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Abstract

Anew class of parametric completely generalized mixed implicit quasi-variational inclusions invielmiagimal
monotone mappings is introduced. By applying resolvent operator techniduenakimal monotone mapping
and the property of fixed point set of set-valued contractive mappings, the behavior and sensitivity analysis of
the solution set of the parametric completely generalized mixed implicit quasi-variational inclusions invelving
maximal monotone mappings are studied. The continuity and Lipschitz continuity of the solution set with respect
to the parameter are proved under suitable assumptions. Our approach and results are new and improve, unify anc
extend previous many known results in this field.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Variational inequality theory has become very effective and powerful tool for studying a wide range
of problems arising in differential equations, mechanics, contact problems in elasticity, optimization
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and control problems, management science, operations research, general equilibrium problems in eco-
nomics and transportation, unilateral, obstacle, moving, etc., for exampl§g,5¢#1,22,33] A useful
and important generalization of variational inequalities is generalized mixed quasi-variational inclusions.

Hassouni and Moudaf3] used the resolvent operator technique to study a class of mixed type
variational inequalities with single-valued mappings which was called variational inclusions. Since then,
Adly [1], Ding [6-14], Ding and Lou[16,18], Ding and Par§19], Huang[24,25,27] Huang and Deng
[26], Fang and HuandR0], Kazmi [28], Noor [34,36,37] Noor et al.[41], Uko [45] have obtained
some important extensions and generalizations of the res(it8]ifrom various different directions. By
studying an elastoplasticity problem, Panagiotopoulos and Stavro{d&fiand Noor and Al-Saigi39]
considered a new class of generalized nonlinear variational inequality problems, which is a variant and
generalization of the problem proposed by Vel@®@] and Verma and Badd7].

Inrecentyears, much attention has been devoted to develop general methods for the sensitivity analysis
of solution set of various variational inequalities and variational inclusions. From the mathematical and
engineering points of view, sensitivity properties of various variational inequalities can provide new
insight concerning the problem being studied and can stimulate ideas for solving problems. The sensitivity
analysis of solution set for variational inequalities have been studied extensively by many authors using
quite different methods. By using the projection technique, DafefdlodViukherjee and Verm§1],
Noor[35] and Yen[48] dealt with the sensitivity analysis for variational inequalities with single-valued
mappings. By using the implicit function approach that makes use of so-called normal mappings, Robinson
[44] dealt with the sensitivity analysis of solutions for variational inequalities in finite-dimensional spaces.
By using resolvent operator technique, Adity}, Noor and Nooif40,38], and Agarwal et al[2] study
the sensitivity analysis for quasi-variational inclusions with single-valued mappings. Recently, by using
projection technique and the property of fixed point set of set-valued contractive mappings, Ding and
Lou [17], Liu et al.[30], and Ding[15] study the behavior and sensitivity analysis of solution set for
generalized quasi-variational inequalities and generalized mixed quasi-variational inclusions with set-
valued mappings respectively.

Inspired and motivated by recent research works in this field, in this paper, we introduce a new class
of parametric completely generalized mixed implicit quasi-variational inclusions invohimgximal
monotone mappings which includes the most of (parametric) generalized quasi-variational inequali-
ties and (parametric) generalized quasi-variational inclusions in 5bib41 bib42 bib44 bib45 bib46 bib47
[1,2,4,6-20,22-28,30,31, 33-42,44—48)very special cases. By using resolvent operator technigque and
the property of fixed point set of set-valued contractive mappings, the behavior and sensitivity analysis
of solution set for the parametric completely generalized mixed implicit quasi-variational inclusion are
studied. The continuity and Lipschitz continuity of solution set of the parametric completely generalized
mixed implicit quasi-variational inclusions are proved under suitable conditions. As special cases, some
known results in this fields are also discussed. Our results improve, unify and generalize many known
results mentioned above.

2. Preliminaries
Let H be a real Hilbert space with norin- || and inner product-, -). Let 2/ andC (H) denote the

family of all subsets oH and the family of all nonempty compact subsetdofrespectively.H (-, )
denotes the Hausdorff metric adh(H). In the following, let us recall some concepts.
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Definition 2.1. Leth : H — H be a single-valued mappinlyis said to be
(i) monotone if
(h(x) —h(y),x —y)>0 Vx,ye€ H;
(i) strictly monotone ifh is monotone and
(h(x) —h(y),x —y)=0 if and only if x = y;
(i) strongly monotone if there exists a constant 0 such that
(h(x) = h(y), x = y)=rlx = ylI> Vx,y € H.
(iv) Ljp-Lipschitz continuous if there exists a constant> 0 such that

Ih(x) = hWII<Lpllx —yl Vx,yeH.

Definition 2.2. Let M : H — 2 be a set-valued mappinhl is said to be
(i) monotone if
(u—v,x—y)20 Vx,ye H, uecMkx), veM(y;

(i) maximal monotone M is monotone and/ + pM)(H) = H for all p > 0, wherel is the identity
mapping orH.

The following concept was introduced [i20].

Definition 2.3. Let h : H — H be a single-valued mapping add : H — 2 be a set-valued
mapping.M is said to beh-maximal monotone (which is callddmonotone in20]), if M is monotone
and(h + pM)(H) = H forall p > 0.

