4l} \psi_{4k} = \psi_{4(k-l)}$ .

The nonzero products involving  $\omega_i \in L[h-2] \subset HH^0(A)$  and  $\varepsilon_i \in Y^*[-h-2]$  are

$$\omega_{2k+1}\varepsilon_{2k+1} = \omega_{2k}\varepsilon_{2k} = \psi_0,$$

$$\omega_1 \varepsilon_{2k+1} = -\psi_0$$
.

We show  $(U[-2])_+ \times Y^*[-h-2] \xrightarrow{0} HH^5(A)$ : by degree argument,  $z_{4k}\varepsilon_i = \lambda \psi_{2n-2-4k}$ . Then  $z_{2n-2-4k}(z_{4k}\varepsilon_i) = \lambda z_{2n-2-4k}\psi_{2n-2-4k} = \lambda \psi_0$ , and this equals  $(z_{2n-2-4k}z_{4k})\varepsilon_i = 0$ , so  $\lambda = 0$ .

13.5.3.  $Q = E_6$ 

The nonzero products involving  $\omega_i \in L[h-2] \subset HH^0(A)$  and  $\varepsilon_j \in Y^*[-h-2]$  are

$$\omega_3 \varepsilon_3 = \omega_6 \varepsilon_6 = \psi_0$$
.

By degree argument,  $(U[-2])_+ \times Y^*[-h-2] \xrightarrow{0} HH^5(A)$ .

13.5.4.  $Q = E_7$ 

The nonzero products involving  $\omega_i \in L[h-2] \subset HH^0(A)$  and  $\varepsilon_i \in Y^*[-h-2]$  are

$$\omega_1 \varepsilon_1 = \omega_2 \varepsilon_2 = \omega_3 \varepsilon_3 = \omega_4 \varepsilon_4 = \omega_5 \varepsilon_5 = \omega_6 \varepsilon_6 = \omega_7 \varepsilon_1 = \omega_7 \varepsilon_3 = \psi_0.$$

We show  $(U[-2])_+ \times Y^*[-h-2] \xrightarrow{0} HH^5(A)$ : by degree argument, only products involving  $z_8$  may eventually be nontrivial,

$$z_8 \varepsilon_i = \lambda \psi_8, \quad \lambda \in \mathbb{C}.$$

Then

$$z_8(z_8\varepsilon_i) = \lambda z_8\psi_8 = \lambda \psi_0$$

and by associativity this equals

$$z_8^2 \varepsilon_i = (\omega_1 + \omega_3 - \omega_7) \varepsilon_i = 0,$$

so  $\lambda = 0$ .

## 14. Products involving $HH^1(A)$

14.1. 
$$HH^1(A) \times HH^1(A) \xrightarrow{0} HH^2(A)$$

This follows by degree argument since  $\deg HH^1(A) > 0$ ,  $\deg HH^2(A) = -2$ .

14.2. 
$$HH^1(A) \times HH^2(A) \rightarrow HH^3(A)$$

 $HH^2(A)$  and  $HH^3(A)$  are trivial for  $Q = D_{n+1}$  where n is odd and for  $Q = E_7$ ,  $E_8$ . We know that  $HH^1(A)$  is generated by maps  $\theta_k$  and  $HH^2(A)$  by  $f_i$  ( $i \neq \nu(i)$ ), and we lift

$$f_i: A \otimes A[2] \to A,$$
  
  $1 \otimes 1 \mapsto e_i - e_{\nu(i)}$ 

to

$$\hat{f}_i: A \otimes A[2] \to A \otimes A,$$
  
 $1 \otimes 1 \mapsto e_i \otimes e_i - e_{\nu(i)} \otimes e_{\nu(i)}.$ 

Then

$$\hat{f}_i d_3(1 \otimes 1) = \hat{f}_i \left( \sum_{x_i \in B} x_j \otimes x_j^* \right) = \sum_{x_i \in B} x_j e_i \otimes e_i x_j^* - x_j e_{\nu(i)} \otimes e_{\nu(i)} x_j^*.$$

To compute the lift  $\Omega f_i$ , we need to find out the preimage of  $\sum x_j e_i \otimes e_i x_j^* - x_j e_{\nu(i)} \otimes e_{\nu(i)} x_j^*$  under  $d_1$ .

**Definition 14.2.1.** Let  $b_1, \ldots, b_k$  be arrows, p the monomial  $\pm b_1 \cdots b_k$  and define

$$v_p := \pm (1 \otimes b_1 \otimes b_2 \cdots b_k + b_1 \otimes b_2 \otimes b_3 \cdots b_k + \cdots + b_1 \cdots b_{k-1} \otimes b_k \otimes 1),$$

and for i < j,

$$v_p^{(i,j)} := \pm \sum_{l=i}^j b_1 \cdots b_{l-1} \otimes b_l \otimes b_{l+1} \cdots b_k.$$

We will use the following lemma in our computations.

## **Lemma 14.2.2.** *In the above setting,*

$$d_1(v_p) = \pm (b_1 \cdots b_k \otimes 1 - 1 \otimes b_1 \cdots b_k).$$

From that, we see immediately that when assuming all  $x_j$  are monomials (which we can do), then

$$\hat{f}_{i}\left(\sum_{x_{j} \in B} x_{j} \otimes x_{j}^{*}\right) = d_{1}\left(\sum_{x_{j} \in B} v_{x_{j}e_{i}x_{j}^{*}}^{(1,\deg(x_{j}))} - v_{x_{j}e_{\nu(i)}x_{j}^{*}}^{(1,\deg(x_{j}))}\right) + 1 \otimes \underbrace{\sum_{x_{j} \in B} \left(x_{j}e_{i}x_{j}^{*} - x_{j}e_{\nu(i)}x_{j}^{*}\right)}_{=0},$$

so we have

$$\begin{split} \Omega f_i : & \Omega^3(A) \to \Omega(A), \\ & 1 \otimes 1 \mapsto \sum_{x_i \in B} v_{x_j e_i x_j^*}^{(1, \deg(x_j))} - v_{x_j e_{\nu(i)} x_j^*}^{(1, \deg(x_j))}. \end{split}$$

Then

$$\theta_k \left( \sum_{x_j \in B} v_{x_j e_i x_j^*}^{(1, \deg(x_j))} - v_{x_j e_{\nu(i)} x_j^*}^{(1, \deg(x_j))} \right) = z_k \left( \sum_{x_j \in B_{-,i}} s(x_j) x_j x_j^* - \sum_{x_j \in B_{-,\nu(i)}} s(x_j) x_j x_j^* \right),$$

where  $s(x_j)$  is the number of arrows in  $Q^*$  in the monomial expression of  $x_j$ . So we get

$$(\theta_k \circ \Omega f_i)(1 \otimes 1) = z_k \left( \sum_{x_j \in B_{-,i}} s(x_j) x_j x_j^* - \sum_{x_j \in B_{-,\nu(i)}} s(x_j) x_j x_j^* \right).$$

Under our identification in [EE2, Subsection 4.5],

$$\theta_k f_i = \left[ z_k \left( \sum_{l \in I} \sum_{x_j \in B_{l,i}} s(x_j) \omega_l - \sum_{l \in I} \sum_{x_j \in B_{l,\nu(i)}} s(x_j) \omega_l \right) \right] \in HH^3(A).$$

All products are zero if  $z_k$  lies in a positive degree, so we only have to calculate the products where k = 0.

