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Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift
regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and
detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally
developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-
scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD)
within a 3×3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one
level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV
graphs as markers of scale levels where cells or segments match types of pattern elements characterized by
(relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test
areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels
for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling
(cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that
convincingly associate into patterns of land-surface parameters well differentiated across scales. We found
that the LV method performed better on scale levels generated through segmentation as compared to up-
scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of
morphometric primitives is possible. This approach could be further used for developing hierarchical
classifications of landform elements.
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1. Introduction

Although debated, it remains unsettled whether scales in digital
representations of the land surface are explicitly detectable, or scale is
simply a ‘window of perception’ (Marceau, 1999). In both landscape
ecology and remote sensing, scale has traditionally been regarded as a
function of grain (resolution) and spatial extent. In geomorphometry,
scale is predominantly considered a function of the resolution of
Digital Elevation Models (DEMs) (Hengl and Evans, 2009; MacMillan
and Shary, 2009).

Increasing availability of high resolution DEMs is leading to a
paradigm shift regarding scale issues in geomorphometry. Originally,
terrain-related analyses were limited by the coarse spatial resolution
of available DEMs, leaving questions of scaling aside. Meanwhile,
rapid progress in technical and computational domains encourages
acquisition and processing of DEMs at ever finer resolutions, e.g. for
Austria whole provinces have already been covered by LiDAR DEMs
interpolated at 1 m resolution. Along with these developments it has
been recognized that analysis should not essentially be driven by the
finest available grain size, but that it might be appropriate to upscale
the initial grid to a coarser resolution more relevant to particular
research objectives. Consequently, the importance of scaling methods
has grown significantly. In particular, techniques such as filtering and
resampling are frequently applied to high resolution grids to smooth
out noise that may lead to erroneous results (MacMillan and
Pettapiece, 2000; MacMillan et al., 2003).

The scale dependency of land-surface parameters was noted by
Evans (1972) as ‘a basic problem in geomorphometry’ (Shary et al.,
2002). Meanwhile, the scale dependency of land-surface parameters
and land-surface objects has been confirmed by a number of studies
(Chang and Tsai, 1991; Wood, 1996; Florinsky and Kuryakova, 2000;
Evans, 2003; MacMillan et al., 2003; Fisher et al., 2004; Schmidt and
Andrew, 2005; Hengl, 2006; Arrell et al., 2007; Deng et al., 2007; Fan
et al., 2007; Drăguţ et al., 2009a; Wood, 2009) and different methods
to account for scale have been proposed. In his thesis Wood (1996)
clearly showed the scale dependency of land-surface parameters by
computing and analyzing them over a range of spatial scales. As a
major outcome he introduced the open-source software package
LandSerf that is currently one of two products capable of performing
‘multi-scale surface characterization’. Arrell et al. (2007) particularly
examined the scale dependency of morphometric classes. They
found that the relative importance of landform classes varies with
DEM resolution. Decisions on an appropriate resolution involve
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compromise between noise reduction and generalization. A similar
conclusion was drawn by Hengl (2006), who suggested a number
intermediate between the finest available and coarsest legible
resolutions to be an appropriate pixel size for a specific problem.
Schmidt and Andrew (2005) introduced a spatially adaptive scale
detection technique, exemplified for curvatures, in order to recognize
dominant scale ranges of landforms and to study local landform
variability across scales.

Still, additional techniques that allow data-driven detection of
scale levels are required. Since statistical properties of land-surface
models are also scale dependent, studying their variation across scales
may be effective in identifying ‘characteristic scales’ in both the cell
(Wood, 1996, 2009) and the object realms.

As Olaya (2009, p. 146) pointed out ‘combining ideas from image
analysis and geomorphometry can be a fruitful way of…gaining a
better understanding of the information contained in the DEM’. The
method of local variance (LV) graphs (Woodcock and Strahler, 1987)
is such a method, originally developed in image analysis, with
potential for dealing with scale in DEM analysis (Li, 2008).

