
The BED finger domain protein MIG-39 halts migration of distal tip
cells in Caenorhabditis elegans

Tetsuhiro Kikuchi a, Yukimasa Shibata a, Hon-Song Kim a, Yukihiko Kubota a,b,
Sawako Yoshina c, Shohei Mitani c, Kiyoji Nishiwaki a,n

a Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
b Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577,
Japan
c Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo 162-8666, Japan

a r t i c l e i n f o

Article history:
Received 6 June 2014
Received in revised form
8 October 2014
Accepted 14 October 2014
Available online 31 October 2014

Keywords:
BED-finger domain
Rac GTPase
Cell migration
Epithelial tube morphogenesis

a b s t r a c t

Organs are often formed by the extension and branching of epithelial tubes. An appropriate termination
of epithelial tube extension is important for generating organs of the proper size and morphology.
However, the mechanism by which epithelial tubes terminate their extension is mostly unknown. Here
we show that the BED-finger domain protein MIG-39 acts to stop epithelial tube extension in
Caenorhabditis elegans. The gonadal leader cells, called distal tip cells (DTCs), migrate in a U-shaped
pattern during larval development and stop migrating at the young adult stage, generating a gonad with
anterior and posterior U-shaped arms. Inmig-39 mutants, however, DTCs overshot their normal stopping
position. MIG-39 promoted the deceleration of DTCs, leading to the proper timing and positioning of the
cessation of DTC migration. Among three Rac GTPase genes, mutations in ced-10 and rac-2 enhanced the
overshoot of anterior DTCs, while they suppressed that of posterior DTCs of mig-39 mutants. On the
other hand, the mutation in mig-2 suppressed both the anterior and posterior DTC defects of mig-39.
Genetic analyses suggested that MIG-39 acts in parallel with Rac GTPases in stopping DTC migration. We
propose a model in which the anterior and posterior DTCs respond in an opposite manner to the levels of
Rac activities in the cessation of DTC migration.

& 2014 Elsevier Inc. All rights reserved.

Introduction

Organogenesis resulting from the budding, outgrowth and bifur-
cation of epithelial tubes is one of the fundamental processes of
animal development. During epithelial tube morphogenesis, cells at
the tip and those forming the sheath region migrate coordinately and
divide at appropriate times to form elaborate branching structures
(Lu and Werb, 2008). Cell migration is controlled by various
molecular mechanisms, which involve extracellular matrix, growth
factors, intracellular signaling cascades, the cytoskeleton and tran-
scription factors.

As examples of this process, growth factor ligands such as
fibroblast growth factor (FGF) act in lung morphogenesis by promot-
ing the extension and branching of epithelial tubes (Min et al., 1998).
In contrast, netrin blocks FGF signaling around the neck region of
elongating tubes, thus preventing the formation of new buds (Liu
et al., 2004). The extracellular matrix (ECM) proteins heparan sulfate

proteoglycans mediate FGF signaling during kidney morphogenesis
(Steer et al., 2004). The ECM protein laminin affects the branching
process through the action of cell surface integrin receptors in the
kidney (Kreidberg et al., 1996; Miner and Li, 2000). Mammary
branching morphogenesis requires the activities of Rac, Rho kinase
and myosin light-chain kinase to modulate the actomyosin network
(Ewald et al., 2008). Transcription factors such as Sox9 also act in
lung epithelial morphogenesis (Rockich et al., 2013).

The outgrowth or elongation of epithelial tubes is often directed
by a cell or a group of cells at the tip of the growing tubes (Lu and
Werb, 2008). The Caenorhabditis elegans gonad, which is made up of
epithelial tubes, has such a cell, the distal tip cell (DTC), at the end of
each arm of the gonad. Although the gonad arms do not branch,
gonadal development in C. elegans offers a simple model for studying
the tip cell-dependent spatial and temporal regulation of epithelial
tube morphogenesis. Genetic analyses have uncovered various mole-
cules that control the migration of the DTCs. The signaling molecules,
such as UNC-6/netrin and UNC-129/TGFβ, are involved in the direc-
tional regulation of DTC migration (Colavita et al., 1998; Merz et al.,
2001). The ECM proteins collagen IV and fibulin-1 are involved in the
active migration of DTCs (Kawano et al., 2009; Kubota et al., 2004).
Integrins also have important roles in DTC migration, probably by
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linking ECM and cytoskeletal activities (Meighan and Schwarzbauer,
2007). The Rho family of GTPases is involved as well in the regulation
of DTC migration (Lundquist et al., 2001).