Remark 2.1. Itis clear that ifh = I, the identity mapping, the conceptlemaximal monotone mapping
coincides with that of maximal monotone mapping. Example 2[2Ghshows that a maximal monotone
mapping may not bé-maximal monotone for somie Theorem 2.1 irf20] shows that ifh is strictly
monotone andl is h-maximal monotone, then the operai®};, = (h + pM)~': H — H is a single-
valued mapping and is called the resolvent operator ohttmaximal mappingV.

Lemma 2.1(Fang and Huandg20]). Leth : H — H be a strongly monotone mapping with constant
r>0and M is an hmaximal monotone mappinthen the resolvent operatdif{l’p of M is Lipschitz
continuous with constardt/r, i.e.,

1
IR} () = Ry, <l = Il Vu,v € H.
LetQ be a nonempty open subsetbin which the parametértakes values. L&V : Hx Hx H x Q —

H,W:HxHxQ— H,m,i,j: HxQ— Handh: H— H be single-valued mappings. Let
A,B,C,D,E,F,G : Hx Q — C(H) be set-valued mappings. L& : H x H x Q@ — 2f be a
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set-valued mapping such that for each givgni) € H x Q, M(-, f,2) : H — 2H is ah-maximal
monotone mapping withG (H, 1) — m(H, 1)) N domM (-, f, 1) # #. Throughout this paper, unless
otherwise stated, we will consider the following parametric completely generalized mixed implicit quasi-
variational inclusion problem (PCGMIQVIP):

foreach(l,w) e Q x H, findx=x(1) € H, a=a(x,1) € A(i(x, 1), 1),

b=b(x,2) € B(x,4), c=cx,2) eCx,2), d=dx,.) € D(x,2), e=e(x,1) € E(x, 1),
f=f(x,4) € F(x, 1), gk, ) €G(x,L) such that

weW(jle,,a,l)—Nb,c,d,2)+ M(g —m(x, 1), f, 1). (2.1)

2.1. Special cases

M If w=0,W=0,N(b,c,d,)=—N(b,c,7)forallb,c,d € Handi e @, and for each f, 1) €
H x Q, M(-, f, ) is a maximal monotone mapping (i.d,is the identity mapping o), then the
PCGMIQVIP (2.1) collapses to the following parametric generalized nonlinear implicit quasi-variational
inclusion problem:

foreach/i e Q, findx=x(1) € H, b=b(x,.) € B(x,2), c=c(x,A) € C(x, 1),
f=f(x,4) e Fx, 2, g=gx, ) e G, such that
0e N(b,c,2)+M(g—m(x, ), f, ). (2.2)

The Problem (2.2) was introduced and studieflLk.

(I)VIf N(b,c,d,2)=—N(b,c,d,2), j(x,2)=x,i(x,2)=x,Gx, 1) ={g(x, )} andW(e, a, ) =
—W(e,a,i) forall b,c,d,x,e,a € Handli € @, and for each(f,1) € H x Q, M(-, f,2) Is a
maximal monotone mapping, then the PCGMIQVIP (2.1) reduces to the following parametric completely
generalized nonlinear implicit quasi-variational inclusion problem:

for each(w,2) € H x Q, findx=x(}) € H, a=a(x,’) € A(x, %), b=b(x,)) € B(x, 1),
c=cx,)eCx, N, d=dx,L) € D(x, 1), e=e(x,L) € E(x,1), f=f(x,1)€F(x,A1),
such thatw € N(b,c,d, ) — W(e,a, ) + M((g —m)(x, 2, f., 7). (2.3)

The parametric problem (2.3) is new. Whaib, ¢, d, 2) = N(b, ¢, /) forall b, c,d € H andJ € @,
the parametric problem (2.3) has been introduced and stud[8@]in

(M If ix, ) =g(x, ) forall (x, 1) € H x Q, and for eacl(f, 1) € H x Q, M(-, f, /) is a maximal
monotone mapping, then the PCGMIQVIP (2.1) reduces to the following parametric problem:

for each(/, —w) e @ x H, findx=x(1) € H, b=>b(x, 1) € B(x, 1),

c=cx,)eCx, 1), d=d(x,2) e D(x,1), e=elx,L) € Ex,1), f=f(x,14) € F(x,21),
g=g(x,2)eGx,A), a=a(x,2) € A(g, ) such that

we W(jle,),a,l)—N(b,c,d, )+ M(g—m(x,2), f,1). (2.4)

(IV)Let ¢ : H x H x Q@ - RU {400} be such that for each fixed, 1) € H x Q, ¢(-, f, 1) is a proper
convex lower semicontinuous functional satisfy(ie H, 1) —m(H, 1)) N dom(@e(-, f, 1)) # # where
do(-, f, ) is the subdifferential ofp(-, f, 1). In [43], d¢(-, £, 2) : H — 2H is a maximal monotone
mapping. LetM (-, f, 1) = dp(-, f, A1), V(f, 1) € H x Q. For given(f, 1) € H x Q, by the definition
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of the subdifferential ob (-, f, 1), it is easy to see that the PCGMIQVIP (2.1) reduces to the following
parametric problem:

for each fixed(w, 1)) €e H x 2, findx=x() € H, a=a(x, 1) € A@i(x, 1), 1),
b=b(x,2) € B(x,2), c=c(x,7) € Cx,2), d=d(x,2) € D(x, ), e=e(x,) € E(x, ),
f=f(x,A)eF(x, 1), g=gkx,A) € G, such that
(W(jle,A),a,2) =N, c,d, 1) —w,y — (g —m(x, 1))
>o(g —m(x,2), f,72) — oy, f,2), VyeH. (2.5)