We make the following

**Proposition 14.2.3.** The multiplication with  $\theta_0$  induces a symmetric isomorphism

$$\alpha: HH^2(A) = K[-2] \xrightarrow{\cong} K^*[-2] = HH^3(A).$$

Now we have to work with explicit basis elements  $x_j \in Ae_i$ ,  $i \neq \nu(i)$ , so we treat the Dynkin quivers separately and find the matrix  $M_\alpha$  which represents this map.

## 14.2.1. $Q = D_{n+1}$ , n even

We can work with the basis given in Section 5.5 and compute

$$\theta_0 f_n = \frac{n}{2} \left( [\omega_{n+1}] - [\omega_n] \right) = -nh_n \tag{14.2.4}$$

because of the relation  $[\omega_n] + [\omega_{n+1}] = 0$  in  $HH^3(A)$ .  $\alpha$  is given by the matrix

$$M_{\alpha} = (-n).$$

14.2.2.  $E_6$ 

We will write out the basis elements of  $Ae_1$ ,  $Ae_5$ :

$$\begin{split} B_{1,1} &= \langle e_1, a_1 a_2 a_5^* a_5 a_2^* a_1^* \rangle, \\ B_{2,1} &= \langle a_1^*, a_2 a_5^* a_5 a_2^* a_1^*, a_2 a_3^* a_3 a_5^* a_5 a_2^* a_1^* \rangle, \\ B_{3,1} &= \langle a_2^* a_1^*, a_3^* a_3 a_2^* a_1^*, a_3^* a_3 a_3^* a_3 a_2^* a_1^*, a_5^* a_5 a_3^* a_3 a_3^* a_3 a_2^* a_1^* \rangle, \\ B_{4,1} &= \langle a_3 a_2^* a_1^*, a_3 a_5^* a_5 a_2^* a_1^*, a_3 a_5^* a_5 a_3^* a_3 a_5^* a_5 a_2^* a_1^* \rangle, \\ B_{5,1} &= \langle a_4 a_3 a_2^* a_1^*, a_4 a_3 a_5^* a_5 a_3^* a_3 a_5^* a_5 a_2^* a_1^* \rangle, \\ B_{6,1} &= \langle a_5 a_2^* a_1^*, a_5 a_3^* a_3 a_5^* a_5 a_2^* a_1^* \rangle, \end{split}$$

and

$$e_i A e_5 = \langle \eta(x) \mid x \in e_{v(i)} A e_1 \rangle,$$

where  $\eta(a) = -\epsilon_a \bar{a}$  and for any arrow  $a: i \to j$ ,  $\bar{a}$  is the arrow  $j \to i$ , so  $\eta$  preserves the number of star letters of a monomial x. From this, we obtain

$$\theta_0 f_1 = -4[\omega_1] - 2[\omega_2] + 2[\omega_4] + 4[\omega_5] = -8h_1 - 4h_2$$

because of the relations  $[\omega_1] + [\omega_4] = [\omega_2] + [\omega_3] = 0$  in  $HH^3(A)$ .

We do the same thing for  $Ae_2$  and  $Ae_4$ :

$$\begin{split} B_{1,2} &= \langle a_1, a_1 a_2 a_5^* a_5 a_2^*, a_1 a_2 a_5^* a_5 a_3^* a_3 a_2^* \rangle, \\ B_{2,2} &= \langle e_2, a_2 a_2^*, a_2 a_5^* a_5 a_2^*, a_2 a_3^* a_3 a_5^* a_5 a_2^*, a_2 a_5^* a_5 a_3^* a_3 a_2^*, a_2 a_5^* a_5 a_3^* a_3 a_5^* a_5 a_2^* \rangle, \\ B_{3,2} &= \langle a_2^*, a_5^* a_5 a_2^*, a_3^* a_3 a_2^*, a_5^* a_5 a_3^* a_3 a_2^*, a_3^* a_3 a_5^* a_5 a_2^*, \\ &a_3^* a_3 a_5^* a_5 a_3^* a_3 a_2^*, a_5^* a_5 a_3^* a_3 a_5^* a_5 a_2^*, a_5^* a_5 a_3^* a_3 a_5^* a_5 a_3^* a_3 a_5^* a_5 a_3^* a_3 a_2^* \rangle, \\ B_{4,2} &= \langle a_3 a_2^*, a_3 a_5^* a_5 a_2^*, a_3 a_3^* a_3 a_2^*, a_3 a_3^* a_5 a_5 a_2^*, \\ &a_3 a_5^* a_5 a_3^* a_3 a_5^* a_5 a_2^*, a_3 a_3^* a_3 a_5^* a_5 a_3^* a_3 a_5^* a_5 a_2^* \rangle, \\ B_{5,2} &= \langle a_4 a_3 a_2^*, a_4 a_3 a_5^* a_5 a_2^*, a_4 a_3 a_5^* a_5 a_3^* a_3 a_3^* a_5 a_5 a_3^* a_3 a_5^* a_5 a_3^* a_3 a_5^* a_5 a_3^* a_3 a_3^* a_5 a_5 a_3^* a_3 a_5^* a_5 a_3^* a_3 a_5^* a_5 a_3^* a_3 a_3^* a_5 a_5 a_3^* a_3 a_3^* a_3 a_5^* a_5 a_3^* a_3 a_3^* a_5 a_5 a_3^$$

and we get the basis elements for  $e_i A e_3$  from  $\eta(x_j)$  where  $x_j \in e_{\nu(i)} A e_4$ . Since  $\eta$  preserves the number of star-letters of a monomial, we can immediately calculate

$$\theta_0 f_2 = -2[\omega_1] - 4[\omega_2] + 4[\omega_4] + 2[\omega_5] = -4h_1 - 8h_2$$

because of the relations  $[\omega_1] + [\omega_4] = [\omega_2] + [\omega_3] = 0$  in  $HH^3(A)$ .

So  $\alpha$  is given by the symmetric, nondegenerate matrix

$$M_{\alpha} = \begin{pmatrix} -8 & -4 \\ -4 & -8 \end{pmatrix}. \tag{14.2.5}$$

14.3. 
$$HH^1(A) \times HH^3(A) \xrightarrow{0} HH^4(A)$$

This follows by degree argument:  $\deg HH^1(A) \geqslant 0$ ,  $\deg HH^3(A) = -2$ , but  $\deg HH^4(A) \leqslant -4$ .

14.4. 
$$HH^{1}(A) \times HH^{4}(A) \to HH^{5}(A)$$

**Proposition 14.4.1.** Given  $\theta_k \in HH^1(A)$  and  $\zeta_l \in HH^4(A)$ , we get the following cup product:

$$\theta_k \zeta_l = \psi_l z_k. \tag{14.4.2}$$

**Proof.** It is enough to show  $\theta_0 \zeta_0 = \psi_0$ :  $z_l(\theta_0 \zeta_l) = \theta_0 \zeta_0 \psi_0$  implies that  $(\theta_0 \zeta_l) = \psi_l$ , and the equation above follows from  $\theta_k = z_k \theta_0$ .

