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Transforming growth factor a (TG Fa) is a peptide so named 
because it helps to impart anchorage-independent growth to 

normal rat kidney (NRK) cells in vitro and is secreted by 
many rodent and human tumor cells. To directly investigate 
the transforming properties of this factor, we constructed a 
replication-defective murine retrovirus that expresses the 
human sequence coding for TGFa. Infection of NIHj3T3 
cells with the TGFa retrovirus led to the integration of a 
transcriptionally active provirus and overexpression of bio
logically active TGFa, but failed to induce morphologic 
transformation. Similarly, the TGFa retrovirus failed to in
duce morphologic transformation of five other types of ro-

T
ransforming growth factor alpha (TGFa) is a·peptide 
that was originally discovered by virtue of its secretion 
into the culture medium by retrovirally transformed 
rodent cells [1] . TGFa is synthesized as a glycosylated 
and palmitoylated 160-amino acid transmembrane 

precursor that contains a 100-amino acid extracellular domain en
coding the mature 50-amino acid polypeptide, a hydrophobic 
transmembrane domain. and a 35 -amino acid cytoplasmic domain 
[2). TGFa is detected in culture supernatants in diff~rent forms. 
ranging in size from 5 to 20 kD [3]. The larger speCies represent 
N-glycosylated forms of TGFa released after proteolytic cleavage 
of the extracellular domain of the precursor [2) . This £eptide has 
both structural and functional homology to EGF [1,4,5J and binds 
to the EG F receptor [6], triggering a sequence of intracellular events 
that ultimately lead to stimulation of cell growth. TGFa has been 
detected in neoplastic tissues [~,8). In rarticular. TGFa is often 
expressed in squamous cell carcinomas 19]. These results, and the 
findin g that exogenous TGFa confers a transf~rmed phenotype and 
anchorage-independent growth to NRK cells 111 culture (10), led to 

the proposal that TGFa may cause malignant transformation in 
vivo of cells releasing this factor [11]. 

The cloning of the eDNA for TGFa [12,13) has permitted a 
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dent fibroblasts. 
We also investigated the effect ofTGFa expression on the 

growth of BALBjMK mouse keratinocytes, which require 
epidermal growth factor (EGF) for proliferation. We show 
that exogenously added TGFa is an extremely potent mito
gen for BALBjMK cells. However, retroviral expression of 
TGFa in BALBjMK cells failed to relieve dependence on 
exogenously added EGF (or TGFa) for cell growth. These 
results suggest that overexpression of TGFa does not, bT 
itself, transform rodent fibroblasts or keratinocytes. ] In ves! 
Dermatol 95:382-387, 1990 

direct analysis of this growth factor. Introduction of the human 
TGFa gene into rat 1 cells and subsequent expression of TGFQ 
protein was reported to enhance the tumorigeniciry of the recipien 
cell lines (14]. However. high-level expression ofTGFa does n 
confer the malignant phenotype to NIH/3T3 cells [15). Recen 
work has shown that retroviral expression of a TGFa gene in pri
mary mouse epidermal cells or papilloma cells stimulated the 
growth of skin papillomas in a skin graft reconstitution model. but 
did not cause neoplastic progression [16]. A role for TGFa in nor
mal cellular growth and development is suggested by recent sruclies 
showing that bovine adenohypophysial cells [17] and human kerat
inocytes [18) synthesize TGFa. 

Cloned BALB/MK-2 cell lines derived from BALB/c mollSt 
keratinocytes have been deveiored [19). These lines absolutely ~ 
quire EGF for cell proliferation l20) and thus provide a useful mod 
system to test the effect of autocrine (effect of synthesis of a gwwth 
factor by a cell on that individual cell) expression of TGFa on 
epithelial cell growth . Prior studies have shown that retro . 
transforming genes of the src and ras oncogene families can reliew 
the EGF requirement for BALB/MK-2 growth [20). 