The proper timing of the cessation of tip cell migration and the
correct position in the organism at which point the tip cell stops
migrating are critical for producing an organ of the proper archi-
tecture and size. Although the molecular mechanisms that function
in bud initiation, directional elongation and branching of epithelial
tubes have been extensively studied, the mechanisms by which
these tubes stop growing, for the most part, remain to be discovered.

To understand the molecular mechanisms that operate in this
process, we isolated and molecularly analyzed the mutants that
affect cessation of DTC migration in C. elegans. The causative gene
for these mutations, mig-39, was found to encode a protein with a
BED (BEAF and DREF; boundary element-associated factor and
DNA replication–related element binding factor, respectively)-
finger domain. The BED finger is an evolutionarily conserved
Zinc-finger domain that potentially binds DNA (Aravind, 2000).
Analysis ofmig-39mutant phenotypes suggested that it is required
for the deceleration of migrating DTCs to achieve their correct
timing and positions for cessation. MIG-39 was expressed in the
nucleus of DTCs and in the cytoplasm of germline cells. Genetic
analyses suggested that MIG-39 acts in parallel with the Rac
GTPase pathway in stopping DTC migration.

Materials and methods

Strains and culture conditions

Culture and handling of C. elegans were as described (Brenner,
1974). The following strains were used: N2 (wild type, WT), unc-73
(e936), mig-2(mu28), ced-10(n1993), rac-2(ok326), mig-39(tk102,
tk107) (this work), dpy-18(e326) unc-69(e246)III, sDf110 dpy-18
(e364)/eT1III; unc-46(e177)/eT1 V, nDf16/qC1 dpy-19(e1259) glp-1
(q339)III, nDf20/sma-2(e502) unc-32(e189)III and nDf40 dpy-18
(e364)III; ctDp6(III; f). tkIs11 [mig-24p::venus, unc-119(þ)]X was
generated by γ-irradiation of unc-119(e2498); Ex[mig-24p::venus,
unc-119(þ)], a transgenic line generated by injecting 30 ng/μl mig-
24p::venus, 30 ng/μl unc-119 (þ) and 140 ng/μl pBSIIKS(-) plasmids.

1.1. Isolation of the mig-39(tk102) and mig-39(tk107) mutants,
genetic mapping and molecular cloning

tkIs11 [mig-24p::venus, unc-119(þ)] hermaphrodites were
mutagenized with ethyl methane sulfonate as described
(Brenner, 1974). F2 or later young adult animals with DTCs over-
shot the normal positions were screened under the dissecting
microscope equipped with fluorescence optics. tk102 and tk107
mutants were generated by ethyl methane sulfonate mutagenesis.
The mutant was outcrossed eight times against the WT N2 strain.
tk102 and tk107 were mapped to linkage group III by Sequence-
Tagged Site mapping (Williams et al., 1992). Single-nucleotide
polymorphism mapping combined with deletion mapping placed
tk102 and tk107 in the regions from �0.58 to �0.19 and from
�0.26 to �0.07 map units on linkage group III, respectively
(Wicks et al., 2001). tk102 and tk107 failed to complement each
other. Whole-genome sequencing revealed that the predicted gene
F42H10.5 is the sole gene in the mapped region that had mutations
in both the tk102 and tk107mutant genomes. Microinjection of the
fosmid clone WRM0623bC05, which contains F42H10.5, rescued
the overshoot phenotype of tk107. WRM0623bC05 also contained
three small genes, rpn-3 (C30C11.2) and mrpl-32 (C30C11.1), ups-
tream of and F42H10.6, downstream of F42H10.5 (Fig. 2A). The
PCR-amplified fragments containing these genes did not rescue
tk107. Thus we concluded that mig-39 corresponds to F42H10.5.

Double-stranded RNA interference (RNAi) experiments

RNAi feeding was performed as described (Fraser et al., 2000). The
RNAi clone containing full-length cacn-1 cDNA was used (Tannoury
et al., 2010). The RNAi clone for rac-2 was from the Ahringer Library
(Fraser et al., 2000). The RNAi clone for mig-2 was constructed as
follows. A DNA fragment of mig-2 containing the first and second
exons was amplified from the WT genome using primers 50-GGAA-
GATCTGCAGATCAAATGTGTAGTTG-30 and 50-CGGGGTACCTGTTGCA-
CACATTGAACCTCT-30. The fragment was digested with KpnI and
Bgl II and cloned into the RNAi vector L4440 (Grishok et al., 2005).