In this research we aim to test whether the LV method could help
in detecting characteristic scales in geomorphometric analysis, as it
has proven to be effective in detecting scale levels in remote sensing
applications. Similar to concepts in landscape ecology and remote
sensing, breaks in the trend of LV values across scales might reveal
levels of organization in the structure of data due to similar sized
spatial objects. Here ‘objects’ are not defined as classical geomorpho-
logic objects (e.g. landforms), but rather as ‘morphometric primitives’
(Gessler et al., 2009) or pattern elements, carriers of information on
land-surface parameters. Morphometric primitives can be further
classified into landform elements and integrated in nested hierarchies
(Giles, 1998; Minar and Evans, 2008; Evans et al., 2009).
2. Data and methods

2.1. Data and test areas

Our experimental research was carried out in two test areas
located in the province of Salzburg, Austria (Fig. 1). Both sites have an
extent of 3×3 km: they represent two types of land surface in terms
of roughness: relatively flat or low relief (Eugendorf) and mountain
(Schlossalm). For both areas the federal government of Salzburg
provided very high resolution (VHR) DEMs, specifically LiDAR (Light
Detection and Ranging) DEMs, acquired during flight campaigns in
2001 and 2006 and interpolated at 1 m spatial resolution.

Schlossalm is located within the Hohe Tauern mountain range in
the south of the province of Salzburg. The area is part of a smaller sub-
range that borders the valley of Gastein to the west. The test site
comprises an area at elevation between 1635 and 2578 m around the
highest peak of this part of the divide, the Türchlwand (2578 m)
representing a typical high alpine, glacially modified topography
characterized by glacial cirques, ridges, gullies and steep slopes.
According to a recent study at the regional level with additional
insights from the application of dating techniques (Ivy-Ochs et al.,
2008) it can be estimated that Schlossalm was glaciated until the end
of the Younger Dryas about 11.6 ka ago. The Türchlwand peak is a
classic, triangular peak in the center of three adjacent glacial cirques.
The cirque slopes towards the ridge are very steep, especially to the
northern side, where deposits of blocky material evidence ongoing
rock fall activity. Lithology of the Schlossalm area is mainly Bündner
schists (Exner, 1956), a rock formation prone to slope failures. Recent
geomorphic processes include gravitational mass movements such as
rock falls and avalanches as well as fluvial erosion. The eastern part of
Schlossalm is being used as skiing resort and thus, man-made features
such as ski tracks, braking mounds for avalanche protection, and
reservoirs are apparent in the data.
The second test area, Eugendorf, is located about 10 km northeast
from the city of Salzburg, in the foreland of the Austrian Alps.
Geologically, Eugendorf is situated in the Flysch zone that follows
north of the calcareous Alps (Herbst and Riepler, 2006). The
morphology of the region is dominated by till and drumlins both
resulting from the advance of the Salzach glacier during the last glacial
maximum in Late Würmian (van Husen, 2000), which occurred
between 30 and 18 ka ago (Ivy-Ochs et al., 2008). Glaciation in
combination with glaciofluvial processes in the Lateglacial period
contributed to the gentle terrain character of the area with elevation
ranging from 503 to 639 m.a.s.l. The overall smooth topography is
disturbed by sharply incised fluvial channels. Most parts of the area
are currently used for settlements, agriculture, and recreation
facilities such as a golf course.

2.2. Local variance and multi-scale representation

Based on the previous work of Strahler et al. (1986), Woodcock
and Strahler (1987) introduced LV graphs to reveal the spatial
structure of images using standard deviation (SD) as function of scale.
The authors proposed measuring LV as the value of SD in a small
neighborhood (3×3 moving window), then computing the mean of
these values over the entire image. The value so obtained indices the
local variability in the image. The procedure is applied on successively
coarser scales, which are obtained through resampling. Graphs of
values across scales are used to measure spatial structure in images;
the peaks in the LV graph would indicate the cell size that
approximates the spatial dimension of the most characteristic objects
in the scene (Fig. 2).Woodcock and Strahler (1987, p. 313) explain the
mechanism as follows: ‘If the spatial resolution is considerably finer
than the objects in the scene, most of the measurements in the image
will be highly correlated with their neighbors and a measure of local
variance will be low. If the objects approximate the size of the
resolution cells, then the likelihood of neighbors being similar
decreases and the local variance rises.’ Basically, application of the
LV concept exploits spatial autocorrelation, which is a fundamental
image characteristic (Lees, 2006).

