Some characterizations of spheres and elliptic paraboloids

Dong-Soo Kima,1, Young Ho Kimb,*,2

a Department of Mathematics, Chonnam National University, