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We establish a characterization of spheres in E
3 with respect to a

surface area property of regions with the aid of a new meaning of

Gaussian curvature. Furthermore, with respect to a volume property

of regions, we characterize elliptic paraboloids in arbitrary dimen-

sional Euclidean spaces.

Crown Copyright © 2012 Published by Elsevier Inc. All rights
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1. Introduction

Consider a sphere S2(a) of radius a in the Euclidean space E
3. Then by an elementary calculus, it is

easy to show that for any two parallel planes with distance h both of which intersect S2(a), the surface
area of the region of S2(a) between the planes is 2πah.

In fact, Archimedes proved the above area property of S2(a) [8, p. 78]. For a differential geometric

proof, see Archimedes’ Theorem [6, pp. 116–118].
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Conversely, it is natural to ask the following question:

Question 1. Are there any other surfaces which satisfy the above area property?

In Section 2, we prove the following:

Theorem 2. Let M be a closed and convex surface in the 3-dimensional Euclidean space E
3. If M satisfies

the condition:

(C) for any two parallel planes with distance h both of which intersect M, the surface area of the region of

M between the planes is a nonnegative function φ(h), which depends only on h.

Then M is an Euclidean sphere.

To establish Theorem 2, first of all, using co-area formula, we prove a lemma (Lemma 6) about a

new meaning of Gaussian curvature of M at a point p ∈ M.

A paraboloid of rotation in the 3-dimensional Euclidean space E
3 has an interesting volume prop-

erty which is originally due to Archimedes. Consider a region of a paraboloid of rotation cut off by

a plane not necessarily perpendicular to its axis. Let p be the point of contact of the tangent plane

parallel to the base. The line through p, parallel to the axis of the paraboloid meets the base at a point

v. Archimedes shows that the volume of the section is 3/2 times the volume of the conewith the same

base and vertex p [8, Chapter 7 and Appendix A].

In fact, in a long series of propositions, Archimedes proves the following [8, p. 66 and Appendices

A and B].

Proposition 3. The volume of such a region of a paraboloid of rotation in the 3-dimensional Euclidean

space E
3 is proportional to ‖p − v‖2, where the ratio depends only on the paraboloid.

This proposition implies directly Archimedes’ results (See Remark 8).

Conversely, it is natural to ask the following question:

Question 4. Which surfaces satisfy the above volume property?

In Section 3, we prove the following:

Theorem 5. Let M be a smooth convex hypersurface in the (n + 1)-dimensional Euclidean space E
n+1.

Then M is an elliptic paraboloid if and only if there exists a line L for which M satisfies the condition:

(L) for any point p onM and any hyperplane section of M parallel to the tangent plane ofM at p, let v denote

the point where the line through p parallel to L meets the hyperplane. Then the volume of the region of M

between these two parallel hyperplanes is a times ‖p− v‖(n+2)/2 for some constant a which depends only

on the hypersurface M.

To complete the proof of Theorem 5, first of all, we get a formula for the Gauss–Kronecker curvature

of M at a point p ∈ M (Lemma 7).

Throughout this article, all objects are smooth and connected, otherwise mentioned.

2. Spheres

Suppose that M is a closed and convex surface in the 3-dimensional Euclidean space E
3. Then the

Gaussian curvature K is non-negative. For a fixed point p ∈ M and for a sufficiently small h > 0,

consider a plane � parallel to the tangent plane � of M at p with distance h which intersects M. We

denote by Mp(h) the surface area between the two planes � and � .

We introduce a coordinate system (x, y, z) of E
3 with the origin p, the tangent plane of M at p is

z = 0, and M = graph(f) for a non-negative convex function f : R
2 → R. Then we have
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Mp(h) =
∫∫

f (X)<h

√
1 + |∇f |2dX, (2.1)

where X = (x, y), dX = dxdy and ∇f denote the gradient vector of f .

First of all, we prove

Lemma 6. If the Gaussian curvature K(p) of M at p is positive, then we have

M′
p(0) = 2π√

K(p)
.

Proof. Consider the Taylor expansion of f (X) as follows:

f (X) = XtAX + f3(X), (2.2)

where A is a symmetric 2 × 2 matrix and f3(X) is an O(|X|3) function. Then the Hessian matrix of f at

the origin is given by

D2f (0) = 2A.

Hence we see that

K(p) = det D2f (0) = 4 det A. (2.3)

Since K(p) > 0 and f is non-negative, we see that thematrix A is positive definite. Thus there exists

a non-singular matrix B satisfying

A = BtB, (2.4)

where Bt denotes the transpose of B. Therefore we obtain

f (X) = |BX|2 + f3(X). (2.5)

In order to computeM′
p(0), we use the decomposition ofMp(h) as follows:

Mp(h) = Q(h) + N(h),

Q(h) =
∫∫

f (X)<h
1dX,

N(h) =
∫∫

f (X)<h
(
√
1 + |∇f |2 − 1)dX.

(2.6)

Then we have

N(h) ≤
∫∫

f (X)<h
|∇f |dX.

Hence, by the co-area formula [2, p. 86] we get

N(h)

h
≤ 1

h

∫ h

t=0

(∫
f−1(t)

1dst

)
dt, (2.7)
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where dst denotes the line element of the curve f−1(t), which shows that the integrand is nothing but

the length L(t) of f−1(t). By the fundamental theorem of calculus, we see that

N′(0) = lim
h→0

N(h)

h

= L(0)

= 0.

(2.8)

Now we let h = ε2 and X = εY , then (2.6) gives

Q(h)

h
= 1

h

∫∫
f (X)<h

1dX

=
∫∫

|BY |2+εg3(Y)<1
1dY,

(2.9)

where g3(Y) is an O(|Y |3) function. As ε → 0, it follows from (2.9) that

Q ′(0) =
∫∫

|BY |2<1
1dY . (2.10)

If we let W = BY , then from (2.10) we get

Q ′(0) = 1

det B

∫∫
|W|<1

1dW = π

det B
. (2.11)

Hence it follows from (2.3) and (2.4) that

Q ′(0) = 2π√
K(p)

. (2.12)

Thus together with (2.8) and (2.12), (2.6) completes the proof of Lemma 6.

Nowwe give a proof of Theorem 2. SinceM is closed, there exists a point pwhere K(p) > 0. Hence

we see that U = {p ∈ M|K(p) > 0} is nonempty. Together with Condition (C), Lemma 6 implies that

at every point p ∈ U, we have K(p) = 4π2/φ′(0)2, which is independent of p ∈ M. Thus, continuity

of K shows that U = M, and hence we have K = 4π2/φ′(0)2 on M. This completes the proof of

Theorem 2. �

3. Elliptic paraboloids

Suppose thatM is a smooth convex hypersurface in the (n+1)-dimensional Euclidean spaceE
n+1.

For a fixed point p ∈ M and for a sufficiently small t > 0, consider a hyperplane � parallel to the

tangent hyperplane � of M at pwith distance t which intersects M.

We denote by Sp(t) (respectively, Rp(t)) the volume of the region bounded by the hypersurface and

the hyperplane � (respectively, of the cylinder with base � ∩ M and height t). Then Rp(t) is (n + 1)
times the volume of the cone with the same base and the vertex p.

Now we may introduce a coordinate system (x, z) = (x1, x2, . . . , xn, z) of E
n+1 with the origin

p, the tangent plane of M at p is z = 0. Furthermore, we may assume that M is locally the graph of a

non-negative convex function f : R
n → R. Then we have

Rp(t) = t

∫
f (x)<t

1dx,

Sp(t) =
∫
f (x)<t

{t − f (x)}dx,
(3.1)
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where dx = dx1dx2 · · · dxn.
Note that we also have

Sp(t) =
∫
f (x)<t

{t − f (x)}dx

=
∫ t

z=0
{
∫
f (x)<z

1dx}dz.
(3.2)

Hence together with the fundamental theorem of calculus, (3.2) shows that

tS′
p(t) = t

∫
f (x)<t

1dx = Rp(t). (3.3)

First of all, we prove the following.

Lemma 7. If the Gauss–Kronecker curvature K(p) of M at p is positive, then we have

lim
t→0

1

t(n+2)/2
Rp(t) = 2n/2ωn√

K(p)
, (3.4)

where ωn denotes the volume of the n-dimensional unit ball.

Proof. Consider the Taylor expansion of f (x) as follows:

f (x) = xtAx + f3(x), (3.5)

where x denotes the column vector (x1, x2, . . . , xn)
t , A is a symmetric n × n matrix, and f3(x) is an

O(|x|3) function.
Then the Hessian matrix of f at the origin is given by

D2f (0) = 2A.

Hence we see that

K(p) = det D2f (0) = 2n det A. (3.6)

Since K(p) > 0 and f is non-negative, we see that thematrix A is positive definite. Thus there exists

a nonsingular matrix B satisfying

A = BtB, (3.7)

where Bt denotes the transpose of B. Therefore we obtain

f (x) = |Bx|2 + f3(x). (3.8)

Now we let t = ε2 and x = εy. Then (3.3) gives

1

t(n+2)/2
Rp(t) = 1

tn/2

∫∫
f (x)<t

1dx =
∫
|By|2+εg3(y)<1

1dy, (3.9)

where g3(y) is an O(|y|3) function. As ε → 0, it follows from (3.9) that

lim
t→0

1

t(n+2)/2
Rp(t) =

∫
|By|2<1

1dy. (3.10)
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If we let w = By, then from (3.10) we get

lim
t→0

1

t(n+2)/2
Rp(t) = 1

| det B|
∫∫

|w|<1
1dw = ωn

| det B| , (3.11)

whereωn denotes the volume of the n-dimensional unit ball. Hence it follows from (3.6) and (3.7) that

lim
t→0

1

t(n+2)/2
Rp(t) = 2n/2ωn√

K(p)
. (3.12)

This completes the proof of Lemma 7.