Analysis of DTC positions

Two transgenic makers, tkIs11 [mig-24p::venus, unc-119(þ)] for
DTCs and evIs82a [unc-129::gfp] for DA and DB motor neurons
(Lim and Wadsworth, 2002), were used, except that only evIs82a
was used in the strains having mig-2(mu28). The positions of DTCs
were determined relative to those of the cell bodies of the DA and
DB neurons. The positions of DA and DB neurons relative to those
of the vulva and gonad were not affected in the mutants other
than unc-73. When the effect of an unc-73 mutation was analyzed,
the degree of overshoot was determined by measuring the
distance from the vulva to the DTC, because unc-73(e936) showed
mispositioning of DA and DB motor neurons (data not shown). The
WT and mutant animals examined in this work had DTC pheno-
types that were classified based on one or more of the following
criteria: extra turn, wandering, premature termination and over-
shoot. The percentages of these phenotypes are shown in Tables
S1, S2 and S3. We analyzed only the overshoot and premature
termination phenotypes in the Phase III migration, because we
focused on the mechanism by which DTCs stop migrating after
making two normal turns.

Plasmid construction

We amplified a mig-39 cDNA from the start to stop codons
by reverse transcription of total RNA from WT animals with
primers 50-ATGAGCAGCGTAAGCAGTGATATTGATGG-30 and 50-
CTAATTAAAAAGTTTCGAAACAATCTGACG-30. The cDNA fragment
was ligated into pGEM-T Easy Vector (Promega) (mig-39 cDNA
plasmid). To construct lag-2p::mig-39 cDNA, the cloned mig-39
cDNA region was PCR-amplified with primers 50-ATAA-
GAATGCGGCCGCGATGAGCAGCG-30 and 50-GGGGTACCGCGTAAT-
TAAAAAGTTTCG-30, digested with NotI and KpnI and ligated to
the lag-2p (�7388 to þ3) plasmid (Tamai and Nishiwaki, 2007)
using the NotI and KpnI sites. To construct pie-1::mig-39 cDNA, we
amplified a mig-39 cDNA from the mig-39 cDNA plasmid with
primers 50- CCGCGGGAATTCGATCTAATTAAAAGTT-30 and 50- CAC-
CATGAGCAGCGTAAGCAGTGATAT-30. The cDNA fragment was lig-
ated into pENTRTM Vector by Directional TOPOR Cloning Kit
(Invitrogen). We used Gateway Cloning Kit (Invitrogen) to insert
the mig-39 cDNA into the MTC1G plasmid having a pie-1 promoter
(kindly provided by A. Sugimoto) and removed the gfp fragment by
AscI digestion followed by self-ligation.

Production of transgenic animals

We injected DNA mixtures into the gonads of mig-39(tk107) adult
hermaphrodites. The fosmid clone WRM0623bC05 was injected at
10 ng/μl with 30 ng/μl myo-3::mCherry marker and 110 ng/μl pBSII
KS(�) plasmids. The lag-2p::mig-39 cDNA plasmid was injected at
2 or 10 ng/μl with 30 ng/μl myo-3::mCherry and and pBSII KS(�) to
bring total concentration to 150 ng/μl. The pie-1p::mig-39 cDNA
plasmid was injected at 2 ng/μl with 30 ng/μl myo-3::mCherry
and 118 ng/μl pBSII KS(�). The 17-kb mig-39 genomic fragment
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encompassing from �9579 to þ2770 relative to the adenine of the
initiation codon was amplified by nested PCR using the external
primer set 50–GTGGGTAGGCACGATTTAAAGTGCCTGCC-30 and 50–
CCAATAAAGTAAAGTGACAAAAGAAAAGCG-30 and the internal primer
set 50–GGAGTCCGCATAGTATAGTTTTGCTAGC-30 and 50–GAGCAAC-
GAGTACGACAGCTGACGTGC-30. The fragment was injected at 2 ng/
μl with 30 ng/μl myo-3::mCherry and 118 ng/μl pBSII KS(–) plasmids.