M If W(j(e,2),a,2)=j(e,2)+a,foralla,e e Handl € Q,G=g¢g=i: HxQ — Hisa
single-valued mapping and = 0, then the parametric problem (2.5) reduces to the following parametric
problem:

for each(w,2) € H x Q, findx=x(1) € H, a=a(x,2) € A(g(x, 1), ),
b=b(x,2) € B(x,4), c=cx,1)eCx,1), d=dx,.) € D(x,1), e=e(x,1) € E(x, /)
f=f(x,4) € F(x,4) suchthat(j(e,A)+a—N(b,c,d,2)—w,y—g(x,1)
Zo((g(x, 1), 4), f,2) — oy, f,4), Vy € H. (2.6)
Lety : H x H x Q — R be areal function satisfying
() Y(x,y, ) islinearin first argument,
(1) y(x,y, ) is bounded, i.e., there exists a constantO such that
Yx, y, H<vlixllliyl Vx,ye H, 1€,
(i) forall x,y,z € Handi e Q,
l//(x’ Yy, )V) - l,b(x’ e /’{)gw(xv y—-2, /1)
Lemma2.2. Lety : H x H x Q — R be a real function satisfying conditiofg—(lIl). Then for each
(v, 2) € H x Qthere exists a unique poinity, 1) € H x Q such that
Yx,y, )=, 4),x) VY&x,4) e HXxQ,
and the mapping — j(y, 4) is uniformly Lipschitz continuous with respectitce Q with constant

v>0.

Proof. For each fixed € Q, by conditions (I) and (Il) on), we have
W, y, Dl<vllxllliyl Vx,y e H

and henc@(x, 0, ) =y/(0, y, 1) =0and for each, y € H and. € Q, andx — (x, y, A) is continuous.
By conditions (1) and (I1l) on), we have

W(x,y, 2) —(x,z, D <vlxlllly —zll Vx,y,z€ Handie®Q

and soforeaclx, 1) € H x Q,y — ¥(x, y, 2) is also continuous. Hence for each gien.i) € H x Q,
x — y(x,y, /) is a continuous linear functional di. By the Riesz representation theorem, there is a
unique pointj (y, 1) € H such that

l//(x’yv;“)z(j(y,i),)ﬂ Vx e H
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and forall(y,z, 1) €e H x H x Q

1j (v, 4) = Jjz Dl = sup [{j(y, 1) —j(z, 1), x)|

Ixl <1

= Sup |l//(xvy’)V)_lrb(x’Za/1)|< Sup |lﬁ(xay_za/l)|
Ixf <1 lxl <1

< sup vilxlllly —zll<vlly —zll Vy,z€ H.
Ixf <1

This shows that the mapping— j (v, 4) is uniformly Lipschitz continuous with respect to= Q with
constant > 0. O

(VIDIf  : H x H x Q — R satisfies conditions ()—(lll) and(-, 1) : H x Q — H is the mapping
defined byy in Lemma 2.2, then the parametric problem (2.6) is equivalent to the following parametric
completely generalized mixed quasi-variational inequality problem:

For each(w, 1) € H x Q, findx=x(1) € H, a=a(x, 1) € A(g(x, 1), 1),
b=b(x,7) € B(x, 1),
c=cx,)eCx,A), d=dx,2) e Dx,A), e=e(x,A) € E(x,2)
f=f(x,4) € F(x,4), such that
(a—=N@D,c,d, 7)) —w,y —gx, ) +y(y, e, 1) —Y(glx, 1), e, )
Zo(g(x, 2), f, ) —o(y, f,2) VyeH. (2.7)

(VI If K : H x Q@ — 2 is a set-valued mapping such that for edehl) € H x Q, K(x, 1) is
a closed convex subset Bfand for each fixed f, 1) € H x Q, (-, f, 1) = Ik (.7 (-) is the indicator
function of K (f, 1),

_|o if x e K(f,4),
Ik (x) = {Jroo otherwise

then parametric problem (2.7) reduces to the following parametric generalized strongly nonlinear implicit
quasi-variational inequality problem:

For each(w, 1) €e H x Q, findx=x(1) € H, a=a(x, 1) € A(g(x, 1), 1),

b=b(x,2) € B(x,4), c=cx,2) eCx,1), d=dx,.) € D(x,1), e=e(x,1) € E(x, 1),
f=f(x,4) € F(x,4), suchthatg(x,1) € K(f, ) and

(a—NWb,c,d,2) —w,y—gx, ) +yle,y, ) —yle, gx,1))=0 Vye K(f,A). (2.8)

The nonparametric types of Problems (2.7) and (2.8) were introduced and stufidgl in

In brief, for appropriate and suitable choiceswfW, A, B,C, D, E, F, G, h, i, j, m andM, itis easy
to see that the PCGMIQVIP (2.1) includes a number of (parametric) quasi-variational inclusions (para-
metric) generalized quasi-variational inclusions (parametric) quasi-variational inequalities (parametric)
generalized implicit quasi-variational inequalities studied by many authors as special cases, for example
se€[1,2,4,6-20, 22-28,30,31, 33-42,44—48H the references therein.
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Definition 2.4. Amappingn : H x Q@ — H is calledL,,-Lipschitz continuous in first argument, if there
exists a constant,, > 0 such that

lm(x, ) —m(y, JI<Lnllx —yll Vx,y€e H, 1€Q.

Definition 2.5. A set-valued mapping : H x Q — C(H) is said to be_ 4-Lipschitz continuous in first
argument, if there exists a constdnf > 0 such that

H(A(x, 2), A(y, ))<Lallx —yll ¥x,yeH, ieQ.