Let in general  $x = \sum_{a \in \bar{Q}} a \otimes x_a \in HH^4(A)$ . Then x represents the map

$$x := A \otimes V \otimes \mathcal{N}[h] \to A,$$
$$1 \otimes a_i \otimes 1 \mapsto -x_{a_i^*},$$
$$1 \otimes a_i^* \otimes 1 \mapsto x_{a_i},$$

and it lifts to

$$\hat{x}: A \otimes V \otimes \mathcal{N}[h] \to A \otimes A,$$

$$1 \otimes a \otimes 1 \mapsto -1 \otimes x_{a^*},$$

$$1 \otimes a^* \otimes 1 \mapsto 1 \otimes x_a.$$

Then

$$(\hat{x} \circ d_5)(1 \otimes 1) = \hat{x} \left( \sum_{a \in \bar{Q}} \epsilon_a a \otimes a^* \otimes 1 + \sum_{a \in \bar{Q}} \epsilon_a 1 \otimes a \otimes a^* \right)$$

$$= \sum_{a \in Q} a \otimes x_a - \sum_{a \in Q} 1 \otimes x_a \eta(a) + \sum_{a \in Q} a^* \otimes x_{a^*} - \sum_{a \in Q} 1 \otimes x_{a^*} \eta(a^*)$$

$$= \sum_{a \in Q} a \otimes x_a - \sum_{a \in Q} 1 \otimes a x_a \sum_{a \in Q} a^* \otimes x_{a^*} - \sum_{a \in Q} 1 \otimes a^* x_{a^*}$$

$$= d_1 \left( \sum_{a \in Q} 1 \otimes a \otimes x_a + 1 \otimes a^* \otimes x_{a^*} \right),$$

so we have

$$\Omega x : \Omega^5(A) \to \Omega(A),$$
  
 $1 \otimes 1 \mapsto \sum_{a \in \mathcal{Q}} 1 \otimes a \otimes x_a + 1 \otimes a^* \otimes x_{a^*},$ 

and this gives us

$$(\theta_0 \circ x)(1 \otimes 1) = \sum_{a \in O} a^* x_{a^*},$$

so the cup product is

$$\theta_0 \cdot x = \sum_{a \in O} a^* x_{a^*}. \tag{14.4.3}$$

It can be easily checked by using explicit elements that the RHS is  $\psi_0$  for  $x = \zeta_0$ , but we the reason here why this is true: for  $x = \sum_{a \in \bar{O}} a \otimes x_a = \zeta_0$ , the RHS becomes

$$\sum_{a \in O} a^* x_{a^*} = \sum_{a \in O} (a^*, x_{a^*}) [\omega_{t(a)}],$$

where  $(-,-): A \times A \to \mathbb{C}$  is the bilinear form attached to A as a Frobenius algebra (see 2.4).

But under the bilinear form on  $V \otimes A$ , given in [EE2, Subsection 4.3] which induces the duality  $HH^4(A) = (HH^1(A))^*$ ,

$$(a \otimes x_a, b \otimes x_b) = \delta_{a,b^*} \epsilon_a(x_a, x_b),$$
$$\sum_{a \in O} (a^*, x_{a^*}) = (\theta_0, \zeta_0) = 1.$$

So for  $x = \zeta_0$ , Eq. (14.4.3) becomes

$$\theta_0 \zeta_0 = (\theta_0, \zeta_0) \psi_0 = \psi_0,$$
 (14.4.4)

because  $[\omega_i] = \psi_0$  in  $HH^5(A)$  for all  $i \in I$ .  $\square$ 

14.5. 
$$HH^{1}(A) \times HH^{5}(A) \to HH^{6}(A)$$

We know that

$$0 \leqslant \deg(HH^{1}(A)) \leqslant h - 4,$$
$$-h - 2 \leqslant \deg(HH^{5}(A)) \leqslant -2,$$
$$-2h \leqslant \deg(HH^{6}(A)) \leqslant -h - 2,$$

so the product is trivial unless we pair the lowest degree parts of  $HH^1(A)$  (generated by  $\theta_0$ ) and  $HH^5(A)$  (which is  $Y^*[-h-2]$ ). The product will then live in degree -h-2 which is the top degree part of  $HH^6(A)$ , the space Y[-h-2].

Given an element  $\psi \in HH^5(A)(-h-2)$  which has the form

$$\psi: A \otimes \mathcal{N}[h+2] \to A,$$

$$1 \otimes 1 \mapsto \sum_{i \in F} \lambda_i e_i \in R,$$

this lifts to

$$\hat{\psi}: A \otimes \mathcal{N}[h+2] \to A \otimes A,$$

$$1 \otimes 1 \mapsto \sum_{i \in F} \lambda_i e_i \otimes e_i.$$

Then

$$\hat{\psi}(d_{6}(1 \otimes 1)) = \hat{\psi}\left(\sum_{x_{j} \in B} x_{j} \otimes x_{j}^{*}\right) = \hat{\psi}\left(\sum_{x_{j} \in B} \eta(x_{j}) \otimes \eta(x_{j}^{*})\right)$$

$$= \sum_{x_{j} \in B} \sum_{i \in F} \lambda_{i} \eta(x_{j}) e_{i} \otimes e_{i} x_{j}^{*}$$

$$= d_{1}\left(\sum_{i \in F} \sum_{x_{j} \in B} \lambda_{i} v_{\eta(x_{j}) e_{i} x_{j}^{*}}^{(1, \deg(x_{j}))}\right) + 1 \otimes \sum_{x_{j} \in B} \sum_{i \in F} \lambda_{i} \eta(x_{j}) e_{i} x_{j}^{*},$$

$$= 0$$

so  $\psi$  lifts to

$$\Omega \psi : \Omega^{6}(A) \to \Omega(A),$$

$$1 \otimes 1 \mapsto \sum_{i \in F} \sum_{x_{i} \in B} \lambda_{i} v_{\eta(x_{j})e_{i}x_{j}^{*}}^{(1,\deg(x_{j}))}.$$

We get

$$(\theta_0 \circ \Omega \psi)(1 \otimes 1) = \sum_{i \in F} \sum_{x_i \in B_{-i}} \lambda_i s(x_j) \eta(x_j) x_j^*,$$

where  $s(x_j)$  is the number of arrows in  $Q^*$  in the monomial expression of  $x_j$  (or in general if  $x_j$  is a homogeneous polynomial where each monomial term has the same number of arrows in  $Q^*$ , then  $s(x_j)$  is the number of  $Q^*$ -arrows in each monomial term).

Under our identifications in [EE2, Subsection 4.5],

$$\theta_0 \psi = \sum_{i \in F} \sum_{x_i \in B_{-i}} \lambda_i s(x_j) \eta(x_j) x_j^* = \sum_{i,k \in F} \sum_{x_j \in B_{ki}} \lambda_i s(x_j) \eta(x_j) x_j^*.$$

To simplify this computation, we will choose a basis, such that all  $x_j \in e_k A e_l$  for some  $k, l \in I$  and that additionally  $x_j$  is an eigenvector of  $\eta$  for  $k, l \in F$  (since  $\eta$  is an involution on  $e_k A e_l$  for  $k, l \in F$ ). Let  $B_{k,l}^+$  be a basis of  $(e_k A e_l)_+ = \ker(\eta|_{e_k A e_l} - 1)$  and  $B_{k,l}^-$  a basis of  $(e_k A e_l)_- = \ker(\eta|_{e_k A e_l} + 1)$ .