Production of antibodies

The region coding for MIG-39 peptide fromM303 to H470 was am-
plified using primers 50–CCGCTCGAGATGGATCTGAGCATGAAGAAG-30

and 50-CGGGATCCCTAATGACTTGTCGAGTTCAC-30, digested with XhoI
and BamHI and ligated into the pET-19b vector using the XhoI and
BamHI sites. The antigenic peptide of MIG-39 was expressed as a
histidine-tagged fusion protein in Escherichia coli and was used to
immunize rabbits. The generated antibody was affinity purified.

Immunohistochemistry

We dissected worms on a glass slide coated with poly-L-lysine
using an injection needle (Terumo 23G�11/4) to extrude the
gonads. The samples were outlined with Dako Pen (Dako), covered
with Parafilm and dried briefly. After removal of the Parafilm, the
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Fig. 1. DTC migration and DTC overshoot phenotype. (A) Schematic representation of the phases of DTC migration and gonad formation in the C. elegans hermaphrodite.
(B) Merged images from Nomarski and fluorescence microscopy of WT and mig-39(tk107) hermaphrodites with a tkIs11[mig-24p::venus] marker. The anterior and posterior
gonad arms are shown by white and red dashed outlines, respectively. The gonad shapes are schematically shown below. Scale bar: 20 μm.
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samples were fixed with methanol followed by acetone for 20 min
each at �20 1C and were blocked with 3.8% Block Ace (DS Pharma
Biomedical Co., Ltd.) in phosphate-buffered saline (PBS). The
samples were incubated with the primary antibody, anti–MIG-
39, at 11.5 μg/ml in PBS containing 3.8% Block Ace for 2 h and then
were incubated with the secondary antibody, Cy3-labeled anti-
rabbit IgG (1:500; Life Technologies) or FITC-labeled anti-rabbit
IgG (1:500; Life Technologies), and 1 μg/ml DAPI at room tem-
perature for 40 min. The whole mount freeze fractured samples
were prepared as described (Yamaguchi et al., 1983) and stained as
in above.

Results

MIG-39 encodes a BED-finger protein that is required for stopping
gonadal leader cell migration

The migration of the anterior and posterior gonadal leader cells,
the DTCs, promotes directional elongation of gonad arms during
hermaphrodite development and leads to the formation of a pair of
U-shaped gonad arms with rotational symmetry. The migration of
DTCs is classified into three phases (Hedgecock et al., 1987; Kimble
and White, 1981). The DTCs are generated at the center of the ventral
body wall muscle and migrate in opposite directions (Phase I). They
turn orthogonally and migrate toward the dorsal muscle (Phase II).
After reaching the dorsal muscle, the two DTCs turn again and
migrate toward the mid-body (Phase III; Fig. 1(A)). We expressed
Venus, a yellow fluorescent protein, under the control of the DTC-
specific mig-24 promoter and fluorescently labeled DTCs. In the WT
worms, both DTCs stopped near the vulva. We isolated two mutants,
tk102 and tk107, whose DTCs overshot the vulval region because of a
defect in the cessation of their migration (Fig. 1(B) and data not
shown). Genetic analysis and molecular cloning experiments revealed
that both of these mutations were recessive and were alleles of the
same gene, mig-39 (data not shown and see Materials and methods).

mig-39 corresponds to the predicted gene F42H10.5 in WormBase,
which encodes a protein with a Zinc-finger DNA-binding do-
main called a BED (Boundary element-associated factor and DNA
replication-related element binding factor)-finger domain (Aravind,
2000). MIG-39 also has a hATC (hobo, Activator and Tam3 carboxyl-
terminal) domain, which is required for self-association (Yamashita
et al., 2007) (Fig. 2(B)). MIG-39 has weak homology with mammalian
ZBED4 in its carboxyl terminus, which contains the hATC domain
(Fig. S1). Sequencing indicated that the tk102 and tk107mutations are
missense (E231K) and nonsense (Q271Stop) mutations, respectively.