Definition 2.6. Let B, C : H x Q@ — C(H) be set-valued mappings and: H x H x H x Q — H be
a single-valued mapping.

(i) N is said to bey-relaxed Lipschitz continuous in first argument with resped,td there exists a
constant > 0 such that

(N(m,c,d,2) — N, c,d, ), x —y)< —7y|lx — y||2 Vx,v,c,d € H, u € B(x, 1),
ve By, e
(i) N is said to bes-generalized pseudo-contractive in second argument with respé&stitahere
exists a constarnt > 0 such that
(N(b,u,d,r) — Nb,v,d, 1), x —y)<a|x — y||2 Vx,v,b,d e H, ueC(x,2),
veC(y,4), A€

(iii) Nis said to be Lipschitz continuous in the first argument, if there exists a cotstanf > 0 such
that

IN(x,c,d,2) — N(y,c,d, )I<Lwpllx =yl Vx,y,c,de H, L€Q.

In a similar way, one can define the Lipschitz continuityMfn the second and third argument,
respectively.
Now, for each fixedl € @, the solution sef (1) of the PCGMIQVIP (2.1) is denoted as

SAD={x=x(W)eH:Ja=a(x,1) € A(i(x, 1), 1),b=>b(x, ) € B(x, 1),
c=cx,A)eCx,A),d=dx,A) e D(x,A),e=e(x,1) € E(x, 1),
f=f(x, 7)€ Fx, 1),
g=g(x, 1) € G(x, ) such thatw € W(j(e, 2),a, ) — N(b,c,d, )
+ M(g —m(x, 4), f. D}
The main aim of this paper is to study the behavior and sensitivity analysis of the soluti§ et
and the conditions on these mappingsB, C, D, E, G, W, N, M, h, i, j, m under which the solution

setS(4) of the PCGMIQVIP (2.1) is nonempty and continuous or Lipschitz continuous with respect to
the parametei € Q.

3. Sensitivity analysis of solution set

We first transfer the PCGMIQVIP (2.1) into a fixed point problem.
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Theorem 3.1. For each(w, 1) € H x Q, (x,a, b,c,d, e, f, g) is a solution of theeCGMIQVIP (2.1)
ifandonlyifx =x(1) € H,a=a(x, 1) € A(Gi(x, 1), 4),b=b(x,1) € B(x,),c=c(x, 1) € C(x, 1),
d=d(x,2) e Dx,V,e=e(x,)) € E(x,2), f=f(x,2) € F(x,2) andg = g(x, 1) € G(x, 1) satisfy

g=m(x,0) + Ry ;) (g —m(x, D)) — pW(j(e, 7). a,2) + pN((b, c.d. }) + pw)],  (3.1)
wherep > 0 is a constant.

Proof. For each(w, 1) € H x Q, suppose thatx, a, b, ¢, d, e, f, g) is a solution of the PCGMIQVIP
(2.1),thenx =x(V) € Hya=a(x,2) € A(i(x,A),4),b=>b(x,A) € B(x,1),c=c(x,2) € C(x, 1),
d=dx,2)) e Dx,V,e=e(x,) € E(x,2), f=f(x,2) € F(x,2) andg = g(x, 1) € G(x, 4) satisfy

weW(jle,V,a, i) —Nb,c,d,2)+ M(g —m(x, 1), f, 1). (3.2)
Relation (3.2) holds if and only if

h(g —m(x, )+ p[Nb,c,d, ) —W(j(e, 1), a, i)+ w]
€ (h+pMC(, f, ))(g —m(x, 1)), (3.3)

wherep > 0 is a constant. Since for eacf, 1) € H x Q, M(-, f, /) is h-maximal monotone, by the
definition of the resolvent operat%(,vf,z),p of M(-, f, 2), relation (3.3) holds if and only if

g=m(x, )+ Rﬁ,,(.J-J)’p[h((g —m(x, )+ pN(b,c,d, 1) —pW(jle, 1), a, L)+ pw].

This completes the proof.O

If N(b,c,d,2) = —N(b,c,d, 1), j(x,2) =x,i(x,2) =x, G(x,2) = {gx, )} and W(e,a, 1) =
—W(e,a,A)forallb,c,d,x,e,a € Handl e Q,and foreachf, 1) € H x Q, M(-, f, 7) is a maximal
monotone mapping in Theorem 3.1, then we obtain the following result.

Theorem 3.2. For each(w, 1) € H x Q, (x,a,b,c,d, e, f) is a solution of the parametric problem
(2.3)ifandonlyifx =x(1) € Hy,a=a(x, 1) € A(x,A),b=>b(x, 1) € B(x,A),c=c(x,2) € C(x, 1),
d=d(x,2) € D(x,A),e=e(x,)) € E(x,2),and f = f(x, 1) € F(x, /) such that

g, y=m(x, ) + IMCIA(g —m)(x, 1) + p(W(e,a, ) — N(b, c.d, ) + w)], (3.4)
whereJ,f”("f’D = (I 4+ pM(-, f, 2))"Lis the resolvent operator dfl (-, f, /) andp > 0 is a constant