Let us define

$$\kappa_{k,l} = \sum_{x_j \in B_{k,l}^+} s(x_j) - \sum_{x_j \in B_{k,l}^-} s(x_j).$$
 (14.5.1)

Then the above equation becomes

$$\theta_0 \psi = \sum_{l \in F} \lambda_l \sum_{k \in F} \kappa_{k,l} \varphi_0(\omega_k). \tag{14.5.2}$$

**Proposition 14.5.3.** The multiplication by  $\theta_0$  induces a skew-symmetric isomorphism

$$\beta: Y^*[-h-2] \xrightarrow{\cong} Y[-h-2].$$

We will treat the Dynkin quivers separately and find the matrix  $M_{\beta}$  which represents  $\beta$  for each of these quivers.

14.5.1. 
$$Q = D_{n+1}$$
,  $n \text{ odd}$ 

We use the same basis as given in Section 5.5. Recall that these basis elements have the property  $\eta(x) = (-1)^{n_x} x$  where  $n_x$  is the number of Q-arrows in the monomial expression of x. We can compute that for  $k, l \le n - 1$ ,

$$\kappa_{k,l} = \begin{cases} n - k + l - 1, & k \text{ odd}, & l \text{ odd}, \\ l - n, & k \text{ odd}, & l \text{ even}, \\ -k, & k \text{ even}, & l \text{ odd}, \\ 0 & k \text{ even}, & l \text{ odd}, \end{cases}$$

$$\kappa_{k,n} = \kappa_{k,n+1} = \begin{cases} n - \frac{k+1}{2}, & k \text{ odd}, \\ -\frac{k}{2}, & k \text{ even}, \end{cases}$$

$$\kappa_{n,l} = \kappa_{n+1,l} = \begin{cases} n - \frac{l-1}{2}, & l \text{ odd}, \\ \frac{l}{2}, & k \text{ even}, \end{cases}$$

$$\kappa_{n,n} = \kappa_{n+1,n+1} = \frac{n^2 - 1}{4},$$

$$\kappa_{n+1,n} = \kappa_{n,n+1} = -\left(\frac{n-1}{2}\right)^2.$$

 $Y^*[-h-2]$  has basis  $\varepsilon_{2k+1}=[e_{2k+1}-e_1]$   $(0 \le k \le \frac{n-3}{2})$ ,  $\varepsilon_{2k}=[e_{2k}]$   $(k \le \frac{n-1}{2})$ ,  $\varepsilon_n=[e_n+e_{n+1}-e_1]$ , and we can calculate the products

$$\begin{split} \theta_0 \varepsilon_{2k+1} &= \sum_{i \in F} (\kappa_{i,2k+1} - \kappa_{i,1}) \varphi_0(\omega_i) \\ &= 2k \sum_{\substack{i=1 \\ \text{odd}}}^{n-2} \varphi_0(\omega_i) - n \sum_{\substack{i=2 \\ \text{even}}}^{2k} \varphi_0(\omega_i) + k \varphi_0(\omega_n + \omega_{n+1}), \\ \theta_0 \varepsilon_{2k} &= \sum_{i \in F} (\kappa_{i,2k+1}) \varphi_0(\omega_i) \\ &= (2k-n) \sum_{\substack{i=1 \\ \text{odd}}}^{2k-1} \varphi_0(\omega_i) + 2k \sum_{\substack{i=2k+1 \\ \text{odd}}}^{n-2} \varphi_0(\omega_i) + k \varphi_0(\omega_n + \omega_{n+1}), \end{split}$$

$$\theta_0 \varepsilon_n = \sum_{i \in F} (\kappa_{i,n} + \kappa_{n+1,1} - \kappa_{i,1}) \varphi_0(\omega_i)$$

$$= (n-1) \sum_{\substack{i=1 \ \text{odd}}}^{n-2} \varphi_0(\omega_i) - n \sum_{\substack{i=2 \ \text{over}}}^{n-1} \varphi_0(\omega_i) + \frac{n-1}{2} \varphi_0(\omega_n + \omega_{n+1}).$$

We use the defining relations in Y[-h-2],

$$\varphi_0(\omega_1) = -\varphi_0 \left( \sum_{\substack{i=3 \text{odd}}}^{n-2} \varphi_0(\omega_i) - \varphi_0(\omega_n) \right),$$
$$\varphi_0(\omega_{n+1}) = \varphi_0(\omega_n)$$

to write the RHS of the above cup product calculations in terms of the basis  $(\omega_i)_{2 \leqslant i \leqslant n}$ :

$$\theta_0 \varepsilon_{2k+1} = -n \sum_{\substack{i=2\\ \text{even}}}^{2k} \varphi_0(\omega_i),$$

$$\theta_0 \varepsilon_{2k} = n \sum_{\substack{i=2k+1\\ \text{odd}}}^{n-2} \varphi_0(\omega_i) + n\varphi_0(\omega_n),$$

$$\theta_0 \varepsilon_n = -n \sum_{i=2}^{n-1} \varphi_0(\omega_i).$$

 $\beta$  is given by the skew-symmetric, nondegenerate matrix

with respect to the chosen basis  $\varepsilon_2, \varepsilon_3, \ldots, \varepsilon_n$  of  $Y^*[-h-2]$  and the dual basis  $\varphi_0(\omega_2), \varphi_0(\omega_3), \ldots, \varphi_0(\omega_n)$  of Y[-h-2].

14.5.2.  $Q = D_{n+1}$ , n even

We use the same basis as in Section 11.2.3 for our computations. For  $k, l \le n - 1$ ,

$$\kappa_{k,l} = \begin{cases} n - k + l - 1, & k \text{ odd,} & l \text{ odd,} \\ l - n, & k \text{ odd,} & l \text{ even,} \\ -k, & k \text{ even,} & l \text{ odd,} \\ 0, & k \text{ even,} & l \text{ even.} \end{cases}$$

