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Abstract

The present paper deals with an algebraic function field analogue of β-expansions of real numbers.
It completely characterizes the sets with eventually periodic and finite expansions. These characteri-
zations are unknown in the real case.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

β-Expansions of real numbers were introduced by Rényi [16]. Since then, their arith-
metic, diophantine and ergodic properties have been extensively studied by several authors
(cf. for instance [1,2,7–9,15,19]). In this paper, we consider an analogue of this concept in
algebraic function fields over finite fields. There are striking analogies between these digit
systems and the classical β-expansions of real numbers.

In order to pursue this analogy, we recall the definition of real β-expansions and survey
the problems corresponding to our results. For β > 1, the β-transformation T = Tβ is
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defined for x ∈ [0,1) by T (x) = βx − �βx�. By iterating this map and considering its
trajectory x

x1−→ T (x)
x2−→ T 2(x)

x3−→ · · · with xj = �βT j−1x�, we obtain an expansion

x = x1β
−1 + x2β

−2 + · · · .

We will call the sequence dβ(x) = .x1x2 · · · the β-expansion of x. We say that dβ(x) is
finite when xi = 0 for all sufficiently large i. This is the case when there is an integer i � 0
such that T ix = 0.

Consider the sequence dβ(β − �β�) = .c1c2 · · · . Then

1 = �β�β−1 + c1β
−2 − · · · .

Let

c′
i =

{ �β� for i = 1,

+ci−1 for i > 1,
and d ′

β(1) = .c′
1c

′
2 · · · .

The sequence d ′
β(1) is of special interest. It plays an important role in the study of Dβ ,

the set of all β-expansions of numbers of [0,1). If d ′
β(1) is eventually periodic, then β is

called a β-number. If d ′
β(1) is finite, β is called simple β-number. In the case that β is a

(simple) β-number, an easy argument implies that β is an algebraic integer.
It is easy to prove that an infinite sequence of nonnegative integers (xi)i�1 is the β-

expansion of x ∈ [0,1) if and only if

xiβ
−i + xi+1β

−i−1 + · · · < β−i+1 (1.1)

for every i � 1.
Now let x � 1. Then there is an integer n such that βn � x < βn+1. We define in a

similar manner dβ(x) = x−n · · ·x−1x0.x1x2 · · · . Note that dβ(1) �= d ′
β(1), since dβ(1) = 1.,

while d ′
β(1) = .c′

1c
′
2 · · · .

Note that if β = b ∈ Z, then db(x) coincides with the ordinary b-ary expansion of x.
Let

Per(β) = {
x ∈ [0,∞): dβ(x) is eventually periodic

}
and

Fin(β) = {
x ∈ [0,∞): dβ(x) is finite

}
.

Recall that a Pisot number is an algebraic integer β > 1 for which all algebraic conjugates
γ with γ �= β satisfy |γ | < 1. A Salem number is an algebraic integer β > 1 for which
all algebraic conjugates γ with γ �= β satisfy |γ | � 1 with at least one conjugate having
|γ | = 1.

Theorem 1.1. (Bertrand and Schmidt [7,19].) If β is a Pisot number, then

Per(β) = Q(β) ∩ [0,∞).
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Since every rational integer b > 1 is a Pisot number, this result is a natural generalization
of the well-known fact that x ∈ Q if and only if db(x) is eventually periodic.

Schmidt [19] proved a partial converse of Theorem 1.1, namely if Q∩[0,∞) ⊂ Per(β),

then β is a Pisot or Salem number. It is conjectured, that also if β is a Salem number, then
Q ∩ [0,∞) ⊂ Per(β). In the setting of algebraic function fields, we will prove an analogue
of Theorem 1.1 for Pisot and Salem elements.

A similar situation occurs in the case of finite expansions. We say that a number β > 1
has the finiteness property or property (F), if

Fin(β) = Z
[
β−1] ∩ [0,∞). (F)

This property was introduced by Frougny and Solomyak [9]. They proved that (F) implies
that β is a Pisot number. Akiyama [3] proved that even the weaker condition Z+ ⊂ Fin(β)

implies that β is a Pisot number. Several classes of Pisot numbers are known, such that
(F) holds. On the other hand, there exist examples of Pisot numbers, such that (F) is not
fulfilled (cf. [3,9,11]). For algebraic function fields, we will prove that no such exceptional
cases exist.