Proof. Foreachw, 1) € H x Q, suppose thaix, a, b, ¢, d, e, f) is a solution of the parametric problem
(2.3), thenx = x(1) € Hya=a(x,2) € A(x,A),b=>b(x,1) € B(x,A),c=cx,1) € C(x, 1),
d=d(x,)) e D(x,),e=e(x,)) € E(x,2), f=f(x,1) € F(x, /) satisfy

weNb,c,d, ))—We a, i)+ M((g—m)x,72), f 7). (3.5)
Relation (3.5) holds if and only if

glx, ) —m(x, ) + p[W(e, a,’)— N, c,d,.+w) e+ pM(-, f, ) (g —m)(x,1). (3.6)
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Since foreaclif, 1) € H xQ, M (., f, 2) is maximal monotone, by the definition of the resolvent operator

TMCID of M(., £, 7), relation (3.6) holds if and only if

g, ) =m(x, )+ IO (g —m)(x, D) + p(W(e,a, i) — N(b.c.d. ) + w)]. O

Theorem 3.3. LetA,B,C,D,E, F,G : H x Q — C(H) be set-valued mappings such thaBAC, D,

E, F and G are Lipschitz continuous in first argument with constéi{sL g, Lc, Lp, Lg, L andLg,
respectivelyand G bes-strongly monotone in firstargumehiet N : H x H x H x Q — H bey-relaxed
Lipschitz continuous in first argument with respect to B aqm$eudo-contractive in second argument with
respectto CN(., -, -, -) be Lipschitz continuous in the firstecond and third arguments with constants
Ln,1), Lv,2 and Ly 3), respectivelyLet W : H x H x Q — H be Lipschitz continuous in first and
second arguments with constaiitsy 1) and L w2, respectivelyLetm, i, j : H x Q — H be Lipschitz
continuous infirstargument with constadts, L; andL ;, respectivelyand h be rstrongly monotone and
Lj-Lipschitz continuous.etM : H x H xQ — 2" be suchthatfor eachfixéd, 1) € HxQ, M(-, f, 1) :

H — 2H is a h-maximal monotone mapping satisfyif@(H, 1) — m(H, 2)) NndomM(-, f, 2) # @.
Suppose that for anty, y,z,4) € H x H x H x Q,

IR} (v y.0 @ = Rl @I <ullx =yl (3.7)

and there exists a constapt- 0 such that

1 Le+L
k=<1+—> <,/1—25+L3+Lm)+M,/1—2r+L,§+uLF<1,
r r

p=Lwnylps+LwnzLc>LnzLp+ Lwnl;Leg+ Lw2Lali=q,
y> ot rad— k) +/(p? — DA — 21— k)P,

‘ y—o—rq(l—k) /[v—a—rq(l—knz—<p2—q2)<1—r2<1—k>2>
P 2_ 72 < 2_ 2 :
pP-—q pP-—q

(3.8)

Then for eachl € Q, the solution sef (/) of thePCGMIQVIP (2.1)is nonempty and closed
Proof. (1) Define a set-valued mappi@: H x Q — 2 by

Q(x, ) = U [x — (g —m(x, 1)
acA(i(x,A),2),beB(x,1),ceC(x,1),deD(x,1),ecE(x,.),feF (x,1),8eG(x,.)
+ Rig .8 —m@.2)) = pW(j(e, 1), a, ) + pN(b.c.d. ) + pw)]
V(x, ) € Hx Q.

Let (x,2) € H x Q be an arbitrary element. Sineg, B, C, D, E, F, G are compact valued, for any
sequence$a,} C A(i(x, 2), 1), {bp) C B(x, %), {cn) C C(x,2), {d,} C D(x,7), {ea} C E(x, %),
{fa} © F(x,2), {ga} C G(x, ), there exist subsequences, }, {bn;}, {cn,}, {dn;}, {en; ), {fo}s {gni}
and elementa € A(i(x, ), 2), b € B(x,1),c € C(x,A),d € D(x, %), ande € E(x, 1), f € F(x, %),
g € G(x, ) such thatu,, — a, by, - b, cn, = ¢, dy, —> d, en, — ¢, f, —> fandg, — g
asi — oo. By (3.7), Lemma 2.1, the Lipschitz continuity @f in the first and second arguments, the
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Lipschitz continuity ofN in the first, second and third arguments, and the Lipschitz continultyaofl]
in first argument, we have

IR (. g, 20,0l (8 = mx 2)) = pW (j eny ). g 2) + pN (b €yl 2) + pw]
— Ry gy pth(g —m(x, 2)) — pW(j(e, 2), a, ) + pN (b, c, d, 7) + pw]]|
SRR (. g, 2.l (8n, = m(x 1)) = pW (j en, ). g 2) + pN (b €yl 2) + pw]
— Ry iy (8 — m(x, 1)) — pW(j(en;, 2), ;s ) + pN By Cay» iy 2) + pwl|
IR fay ol (8 — m(x, 2)) = pW (i (en; 2). @ns 2) + pN (byy Cay diy 2) + pw]
— Riyi gy lh(@ = mx, ) — pW(j(e, 2),a, ) + pN(b, ¢,d, i) + pwl|

1
<ullfu; = fII+ ;[Ilh(gni —m(x,2)) — h(g —m(x, D))l

+ plIW(j(en;s 2y an;, 2) — W(j(e, 2), an;, Al

+plW(j(e, 1), an;, 2) — W(jle, ), a, )|

+ P”N(bn,-’ Cn;s dn,-» ) — N(b, Cnjs dnia M+ p||N(b, Cnjs dn,w A) = N(,c, dnia Ml
+plIN(b,c,dy;, 2) — N(b,c,d, 2)|]

1
<ull fo; — fII+ ;[thlgn,» — gl +p(Lw,yLjllen; —ell + Lw,2)llay, —all
+ Lv,yllbn, = bl + L 2)licn, —cll + Lv,3)lldy; —dID] — 0, asi — oo.