 $Y^*[-h-2]$  has basis  $\varepsilon_{2k}=[e_{2k}], \ \varepsilon_{2k+1}=[e_{2k+1}-e_1] \ (1\leqslant k\leqslant \frac{n-2}{2}),$  and we calculate the products

$$\begin{aligned} \theta_0 \varepsilon_{2k+1} &= \sum_{i \in F} (\kappa_{i,2k+1} - \kappa_{i,1}) \varphi_0(\omega_i) \\ &= 2k \sum_{\substack{i=1 \text{odd}}}^{n-1} \varphi_0(\omega_i) - n \sum_{\substack{i=2 \text{even}}}^{2k} \varphi_0(\omega_i), \\ \theta_0 \varepsilon_{2k} &= \sum_{i \in F} (\kappa_{i,2k}) \varphi_0(\omega_i) \\ &= (2k-n) \sum_{\substack{i=1 \text{odd}}}^{2k-1} [\omega_i] + 2k \sum_{\substack{i=2k+1}}^{n-2} \varphi_0(\omega_i), \end{aligned}$$

and we use the defining relation of Y[-h-2],

$$\varphi_0(\omega_1) = -\sum_{\substack{i=3\\ \text{odd}}}^{n-2} \varphi(\omega_i)$$

to write the results of the cup product calculations in terms of the basis  $\varphi_0(\omega_2), \varphi_0(\omega_3), \ldots, \varphi_0(\omega_{n-1})$ . We get

$$\theta_0 \varepsilon_{2k+1} = -n \sum_{\substack{i=2 \text{even}}}^{2k} \varphi_0(\omega_i),$$

$$\theta_0 \varepsilon_{2k} = n \sum_{\substack{i=2k+1 \\ \text{odd}}}^{n-1} \varphi_0(\omega_i).$$

 $\beta$  is given by the matrix

with respect to the basis  $\varepsilon_2, \varepsilon_3, \dots, \varepsilon_{n-1}$  and its dual basis  $\varphi_0(\omega_2), \varphi_0(\omega_3), \dots, \varphi_0(\omega_{n-1})$ .

14.5.3. 
$$Q = E_6$$

We work with the bases

$$\begin{split} B_{3,3}^{+} &= \left\{ e_3, a_3^* a_3 - a_2^* a_2, \left( a_3^* a_3 - a_2^* a_2 \right)^2, a_5^* a_5 a_3^* a_3 a_5^* a_5, \right. \\ &\quad a_5^* a_5 a_3^* a_3 a_5^* a_5 a_3^* a_3, a_3^* a_3 a_5^* a_5 a_3^* a_3 a_5^* a_5 a_3^* a_3 \right\}, \\ B_{3,3}^{-} &= \left\{ a_5^* a_5, a_3^* a_3 a_5^* a_5, a_5^* a_5 a_3^* a_3, a_3^* a_3 a_5^* a_5 a_3^* a_3, \right. \\ &\quad a_5^* a_5 a_3 a_3^* \left( a_3^* a_3 - a_2^* a_2 \right)^2, a_3^* a_3 a_5^* a_5 a_3 a_3^* \left( a_3^* a_3 - a_2^* a_2 \right)^2 \right\}, \\ B_{6,3}^{+} &= \left\{ a_5 a_3^* a_3 a_5^* a_5, a_5 a_3^* a_3 a_5^* a_5 a_3^* a_3, a_5 a_3^* a_3 a_5^* a_5 a_3 a_3^* \left( a_3^* a_3 - a_2^* a_2 \right) \right\}, \\ B_{3,6}^{-} &= \left\{ a_5, a_5 a_3^* a_3 a_5^*, \left( a_3^* a_3 - a_2^* a_2 \right) a_3^* a_3 a_5^* \right\}, \\ B_{3,6}^{-} &= \left\{ a_5^* a_5 a_3^* a_3 a_5^*, a_3^* a_3 a_5^* a_5 a_3^* a_3 a_5^*, a_3^* a_3 a_5^* a_5 \left( a_3^* a_3 \right)^2 a_5^* \right\}, \\ B_{6,6}^{+} &= \left\{ e_6, a_5 a_3^* a_3 a_5^*, a_5 \left( a_3^* a_3 \right)^2 a_5^* \right\}, \\ B_{6,6}^{-} &= \left\{ a_5 a_3^* a_3 a_5^*, a_5 \left( a_3^* a_3 \right)^2 a_5^* \right\}. \end{split}$$

We immediately get the matrix

$$M_{\beta} = \begin{pmatrix} \kappa_{3,3} & \kappa_{3,6} \\ \kappa_{6,3} & \kappa_{6,6} \end{pmatrix} = \begin{pmatrix} 0 & -6 \\ 6 & 0 \end{pmatrix}$$

which represents the  $\beta$  with respect to the basis  $\varepsilon_3$ ,  $\varepsilon_6$  and dual basis  $\varphi_0(\omega_3)$ ,  $\varphi_0(\omega_6)$ .

14.5.4. E<sub>7</sub>

For  $E_7$  and  $E_8$  we do not have to work with an explicit basis to calculate  $\kappa_{k,l}$  since for any basis element x,  $\eta(x) = \pm x$ . It is enough to know the following: given any monomial  $x \in e_k A e_j$  of length l,  $n_{k,j}$  the number of arrows  $x \in Q$  and d(k,j) the distance between the vertices k,j, we know that x contains  $n_{k,j} + \frac{l - d(k,j)}{2}$  arrows in Q and  $d(k,j) - n_{k,j} + \frac{l - d(k,j)}{2}$  arrows in Q.

We can derive the following formula:

$$\kappa_{k,j} = (-1)^{n_{k,j}} \left( \left( d(k,j) - n_{k,j} \right) \frac{H_A(t)}{t^{d(k,j)}} \bigg|_{t=\sqrt{-1}} + \frac{1}{2} t \frac{d}{dt} \frac{H_A(t)}{t^{d(k,j)}} \bigg|_{t=\sqrt{-1}} \right). \tag{14.5.4}$$

The resulting matrix is

$$(\kappa_{k,j})_{k,j} = \begin{pmatrix} 12 & 6 & 9 & 3 & 0 & 3 & -9 \\ -6 & 0 & 3 & 0 & 0 & 0 & -3 \\ 15 & -3 & 12 & 3 & 0 & 3 & -12 \\ -3 & 0 & -3 & 0 & 0 & 0 & -6 \\ 0 & 0 & 0 & 0 & 0 & -9 & 0 \\ -3 & 0 & -3 & 0 & 9 & 0 & -6 \\ -15 & 3 & -12 & 6 & 0 & 6 & 12 \end{pmatrix}.$$

A basis of  $Y^*[-h-2]$  is given by

$$\varepsilon_1 = [e_1 + e_7], \qquad \varepsilon_2 = [e_2], \qquad \varepsilon_3 = [e_3 + e_7], \qquad \varepsilon_4 = [e_4], \qquad \varepsilon_5 = [e_5], \qquad \varepsilon_6 = [e_6].$$

 $(\theta_0 \varepsilon_i)_{1 \leq 1 \leq 6}$  is given by

$$\begin{pmatrix} 3 & 6 & 0 & 3 & 0 & 3 \\ -9 & 0 & 0 & 0 & 0 & 0 \\ 3 & -3 & 0 & 3 & 0 & 3 \\ -9 & 0 & -9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -9 \\ -9 & 0 & -9 & 0 & 9 & 0 \\ -3 & 3 & 0 & 6 & 0 & 6 \end{pmatrix} \begin{pmatrix} \varphi_0(\omega_1) \\ \varphi_0(\omega_2) \\ \varphi_0(\omega_3) \\ \varphi_0(\omega_4) \\ \varphi_0(\omega_5) \\ \varphi_0(\omega_6) \\ \varphi_0(\omega_7) \end{pmatrix}.$$

Now use the defining relation of Y[-h-2],

$$\varphi_0(\omega_7) = \varphi_0(\omega_1) + \varphi_0(\omega_3)$$

to obtain the matrix

$$M_{\beta} = \begin{pmatrix} 0 & 9 & 0 & 9 & 0 & 9 \\ -9 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 9 & 0 & 9 \\ -9 & 0 & -9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -9 \\ -9 & 0 & -9 & 0 & 9 & 0 \end{pmatrix}$$

which represents  $\beta$  with respect to the basis  $\varepsilon_1, \ldots, \varepsilon_6$  and its dual basis  $\varphi_0(\omega_1), \ldots, \varphi_0(\omega_6)$ .