This paper is organized as follows. In Section 2, we will define F((x−1)), the field of pole
like formal Laurent series about ∞ as well as the analogues to Pisot and Salem numbers
in F((x−1)). Furthermore, we will provide a simple algorithm to compute the coefficients
of Pisot and Salem elements in F((x−1)). In Section 3, we will define the β-expansion al-
gorithm for F((x−1)) and prove that there are no dependencies between consecutive digits.
Section 4 is devoted to periodic expansions. We will prove an extended analogue of Theo-
rem 1.1 together with its converse. In Section 5, we will give a complete characterization
of all bases, which give rise to finite expansions. Such a characterization seems to be very
hard to achieve in the real case.

While preparing this paper, the author was informed that similar results have been
proved in a forthcoming paper by Hbaib and Mkaouar [10]. They considered the analogue
of β-numbers in algebraic function fields. We will mention their results in Remarks 4.6
and 5.7 below.

2. Pisot and Salem elements in the field of formal Laurent series over a finite field

Let F be a finite field, F[x] the ring of polynomials, F(x) the field of rational functions.
Let F((x−1)) be the field of formal Laurent series of the form

z =
�∑

k=−∞
zkx

k, zk ∈ F, (2.1)

where

� = deg z :=
{max{k: zk �= 0} for z �= 0,

−∞ for z = 0.
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Remark 2.1. v(z) := −deg z is an exponential valuation of F((x−1)).

Define the absolute value

|z| =
{

hdeg z for z �= 0,

0 for z = 0,

where h > 1 is an arbitrary but fixed real number. Note that the set of possible values of
| · | is a discrete set. Then F((x−1)) is the completion of F(x) with respect to | · |.

Thus F[x] is the analogue to Z, F(x) is the analogue to Q and F((x−1)) is the analogue
to R. If β ∈ F((x−1)), then F(x,β) is the analogue to Q(β), F[x,β] is the analogue to Z[β]
and F[x,β−1] is the analogue to Z[β−1].

Since | · | is not archimedean, | · | fulfills the strict triangle inequality

|z + w| � max
(|z|, |w|) and (2.2)

|z + w| = max
(|z|, |w|) if |z| �= |w|. (2.3)

For a ∈ F((x−1)) and r ∈ R+, set D(a, r) = {z ∈ F((x−1)): |z−a| < r}. Let z be as in (2.1).
Define the integer (polynomial) part �z� = ∑�

k=0 zkx
k where the empty sum, as usual, is

defined to be zero. Therefore �z� ∈ F[x] and z − �z� ∈ D(0,1) for all z ∈ F((x−1)). Note
that �z + w� = �z� + �w�, �−z� = −�z� and |�z�| � |z|.

For a good reference on function field arithmetic, we refer to Rosen [17]. The following
definitions are from [6, Chapter 12].

Definition 2.2. An element β = β1 ∈ F((x−1)) is called Pisot element if it is an algebraic
integer over F[x], |β| > 1 and |βj | < 1 for all Galois conjugates βj .

Definition 2.3. An element β = β1 ∈ F((x−1)) is called Salem element if it is an algebraic
integer over F[x], |β| > 1, |βj | � 1 for all Galois conjugates βj , and there exists at least
one Galois conjugate βk such that |βk| = 1.

In general, β and its Galois conjugates are hard to compute. Therefore, the conditions
in Definitions 2.2 and 2.3 are difficult to verify. By considering the Newton polygon (cf.
[13,14]) of the minimal polynomial, the following, more useful equivalences [6, Theo-
rem 12.1.1] can be derived.

Theorem 2.4. Let β ∈ F((x−1)) be an algebraic integer over F[x] and

p(y) = yn − a1y
n−1 − · · · − an, ai ∈ F[x], (2.4)

be its minimal polynomial. Then

(i) β is a Pisot element if and only if dega1 > 0 and dega1 > maxn
j=2 degaj ;

(ii) β is a Salem element if and only if dega1 > 0 and dega1 = maxn
j=2 degaj .