In the present study. we constructed and characterized a replica
tion-defective murine retrovirus (ZipTGFO!) that expresses the en
tire coding sequence of human TGFa. We used this retrovirus 
introduce and express sequences encoding TGFa into six dUferen 
fibroblast cell lines as well as BALB/MK-2 epithelial cells. t 
show that TGFa expression does not induce focus formation in an)

of the fibroblast cells analyzed nor does infection of BALB/ MK-_ 
epithelial cells · with ZipTGFa lead to EGF-independent grov."'th. 
These findings further suggest that autocrine expression of TGFa 
alone is not sufficient for transformation. 

MATERIALS AND METHODS 

Cell Culture Fibroblast cell lines were maintained in Dulbecco', 
modified Eagle's medium (DMEM) supplemented with 10% 
serum (Colorado calf serum). The FR3T3 cell line was a gift fro 
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It. A. Weinberg (Whitehead Institute). The clonal mouse epider
mal keratinocyte cell line, BALB/MK-2 [19], was grown in DMEM 
containing a calcium concentration of 0.05 mM and supplemented 
with 10% dialyzed fetal calf serum (GIBCO Laboratories) and, 
where indicated, 4 ng EGF (Collaborative Research, Inc.) per m!. 
Recombinant human TGFa was prepared as described previously 
(12] . 

DNA Transfections IIf2 cells [21] were trans fee ted with 10/lg 
pZipTGFa [15] or pZipNeo [22] DNA and 40 /lg calf thymus car
rier DNA/I00-mm petri dish using the calcium phosphate precipi
tation method [23,24]. After 10 h, the medium was changed to 
fresh serum-supplemented DMEM. Twenty-four hours later, cells 
were rrypsinized and replated at a 1 : 100 dilution in medium con
taining 750/lg/ml G418 (GIBCO). G418-resistant colonies were 
picked and expanded after 2 weeks. 

Viral Infections Infectious virus was collected as a 24-h super
natant from subconfluent virus producing IIf2 cells. To titer in
fectious virus, NIH/3T3 cells were plated at 5 X 105/60-mm dish 
on day 1. On day 2, the medium was changed to medium containing 
2/lgjml polybrene, and test viral samples were added. On day 3, the 
cells were split in medium containing 400 /lg/ml G418. Colonies 
were counted after two weeks. 

For focus assays on fibroblast cell lines, cells were seeded over
night at a density of 1.5 X 105 cells/60-mm dish in medium con
tainin g 2/lg polybrene/m!. The next day, the cells were infected 
with serial virus dilutions and the cells were processed as described 
[25]. For generation of clonally infected NIH/3T3 cell lines, cells 
were infected with serial dilutions of virus in the presence of 2 
Ilg/rnl polybrene. Forty-eight hours later, the medium was changed 
w medium containing 400 /lg/ml G418. Isolated colonies were 
picked and expanded 2 weeks later. 

Focus assays on BALB/MK-2 keratinocytes r lated at 1 X 105 

cells/ 60-mm plate were performed as described [20]. Where indi
cated, 48 h after infection the medium was changed to include 10 
Ilg/ml G418 and/or 4 ng/ml EGF or TGFa. 

To generate virally infected BALB/MK-2 cell lines, 1 X 105 cells 
Vlere seeded/60-mm dish and infected with either 105 or 106 col
ony-forming units in the presence of 2 /lg/ml polybrene. Forty
eight hours later, the cells were selected in 10 /lg/ml G418 as mass 
culrures . 

Analysis of Proviral Integration DNA samples were digested 
with Xbal, electrophoresed in 1 % agarose gels, and transferred to 
nirrocellulose as described [25] . Filters were hybridized with DNA 
fragments labeled with a [32P]-dATP by nick translation [27]. Hy
bridization was performed in 50% formamide, 5 X SSC, at 42 °C 
for 18 h. Filters were then washed twice for 20 min with 2 X SSC at 
room te mperature, once at 65 ° C for 20 min in 0.1 X SSC, and 0.1 % 
SDS, the n for 20 min at 65 ° C in 0.1 X SSC. The neo probe used 
was the HindIII to Smal fragment of pSV2 neo [28]. The TGFa 
eDNA probe was the ClaI to Cia! fragment of pSVTGFa [15]. 

Transcriptional Analysis Total cellular RNA were isolated by a 
modification of the guanidine hydrochloride extraction method 
[29] and analyzed in agarose-formaldehyde gels [30]. The gel was 
then incubated for 30 min at 24 °C in 50 mM NaOH before trans
faring the RNA to nitrocellulose filters in aIM ammonium ace
ratCsolution. Filters were hybridized and washed as described above 
for Southern analysis. 

Measurement ofTGFa in Cell Lysates and Medium All sam
ples were assayed using a sandwich ELISA for TGFa, with TGFa 
IIIOnoclonal antibody as solid phase antibody and polyclonal rabbit 
mti-TGFa serum as detecting antibody [31]. Human and mouse 
EGF were not detectable in the ELISA assay. For assay of TGFa 
production by virally infected BALB/MK-2 cells, BALB/MK-2 
all lines were grown to confluence in two 175 cm2 flasks. Twenty
four- h supernatants were collected in 50 ml medium supple
mented w ith 10% dialyzed fetal calf serum, and the cells and the 
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Table I. Expression of TGFa by NIH/3T3 Cells Infected 
by a TGFa Recombinant Retrovirus 

Cell Line 

ZipNeo infected 
neo-1-3 

ZipTGFa infected 
ZipTGF-1 
ZipTGF-2 
ZipTGF-3 
ZipTGF-4 
ZipTGF-5 
ZipTGF-6 
ZipTGF-7 
ZipTGF-8 
ZipTGF-9 
ZipTGF-10 

Human TGFa Secrete do (ng/ ml) 

< 0.1 

3.2 
2.0 
7.4 
1.8 
3.2 
2.5 
1.9 
1.7 
1.3 
2.2 

• Confluent 10-cm plates were washed 3 times with DMEM and supernatants 
collected after a 24 h incubation with 5 ml DMEM. 

medium were processed as described [9]. Fetal calf serum did not 
contain detectable TGFa. 

Thymidine Incorporation Assay BALB/MK-2 cells (6 X 103 

in 0.18 ml of DMEM, 10% fetal calf serum, 0.05 mM Ca++, 4 
ng/ml of EGF) were seeded into each well of a 96-well plate and 
incubated at 37 °C. After 1-2 days, the cells were confluent and the 
medium was changed to serum-free medium lacking EGF. Forty
eight hours later, 180/l1 of the indicated growth fact.ors or condi
tioned media was added. After seventeen h, [3H]thpmdme (80 CI/ 
mmol, New England Nuclear) was added to the cultures (1 /lCi in 
20/l1 DMEM). Six hours later, the medium was aspirated, the cells 
washed 3 times with 5% trichloroacetic acid (200 /ll/well) , acid-in
soluble radioactivity extracted with 0.25 M NaOH (150/l1), and 
the extract counted in Aquasol (New England Nuclear) . 

RESULTS 

Characterization of a Murine Retroviral Vector Which Ex
presses Human TGFa To generate a murine retrovirus which 
expresses human TGFa, we utilized the retroviral construct 
pZipTGFa [15] . In this construct (pZipTGFa) , the entire coding 
region of the TGFa eDNA was cloned into the BamHI site of the 
Moloney murine leukemia virus (Mo-MuL V)-based vector pZip
NeoSV (X) 1 [22] . This vector contains che bacterial transposon 
TN5 neomycin-resistance gene, conferring G418 resistance in 
mammalian cells [28] . 

Infectious ZipTGFex virus was produced by transfecting 
pZipTGFex DNA into the packaging cell line IIf2 [21). G418-resist
ant colonies were expanded and analyzed for their ability to secrete 
TGFa into the medium. Five of five ZipTGFa IIf2 cell lines secreted 
TGFa at concentrations ranging from 6 to 22 ng/m!' Supernatants 
were collected and titered for their ability to transmit G418 resist
ance to NIH/3T3 cells. Viral titers ranged from 105 to 106 G418-re
sistant colony-forming units (cfu) per m!. 