14.5.5. E<sub>8</sub>

We can use (14.5.4) and get the matrix

which represents  $\beta$  with respect to the basis  $\varepsilon_1, \ldots, \varepsilon_8$  and its dual basis  $\varphi_0(\omega_1), \ldots, \varphi_0(\omega_8)$ .

**Remark 14.5.5.** With respect to our chosen bases  $(\varepsilon_i)_{i \in I'}$  and  $\phi_0(\omega_i)_{i \in I'}$ , such that the vertex set  $I' \subset I$ , together with the arrows in I form a connected subquiver Q',  $M_\beta$  can be written in this general form:

$$M_{\beta} = \frac{h}{2} \cdot (C')^{\epsilon},\tag{14.5.6}$$

where we call  $(C')^{\epsilon}$  the *signed adjacency matrix* of the subquiver  $\bar{Q}'$ , that is

$$(C')_{ij} = \begin{cases} 0 & \text{if } i, j \text{ are not adjacent,} \\ +1 & \text{if arrow } i \leftarrow j \text{ lies in } Q^*, \\ -1 & \text{if arrow } i \leftarrow j \text{ lies in } Q. \end{cases}$$
(14.5.7)

In the  $D_{n+1}$ -case, we have

$$M_{\beta} = n \cdot \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ -1 & 0 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & -1 & 0 & 1 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 0 \end{pmatrix}^{-1},$$

in the  $E_6$ -case, we have

$$M_{\beta} = 6 \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{-1},$$

in the  $E_7$ -case, we have

$$M_{\beta} = 9 \cdot \begin{pmatrix} 0 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 \end{pmatrix}^{-1},$$

and in the  $E_8$ -case, we have

$$M_{eta} = 15 \cdot egin{pmatrix} 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \end{pmatrix}^{-1}.$$

## 15. Products involving $HH^2(A)$

We start with  $HH^2(A) \times HH^3(A) \to HH^5(A)$  first and then deduce  $HH^2(A) \times HH^2(A) \to HH^4(A)$  from associativity.

15.1. 
$$HH^2(A) \times HH^3(A) \rightarrow HH^5(A)$$

We will prove the following general proposition:

**Proposition 15.1.1.** For the basis elements  $f_i \in HH^2(A)$ ,  $h_j \in HH^3(A)$ , the cup product is

$$f_i h_j = \delta_{ij} \psi_0. \tag{15.1.2}$$

**Proof.** Recall the maps

$$h_j: A \otimes \mathcal{N} \to A,$$
  
  $1 \otimes 1 \mapsto \omega_j$ 

and lift it to

$$\hat{h}_j: A \otimes \mathcal{N} \to A \otimes A,$$
  
 $1 \otimes 1 \mapsto 1 \otimes \omega_j.$ 

Then

$$\hat{h}_i(d_4(1 \otimes a \otimes 1)) = \hat{h}_i(a \otimes 1 - 1 \otimes a) = a \otimes \omega_i = d_1(1 \otimes a \otimes \omega_i),$$

SO

$$\Omega h_j : \Omega^4(A) \to \Omega(A),$$
  
 $1 \otimes a \otimes 1 \mapsto 1 \otimes a \otimes \omega_j.$ 

Then we have

$$\Omega h_j (d_5(1 \otimes 1)) = \Omega h_j \left( \sum_{a \in \bar{Q}Q} \epsilon_a a \otimes a^* \otimes 1 + \sum_{a \in \bar{Q}} \epsilon_a 1 \otimes a \otimes a^* \right)$$
$$= \sum_{a \in \bar{Q}} \epsilon_a \otimes a^* \otimes \omega_j = d_2(1 \otimes \omega_j),$$

so

$$\Omega^2 h_j : \Omega^5(A) \to \Omega^2(A),$$
  
 $1 \otimes 1 \mapsto 1 \otimes \omega_i.$ 

This gives us

$$f_i(\Omega^2 h_i)(1 \otimes 1) = f_i(1 \otimes \omega_i) = \delta_{ij}\omega_i$$

i.e. the cup product

$$f_i h_i = \delta_{ii} [\omega_i] = \delta_{ii} \psi_0.$$

15.2. 
$$HH^2(A) \times HH^2(A) \rightarrow HH^4(A)$$

Since  $\deg HH^2(A) = -2$ , their product has degree -4 (i.e. lies in  $span(\zeta_0)$ ), so it can be written as

$$HH^2(A) \times HH^2(A) \to HH^4(A),$$
  
 $(a,b) \mapsto \langle a,b \rangle \zeta_0,$ 

where  $\langle -, - \rangle : HH^2(A) \times HH^2(A) \to \mathbb{C}$  is a bilinear form. We prove the following proposition:

**Proposition 15.2.1.** The cup product  $HH^2(A) \times HH^2(A) \to HH^4(A)$  is given by  $\langle -, - \rangle = \alpha$ , where  $\alpha$  (from Proposition 14.2.3) is regarded as a symmetric bilinear form.

**Proof.** We use (14.4.2) to get

$$\theta_0(f_i f_j) = \theta_0(\langle f_i, f_j \rangle \zeta_0) = \langle f_i, f_j \rangle \psi_0.$$
 (15.2.2)

On the other hand, by Propositions 14.2.3 and 15.1.1,

$$(\theta_0 f_i) f_j = \alpha(f_i) f_j = \sum (M_\alpha)_{li} h_l f_j = (M_\alpha)_{ji} \psi_0 = (M_\alpha)_{ij} \psi_0.$$
 (15.2.3)

By associativity of the cup product, we can equate (15.2.2) and (15.2.3) to get

$$\langle f_i, f_j \rangle = (M_\alpha)_{ij}. \qquad \Box \tag{15.2.4}$$

15.3. 
$$HH^2(A) \times HH^4(A) \xrightarrow{0} HH^6(A)$$

This computation uses the Batalin–Vilkovisky structure on Hochschild cohomology: We have  $\deg HH^2(A) = -2$ ,  $\deg HH^4(A) \geqslant -h$  and  $\deg HH^6(A) \leqslant -h-2$ . So we know by degree argument that

$$f_k \zeta_l = \begin{cases} 0, & l > h - 4, \\ \sum_s \lambda_s \varphi(\omega_s), & l = h - 4. \end{cases}$$
 (15.3.1)

We use [Eu3, (6.0.12)] and the isomorphism  $HH^{i}(A) = HH_{6m+2-i}(A)$  to get for the Gerstenhaber bracket on  $HH^{*}(A)$ :

$$[f_k, \zeta_l] = \Delta(f_k \zeta_l) - \underbrace{\Delta(f_k)}_{=0} \zeta_l - f_k \underbrace{\Delta(\zeta_l)}_{=0}$$
$$= \sum_s \lambda_s \left(\frac{1}{2} + m\right) h \beta^{-1} (\varphi(\omega_s)).$$

The Gerstenhaber bracket has to be independent of the choice of  $m \ge 0$ . This implies that the RHS has to be zero, so all  $\lambda_s = 0$ . This shows that

$$f_k \zeta_{h-4} = 0, \tag{15.3.2}$$

so we have that the cup product of  $HH^2(A)$  with  $HH^4(A)$  is zero.