Despite its simplicity and usefulness this method was not widely
adopted in remote sensing and GIS (Cao and Lam, 1997). Only a few
papers (Hay et al., 1997, 2005) developed the approach further. Bøcher
and McCloy (2006a,b) explored the characteristics of various forms of
the LV function using synthetically generated image data; they
demonstrated that the LV function peaks at scales related to the
geometric size of pattern structures in the scene. The LV method was
later introduced in the context of object-based image analysis (OBIA) by
Kim et al. (2008) andmade operational through the Estimation of Scale
Parameter (ESP) tool (Drăguţ et al., 2010). Both studies found that the LV
method applied in the OBIA context does not provide peaked, but
relatively smooth variogram-shaped graphs. Drăguţ et al. (2010)
introduced rate of change of LV (ROC-LV) to assess the LV dynamics
from one scale level to another. By interpreting thresholds and
prominent peaks in the ROC-LV graph, characteristic scales relative to
data properties at the scene level can be found. Thus they expanded the
concept and application of LV (originally designed for detecting the
‘optimal’ scale) into multi-scale analysis and representation.

2.3. Application of the LV method on land-surface parameters

According to Schmidt and Andrew (2005), the land surface is
hierarchically structured and it can be represented differently across
scales (e.g. a convex hillslope embedded into a concave hillslope, which
in its turn is embedded into a valley; see Fig. 3 in the cited work). We
hypothesize that these kinds of objects are homogeneous areas relative
to scale levels. If repeated, they would produce peaks in the ROC-LV
graphs, where cells or segments are assumed to match types of objects
characterized by (relatively) equal degrees of homogeneity, providing



Fig. 1. Locations of test areas. Black frames on the right show the extents of visualization in Figs. 7 and 8.
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these objects are representative enough to impact on the scene level
ROC-LV. In this research, scale levels were produced at constant
increments by resampling (cell-based) and image segmentation
(object-based), for slope gradient, plan, and profile curvatures.
2.3.1. Resampling
The input LiDAR DEMs were resampled up to a cell size of 49 m

using bilinear interpolation and an increment of 2 m. Given the extent
of test areas (3000 m broad) and the spatial resolution of input data
(1 m), the upper limit of 49 m was selected, based on the rule of
thumb that a minimum of 60 pixels on each side is required to
calculate LV (Woodcock and Strahler, 1987). Thus, a total of 50 layers
were obtained (25 per test area). For each dataset slope, plan- and
profile curvatures were derived, giving a total of 150 layers. LV was
Fig. 2. The method o
then calculated for each of these layers in a 3×3movingwindow, as in
the original application of Woodcock and Strahler (1987).

2.3.2. Object-based image analysis (OBIA)
The basic processing units in object-based image analysis are

segments, so called ‘image objects’ (Benz et al., 2004). The cells of a
raster are grouped into objects through image segmentation in such a
way that the incorporated heterogeneity is minimized and the
homogeneity is maximized. Heterogeneity refers to value and shape,
the primary object features. Weights have to be set that indicate the
relative importance of both properties in the segmentation process.
Conceptualized as a bottom-upapproach, theprocedure starts at the cell
level and iteratively performs pair-wise merging of objects until the
maximum allowed growth in heterogeneity, defined by the user
through a scale parameter, is exceeded. The value of the scale parameter
f local variance.

image of Fig.�1
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directly influences the average size of objects in the final segmentation
result (Baatz and Schäpe, 2000).

Land-surface parameters (slope gradient, plan and profile curva-
tures), as derived from the initial 1 m LiDAR DEM in a standard 3×3
window, served as input for multi-resolution segmentation. The value
assigned to a ‘land-surface object’ is the mean of the aggregated cells
that make up that object (object values). For each land-surface
parameter multiple scale levels were produced by increasing the scale
parameter from 1 up to 200 resulting in ever larger ‘land-surface
objects’. The step size from one level to the other was set to 1. Thus,
200 scale levels were simulated for each surface raster. We selected
200 as the upper threshold, because at this level the mean object size
is comparable to the size of the maximum moving window in cell-
based scaling. Based on previous experiences in land-surface
segmentation, the weights for value and shape homogeneity were
set to 0.9 and 0.1 respectively. Hence, the relative importance of
terrain property values was emphasized and the influence of shape,
i.e. compactness or smoothness, was minimized. Segmentation was
conducted using the ‘hierarchy’ option, thus objects at higher scale
levels are built from objects at the next lower level (in contrast to the
‘non-hierarchy’ option, where objects at each scale level are built from
Fig. 3. Comparative view of scale signatures for slope gradient. Where applicable, vertical li
ROC-LV (this also applies to Figs. 4 and 5).
cells). At each level LV was calculated as the mean value of SD of
objects. The whole procedure has recently been implemented as an
algorithm called ESP (Estimation of Scale Parameter; Drăguţ et al.,
2010) for application in the eCognition Developer® software (http://
www.ecognition.com).