It follows that for eachx, 1) € H x Q, O(x, /) is closed.

Now for each fixed. € Q, we prove thaQ (x, /) is a set-valued contractive mapping. For anyy, 1) €
Hx HxQandany € Q(x, 1), thereexistiy € A(i(x, 1), 2),b1 € B(x, A),c1 € C(x,1),d1 € D(x, 1),
e1€ E(x, 1), f1 € F(x, ) andg1 € G(x, 4) such that

w=x—(g1—mx, M)+ Ry s (g1 —mx, 2)
—pW(j(e1, 1), a1, 1) + pN (b1, c1,d1, 2) + pw].
Note thatA (i (y, 4). 2), B(y. 1), C(y. 2). D(y. ), E(y, A), F(y, %), G(y. %) € C(H), there existiz €

A(i(y,2), ), b2 € B(y,A),c2€ C(y,A),dr € D(y,A),e2 € E(y,A), fo € F(y,A) andgs € G(y, 1)
such that

laxr — a2l SH(AG(x, 1), 4), AG(y, 4), 1),

b1 — b2l <H (B(x, 4), B(y, 4)),

llex = c2ll SH(C(x, 4), C(y, 4)),

ld1 — d2|| <H(D(x, 2), D(y, 4)),

ler — e2ll SH (E(x, ), E(y, 7)),

I f1—= fal SH(F(x, 2), F(y, 2)),

g1 — g2l <H(G(x, 4), G(y, 4)). (3.9)

Let

v=y— (g2 —m(y, )+ Ry s, 1 [h(g2—m(y, 1)
—pW(j(e2, 4), az, 2) + pN (b2, c2,dz, 7) + pw],
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then we have € Q(y, 4). It follows from (3.7) and Lemma 2.1 that

lu = vl = llx — (g1 — m(x, D)) + Riyp 1 (g1 —m(x, 1))

— pW(j(e1, ), a1, 2) + pN (ba, c1, d1, 1) + pw]
— [y — (82— m(y, D) + Ry p, 1., (h(g2 = m(y, 1))
— pW(j(ea, ), az, ) + pN(bz, c2, d2, 2) + pw]]|

<llx =y — (g1 —m(x, 1) — (g2 — m(y, )|
+ IR iy pth (81— m(x, 2)) — pW (j(e1, 1), a1, ) + pN (ba, c1, d1, 4) + pw]
= Rl iy plh(82 = m(y, ) = pW(j(e2. 2). az. 2) + pN (b2, 2. d. 1) + pw|
+ IR iy pth(82 = m(y, 2)) — pW (j(e2, 1), az, 2) + pN (b2, c2, d2, 2) + pw]
— Ry oy plh(82 = m(y, 1)) — pW(j(e2, 1), az, 2) + pN (b2, c2, d2, 2) + pwl|

<llx =y — (g1 —m(x, 1) — (g2 —m(y, 1))l

1
+ ;HX —y — (h(gr —m(x, 1)) —h(g2 —m(y, 1))
1
t o lx =y 4+ p(N (b1, c1. da. 1) = N(b2. c2. d). )|
+ g”N(bZ’ c2, dl? j') - N(va c2, d27 )“)”

P o
+ ;”W(](els /L)v ai, /1) - W(](625 /L)v az, ;")” + :u”fl - f2||

< (1+ %) [lx —y — (g1 — g2l + llm(x, 2) —m(y, )Il]
+ %”81 —m(x, ) — (g2 —m(y, 4)) — (h(gr —m(x, 1)) — h(g2 —m(y, )))|
+ :r—Lllx — ¥+ p(N (b1, c1,d1, 1) — N(b2, 21, d1, )|l
+ N (b, c2.d1. 2) = N(bz. ca.d2. 7
+ 2IW (G (er. 1), av ) = Wjez. D). az. Dl + L fa = fall (3.10)
SinceG is §-strongly monotone anfl g-Lipschitz continuous in first argument, we have
e — v — (g1 — 821 = lIx — yII* = (g1 — g2, x — ¥) + llgr — g2l *< (L = 25 + L) |x — yI%.
It follows that
Ix =y — (g1 — g2l < 1 =25+ LEIx — yl. (3.11)
By the Lipschitz continuity omin first argument, we have

lm(x, 2) —m(y, HII<Lnllx — yll. (3.12)
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Sinceh is r-strongly monotone and;-Lipschitz continuous, we have

lgr — m(x, 2) — (g2 — m(y, 1) — (h(g1 — m(x, 2)) — h(gz — m(y, )|
= llgr — g2 — (m(x, 2) — m(y, NI? + llh(g1 — m(x, 2)) — h(gz — m(y, )|
— 2(h(g1 — m(x, 2)) — h(ga — m(y, 2)), g1 — m(x, 2) — (g2 — m(y1)))
<A -2r +LY)Ig1 — g2 — (m(x, 2) — m(y, |2
<@ —2r + L) (g1 — g2l® + 2(g1 — g2, m(y, 2) — m(x, 2)) + llm(x, 2) — m(y, D>
<A —2r + L2(LZ% 4+ 2LGLy + L2)|Ix — y|°.