15.4. 
$$HH^2(A) \times HH^5(A) \xrightarrow{0} HH^7(A)$$

Let  $a \in HH^2(A)$  and  $b \in HH^5(A)$  be homogeneous elements, then  $ab = \lambda \theta_k \in HH^7(A) = U[-2h-2], \lambda \in \mathbb{C}$ . Then

$$\lambda \psi_0 = \lambda \psi_k z_k = \lambda \theta_k \zeta_k = \lambda b(a\zeta_k) = 0,$$

the last equality coming from the product  $a\zeta_k \in HH^2(A) \cup HH^4(A) = 0$ .

# 16. Products involving $HH^3(A)$

16.1. 
$$HH^3(A) \times HH^3(A) \xrightarrow{0} HH^6(A)$$

This follows by degree argument:  $\deg HH^3(A) = -2$ ,  $\deg HH^6(A) \leqslant -h - 2 < -4$ .

16.2. 
$$HH^3(A) \times HH^4(A) \xrightarrow{0} HH^7(A)$$

This follows by degree argument:  $\deg HH^3(A) = -2$ ,  $\deg HH^4(A) \geqslant -h$ ,  $\deg HH^7(A) \leqslant -h - 4 < -h - 2$ .

16.3. 
$$HH^3(A) \times HH^5(A) \xrightarrow{0} HH^8(A)$$

This follows by degree argument:  $\deg HH^3(A) = -2$ ,  $\deg HH^5(A) \geqslant -h-2$ ,  $\deg HH^8(A) = -2h-2 < -h-4$ .

### 17. Products involving $HH^4(A)$

17.1. 
$$HH^4(A) \times HH^4(A) \xrightarrow{0} HH^8(A)$$

This follows by degree argument:  $\deg HH^4(A) \geqslant -h$ ,  $\deg HH^8(A) = -2h - 2 < -2h$ .

17.2. 
$$HH^4(A) \times HH^5(A) \xrightarrow{0} HH^9(A)$$

This is clear for  $Q = D_{n+1}$ , n odd,  $Q = E_7$ ,  $E_8$  where  $HH^9(A) = K[-2h-2] = 0$ . Let  $Q = D_{n+1}$ , n even or  $Q = E_6$ . Let  $a \in HH^4(A)$ ,  $b \in HH^5(A)$ . The product  $HH^2(A) \times HH^3(A) \to HH^5(A)$ ,  $(x, y) \mapsto \langle x, y \rangle \zeta_0$  induces a nondegenerate bilinear form  $\langle -, - \rangle$ . If  $ab \in HH^9(A) = HH^3(A)[-2h]$  is nonzero, then we can find a  $c \in HH^2(A)$ , such that  $c(ab) = \zeta_0$ . But this equals (ca)b = 0 since  $HH^2(A) \times HH^4(A) \xrightarrow{0} HH^6(A)$  which gives us a contradiction.

# 18. $HH^{5}(A) \times HH^{5}(A) \to HH^{10}(A)$

**Proposition 18.0.1.** The multiplication of the subspace  $U[-2]^*$  with  $HH^5(A)$  is zero. The pairing on  $Y^*[-h-2]$  is

$$Y^*[-h-2] \times Y^*[-h-2] \to HH^{10}(A),$$
  
 $(a,b) \mapsto \Omega(a,b)\varphi_4(\zeta_0),$  (18.0.2)

where the skew-symmetric bilinear form  $\Omega(-,-)$  is given by the matrix  $-M_{\beta}$  from Subsection 14.5.

**Proof.** We have  $\deg HH^5(A) \ge -h-2$  and  $\deg HH^{10}(A) \le -2h-4$ , so we can get a nonzero multiplication only by pairing bottom degree parts of  $HH^5(A)$  which is  $Y^*[-h-2]$ . The product lies in the top degree part of  $HH^{10}(A) = HH^4(A)[-2h]$  which is spanned by  $\varphi_4(\zeta_0)$ . This gives us the pairing of the form (18.0.2).

We want to find the matrix  $(\Omega(\varepsilon_i, \varepsilon_j))_{i,j}$  where  $\varepsilon_i$  are a basis of  $Y^*[-h-2]$ , given in the section about  $HH^5(A)$ . Recall that the multiplication  $HH^1(A) \times HH^5(A) \to HH^6(A)$  was given by a skew-symmetric matrix  $((M_\beta)_{i,j})_{i,j\in F}$ , so that  $\theta_0\varepsilon_i = \sum_{k\in F} (M_\beta)_{k,i} \varphi_0(\omega_k)$ .

We multiply  $\varepsilon_i \varepsilon_i = \Omega(\varepsilon_i, \varepsilon_i) \varphi_4(\zeta_0)$  with  $\theta_0$  (see 14.4.2):

$$\theta_0(\varepsilon_i \varepsilon_i) = \Omega(\varepsilon_i, \varepsilon_i) \varphi_5(\psi_0). \tag{18.0.3}$$

Using associativity, this equals

$$(\theta_0 \varepsilon_i) \varepsilon_j = \sum_{k \in F} (M_\beta)_{k,i} \varphi_0(\omega_k) \varepsilon_j = (M_\beta)_{j,i} \psi_0 = -(M_\beta)_{i,j} \varphi_5(\psi_0). \tag{18.0.4}$$

We see from Eqs. (18.0.3) and (18.0.4) that

$$\Omega(\varepsilon_i, \varepsilon_j) = -(M_\beta)_{i,j}$$
.

This completes the cup product computation of  $HH^*(A)$ .  $\square$ 

#### 19. Presentation of $HH^*(A)$

For each quiver, we give a presentation of  $HH^*(A)$  as an algebra over  $\mathbb{C}$  by generators and relations. We write X for the element  $\phi_0(z_0) \in HH^6(A)$ .