To demonstrate that TGFa was expressed by ZipTGFa virus, we 
infected NIH/3T3 cells with ZipTGFa virus and isolated 10 clo
nally derived G418 resistant cell lines as described in Materials and 
Methods. ZipTGFa-infected cells secreted TGFa at concentrations 
ranging from 1.3 to 7.4 ng/ ml , asjudged by a TGFa ELISA (Table 
I). The amounts of TGFa released were at least five times higher 
chan those secreted by transformed cell lines reported to be high 
producers ofTGFa [7,10]. Thus, the ZipTGFa virus could both 
induce G418 resistance and direct the synthesis oflarge amounts of 
TGFa by infected fibroblasts . As expected, the ZipNeo control 
virus induced G418 resistance, but not TGFa production, in NIH/ 
3T3 cells. 
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Figure 1. Analysis of proviral integration and virus-specific mRNA in 
virally infected NlH!3T3 cel ls. High-molecular-weight DNA was digested 
with XbaI and analyzed by Southern blotting with A, a TGFa cDNA probe 
and B, a neoR gene probe. Lane 1, NIH!3T3 cells; lane 2, ZipNeo-infected 
cell line neo-1-3; lanes 3 and 4, ZipTGFa-infected cell lines ZipTGFa-l, 
ZipTGFa-3. C Total RNA from the fo llowing cell lines was electrophor
esed on a denaturing gel and analyzed by Northern blotting with a TGFa 
cDNA probe: larJe 1, NIH/3T3 cell s; lanes 2 and 3, ZipTGFa-infected cell 
lines ZipTGFa-3, ZipTGFa-1. Each lane contains 15 Jig total RNA. 

An!llysis of Viral Integratiqn and Transcription in ZipTGFa
Infected NIH/ 3T3 Cells To demonstrate proviral integration 
in ZipTGFa-infected NIH/3T3 cells, genomic DNA from clo
nally infected cell lines was digested with XbaI and analyzed by 
Southern blotting. Hybridization to a TGFa cDNA probe (Fig IA) 
revealed an extra fragment, 4.8 kb long, in ZipTGFa-infected cells 
(lanes 3 and 4), compared with uninfected NIH/3T3 cells (lane 1) or 
ZipNeo-infected cells (lane 2) . The extra fragment in ZipTGFa
infected cells corresponds to the ZipTGFa provirus, because XbaI 
cleaves the ZipTGFa construct once in each LTR [22] . Hybridiza
tion of these same DNA to a neoR probe (Fig IB) revealed, as 
expected, the same size proviral fragment in ZipTGFa-infected 
NIH/3T3 cells (lanes 3 and 4), whereas uninfected NIH/3T3 DNA 
did not hybridize. DNA from the ZipNeo-infected cells contained 
the expected 4.2-kb XbaI fragment (lane 2) . 

The expression of TGFa-containing RNA transcripts in 
ZipTGFa-infected NIH/3T3 cell lines was examined by Northern 
blot hybridization analysis (Fig le). ZipTGFa- (lanes 2 and 3), but 
not ZipN eo- (lane 1) infected cells contained one major mRNA 
species of approximately 5.1 kb, corresponding to the size of viral 
genomic RNA, which hybridized to the TGFa cDNA probe. 

Effect of ZipTGFa Viral Infection on the Phenotype of Fi
broblast Cell Lines To assess the transforming potential of 
ZipTGFa virus, we infected various fibrob last cell lines. Infected 
cultures were scored for foci formation or selected in G418-con
taining medium. As shown in Table I, ZipTGFa virus did not 
induce detectable foci in any of the cell lines. These results were not 
due to inability of these cell lines to be infected with ZipTGFa 
virus, because at least 100 colonies were observable in every plate 
after selection of infected cells in G418-containing medium (Table 
II) . Moreover, selected cultures infected with undiluted virus (106 

cfu/ml) grew uniformly denser (data not shown), suggesting that 
when large numbers of cells were infected with ZipTGFa, suffi
cient TGFa was secreted into the medium to exert a growth-pro
moting effect on the entire cell population. Infection of the same 
fibroblast cell lines with 106 cfu/ml control ZipNeo virus had no 
effect on the density of cell growth. These results are consistent 
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with previous work, which showed that TGFa-expressing NIH/ 
3T3 cells grew to high saturation density in culture, but TGFa: 
exerted little, if any, effect on the individual cell synthesizing this 
factor [15]. 