3. Results

For each scaling method, specific scale signatures (cf. Wood, 2009,
but applied globally) have been obtained (Figs. 3–5) in scale ranges
between 1 and 49 for cell-based methods, and between 1 and 200 for
OBIA. LV graphs are provided in two versions to reveal thresholds at
higher scale (otherwise obscured due to huge values of ROC-LV at
lowest levels). Thresholds and peaks in trends of curves have been
comparatively analyzed. A comparative view of scale levels inter-
preted through the analysis of LV graphs is provided in Table 1.

3.1. Resampling

For the resampling method, LV graphs follow ascendant trends for
slope (Fig. 3), while for both curvatures the trends are descendant
nes in graphs represent scale thresholds. Black lines represent LV; gray lines represent

http://www.ecognition.com
http://www.ecognition.com
image of Fig.�3


Fig. 4. Comparative view of scale signatures for plan curvature. Legend as in Fig. 3.
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(Figs. 4 and 5). LV of curvatures declines with the increase of cell size
as an effect of averaging SD values towards 0 through aggregation.
This behavior is inconsistent with the rationale of the LV method. For
Eugendorf, LV of slope starts decreasing after a peak around the scale
Fig. 5. Comparative view of scale signatures
level of 15 (Fig. 3), while in all other cases LV maintains a trend
throughout, either ascending or descending (Figs. 3–5). In the
relatively flat landscape characterizing the Eugendorf area, the slope
variation is induced mostly by small features like stream banks or
for profile curvature. Legend as in Fig. 3.

image of Fig.�4
image of Fig.�5


Table 1
Comparative view of scale levels detected with LV. For resampling, values represent the cell size; for OBIA, values represent the scale parameter used in segmentation.

Scaling method Resampling OBIA

Test area Eugendorf Schlossalm Eugendorf Schlossalm

Slope 5, 19, 29, 39 5, 23, 37, 43 13, 37, 105, 125, 148, 197 20, 32, 88, 105, 128, 164, 182
Plan curvature 5, 15, 33, 41 5, 15, 27, 41 20, 48, 89, 175 22, 50, 101, 133, 161
Profile curvature 5, 15, 29, 37 5, 15, 37, 45 15, 32, 82, 138, 188 19, 96, 118, 144, 198
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ground objects incompletely eliminated in the DEM production. The
LV curve indicates a size range of these features below 15–20 m.
Resampling to cell sizes above these values smoothes out most of the
important variation in slope values. Larger structures (e.g. drumlins)
only induced local peaks on a declining trend, e.g. at 29 and 39 m. In
terms of absolute values, the mountain area (Schlossalm) shows LV at
least four times higher than the Eugendorf test area (Figs. 3–5), which
is explained by differences in land-surface roughness. Four major
thresholds have been identified for each of the two test areas, and for
all land-surface parameters considered (Table 1 and Figs. 3–5). In all
cases, the most significant scale level was identified at the same value,
corresponding to a cell size of 5 m (Table 1). The other scale levels
differ for slope, but are strikingly similar for curvatures. Since the LV
method on scales generated through resampling does not apply to
curvatures, these levels should not be considered as detected scales.

3.2. OBIA

Unlike resampling, the OBIA methods provided ascending graphs
of LV for all land-surface parameters (Figs. 3–5). The LV curves are
much smoother and more similar between the two study areas for
slope than for curvatures. Thresholds are visible in the LV curves for
both plan and profile curvature graphs. The most prominent peaks in
LV correspond to pairs of peaks and plunges in ROC-LV. Except for
profile curvature in the Schlossalm test area (Fig. 5), all other
curvatures in the two test areas (Figs. 4 and 5) display negative trends
of LV after reaching prominent peaks at various scale levels (scale
parameters of 20 and 133 for plan curvatures in Eugendorf and
Schlossalm, respectively; 82 for profile curvature in Eugendorf). This
is due to the general trend of averaging curvature values to zero, as a
result of aggregating cells into objects after exceeding the size of the
most representative pattern elements within the scene. While for
slope the absolute values of LV are relatively similar, for both
curvatures they are about 15 times higher in the mountain test area
(Schlossalm) than in the relatively flat one (Eugendorf). Also, the
number of significant scales detected is always higher for the
mountain test area (Table 1). Contrary to resampling, the thresholds
are quite different. As expected, the lowest thresholds, which mark
the transition from cells to the smallest objects identifiable in the
scenes, are always higher in the mountain test area compared to the
relatively flat one (Table 1).