Now we give a proof of the if part of Theorem 5. We may assume that the line L is the z-axis and

the convex hypersurface M is given locally by z = f (x) for some convex function f : R
n → R. For a

fixed point p = (x, f (x)) in M with positive Gauss–Kronecker curvature K(p) and t > 0, consider the

region ofM cut off by the hyperplane parallel to the tangent hyperplane toM at pwith distance t > 0.

Then the hypothesis shows that Sp(t) = a‖p − v‖(n+2)/2 for all t ∈ R, where a is a constant.

If we let

N = 1

W
(−fx1 , −fx2 , . . . , −fxn , 1), (3.13)

whereW = {1 + f 2x1 + f 2x2 + · · · + f 2xn}1/2, then N is an upward unit normal vector. Let θ be the angle

between N and
−→
pv , then we have cos θ = 1/W .

Hence we get ‖p − v‖ = tW , which shows that

Sp(t) = aW(n+2)/2t(n+2)/2. (3.14)

Thus (3.3) yields

Rp(t) = n + 2

2
aW(n+2)/2t(n+2)/2. (3.15)

Therefore, Lemma 7 shows that

K(p) = 2n+2ω2
n

(n + 2)2a2

1

Wn+2
. (3.16)

Since the Gauss–Kronecker curvature K(p) of M at p is given by [9, p. 93]

K(p) = det D2f (x)

Wn+2
, (3.17)

it follows from (3.16) that the determinant det D2f (x) of the Hessian of f (x) is a positive constant.

The continuity of det D2f (x) shows that it is a positive constant on the whole space R
n. Thus f (x) is a

globally defined quadratic polynomial [3,5]. This completes the proof of the if part of Theorem 5.

Finally, consider an elliptic paraboloid M : z = 	n
i=1a

2
i x

2
i , ai > 0, a hyperplane 	 intersecting M,

a point p ∈ M where the tangent plane of M is parallel to 	, and a point v where the line through p

parallel to the z-axis meets 	. Then the linear mapping

T1(x1, x2, . . . , xn, z) = (a1x1, a2x2, . . . , anxn, z) (3.18)

transforms M onto a paraboloid of revolution M′ : z = x21 + x22 + · · · + x2n, 	 to a hyperplane 	′,
p ∈ M to a point of tangency p′ ∈ M′, and v to a point v′ where the line through p′ parallel to the z-axis

meets 	′ (cf. [8, Appendix A]).
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Let’s consider the affine mapping defined by

x′
1 = tx1 + h1, . . . , x

′
n = txn + hn,

z′ = 2th1x1 + · · · + 2thnxn + t2z + h21 + · · · + h2n.
(3.19)

Then for any constants, t, h1, . . . , hn,where t is not 0, the affinemapping takes the paraboloidM′ into
itself.

Suppose that the equation of 	′ is given by

z′ = p1x
′
1 + p2x

′
2 + · · · + pnx

′
n + d. (3.20)

Then we denote by T2 the affine mapping defined by (3.19) with

h1 = p1/2, . . . , hn = pn/2, t =
√

(p21 + · · · + p2n + 2d)/2. (3.21)

The inverse mapping T
−1
2 of T2 takes 	′ into 	′′ : z′ = 1, p′ to p′′ = 0, the origin, and v′ to

v′′ = (0, 0, . . . , 0, 1).

It follows from (3.18) and (3.19) that T1 (resp., T
−1
2 ) magnifies volumes by the factor a1a2 · · · an

(resp., t−(n+2)) and segments parallel to the z-axis by the factor 1 (resp., t−2). Hence, if we denote by

VS(M) the volume of the region of M cut off by 	 and so on, we obtain

VS(M)

‖p − v‖(n+2)/2
= VS(M′)

a1a2 · · · an‖p′ − v′‖(n+2)/2

= tn+2VS(M′′)
a1a2 · · · an(t2‖p′′ − v′′‖)(n+2)/2

= VS(M′′)
a1a2 · · · an

= 2σn−1

n(n + 2)a1a2 · · · an ,

(3.22)

where σn−1 denotes the surface area of the (n−1)-dimensional unit sphere. This completes the proof

of the only if part of Theorem 5. �

Remark 8. Consider a region of an elliptic paraboloidM cut off by a hyperplane	. Thenwith the same

notations as above, (3.22) shows that VS(M) = c‖p − v‖(n+2)/2. Since ‖p − v‖ = tW , it follows from

(3.3) that Rp(t) = n+2
2

VS(M). Therefore the volume VC(M) of the cone with the vertex p becomes
n+2

2(n+1)
VS(M). For n = 2, this gives Archimedes’ results.
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