MIG-39 is required for deceleration of DTCs during Phase III migration

The DTC overshoot could result from a defect in body length, a
defective rate of DTC migration or defective timing of the cessation
of DTC migration. We compared the lengths of the bodies of WT
and mutant young adult hermaphrodites and found no difference
in body lengths (Fig. S2). We then examined the timing of DTC
turns relative to the stages of vulval development. The vulval
precursor cell P6.p undergoes three rounds of divisions and
produces eight descendants, which constitute the vulval epithe-
lium. In both WT and mutant animals, the first DTC turn occurred
mostly during the four-P6.p cell stage, and the second turn
occurred during the four-P6.p cell stage in �60% of animals and
during the eight-P6.p cell stage in �40% of animals, suggesting
that the migration rates in mutant DTCs until the second turn are
not affected (Fig. S3). Therefore, we examined the migration
during Phase III after the second turn. To quantify the DTC
overshoot phenotype, we introduced an unc-129::GFP reporter,
which is expressed in the DA and DB motor neurons in the ventral
nerve cord. The cell bodies of these neurons were used as the
longitudinal positional markers to assess the position at which
DTCs ceased to migrate. The DTCs of the posterior gonad (posterior
DTCs) showed stronger overshoot phenotypes than did those in
the anterior gonad (anterior DTCs) in both tk102 and tk107
mutants (Fig. 3). We analyzed the positions of DTCs relative to
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Fig. 3. Phenotypes of mig-39 mutants and transgenics. Positions of anterior and posterior DTCs in the young adult hermaphrodites were plotted relative to the DA and DB
motor neurons and the vulva. The intervals between DA2 and DA3, DB4 and DA4, DA4 and DB5 and DA6 and DB7 were each divided in half. The interval between DA5 and
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considered to have overshot. The mig-39 cDNA concentrations used for microinjection are shown in the parentheses (ng/μl). More than two independent lines with similar
phenotypes were obtained for WRM0623bC05, 17-kb fragment and lag-2p::mig-39 cDNA transgenic lines. Of the two pie-1p::mig-39 cDNA transgenic lines, one (not shown)
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those of the DA and DB neurons in time course experiments
during Phase III migration. Although we detected subtle differ-
ences in migration rates between WT and mutants in the anterior
DTCs, clear differences were observed in the posterior DTCs
(Fig. 4). In the WT, the posterior DTCs gradually decelerated after
the second turn and stopped around DB5 neuron �15 h after the
second turn, when animals reached the adult stage. The DTCs
retracted after that to positions near the vulva by �24 h; this
slight relative retraction could have resulted from elongation of
the body. In contrast, the DTCs in tk102 and tk107mutants stopped
�16 and 18 h, respectively, after the second turn, and they also
retracted to some extent until 24 h. These results indicate that the
migration rates of mutant DTCs are not faster than the migration
rate of WT DTCs during Phase III, but rather that the deceleration
rates were slower in the mutants compared with the WT, and
therefore the mutant DTCs stopped migrating later than did the
WT DTCs.

MIG-39 protein is expressed in DTCs and germline cells

We generated a polyclonal antibody against a region of the MIG-
39 polypeptide that was expressed in E. coli (Fig. 2(B)). This antibody
recognized nuclear antigens of DTCs as well as antigens in the
cytoplasm of germline cells in WT animals (Fig. 5(A) and (B)).

Although it also stained the same tissues in the tk102 mutant, it
failed to stain those of the tk107mutant animals. Thus it is likely that
the antibody specifically recognized the MIG-39 protein and that
tk107 is a null allele. To examine the localization of MIG-39 in the
nucleus, we stained the gonads of the animals expressing UNC-84-
GFP. UNC-84 is the C. elegans homolog of the SUN protein, which
localizes to the inner nuclear membrane (Malone et al., 1999). MIG-
39 preferentially localized to the peripheral chromatin region of the
nucleus of DTCs (Fig. 5(C)). We then examined the expression of
MIG-39 in the WT DTCs in time course experiments. We observed
that the expression of MIG-39 in the DTC nucleus progressively
decreased across fourth larval stage (L4), young adult and late adult
animals (Fig. 5(D)).