BALB/ MK-2 Cells Infected with ZipTGFa Virus are Not 
Relieved of Their EGF Requirement for C ell Growth 
BALB/MK-2 is a c10nally derived keratinocyte cell line that re
quires EGF for growth [19]. Because TGFa has both structural and 
functional homology to EGF [4,5] and binds to the same receptor as 
EGF [6], we initially examined whether exogenously added TGFa: 
could replace the BALB/MK-2 requirement for EGF for prolifera-. 
tion. As seen in Fig 2, TGFa is a "Potent mitogen for BALB/MK-2 
cells. A fivefold stimulation in l'H]thymidine incorporation was 
observed upon addition of only 0.1 ng/ml TGFa. Addition of 10 
ng/ml TGFa led to - 80 times stimulation in [>H]thymidine incor
poration. At all concentrations tested, T GFa stimulated DNA syn
thesis as well as, or significantly better than, EGF. These results 
were consistent with other studies indicating that TGFa and EGF 
are comparable in their mitogenicity for BALB/MK cells [32]. 

Because TGFa is a potent mitogen for BALB/MK cells, 've 
reasoned that infection ofBALB/MK-2 cells with ZipTGFa virus 
might lead to factor-independent growth via an autocrine mecha
nism. T herefore, we infected BALB/MK-2 cells with ZipTGFo: 
virus. As shown in Fig 3, plate C, Kirsten-MSV induced EGF-inde
pendent foci, in agreement with previous results [20]. In striking 
contrast, infection with the ZipTGFa virus failed to yield any EGF
independent foci (Fig 3, plate A). This lack of EGF-independent 
growth by ZipTGFa-infected cells did not affect the ability of the 
ZipTGFa virus to infect BALB/MK-2 cells because selection of 
infected cells in medium containing EGF and G418 allowed the 
growth of many colonies (Fig 3, plate B). Furthermore, BALB/MK-
2 cells grew well in medium containing 4 ng/ml recombinant 
TGFa (Fig 3, plate D), indicating that externally added TGFa Was 
functionally interchangeable with EGF in stimulating the growth 
ofBALB/MK-2 cells. 

Several mechanisms could account for the inability of ZipTGFa: 
to abrogate the EGF dependence of BALB/MK-2. It was possible 
that the ZipTGFa virus was not expressed in the epithelial cells. 
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Figure 2. TGFa mitogenic effects on BALB/MK-2 keratinocytes. Th~ 
mitogenic response of BALB/MK-2 cells to indicated concentrations 
EGF (0 ) or TGFa (mI). The incorporation of [3H]thymidine into D A. 
(trichloroacetic acid-insoluble radioactivity) was determined as described in 
Materia ls aJld Methods. Data (mean ± SD) are from a representative experi. 
ment. 



Figure 3. Focus assay following infection of BALB/MK-2 cells by retro
viruses. BALB/MK-2 cells were plated at 1 X 105 cells/60-mm dish. After 
virus infection, the cells wcre maintained in low-calcium growth mcdium 
containing the indicated additions. Plates were stained with Giemsa after 2 
weeks. A, ZipTGFa virus; B, ZipTGFa virus + 4 ng/ml EGF + lOltg/ml 
G418; C, Kirsten-MSV; D, uninfected + 4 ng/ml TGFa. 

Alternatively, the growth-promoting effects ofTGFa might not be 
exerted specifically on the individual BALB/MK-2 cell infected 
with ZipTGFa, but instead act on the entire cell fopulation in a 
paracrine manner after secretion into the medium. I the latter were 
the case, the number of ZipTGFa-infected cells plated might not 
secrete a sufficient amount of TGFa into the medium to cause the 
culture to grow in an EGF-independent manner. 