In both cases β is a single zero with |β| = |a1|.
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In Theorem 2.6, a method to compute the coefficients of Pisot or Salem elements is
given. For the proof, we will need the following auxiliary result.

Lemma 2.5. If z,w ∈ F((x−1)) with |z| = |w|, then |zn −wn| � |z−w||z|n−1 for all n ∈ Z.

Proof. The statement is trivial for n = 0. For n > 0, we have

∣∣zn − wn
∣∣ = |z − w|∣∣zn−1 + zn−2w + · · · + wn−1

∣∣
� |z − w| n−1

max
j=0

∣∣zn−1−jwj
∣∣ = |z − w||z|n−1

and

∣∣z−n − w−n
∣∣ = ∣∣wn − zn

∣∣∣∣z−nw−n
∣∣ � |w − z||w|n−1

∣∣z−nw−n
∣∣

= |z − w||z|−n−1. �
Theorem 2.6. Let β be a Pisot or Salem element and (2.4) be its minimal polynomial. Then
degβ = dega1 and the recurrence

y1 = a1, yk+1 = a1 + a2

yk

+ · · · + an

yn−1
k

for k � 1

fulfills

lim
k→∞yk = β.

Proof. First we prove by induction that |yk| = |a1| for all k � 1. For k = 1 this assertion
is trivial.

Let |yk| = |a1| or equivalently, degyk = dega1. For j = 2, . . . , n, it follows from
dega1 > 0 and dega1 � degaj that

degaj /y
j−1
k = degaj − (j − 1)degyk � dega1 − 1 dega1 = 0 < dega1.

Thus degyk+1 = dega1 or equivalently |yk+1| = |a1|. From Lemma 2.5, we get

|yk+1 − yk| =
∣∣∣∣a2

(
1

yk

− 1

yk−1

)
+ · · · + an

(
1

yn−1
k

− 1

yn−1
k−1

)∣∣∣∣
� max

( |a2|
|a1|2 , . . . ,

|an|
|a1|n

)
|yk − yk−1|.

Since |a1| > 1 and |a1| � |aj |, the left factor is constant and less than 1. Thus, the sequence
converges to a limit α with |α| = |a1|. Since β is the only zero of (2.4) with |β| = |α| and
α = a1 + a2/α + · · · + an/α

n−1, we have α = β . �
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Example 2.7. Let p(y) = y2 + xy + x over Z2. Since dega1 = dega2, its zero must be a
Salem element. Then the above sequence converges to

β = lim
k→∞yk = x +

∞∑
k=0

1

x2k−1
.

Since p(y) is a quadratic polynomial, we have

β2 = a1 − β =
∞∑

k=0

1

x2k−1
.

3. β-Expansions in FFF((x−1))

Let β, z ∈ F((x−1)) with |β| > 1, |z| < 1. A representation in base β (or β-
representation) of z is an infinite sequence (di)i�1, di ∈ F[x], such that

z =
∞∑
i=1

di

βi
. (3.1)

A particular β-representation—called the β-expansion—can be computed by a greedy al-
gorithm.

This algorithm works as follows. Set r(0) = z and let dj = �βr(j−1)�, r(j) = βr(j−1) −
dj for j � 1. This procedure yields a representation of z of the form (3.1). Note that
|dj | < |β| and |r(j)| < 1 for all j . The β-expansion of z will be denoted by

dβ(z) = .d1d2 · · · .
Note that

r(k) = βk

(
z −

k∑
�=1

d�β
−�

)
.

An equivalent definition of the β-expansion is obtained by using the β-transformation
T = Tβ on D(0,1) which is given by the mapping

T :D(0,1) → D(0,1), z �→ βz − �βz�.
Then dβ(z) = (di)

∞
i=1 if and only if di = �βT i−1(z)�. Note that dβ(z) is finite if and only

if there is a k � 0 such that T k(z) = 0.
Analogously to the real case, let dβ(β − �β�) = .c1c2 · · · ,

c′
i =

{ �β� for i = 1,

+c for i > 1,
and d ′

β(1) = .c′
1c

′
2 · · · .
i−1



400 K. Scheicher / Finite Fields and Their Applications 13 (2007) 394–410
If d ′
β(1) is eventually periodic, then β is called a β-element. If d ′

β(1) is finite, β is called
simple β-element.