3.3. Visual assessment

As acknowledged (Reuter et al., 2009), accuracy assessment of
geomorphometric analysis is not easy to perform. Firstly, there are no
consistent guidelines for checking the accuracy of land-surface
parameters in the field, and secondly, reference maps of land-surface
parameters and objects are missing. Consequently, most evaluations
of DEMs and their land-surface parameters are still made visually
(Reuter et al., 2009). As regarding OBIA, there is no established
standard evaluation method to assess the quality of image segmen-
tation (Neubert et al., 2008). Thus, at the current state of de-
velopments, human interpretability is acknowledged as the best test
for the segmentation results (Jellema et al., 2009). Quantitative
assessment is even more challenging in a multi-scale approach.
In this paper we conducted visual assessment of the delineated
objects to check whether the land-surface parameters at detected
scales produced reasonably differentiated patterns. While the visual-
ization is straightforward for the object-based approach, for the cell-
based approach it was implemented by using profile lines.

3.3.1. Resampling
Fig. 6 displays profiles of slope gradient at scales noted in Fig. 3

(resampling). Variations between the profiles correspond to levels of
generalization of the land-surface. This agrees with the concept of
decomposing the original signal into multi-resolution components
across scale (McBratney, 1998). Compared to profiles on the original
slope map derived from 1 m raster (bottom), the first two levels in
both test areas show distinct levels of generalization of slope patterns
through removing the fine-scale components (Fig. 6). The two upper
scale levels in both study areas do not display further generalization
on these short profiles, except for the upper most level in the
Schlossalm area, which distinguishes the steep slopes of the cirque
from the less inclined slopes outside it (on the left side). Slopemaps at
these scales reveal progressively larger structures such as drumlins
and the main valley in the Eugendorf area, and ridges, upper slopes,
and cirques in the Schlossalm area. However, cell-based methods lead
to a crude representation of land-surface parameters at broader scales
due to the isotropic smoothing effect induced by the regular
resampling. In the case of curvatures, this smoothing effect is so
intense that it makes the LV method inapplicable. Calculating surface
approximations at different window sizes and different window
shapes would allow for spatial anisotropy (Schmidt and Andrew,
2005), thus improving the representation of land-surface parameters
across scales. But suchmethods do not enable scale detection using LV
(Drăguţ et al., 2009b).

3.3.2. OBIA
In Figs. 7 and 8, areas of similar homogeneity were delineated with

OBIA for Eugendorf and Schlossalm, respectively, with the scale
parameters as marked in Fig. 3. Good agreements between slope
values and their aggregation in objects at these scale levels are
depicted. In the Eugendorf area, segmentation of the slope layer using
a scale parameter of 197 (the broadest scale level identified on the LV
graph) reveals the pattern of drumlins in the northern half of the
image, and the elements of the valleys, but also artificial features, such
as the road crossing the area at the southern border of the drumlins. At
lower levels, segmented with scale parameters of 125 and 13
respectively (insets in Fig. 7), increasingly homogeneous objects are
delineated as components of larger structures in a perfectly nested
hierarchy where borders at coarser scales are maintained at finer
scales. The results are equally good for the Schlossalm area (Fig. 8).
Again, slope segments of different degrees of homogeneity reveal
land-surface patterns with levels of detail that visually fulfill the
requirements of representation at various scales.