To confirm that ZipTGFa-infected BALB/MK-2 cells con
tained integrated proviruses with the expected structure, we isolated 
genomic DNA from several mass cultures of virally infected 
BALB/MK-2 cells that had been selected in G418. Southern blot 
hybridization analysis ofXbal-digested DNA with a TGFa eDNA 
probe revealed an extra 4.8-kb fragment in cells infected with 105 

cfu ZipTGFa (Fig 4A, lal1e 3), comeared with uninfected (Fig 4A, 
lane 1) BALB/MK-2 cells. BALB/MK-2 cells that had been in
fected with 106 cfu ZipTGFa demonstrated evidence of multiple 
proviral inserts per cell (Fig 4A, lal1e 4) when the intensity of hy
bridization of the proviral fragments to the endogenous TGFa 
fragITlents was compared. Hybridization of the same DNA to a neoR 

probe confirmed these results (Fig 4B). 
To establish that ZipTGFa-infected BALB/MK-2 cells were ex

pressing TGFa transcripts, we examined total RNA from mass cul
tures of infected cells by Northern blot hybridization analysis. As 
shown in Fig 4C, ZipTGFa- (lal1es 2, 3) but not ZipNeo- (lal1e 1) 
infected cells contained one predominant RNA species of approxi
mately 5.1 kb, which hybridized to the TGFa eDNA. This size 
RNA corresponds to the viral genomic RNA and was identical in 
size to the transcript detected in NIH/3T3 cells infected with the 
same virus. Finally, mass cui tures of ZipTG Fa virally infected cells, 
which on average contained multiple proviral inserts, expressed 
more TGFa RNA than cells containing aprroximately one proviral 
insert per cell (Fig 4C, lal1e 2 versus lane 3). 

To demonstrate that ZipTGFa-infected BALB/MK-2 cells pro
duced functional TGFa protein, we analyzed cell extracts and con
ditioned media by the TGFa ELISA (Table III) . Both ZipTGFa
infected cell lines showed significant levels ofTGFa in the condi
tioned media, whereas no TGFa protein was detectable in ZipNeo
infected cells. None of the cell lines displayed detectable TGFa in 
the cell extracts, suggesting that TGFa expressed by BALB/MK-2 
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Figure 4. Analysis of proviral integration and virus-specific mRNA in 
virally infected BALB/ MK-2 cells. High molecular weight DNA was di
gested with XbaI and analyzed by Southern blotting with A a TGFa cDNA 
probe and B, a neoR gene probe: tal'le 1, BALB/ MK-2 cells; talle 2, ZipNeo
infected cell line B/MK-ZipNeo-l; talles 3 and 4, ZipTGFa-infected cell 
lines B/ MK-ZipTGFa-l , B/MK-ZipTGFa-2. C, Total RNA from the 
following cell lines was electrophoresed on a denaturing gel and analyzed by 
Northern blotting using a TGFa eDNA probe: talle 1, BALB/ MK-2 cells; 
tarles 2 and 3, ZipTGFa-infected cell lines B/MK-ZipTGFa-2, B/ MK
ZipTGFa-1. Each talle contains 20 ttg total RNA. 

cells is predominantly secreted. The TGFa ELISA utilized here 
detects TGFa that can bind to the EGF receptor but does not detect 
TGFa with incorrectly formed disulfide bridges [31J, suggesting 
that the TGFa secreted by BALB/MK-2 cells was functionally 
active. To confirm these results , we tested whether conditioned 
media from ZipTGFa-infecte.:i cells was mitogenic for BALB/ 
MK-2 cells. Supernatants from near-confluent ZipTGFa-infected, 
but not ZipNeo-infected, cells stimulated (3HJthymidine incorpora
tion in control BALB/ MK-2 cells at least twofold (data not shown) . 