Now let z ∈ F((x−1)) be an element with |z| � 1. Then there is a unique k ∈ N such that
|β|k � |z| < |β|k+1. Hence |z/βk+1| < 1 and we can represent z by shifting dβ(z/βk+1)

by k digits to the left. Therefore, if dβ(z) = .d1d2d3 . . . , then dβ(βz) := d1.d2d3 . . . . In the
sequel, we will use the following notations:

Per(β) = {
z ∈ F

((
x−1)): dβ(z) is eventually periodic

}
and

Fin(β) = {
z ∈ F

((
x−1)): dβ(z) is finite

}
.

The following theorem provides an analogue to the condition mentioned in (1.1).

Theorem 3.1. An infinite sequence (dj )j�1 is the β-expansion of z ∈ D(0,1) if and only
if |dj | < |β| for j � 1. Therefore, consecutive digits of z are independent.

Proof. The proof runs nearly along the same lines as in the real case. �
Remark 3.2. In contrast to the real case, there is no carry occurring, when we add two
digits. Therefore, if z,w ∈ F((x−1)), we have dβ(z + w) = dβ(z) + dβ(w) digitwise.

Example 3.3. Take p(y) from Example 2.7. Since β2 + xβ + x = 0 and 1 = −1 in Z2, we
obtain

x = β2

β + 1
= β + 1 + 1

β
+ 1

β2
+ · · · .

Thus dβ(x) = 11.11 . . . . Therefore, x ∈ Per(β) but x /∈ Fin(β).

4. Periodic expansions

The aim of the current section is to study the set of elements with eventually periodic
expansions. In the case of Pisot elements, Theorem 4.1 provides an analogue to the classical
result of Bertrand and Schmidt [7,19] mentioned in the introduction. Theorem 4.4 contains
the converse of Theorem 4.1.

Theorem 4.1. Let β be a Pisot or Salem element. Then

Per(β) = F(x,β).

Proof. The proof for Per(β) ⊂ F(x,β) is trivial. To prove F(x,β) ⊂ Per(β), we mainly
follow [12, Proposition 7.2.19].
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It is sufficient to prove the result for F(x,β) ∩ D(0,1). Let z ∈ F(x,β) ∩ D(0,1). Then

z = q−1
n−1∑
i=0

piβ
i

with q,pi ∈ F[x] and degq as small as possible. Let (dk)k�1 be the β-expansion of z, let
βj , j = 2, . . . , n, be the Galois conjugates of β = β1 and

r
(k)
j = βk

j

(
q−1

n−1∑
i=0

piβ
i
j −

k∑
�=1

d�β
−�
j

)
(4.1)

for j = 1, . . . , n. Therefore, r
(k)
1 = r(k) and r

(k)
j , j = 2, . . . , n, are the conjugates of r(k).

We have |r(k)
1 | = |r(k)| < 1 for all k. For j = 2, . . . , n, from |βj | � 1 and |d�| < |β|

follows

∣∣r(k)
j

∣∣ � max
(
|βj |k

∣∣r(0)
j

∣∣, k
max
�=1

(∣∣d�β
k−�
j

∣∣)) � max
(∣∣r(0)

j

∣∣, |β|) < ∞. (4.2)

In (4.2), the strict triangle inequality (2.2) has been applied (this is the crucial step which
does not work for real β-expansions by Salem numbers). Therefore, |r(k)

j | is bounded for
all k and j . We need a technical result.

Lemma 4.2. Let R(k) = (r
(k)
1 , . . . , r

(k)
n ) and B = (β−i

j )1�i,j�n. Then for every k � 0, there

exists a unique n-tuple W(k) = (w
(k)
1 , . . . ,w

(k)
n ) ∈ F[x]n such that R(k) = q−1W(k)B .