Transgenic rescue of mig-39 mutants

The fosmid clone WRM0623bC05 fully rescued the cessation
defect of DTCs inmig-39(tk107) mutants (Fig. 3). However, when we
used a 17-kb PCR-amplified fragment of mig-39 with a 9579-bp 50

untranslated region, it enhanced the anterior defect although the
posterior defect was suppressed (Fig. 3). These results suggested
that the 17-kb fragment may lack sequences required for proper
regulation of mig-39 expression. Because MIG-39 is expressed in
DTCs and germline cells, we expected that MIG-39 could act in the
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DTCs themselves. We expressed the mig-39 cDNA in DTCs using the
DTC-specific lag-2 promoter and observed that the transgenic
animals exhibited suppression of the posterior phenotype, whereas
the anterior phenotype was enhanced, as was the case for the 17-kb
fragment (Fig. 3). Thus DTC-specific expression of MIG-39 was
sufficient for the posterior DTC to stop appropriately but was not
sufficient for the regulation of anterior DTC stopping. Alternatively,
the anterior and posterior DTCs may respond differently to over-
production of MIG-39. Supporting for this, we observed that over-
production of MIG-39 in the wild type background resulted in
anterior overshoot (Fig S4). We then expressed mig-39 cDNA under
the germline-specific pie-1 promoter. We observed no suppression

of the mig-39 phenotype and rather enhancement of the anterior
and posterior overshoot, indicating that germline expression of
MIG-39 cannot rescue the mig-39 defects (Fig. 3).

CACN-1 acts in parallel with MIG-39

RNAi of CACN-1, the C. elegans homolog of Drosophila Cactin,
causes DTC overshooting (Tannoury et al., 2010). We thus exam-
ined the genetic interaction between CACN-1 and MIG-39. cacn-1
RNAi showed a weak overshoot phenotype of the posterior DTCs.
This could be because of that cacn-1 RNAi treated DTCs continue
to migrate after the young adult stage at which we scored the
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phenotype (Tannoury et al., 2010). When we conducted cacn-1
RNAi in the mig-39(tk107) background, we observed significant
enhancement of the overshoot phenotype for both anterior and
posterior DTCs. We used the tk107 allele rather than tk102 because
it is likely to be a null allele. These results suggest that cacn-1 acts
in parallel with mig-39 for DTC cessation (Fig. 6).

Rac GTPases act in parallel pathways relative to MIG-39

Rac GTPases play important roles in cell migration and axon
extension by regulating the actin cytoskeleton (Burridge and
Wennerberg, 2004). Among three Rac proteins in C. elegans,
CED-10 and MIG-2 have been implicated in the regulation of
DTC migration (Cabello et al., 2010; Lundquist et al., 2001; Peters
et al., 2013; Reddien and Horvitz, 2000). In particular, MIG-2 is
suggested to interact with CACN-1 to stop DTC migration
(Tannoury et al., 2010). So far, there has been no description of
the activity of the third Rac protein, RAC-2, in DTC migration.

We examined the effects of Rac GTPases and one of their GTP
exchange factors, UNC-73 (Wu et al., 2002), on the cessation of
DTC migration. We used null mutations rac-2(ok326) and mig-2
(mu28) and reduced-function mutations ced-10(n1993) and unc-73
(e936). No overshoot phenotype was detected in ced-10(n1993)
and mig-2(mu28) single mutants. rac-2(ok326) showed overshoot
of the anterior DTCs, and unc-73(e936) did for both anterior and
posterior DTCs. When combined with mig-39(tk107), ced-10 and
rac-2 enhanced the anterior defect, whereas they suppressed the
posterior defect of this mig-39 mutant. In contrast, mig-2 sup-
pressed both anterior and posterior defects, and unc-73 did not
affect the anterior overshoot ofmig-39 but did strongly enhance its
posterior overshoot defect (Fig. 7(A) and (B)).

Because the three Rac genes act in a redundant manner in the
migration of various cells and axons (Kishore and Sundaram, 2002;
Shakir et al., 2006; Wu et al., 2002), we conducted double knock-
down of Rac genes using RNAi. We found that rac-2 RNAi in ced-10
(n1993); mig-39(tk107) and rac-2 RNAi in mig-2(mu28); mig-39
(tk107) animals suppressed the mig-39(tk107) overshoot defects
for both anterior and posterior DTCs and that mig-2 RNAi in ced-10
(n1993); mig-39(tk107) animals suppressed the posterior over-
shoot of mig-39 (Fig. 7(A)). These data indicated that the require-
ments of Rac activities for stopping DTC migration differ between
the anterior and posterior DTCs.