To determine whether the level of TGFa expression by 
ZipTGFa-infected BALB/ MK-2 cells was sufficient to surport 
BALB/MK-2 cell growth, we added TGFa to control BALB/MK-

Table II. Infection of Different Cell Lines by ZipTGFa Virus: 
Incidence of Foci Formation and G418-Resistant Colonies 

Number of Foci 
111 Number of 

Viral Normal G418-Resistant 
Dilution" Mediumb Colonies' 

BALB/ 3T3 100 0 TMCJ 
10- 1 0 > 500 

Fisher rat 100 0 TMC 
10- 1 0 > 500 

Fisher rat embryo 100 0 TMC 
10- 1 0 > 300 

FR3T3 100 0 TMC 
10- 1 0 > 500 

NRK 100 0 TMC 
10- 1 0 > 100 

NIH/ 3T3 100 0 TMC 

• Viral titer of undiluted virus on NIH/3T 3 cells was 10' cfu/ m!. 
, Cells were maintained in media containing 5% calf serum. Plates were scored 16 d 

aftcr infection . 
' Seventy-two hOll.rs after infectio n. the medium was changed to that containin g 400 

)ll ml G418. Colonies were counted 14 d later. 
J TMC, too many to count. 
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Table III. Expression of TGFa Protein by BALB/MK-2 Cells 
Infected with ZipTGFa 

Cell Line 

B/MK-ZipNeo-l 
B/MK-ZipTGFa-1 
B/ MK-ZipTGFa-1 
B/MK-ZipTGFa-2 

TGFa Expression (ng/ml)' 

Cell Extract 

<.005 
<.005 
<.005 
< .005 

Conditioned Media 

< .005 
.070 
.085 
.275 

• The expression of TGFa was assessed as described in Malerials alld Melhods. The 
results are presented as ng of TGFa/ml unconcentrated 24-h supernatant collected 
from confluent cells. 

2 cells grown in medium lacking EG F. At a TG Fa concentration of 
0.275 ng/ml medium, which was similar to that secreted into the 
medium over 24 h by a near-confluent ZipTGFa BALB/MK-2 cell 
line (Table Ill), cell growth was supported (data not shown). 

There was an apparent paradox between the inability of 
ZipTGFa virus to abrogate the EGF dependence of BALB/MK-2 
and the ability of ZipTGFa-infected BALB/MK-2 cells to secrete 
sufficient TGFa into the medium to support the growth of control 
BALB/MK-2 cells. This can be explained by noting that the focus 
assays in Fig 3 were performed by plating 1 X 105 BALB/MK-2 
cells/ dish, whereas conditioned medium was collected from G418-
selected near-confluent cultures containing 107 virally infected 
BALB/MK-2 cells. If sparsely plated BALB/MK-2 cells thatsynthe
sized TGFa processed the growth factor through the cell as an 
inactive precursor or in a different cellular compartment from its 
receptor, and/or the growth factor were rapidly secreted and dif
fused, it may exert little or no direct effect on the growth of that cell. 
Conversely, near-confluent cultures of G418-selected virally in
fected cells would have a high cell-to-ml medium ratio, allowing 
detectable levels ofTGFa to accumulate in the medium. 

DISCUSSION 

We report here the characterization of a murine retrovirus 
(ZipTGFa) that expresses the entire normal coding sequence of 
human TGFa. NIH/3T3 cells infected with this retrovirus were 
shown to have integrated a transcriptionally active provirus of the 
expected size, and to secrete TGFa into the medium. However, 
infection of NIH/3T3 cells with ZipTGFa did not induce foci 
formation. Moreover, we demonstrated that the inability of 
ZipTGFa virus to transform NIH/3T3 c~ lIs was not specific to this 
cell line, because similar results were obta111ed upon 111fectlon of five 
fibroblast cell lines. These results are consistent with earlier work 
showing that a high-level expression ofTGFa by NIH/3T3 cells 
led to a growth-promoting effect on the entire cell culture, but did 
not confer the tumorigenic phenotype to cells synthesizing this 
factor [15]. Our results are consistent with recent work indicating 
that expression ofTGFa by primary mouse epider.mal.cells or papi.l
loma cells increased the size of tumors formed 111 VIVO after sk111 
grafting, but did not appear to influence tumor progression directly 
[16]. 