Proof. The proof runs along the same lines as the proof of [12, Lemma 7.2.20]. Thus, we
will skip it. �

Now we proceed with the proof of Theorem 4.1. Let H(k) = qR(k). Since |r(k)
j | is

bounded for every j , the sequence ‖H(k)‖ is bounded. As the matrix B is invertible, for
every k � 1,

∥∥H(k)B−1
∥∥ = ∥∥W(k)

∥∥ = ∥∥(
w

(k)
1 , . . . ,w(k)

n

)∥∥ = max
1�j�n

∣∣w(k)
j

∣∣ < ∞.

Thus there exist p and m such that W(m+p) = W(m), and therefore, r(m+p) = r(m) which
implies that the β-expansion of z is eventually periodic. �

In order to prove the converse of Theorem 4.1, we will need the following

Lemma 4.3. Let z,w ∈ F((x−1)), z �= w and |z| > 1. Then for every k > 0 there exists some
n � 0 with |zn − wn| > k.
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Proof. Let k > 0. We distinguish three cases.

(i) If |z| �= |w|, then |zn| �= |wn| for n �= 0. Thus∣∣zn − wn
∣∣ = max

(∣∣zn
∣∣, ∣∣wn

∣∣) � |z|n.
Since |z| > 1, there exists some n � 0 with |z|n > k.

(ii) Let |z| = |w| and |z − w| > 1. If p > 0 is the characteristic of F, then for m � 0 we
have zpm −wpm = (z−w)pm and thus |zpm −wpm| = |z−w|pm. Since |z−w| > 1,
there exists some m � 0 with |z − w|pm > k.

(iii) Let |z| = |w| and |z − w| � 1. Then

∣∣zpm+1 − wpm+1
∣∣ = ∣∣zpm(z − w) + (

zpm − wpm
)
w

∣∣
� max

(|z|pm|z − w|, |z − w|pm|w|).
Note that |z − w|pm|w| is bounded for m � 0. From (2.3) and |z| > 1 follows that
there exists some m0 � 0 such that∣∣zpm+1 − wpm+1

∣∣ = |z|pm|z − w|
holds for all m � m0. Now the statement follows easily. �

Theorem 4.4. Let F[x] ⊂ Per(β). Then β is a Pisot or Salem element.

Proof. From |β − �β�| < 1 we obtain

�β� = β + d1

β
+ d2

β2
+ · · · , where |di | < |β|.

Since �β� ∈ F[x], the expansion of �β� must be eventually periodic. Therefore,

�β� = β + d1

β
+ · · · + dk

βk
+ dk+1

βk+1
+ · · · + dk+p

βk+p
+ dk+1

βk+p+1
+ · · · + dk+p

βk+2p
+ · · · .

Thus

βk

(
�β� − β − d1

β
− · · · − dk

βk

)
= βk+p

(
�β� − β − d1

β
− · · · − dk+p

βk+p

)
.

Therefore, β is an integral element of F(x). Note that if the β-expansion of �β� is finite,
the right-hand side of this equation is zero.

Suppose that β has a Galois conjugate βj �= β with |βj | > 1. By Lemma 4.3, we can
choose m with

∣∣βm − βm
j

∣∣ > max

(
1,

∣∣∣∣ β
∣∣∣∣
)

. (4.3)

βj
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Since |βm − �βm�| < 1, we have

⌊
βm

⌋ = βm + e1

β
+ e2

β2
+ · · · , where |ei | < 1.

Since �βm� ∈ F[x], the expansion must be eventually periodic. Consider the β-expansion
of z = �βm�−βm ∈ D(0,1). Let r(k), r(k)

j be as in the proof of Theorem 4.1. Equation (4.1)
yields

⌊
βm

⌋ = βm +
k∑

�=1

e�

β�
+ r(k)

βk
for k � 0.

Since �βm� ∈ F[x] and βj is a Galois conjugate of β , it must fulfill the equation

�βm� = βm
j +

k∑
�=1

e�

β�
j

+ r
(k)
j

βk
j

for k � 0.

Since the expansion of z is eventually periodic, the r(k) take only finitely many values.
Thus, the same is true for r

(k)
j . Hence, limk→∞ r(k)/βk = 0. If there exists βj with |βj | > 1,

then limk→∞ r
(k)
j /βk

j = 0. Therefore,

βm − βm
j +

∞∑
�=1

e�

(
1

β�
− 1

β�
j

)
= 0.