Discussion

MIG-39 is specifically required for the cessation of DTC migration

In the present study, we identified mig-39, a gene that is
required for proper deceleration of DTCs, through forward genetics
analysis. Two genes have been reported to affect the cessation of
DTC migration: cacn-1 and ccdc-55. CACN-1 is the homolog of the
Drosophila Cactin, which is required for the formation of embryo-
nic dorso-ventral polarity (Tannoury et al., 2010). CACN-1 was
recently shown to be a component of the splicesome in C. elegans
(Doherty et al., 2014). CCDC-55 is a coiled-coil domain protein that
is conserved throughout eukaryotes (Kovacevic et al., 2012).
Deletion mutations of these genes result in larval arrest, but the
DTC overshoot phenotypes can be observed using RNAi knock-
down (Kovacevic et al., 2012; Tannoury et al., 2010). Therefore,
these genes appear to be required for larval growth as well as for
the cessation of DTC migration. In contrast to these genes, mig-39
is required specifically for the stopping of DTCs because we
detected no other phenotypes in the tk107 null mutant. Because
in our screen we obtained only two independent mutants that
affect the cessation of DTC migration, which were both shown to

be alleles of mig-39, it is possible that the number of genes
functioning specifically in DTC stopping could be relatively small.

Expression and function of MIG-39

The BED-finger domain-containing proteins are evolutionarily
conserved DNA-binding proteins that are implicated in the regula-
tion of chromatin structure, DNA replication and transcription
(Aravind, 2000). BEAF was originally identified as a protein that
localizes to interbands and puff boundaries on polytene chromo-
somes in Drosophila (Zhao et al., 1995). BEAF is an insulator protein
predominantly found near gene promoters and has a role in the
expression of genes involved in cell cycle regulation, chromosome
segregation and cell polarity (Emberly et al., 2008; Gurudatta et al.,
2012). DREF in Drosophila (Hirose et al., 1996) forms a multi-
subunit protein complex with TATA box-binding protein (TBP)-
related factor 2 (TRF2) (Hochheimer et al., 2002) and acts as a
transcription factor for S-phase genes such as those that encode
PCNA, DNA polymerase α, Cyclin A, D-raf and Warts (Fujiwara
et al., 2012; Hirose et al., 1993; Ohno et al., 1996; Ryu et al., 1997).
DREF is suggested to be involved in cell proliferation by antag-
onizing the action of BEAF (Emberly et al., 2008; Hart et al., 1999).
The human homolog of DREF is also involved in cell proliferation
and the expression of histone H1 and ribosomal genes (Ohshima
et al., 2003; Yamashita et al., 2007).

In the present work, we first demonstrated the function of this
BED-finger protein in cell migration, especially in the regulation of
cessation of cell migration. We found that MIG-39 localized to the
DTC nucleus, whereas it was found in the cytoplasm of germline
cells. Although MIG-39 acted cell-autonomously (at least for
posterior DTCs) in stopping migration, its function in the germline
is not clear. Nuclear and cytoplasmic localization of BED-finger
proteins occurs in other systems: Drosophila DREF is expressed in
both the nucleus and cytoplasm in early embryos (Hirose et al.,
1996), and human ZBED4 localizes to both the nucleus of retinal
cone photoreceptors and the cytoplasm of their pedicles and inner
segments. It is also expressed in the endfeet of glial Muller cells
but not in their nuclei (Saghizadeh et al., 2009). No function has
been implicated for these proteins when expressed in the
cytoplasm.

MIG-39 and Rac functions in the cessation of DTC migration

Among the Rac mutants, only rac-2 and ced-10 showed over-
shoot of the anterior DTCs. These mutants, when combined with
the mig-39(tk107) null allele, enhanced the anterior overshoot
phenotype of mig-39, suggesting that rac-2 and ced-10 act in
parallel with mig-39. Because mig-2 suppressed both anterior
and posterior overshoot of mig-39, it is not clear whether mig-2
acts in parallel with or downstream of mig-39. However, given the
functional redundancy of Racs in DTC migration, it is possible that
mig-2 also acts in parallel with mig-39. We examined the expres-
sion of mig-2 fused with gfp in DTCs in mig-39 and control RNAi
experiments and observed no difference in the levels of GFP
expression, suggesting that mig-2 is not a transcriptional target
downstream of MIG-39 (data not shown). Because all the Rac
mutants exhibited enhancing or suppressing effects on the over-
shoot phenotypes of mig-39, it is possible that the functions of
Racs become apparent when placed in the mig-39 mutant
background.