We also asked whether the expression ofTGFa by a keratinocyte 
cell line that requires an analogous growth factor, EGF, for growth 
could lead to factor-independent growth. We showed that BALB/ 
MK-2 cells infected with ZipTGFa remained dependent on EGF, 
whereas a viral ras gene led to loss of EGF dependence. ThiS result 
was not due to an inability of BALB/MK-2 cells to respond to 
TGFa, because control BALB/MK-2 cells grew well in medium in 
which TGFa was the primary growth-factor supplement. More
over, by enriching the infected population for only those cells 
which express the TGFa retrovirus, we were able to demonstrate 
that ZipTGFa-infected BALB/MK-2 cells secrete biologically ac
tive TGFa at a level that supports the growth of control BALB/ 
MK-2 cells. 

At high concentrations, TGFa appeared to be a more potent 
mitogen than EGF for BALB/MK-2 cells. The reasons for these 
differences are unknown. TGFa is known to be more potent than 
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EGF in several biologic systems, including angiogenesis [33], 
wound healing [34]' induction of cell ruffling [35], and calcium 
mobilization from fetal rat long bones [36]. These results suggest 
that although TGFa and EGF both bind to the same receptor, there 
may be differences in action of the ligand-receptor complex in vivo. 

What insight may be gained by comparing our TGFa results 
with those obtained for other growth factors? It has been reported 
that the introduction into the FR3T3 cell line of a plasmid coding 
for the fully processed form ofEGF with an added immunoglobulin 
leader sequence induces focus formation [37]. Perhaps the synthesis 
of the mature 50-amino acid EGF with an immunoglobulin leader 
sequence allows for interaction of this peptide with the EGF recep
tor in the same cell in which it is synthesized, triggering autono
mous growth of that cell. Sequences present in the normal 
1168-amino acid precursor of EGF may ordinarily prevent rhis 
growth factor from interacting with its receptor as it traffics 
through the cell during its normal processing. In this regard it is 
interesting to note that basic fibroblast growth factor is unable to 
transform NIH/3T3 cells unless synthesized with a signal peptide 
[38,39]. Alternatively, amino acid sequence differences between the 
two mature growth factors may account for the ability ofEGF, but 
not TGFa, to transform FR3T3 cells. 

The autocrine model [11] postulates that constitutive release of a 
mitogenic growth factor by a cell that possesses receptors for it leads 
to cellular transformation. TGFa is a potent mitogen for fibroblasts 
[15] and keratinocytes (Fig 2). The inability of TGFa to trigger 
autocrine transformation of fibroblasts or keratinocytes suggests 
that this model may not be applicable if the growth factor is rapidly 
secreted and/or processed in a different compartment from its cellu
lar receptor and thus unable to mitogenically trigger the same cell in 
which it is synthesized. However, the expression of TGFa may 
confer a selective growth a4vantage to a tumor or preneoplastic 
lesion in vivo. To produce a tumor, neoplastic cells must counteract 
normal tissue conditions that restrict clonal expansion. In this re
gard, recent work has shown that expression ofTGFa by papilloma 
cells in vivo can stimulate tumor growth, particularly when tumor 
growth is suppressed by normal tissue [16J. 

Overexpression of EGF receptors has been observed in cells de
rived from squamous cell carcinomas [9 ,41,42], mammary cell carci
nomas [9,43,44], renal cell carcinomas [9], and gliomas [45]. TGFu 
is commonly coexpressed in these tumor types [9,46]. It has been 
reported that under conditions of 100 - 200 times overexpression of 
the EGF receptor by NIH/3T3 cells, TGFa coexpression was able 
to induce the transformed phenotype [46] . Expression of the EGF 
receptor above a critical threshold may be necessary for aurocrine 
stimulation by TGFa to deliver an effective mitogenic signal to the 
cell in which it was synthesized. Thus, dysregulation of expression 
ofTGFa and its receptor may contribute to the tumor phenotype in 
VIVO . 

We thank Timothy S. Bringman and Rik Deryllck for analyzillg samples with their 
TCFa ELISA, alld Stuart Aarollsoll Jar Iris valuable advice alld disClissiolls. 
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