In OBIA, anisotropy is readily incorporated in analysis, contrary to
cell-based methods (see Schmidt and Andrew, 2005, p. 347, for
details). Thus, various features in terms of size and shape (from
extremely elongated to circular) occur at the same scale level,
according to land-surface patterns (Figs. 7 and 8). Regionalization
based on homogeneity enables the information derived in a small



Fig. 6. Slope profiles at original and detected scales for Schlossalm (left) and Eugendorf (right). White lines on shaded maps show profile locations.
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Fig. 7.Multi-scale object representation in OBIA environment for Eugendorf. Results of segmentations with detected scale parameters (SP) are visible. The whole Eugendorf test area
(top) with slope segments delineated at an SP value of 197. For the objects within the white rectangle, detailed views are provided at SP values of 125 and 13.
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neighborhood to be transferred to broader scales, while adding
topology and shape information.

4. Discussion

The method presented in this paper is rooted within the theory of
regionalized variables, which proposes that values of variables z
distributed over geographic space are not sampled independently, but
instead show strong spatial autocorrelation (Goodchild, 2011).
Similar to geostatistics, the LVmethod assumes that the mathematical
form of the decline of spatial autocorrelation (or the increase in
variance) with distance is a general and measurable property of each
field (Goodchild, 2011). Unlike variogram analysis, the LV method
measures the decline of spatial autocorrelation within a local
neighborhood across scales, thus emphasizing variation in spatial
patterns of heterogeneity as a scale descriptor. Therefore, the distance
is replaced by the size of the support unit (e.g. cells and objects). Still,
the interpretation of graphs is relatively similar. As in the variogram
analysis, the LV graphs (Fig. 3) display ranges that approximate sizes
of support units at which spatial autocorrelation between them tends
to cease. Thus, ranges mark the highest spatial independence of cells
and objects in the dataset; these units reached the maximum internal
homogeneity while maximizing the external heterogeneity. These are
the scale levels containing the most representative patterns in the
dataset. Other scales of spatial variation are detectable following
the same principle. However, they are less prominent as part of the
spatial autocorrelation has already been ‘consumed’. These scale
levels can be enhancedwith the aid of the ROC-LV, which indicates the
amount of variation gained at different scales, i.e. decline of spatial
autocorrelation.

image of Fig.�7


Fig. 8. Multi-scale object representation in OBIA environment for Schlossalm. Results of segmentations with detected scale parameters (SP) are visible. The whole Schlossalm test
area (top) with slope segments delineated at an SP value of 182. For the objects within the white rectangle, detailed views are provided at SP values of 105 and 20.
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When applied in a cell-based approach, the LV method revealed
problems related to the smoothing induced by aggregating cells
through resampling, as acknowledged also in image analysis (Bøcher
and McCloy, 2006a,b). In the case of curvatures, this smoothing effect
was so severe that it made the LV method inapplicable. For slopes,
however, variations in profiles correspond to levels of generalization
of the land-surface. In the cell-based approach other methods of
multi-scale analysis (Schmidt and Andrew, 2005; Wood, 2009) might
be more suitable, particularly for curvatures.

Compared to the results of the LV applications to satellite imagery
(Drăguţ et al., 2010), the number of scale levels identified is higher in
the DEM-based applications. Deng et al. (2007) found that land-
surface parameters are sensitive to resolution change particularly in
the range of 5–50 m, which coincides with the range of scales used
here. The magnitude of the LV and ROC-LV values is always higher in
the mountain area as compared to the relatively flat one (Figs. 3–5),
which confirms the findings of Arrell and Carver (2009) that scaling
trends of SD measures (surface roughness in the cited work) are
effective in differentiating landscape types.

When looking closer at the borders of delineated objects, we can
distinguish different types of shapes such as smooth or indented.
Obviously, there is a relationship between the quality of objects, in
terms of homogeneity and contrast to neighboring objects, and the
shape of borders. In the case of relatively high contrast to neighbors,
boundaries are more likely to be smooth. Conversely, if transitions
between adjacent objects are soft, boundaries are curvy due to the
vague shape of real-world features (e.g. straight field borders vs. curvy
slope breaks; compare levels 13 and 125 in Fig. 7). Moreover, some
well individualized objects preserve boundaries across several scale
levels (e.g. the cirque floor in levels 105 and 182 in Fig. 8). These

image of Fig.�8
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unexpected findings open interesting ways for object extraction using
multi-scale edge analysis or metrics developed in landscape ecology
(Pike, 2000; Benito-Calvo et al., 2009; Zhou et al., 2010) possibly
combined with fuzzy logic (Qin et al., 2009). This is what we would
like to explore in the future.