19.1. 
$$Q = D_{n+1}$$
,  $n \text{ odd}$ 

 $HH^*(A)$  is generated by

$$1, z_4, \omega_1, \ldots, \omega_n, \theta_0, \zeta_{2n-6}, \varepsilon_2, \ldots, \varepsilon_n, X$$

with relations  $(\forall i, j = 2, ..., n, \forall k, l = 1, ..., n)$ 

$$(z_4)^{\frac{n+1}{2}} = \theta_0^2 = \zeta_{2n-6}^2 = z_4 \varepsilon_i = 0,$$

$$z_4 \omega_k = \theta_0 \omega_k = \zeta_{2n-6} \omega_k = \omega_l \omega_k = X \sum_{\substack{m=1\\ m \text{ odd}}}^{n-2} \omega_m = X z_4^{\frac{n-1}{2}} = 0,$$

$$\omega_i \varepsilon_j = \delta_{ij} z_4^{\frac{n-3}{2}} \theta_0 \zeta_{2n-6},$$

$$\varepsilon_i \varepsilon_j = -\Omega(\varepsilon_i, \varepsilon_j) X z_4^{\frac{n-3}{2}} \zeta_{2n-6},$$

where  $\Omega(-,-)$  is a skew-symmetric bilinear form given by the matrix

19.2. 
$$Q = D_{n+1}$$
, n even

 $HH^*(A)$  is generated by

$$1, z_4, \omega_1, \ldots, \omega_{n-1}, \theta_0, f_n, \zeta_{2n-4}, \varepsilon_2, \ldots, \varepsilon_{n-1}, X$$

with relations  $(\forall i, j = 2, ..., n-1, \forall k, l = 1, ..., n-1)$ 

$$(z_4)^{\frac{n}{2}} = \theta_0^2 = z_4 f_n = \zeta_{2n-4}^2 = \zeta_{2n-4} f_n = 0,$$
  
 $z_4 \varepsilon_i = f_n \varepsilon_i = 0,$ 

$$z_4\omega_k = \theta_0\omega_k = f_n\omega_k = \zeta_{2n-4}\omega_k = \omega_l\omega_k = X \sum_{\substack{m=1\\ m \text{ odd}}}^{n-1} \omega_m = 0,$$

$$\begin{split} f_n^2 &= -nz_4^{\frac{n-2}{2}}\zeta_{2n-4} \\ \omega_i\varepsilon_j &= \delta_{ij}z_4^{\frac{n-2}{2}}\theta_0\zeta_{2n-4}, \\ \varepsilon_i\varepsilon_j &= -\Omega(\varepsilon_i,\varepsilon_j)Xz_4^{\frac{n-2}{2}}\zeta_{2n-4}, \end{split}$$

where  $\Omega(-,-)$  is a skew-symmetric bilinear form given by the matrix

19.3.  $Q = E_6$ 

 $HH^*(A)$  is generated by

$$1, z_6, z_8, \omega_3, \omega_6, \theta_0, f_1, f_2, \zeta_6, \zeta_8, \varepsilon_3, \varepsilon_6, X$$

with relations (for  $u, v \in \{6, 8\}, k, l \in \{3, 6\}, i, j \in \{1, 2\}$ )

$$z_{u}z_{v} = \theta_{0}^{2} = z_{u}f_{i} = \zeta_{u}\zeta_{v} = \zeta_{u}f_{i} = z_{u}\varepsilon_{k} = f_{i}\varepsilon_{k} = 0,$$
$$z_{u}\omega_{k} = \theta_{0}\omega_{k} = f_{i}\omega_{k} = \zeta_{u}\omega_{k} = \omega_{l}\omega_{k} = 0,$$

$$z_8\zeta_8 = z_6\zeta_6,$$
  $\omega_k\varepsilon_l = \delta_{kl}\theta_0z_8\zeta_8,$   $f_if_j = \langle f_i, f_j \rangle z_8\zeta_8,$ 

where  $\langle -, - \rangle$  is the symmetric bilinear form, given by the matrix

$$\begin{pmatrix} -8 & -4 \\ -4 & -8 \end{pmatrix}$$
,

$$\varepsilon_k \varepsilon_l = -\Omega(\varepsilon_k, \varepsilon_l) X z_8 \zeta_8,$$

where  $\Omega(-,-)$  is a skew-symmetric bilinear form, given by the matrix

$$\begin{pmatrix} 0 & -6 \\ 6 & 0 \end{pmatrix}$$
.

19.4.  $Q = E_7$ 

 $HH^*(A)$  is generated by

$$1, z_8, z_{12}, \omega_1, \ldots, \omega_6, \theta_0, \zeta_8, \zeta_{12}, \varepsilon_1, \ldots, \varepsilon_6, X$$

with relations (for  $u, v \in \{8, 12\}, k, l \in \{1, ..., 6\}$ )

$$z_u z_{12} = \theta_0^2 = z_u^3 = z_u \varepsilon_k = 0,$$

$$z_u \omega_k = \theta_0 \omega_k = \omega_l \omega_k = X z_8^2 = 0,$$

$$z_8\zeta_8 = z_{12}\zeta_{12}, \qquad \omega_k\varepsilon_l = \delta_{kl}\theta_0z_{12}\zeta_{12},$$

$$\varepsilon_k \varepsilon_l = -\Omega(\varepsilon_k, \varepsilon_l) X_{z_1 z_1 z_1 z_1}$$

where  $\Omega(-,-)$  is a skew-symmetric bilinear form, given by the matrix

$$\begin{pmatrix} 0 & 9 & 0 & 9 & 0 & 9 \\ -9 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 9 & 0 & 9 \\ -9 & 0 & -9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -9 \\ -9 & 0 & -9 & 0 & 9 & 0 \end{pmatrix}.$$

19.5.  $Q = E_8$ 

 $HH^*(A)$  is generated by

$$1, z_{12}, z_{20}, \omega_1, \ldots, \omega_8, \theta_0, \zeta_{20}, \zeta_{24}, \varepsilon_1, \ldots, \varepsilon_6, X$$

with relations (for  $u, v \in \{12, 20\}, k, l \in \{1, ..., 8\}$ )

$$z_{u}z_{20} = \theta_{0}^{2} = z_{u}^{3} = z_{u}\varepsilon_{k} = z_{12}^{3} = 0,$$

$$z_{u}\omega_{k} = \theta_{0}\omega_{k} = \omega_{l}\omega_{k} = 0,$$

$$z_{12}^{2}\zeta_{24} = z_{20}\zeta_{20}, \qquad \omega_{k}\varepsilon_{l} = \delta_{kl}\theta_{0}z_{20}\zeta_{20},$$

$$\varepsilon_{k}\varepsilon_{l} = -\Omega(\varepsilon_{k}, \varepsilon_{l})Xz_{20}\zeta_{20},$$

where  $\Omega(-,-)$  is a skew-symmetric bilinear form, given by the matrix

### Acknowledgments

C. Eu wants to thank his advisor P. Etingof and T. Schedler for useful discussions. This work is partially supported by the NSF grant DMS-0504847.

### References

- [CBEG] W. Crawley-Boevey, P. Etingof, V. Ginzburg, Noncommutative geometry and quiver algebras, arXiv: math.AG/0502301.
- [EE2] P. Etingof, C. Eu, Hochschild and cyclic homology of preprojective algebras of ADE quivers, arXiv: math.AG/0609006.
- [ES2] K. Erdmann, N. Snashall, On Hochschild cohomology of preprojective algebras. I, J. Algebra 205 (2) (1998) 391–412, II, J. Algebra 205 (2) (1998) 413–434.
- [Eu3] C. Eu, The calculus structure of the Hochschild homology/cohomology of preprojective algebras of Dynkin quivers, arXiv: 0706.2418v1.
- [MOV] A. Malkin, V. Ostrik, M. Vybornov, Quiver varieties and Lusztig's algebra, arXiv: math.AG/0403222.
- [S] A. Schofield, Wild algebras with periodic Auslander–Reiten translate, preprint.