It follows that

(g1 — m(x, 1)) — (g2 — m(y, 2) — (h(g1 — m(x, 7)) — h(g2 — m(y, D))l
<(Lg 4 L)/ (L= 2r + L2 ||x — y|. (3.13)

SinceB andC are Lipschitz continuous in first argument(-, -, -) is Ly 1)-Lipschitz continuous and
y-relaxed Lipschitz continuous with respect Boin first argument, andv(., -, -) is Ly, 2)-Lipschitz
continuous and-generalized pseudo-contractive with respec io second argument, we have

Ix — y + p(N (b1, c1, dv, 2) — N(ba, c2, d1, 1)1
= |lx — yI% 4+ 2p(N (b1, c1,d1, 2) — N(b2, c1,d1, 1), x — )
+ 2p(N (b2, c1,d1) — N (b2, c2, d1, 2), x — y) + p?[|IN (b1, c1, d1, 2) — N(ba, c1,d1, 2) |
+ IN (b2, 1, d1, ) — N (ba, c2, dy, DI
<llx = ylIZ = 2pyllx — ylI> + 2p0llx — yI? + p*(Lv.y L + Liv,2) L) lx — ylI2
<1 —2p( — 0) + p?PA(Lv. Ly + Ly, Le)lx — vl

It follows that

lx —y 4+ p(N (b1, c1,d1, 1) — N(b2, c2,d1, 1))l
<\/1 —2p(yp — 0) + p2(Lv.1yLp + Liv.2y)Le)?llx — yll. (3.14)

SinceB is Lipschitz continuous in first argument ahdis Lipschitz continuous in third argument, we
have

|N (b2, c2,d1, 2) — N (b2, c2,d2, )II<Ln3Lplx —yl. (3.15)
By the Lipschitz continuity oWV, j, A, E andi in first argument, we have

IW(j(e1, 2), a1, 1) — W(j(e2, 4), a2, )|l
<IW(j(e1, 4), a1, 1) — W(j(e2, A), a1, )|l + W(j(ez2, 2),a1, 1) — W(j(e2, 4), a2, Dl
<(Lw,yL;Lg + Lw,2LaLi)lx — yll. (3.16)
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SinceF is Lipschitz continuous in first argument, we have
If1— fal<H(F(x,4), F(y,A)<Lrlx—yl. (3.17)

By (3.10)—(3.17), we obtain

1 Lg+L
lu — || < [<1+—) (,/1—25+Lé+Lm)+M,/l—Zr+L%
r r

1
+21-206 = )+ PALav L + LivaLe)

p
+ ;(L(N,3)LD + Lw,yL;Lg+ Lw2LaL;)+ MLF] lx — yll
=k +1t(p)llx —yll =0[x = yl, (3.18)

where
1 Lg+L
k= (1+—> (,/1—25+L2G+Lm) G EeE Yo 112 gLy,
r r

1
t(p) = ;[\/1 —2p(y = 0) + p2(L(yyLp + Loy Le)? + p(Lv3)Lp
+ LwyL;iLg + Lw2LaL)],

andfd =k + ¢(p). It follows from condition (3.8) tha# < 1. Hence we have

du, Q(y, )= inf Jlu—v[<0]x—yl|.
veQ(y,4)

Sinceu € F(x, /) is arbitrary, we obtain

sup d(u, Q(y, 1)) <0llx — y].
ueQ(x,1)

By using same argument, we can prove

sup d(Q(x, 4), v) <Ollx — yl|.
veQ(y.2)

By the definition of the Hausdorff metrid on C(H), we obtain that for al(x, y, 1) € H x H x ,

H(Q(x,7), Q(y, D) <0lx — vl

i.e., Q(x, A) is a set-valued contractive mapping which is uniform with respettdd?. By a fixed point
theorem of Nadlef32], for eachi € Q, Q(x, 1) has afixed point =x(1) € H,i.e.,.x=x(1) € Q(x, 1).
By the definition ofQ, there exist =a(x, 1) € A(i(x, A), 1), b=b(x, 1) € B(x, A),c=c(x, 1) € C(x, 1),
d=dx,2) e Dx,A,e=e(x,2) € E(x,2), f=f(x,2) € F(x,1),g=gkx, 1) € G(x, ) such that

g=mie, )+ Ry ) lh(g —m(x, 1)) = pW(j(e, 2),a, ) + pN(b, ¢, d, 7) + puw].
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By Theorem 3.1x(4) € S(/) is a solution of the PCGMIQVIP (2.1) and $@2) is nonempty for each
Ae Q. O

Theorem3.4.LetA,B,C,D,E,F,GW,N, M, h,m,i, jandQbe asin Theorerf.3.Further assume

() for anyx € H, A(x, ), B(x, ), C(x,2), D(x, %), E(x, %), F(x, 1), G(x, 2), h(x, 7), m(x, 1),
i(x,4), j(x,4), are Lipschitz continuougr continuou$ in second arguments with Lipschitz constants
Lo, g, e, p, LE, Lr, LG, L, Ly, £; @and L respectively

(i) foranyb, ¢, d, f,t € H,i+> N(b,c,d, 7), i W(a,c, 2),andi — R’;ﬂ,,mp(z) are Lipschitz
continuougor continuou$ with Lipschitz constantéy, £y and g, respectively

(iii) Conditions(3.7)and(3.8)in TheorenB.3are satisfied

Then solution se§ (1) of the PCGMIQVIP (2.1)is a Lipschitz continuougr continuou¥ mapping
fromQto H.