To interpret the actions of Racs that we observed in the mig-39
background, we postulated that (1) the three Racs act redundantly
in the regulation of DTC stopping, (2) the effect of mig-2 on DTC
stopping is larger than that of ced-10 or rac-2 and (3) the sum total
of Rac activity is most severely reduced in the unc-73 mutant.
Based on these hypotheses, we can infer the levels of Rac activities
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in each strain as shown in Fig. 8. If this is the case, it is possible
that as for the anterior DTCs, the reduction of Rac activity to
certain levels promotes DTC overshoot and therefore enhances
mig-39, whereas further reduction promotes DTC stopping and
therefore suppresses mig-39 (Fig. 8(A)). In contrast, the posterior
DTCs may respond to the Rac levels in an opposite manner: the
reduction to certain levels causes promotion of DTC stopping,
whereas further reduction results in promotion of DTC overshoot
(Fig. 8(B)). This model is, for the most part, consistent with our
observations. Although the overshooting of the anterior DTCs in
ced-10(n1993); mig-39(tk107) animals in the presence of mig-2
RNAi was not significantly suppressed as compared with that in
mig-39(tk107) animals, this phenotype was significantly less
severe as compared with that in ced-10(n1993); mig-39(tk107)
animals (Fig. 7(A)). Although the overshooting of the anterior DTCs
in unc-73(e936); mig-39(tk107) animals was not significantly
suppressed as compared with that in mig-39(tk107) animals, the
premature termination phenotype was enhanced: 3% in mig-39
(tk107) compared with 17% in unc-73(e936); mig-39(tk107) when
considering premature stopping positions o�0.1 (Fig. 7(B)).

We have previously observed similar opposite responses in
anterior and posterior DTCs when we combined sqv-5/chondroitin
synthase or mig-22/chondroitin polymerizing factor mutants with
mutations in unc-6/netrin or its receptors unc-5 and unc-40
(Suzuki et al., 2006). Mutations in unc-6, unc-5 or unc-40 all
enhanced the dorsal migration defect of the posterior DTCs, but
concomitantly they suppressed the defect of the anterior DTCs of

sqv-5 and mig-22 mutants. We proposed a model that the UNC-6/
netrin guidance signal could be bidirectional and that the balance
between repulsive and attractive activities determines the direc-
tion of DTC migration. The anterior and posterior DTCs may have
different settings for the balance points in response to the levels of
UNC-6 signal. The Phase III migration of DTCs might be regulated
similarly by the balance between bidirectional activities that are
generated by Rac GTPases, which leads the DTCs to stop migrating
when these activities become proportional. Because the two DTCs
normally migrate in opposite directions in the Phase III migration,
it is also possible that they have opposite settings for responding
to Rac levels during this migratory phase. It has been reported that
Semaphorin-1 and Plexin-1 signaling, which is normally attractive,
becomes repulsive when Rac levels are reduced in the positioning
of male ray 1 precursor cells (Dalpé et al., 2004). Because the DTC
overshoot phenotype is stronger in the posterior DTCs as com-
pared with the anterior DTCs in mig-39 mutants and because the
overproduction of MIG-39 suppresses the posterior phenotype and
enhances the anterior phenotype of mig-39, it is also possible that
anterior and posterior DTCs have different settings for responding
to the levels of MIG-39 activity.

When considering the mechanism of DTC migration, we should
bear in mind that the anterior and posterior DTCs migrate in
different fields: although the anterior and posterior DTCs migrate
in a similar U-shaped pattern, they migrate over the anterior and
posterior body wall, respectively. During Phase III migration, the
DTC at the tip of the anterior gonad migrates toward the tail,
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whereas that of the posterior gonad migrates toward the head
along the dorsal body wall muscle. There are secreted signaling
molecules distributed in a gradient along the antero-posterior axis
of the developing animal. For example, EGL-20/Wnt is expressed
in muscle and epidermal cells in the tail region and is distributed
in a posterior-to-anterior gradient (Coudreuse et al., 2006). Thus it
is possible that the two DTCs sense opposite gradients of such
signaling molecules. It would be interesting to examine whether
secreted signaling molecules act to stop DTC migration and
whether MIG-39 is affected at its level of expression, activity
or localization by such signals to regulate the cessation of DTC
migration.
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