We showed in this paper that couplingmulti-scale pattern analysis
with delineation of morphometric primitives is possible. From a
geomorphometry perspective, this opens important avenues for what
Olaya (2009, p. 162) called ‘discrete analysis of the land surface’. That
author emphasized the difficulty of finding suitable criteria for object
delineation and proposed elevation zones as a possible solution. The
objects we delineate as homogeneous areas relative to a specific scale
could serve as suitable candidate units for discrete analysis. As in
Jellema et al. (2009), our methodology follows a reverse approach:
instead of predefining spatial units, we use patterns of features, i.e.
homogeneous areas as delineated with the method of LV, to
characterize spatial entities for analysis.

Moreover, the approach we presented here is relevant to the multi-
scale classification of landforms with the aid of pattern analysis and
pattern recognition. Pattern is described as ‘the aspect of the complex
systems approach that remains particularly problematic’ (Baas, 2007,
p. 327). Since pattern is intimately related to scale (Ehsani and Quiel,
2009), pattern exploration has the potential to improve modeling of
complex systems (Baas, 2007). The proposed LV method gives a good
indication of the significance of patterns across a range of scales, and thus
also of appropriate scales, by quantifying the spatial heterogeneity of the
scene at each level. There are few approaches to recognize and classify
repeating patterns of landform types by analyzing DEMs (MacMillan
et al., 2004). As Pike (1988) emphasized, topographic form is aggregative
and synthetic,whichmeans the characterizationof topographyshouldbe
a statistical problem that requires a statistical approach and methodol-
ogy. The statistical method we proposed has been shown to be valid for
multi-scale pattern analysis in OBIA, as it reveals the structural
characteristics of the land-surface based on the spatial heterogeneity of
land-surface parameters. We therefore consider the LV method
straightforward and simple for multi-scale pattern analysis in OBIA.

OBIA provides a powerful framework to overcome some of the cell-
based limitations (i.e. non-consideration of anisotropy and context)
in multi-scale analysis of complex systems such as the land surface
(Drăguţ and Blaschke, 2006; Miliaresis, 2006; Stepinski et al., 2007;
Strobl, 2008; Stepinski and Bagaria, 2009; Drăguţ et al., 2010; Ghosh
et al., 2010; Martha et al., 2010). It has been widely recognized that
objects are closer to human perception (Couclelis, 1996; Goodchild
et al., 2007) and patterns better represent real landscapes, if scale
is appropriate. Objects are based on natural breaks as a function
of homogeneity. This is an asset in further classification steps since it
avoids pre-defined categorizations of land-surface parameters (Giles,
1998; Saadat et al., 2008; Gorini, 2009), which might create artificial
boundaries. A general problem in image segmentation is finding an
appropriate scale parameter; usually this is performed subjectively
in a trial-and-error manner (Schneevoigt et al., 2008; Anders et al.,
2009; Blanco et al., 2009; Kringer et al., 2009; Romstad and
Etzelmüller, 2009; van Niekerk, 2010). We hope that the method
of LV we introduced here will make a contribution to this issue.

One of the strongest points in this research is that the LV method
applied to the OBIA environment produces homogeneous spatial
entities with boundaries such that coarser-scale entities have precise
boundaries within which finer-scale entities nest perfectly. This is a
condition for developing hierarchical classifications of landform
elements (MacMillan and Pettapiece, 2000), which is the subject of
our ongoing research (Eisank, 2010).

5. Conclusions

The objective of this paper was to test whether the LVmethod could
help in detecting characteristic scales in geomorphometric analysis of
DEMs, as suggested by Li (2008). The LV method was applied to both
cell-based and object-based approaches. It is difficult to objectively
prove whether the scales detected are characteristic; this could only be
demonstrated through classification anddepends largely on thedomain
of application and study purposes. However, visual assessment revealed
homogeneous areas that convincingly associate into patterns of land-
surface parameters well differentiated across scales. We found that the
LV method performed better on the OBIA-generated scale levels as
compared to up-scaling through resampling.

Based on visual assessment, the LVmethod is effective in delineating
multi-scale pattern elementswith OBIA. Although land-surface ‘objects’
are characterized by smoother transitions in comparison with land
cover objects, application of the LVmethod to segments looks promising
for multi-scale analysis in geomorphometry as well.
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