Proof. For eachi, /2 € @, by Theorem 3.35(4) and S(2) are both nonempty closed subsetdHfBy
the proof of Theorem 3.3Q(x, 2) and Q(x, /) are both set-valued contractive mappings with same
contractive constartt € (0, 1). By Lemma 2.1 of Lim[29], we obtain

- . 1 - .
H(S(2), S()) s 775 SUp H(Q(x, 7). Q(x. 2)). (3.19)

— VYV xeH

Foranyu € Q(x, 1), thereexistea=a(x, 1) € A(i(x, ), 1),b=b(x, %) € B(x, 1),c=c(x, 1) € C(x, 1),
d=d(x,2) € D(x,%),e(x,2) € E(x,2), f=f(x,2) € F(x, ), andg = g(x, 1) € G(x, ) such that

w=x—(g—m@x,N)+ Ry s (g —m(x, 1), 2)
- pW(.](ev ;")7 a, /1) + pN(b7 c, d» ;") + Pw]

_ Itiseasyto see thatthere exista(x, /) € A(i(x, 2), 1), b=b(x, 1) € B(x, 1),é=c(x, 1) € C(x, 1),
ilhg__(td(x,b € D(x,A),e=e(x,.) € E(x,A), f=f(x,2) € F(x,A) andg = g(x, 1) € G(x, A) such
la —all<H(AG(x, ), 2), Al (x, 2), 1)),
Ib—bII<H(B(x,7), B(x,2), llc—cll<H(C(x,),C(x, 7).
ld —d|<H(D(x, 7), D(x, 7)), lle—e|<H(E(x, ), E(x, ),
If = FISHF(x, 2, F(x, 7)), llg—gI<H(G(x, 1), G(x, 7).
Let
v=x— (@ —m@ D)+ Ry o (@ = m(x, D) = pW(j (€. 7). a. 1)+ pN(b.¢.d. D) + pw],

and

z=h(g —m(x, 1) — pW(j(e,1),a,r) +pN(b,c,d, )+ pw.
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Thenv € Q(x, A). It follows that

lu = vli<llg = &Il + llm(x. 2) = m(x, D)
+ IR piy (8 = mx, 2)) = pW(j(e. 1), a. 2)

— h R
+pN(b’ C,d, ;b)‘i‘/)w] RM(',f,i),p(Z)||

<llg =&l + lIm(x, 1) — m(xA)|
+ IRy L (g = m(x, 1)) — pW (j(e, 7). a, 7)
+pN (b, ¢, d, 7)+ pwl — Ry 11 @
+ IR0 p @ = Ry oy @I+ IRY - @ —RE o @)
< (1+ %) (g — &l + Im(x, 2 — mCx, D)
+ §||W(j(e, M.a, i) —W(je i), a,
+ §||N<b, c.d, )= Nb,c.d, D, +ul f — Fll +LrlI2— Al (3.20)
By Lipschitz continuity ofG andmin second arguments, we have
lg = DI<HG(x, 1), Gx, )<Ll — Al (3.21)
lm (e, 2) = mQe, DI <L lli— 2] (3.22)

By the Lipschitz continuity ofVin first, second, and third argumerjtandi in first and second arguments,
andE andA in second argument, we have

IW(ite, 2),a, ) —W(je,2),a, il i
<[Lwy(Ljle +4€j) + Lw2(LaLilg + Lal; +€4) +Lwlll4— Al (3.23)

By Lipschitz continuity ofN (b, ¢, d, /) in first, second, third, fourth arguments and the Lipschitz conti-
nuity of B, C, D in second argument, we have

IN(,c,d, 2)—N(b,é,d, )| <[Liv.1yls + Lvaylc + Livztp + enllli— 2. (3.24)
By Lipschitz continuity ofF in the second argument, we have
If = FISH(F (x,2), F(x, 1) <Crll2— . (3.25)
follows from (3.20)—(3.25) that
lu — vl <MI|% = 7,

where

Ly p
M= (1+ T) (G +4tm) + ;[L(W,l)(LjﬂE +4;)+ Lw2y(LaLili + La, b +£4) +Lw

+ Lvyls + Ln2tlc+ Lyvw3ztp +LEn]+ plr + LR.
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Hence we obtain

sup d(u, F(x, ) <M|i— 7.
ueQ(x,A)

By using similar argument as above, we can obtain

sup d(F(x,2),v)<M|L— 7.
VEF (x,7)

It follows that
H(Q(x, 2), Q(x, <M= Y(x,2), (x,2) € H x Q.

By Lemma 2.2, we obtain
\ - M -
H(S(4), S(ﬂ»)Kmlli — Al

This proves thafS(1) is Lipschitz continuous ik € Q. If, each mapping in conditions (i) and (ii) is
assumed to be continuous ine Q, then by similar argument as above, we can show §lial is also
continuous i, € Q. O

Remark 3.2. The PCGMIQVIP (2.1) includes the parametric problems (2.2)—(2.8) and many para-
metric (generalized) quasi-variational inclusions and parametric (generalized) nonlinear implicit quasi-
variational inequalities irf1,2,4,6—20, 22—-28,30,31, 33-42,44—48]special cases. Theorems 3.1-3.4
improve and generalize the corresponding known resu[ts 1)4,6—20, 22-28,30,31, 33-42,44-48

special cases, we also can obtain the corresponding sensitivity analysis results of the parametric problems
(2.2)—(2.8) and other parametric forms of the variational inclusions and the quasi-variational inequalities
considered if1,2,4,6-20, 22—-28,30,31, 33-42,44-48]
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