From

∣∣∣∣∣
∞∑

�=1

e�

(
1

β�
− 1

β�
j

)∣∣∣∣∣ � max

(
∞

max
�=1

∣∣∣∣ e�

β�

∣∣∣∣, ∞
max
�=1

∣∣∣∣ e�

β�
j

∣∣∣∣
)

< max

(
1,

∣∣∣∣ β

βj

∣∣∣∣
)

we get a contradiction to (4.3). �
We can combine Theorems 4.1 and 4.4 to obtain

Corollary 4.5. An element β ∈ F((x−1)) is a Pisot or Salem element if and only if

F[x] ⊂ Per(β).

Remark 4.6. Hbaib and Mkaouar [10] proofed a slightly stronger result: in Theorem 4.4,
already the condition dβ(β − �β�) ∈ Per(β) implies that β is Pisot or Salem. Thus β is
Pisot or Salem, if and only if it is a β-element.
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5. Finite expansions

In the present section, we will study Fin(β), the set of finite expansions. Contrary to the
case of real β-expansions, we can prove a complete characterization result in our setting.
We will need the following

Lemma 5.1. Let β be an arbitrary element of F((x−1)) with degβ > 0, and let z ∈
F[x,β−1] have purely periodic β-expansion with period n. Then z ∈ F[x,β].

Proof. Assume z ∈ F[x,β−1] is purely periodic with period n. Let dβ(z) = .d1d2 . . . .
Since z ∈ F[x,β−1], there is an m such that βmnz ∈ F[x,β]. Therefore,

z = βmnz − d1β
mn−1 − · · · − dmn ∈ F[x,β]. �

Theorem 5.2. Let β ∈ F((x−1)) be a Pisot element. Then

Fin(β) = F
[
x,β−1]. (F)

Remark 5.3. Note that (F) is true if and only if for every z ∈ F[x,β−1], there is k � 0 such
that T k(z) = 0.

Proof. Since it is trivial that Fin(β) ⊂ F[x,β−1], we need to prove only the opposite in-
clusion. Let

βn − a1β
n−1 − · · · − an = 0 (5.1)

with dega1 > degaj for j > 1.
From Theorem 4.1 it follows that F[x,β−1] ⊂ F(x,β) ⊂ Per(β). Thus z ∈ F[x,β−1]

has an eventually periodic expansion. Since addition is performed digitwise, z can be de-
composed into z = zf + zp , where dβ(zf ) is finite and dβ(zp) is purely periodic. Hence,
by Lemma 5.1, zp ∈ F[x,β]. Since

r(k) = βk(zf + zp) −
k∑

�=1

d�β
k−�
j ,

there is an integer k such that r(k) ∈ F[x,β], and we can restrict our attention to F[x,β].
Let B = {1, β, . . . , βn−1} and V = {v1, . . . , vn} where

vi = βi−1 − a1β
i−2 − · · · − ai−1 (5.2)

= ai

β
+ · · · + an

βn−i+1
. (5.3)

Note that v1 = 1. Then B and V are bases of F[x,β] considered as lattice over F[x].
Using (5.2), the coordinates with respect to V can be computed from the coordinates
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with respect to B by a linear system of equations. Hence, for every z ∈ F[x,β], there are
z1, . . . , zn ∈ F[x] such that z = z1v1 + · · · + znvn. Denote by ϕ(z) = z = (z1, . . . , zn)

,
the (transposed) vector of coordinates with respect to V . If v = (v1, . . . , vn)

, then z = z ·v.
In base V , multiplication by β is represented by the matrix

M =

⎛
⎜⎜⎜⎜⎝

a1 a2 · · · an−1 an

1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎠ .

Define the vectors e = (1,0, . . . ,0) and 0 = (0, . . . ,0). We consider the greedy algo-
rithm for z ∈ F[x,β] with respect to V . Since T (z) = βz − �βz�, the β-transformation
with respect to V takes the form τn : F[x]n → F[x]n with

z �→ Mz − �Mz · v�e. (5.4)

Furthermore, ϕ(T (z)) = τn(ϕ(z)), which shows that the following diagram is commuta-
tive:

F[x,β] T

ϕ

F[x,β]
ϕ

F[x]n
τn

F[x]n.

Substituting M , v and e into (5.4), we can express τn as follows:

τn : (z1, z2, . . . , zn)
 �→ (−�z1v2 + · · · + zn−1vn�, z1, . . . , zn−1

)
. (5.5)

Thus, F[x]n together with τn provides an analogue to the so-called shift radix system de-
fined in [4,5]. However, due to our notation, the indices here are in the reverse direction as
in [4,5].

Since the image of τn in (5.5) does not depend of zn, we can confine ourselves to the
mapping τn−1 : F[x]n−1 → F[x]n−1 defined by

τn−1 : (z1, z2, . . . , zn−1)
 �→ (−�z1v2 + · · · + zn−1vn�, z1, . . . , zn−2

)
. (5.6)

Thus, (F) is true if and only if for every z(0) ∈ F[x]n−1 with z(0) �= 0, there is a k � 0, such
that z(k) = τ k

n−1(z
(0)) = 0. Therefore, if z(k) = (z

(k)
1 , . . . , z

(k)
n−1), then (F) is true if and only

if maxn−1 deg z
(k) = −∞.
i=1 i
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For i = 2, . . . , n it follows that

degvi = deg

(
ai

β
+ · · · + an

βn−i+1

)

� n
max
j=i

(
degaj − (j − i + 1)degβ

)
< dega1 − 1 dega1 = 0.

Hence, for (z
(0)
1 , . . . , z

(0)
n−1)

 �= 0, we obtain

deg
(−⌊

z
(0)
1 v2 + · · · + z

(0)
n−1vn

⌋)
� n−1

max
i=1

deg
(
z
(0)
i vi+1

)
<

n−1
max
i=1

deg z
(0)
i . (5.7)

Note that the left-hand side of (5.7) is either nonnegative or −∞. It follows from (5.6)
and (5.7) that

deg z
(1)
1 � n−1

max
i=1

(
deg z

(0)
i − 1

)
.

From (z
(1)
1 , . . . , z

(1)
n−1)

 = (z
(1)
1 , z

(0)
1 , . . . , z

(0)
n−2)

, we obtain

deg z
(2)
1 � n−1

max
i=1

(
deg z

(1)
i − 1

)
= max

(
n−1
max
i=1

deg z
(0)
i − 2,

n−2
max
i=1

deg z
(0)
i − 1

)
= max

(
deg z

(0)
1 − 1, . . . ,deg z

(0)
n−2 − 1,deg z

(0)
n−1 − 2

)
.

Analogously follows from (z
(2)
1 , . . . , z

(2)
n−1)

 = (z
(2)
1 , z

(1)
1 , z

(0)
1 , . . . , z

(0)
n−3)

, that

deg z
(3)
1 � n−1

max
i=1

(
deg z

(2)
i − 1

)
= max

(
deg z

(0)
1 − 1, . . . ,deg z

(0)
n−3 − 1,deg z

(0)
n−2 − 2,deg z

(0)
n−1 − 2

)
.

After n − 1 such steps we have

deg z
(n−1)
1 � max

(
deg z

(0)
1 − 1,deg z

(0)
2 − 2, . . . ,deg z

(0)
n−1 − 2

)
.

Therefore, since (z
(n−1)
1 , . . . , z

(n−1)
n−1 ) = (z

(n−1)
1 , z

(n−2)
1 , . . . , z

(1)
1 ), it follows that

n−1
max
i=1

deg z
(n−1)
i = n−1

max
i=1

deg z
(n−i)
1 � n−1

max
i=1

(
deg z

(0)
i − 1

)
.

Going on this way, we will find a number k such that maxn−1
i=1 deg z

(k)
i = −∞. �

The following theorem forms the converse of Theorem 5.2.
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Theorem 5.4. If F[x,β−1] ⊂ Fin(β), then β is a Pisot element.

Proof. Applying arguments from complex analysis, the proof of the corresponding result
for real β-expansions [9, Lemma 1(b)] is rather short. Unfortunately, this technique does
not work in our context. Therefore, we will adapt the idea of [18, Lemma 2.4].

Suppose that

n
max
j=2

degaj � dega1.

We will construct an element z ∈ F[x,β] which does not have a finite representation. De-
fine

i0 := max
{
i ∈ {1, . . . , n}: degai = n

max
j=1

degaj

}

and

j0
(
(z1, . . . , zn)

)
:=

{
min{i ∈ {1, . . . , n}: deg zi = maxn

j=1 deg zj } if maxn
j=1 deg zj > 0,

∞ otherwise.

Select z(0) := (z
(0)
1 , . . . , z

(0)
n ) = (x,0, . . . ,0). Then

j0
(
z(0)

) + 1 � i0. (5.8)

Thus 1 < i0 � n and 1 � j0(z(0)) < n. Let z(k) = (z
(k)
1 , . . . , z

(k)
n ). We will show that z(0)

has an infinite representation by proving that

j0
(
z(k)

) + 1 � i0 for all k � 0. (5.9)

This implies that maxn
j=1 deg z

(k)
j > 0 and hence z(k) �= 0.

We will prove (5.9) by induction. Since (5.9) holds for k = 0 by (5.8), we can proceed
to the induction step. Suppose that (5.9) holds for a certain k and note that

z(k+1) = (
z
(k+1)
1 , . . . , z(k+1)

n

) = (
z
(k+1)
1 , z

(k)
1 , . . . , z

(k)
n−1

)
. (5.10)

We distinguish two cases.

Case 1. j0 := j0(z(k)) < i0 − 1. By (5.10) and because j0 < n, we have

n
max
j=1

deg z
(k+1)
j = max

(
deg z

(k)
j0

,deg z
(k+1)
1

)
= max

(
deg z

(k+1)
j0+1 ,deg z

(k+1)
1

)
(by the definition of j0)

> 0.
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Thus j0(z(k+1)) = 1 or j0(z(k+1)) = j0 + 1. Both of these inequalities imply that

j0
(
z(k+1)

)
� i0 − 1

and we are done.

Case 2. j0 := j0(z(k)) = i0 − 1. Let vi be as in (5.2). The definitions of i0 and j0 imply that

degvi0 � 0, degvi < degvi0 for i > i0,

deg z
(k)
i0−1 > 0, deg z

(k)
j < deg z

(k)
i0−1 for j < i0 − 1.

Thus

deg
(
z
(k)
i0−1vi0

)
> deg

(
z
(k)
i−1vi

)
for i �= i0.

This implies that no cancellations occur in the highest power of x in the sum

z
(k)
1 v2 + · · · + z

(k)
n−1vn.

Hence,

deg
(
z
(k)
1 v2 + · · · + z

(k)
n−1vn

) = deg z
(k)
i0−1 + degvi0 > 0,

and therefore

deg
(−⌊

z
(k)
1 v2 + · · · + z

(k)
n−1vn

⌋)
= deg

(
z
(k)
1 v2 + · · · + z

(k)
n−1vn

) = deg
(
z
(k)
i0−1vi0

)
� deg z

(k)
i0−1 = n−1

max
j=1

deg z
(k)
j .

This implies that

deg z
(k+1)
1 � n

max
j=2

deg z
(k+1)
j .

Thus,

j0
(
z(k+1)

) = 1 � i0 − 1

and we are done also in this case. �
It turns out that condition (F) is equivalent to a seemingly weaker condition.

Theorem 5.5. F[x,β−1] ⊂ Fin(β) if and only if F[x] ⊂ Fin(β).
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Proof. Of course, if F[x,β−1] ⊂ Fin(β), then F[x] ⊂ Fin(β). To prove the converse, con-
sider an element

z = z0 + z1

β
+ · · · + z�

β�
∈ F

[
x,β−1], where zi ∈ F[x].

There exist finite expansions zi = ∑
j dij /β

j . Therefore zi/β
i = ∑

j dij /β
i+j . Adding up

the corresponding digits, we obtain the β-expansion of z, which is again finite. �
We can combine Theorem 5.2 with Theorems 5.4 and 5.5 to obtain

Corollary 5.6. An element β ∈ F((x−1)) is a Pisot element if and only if

F[x] ⊂ Fin(β).

Remark 5.7. In [10] it was proved that β is a Pisot element if and only if it is a simple
β-element.
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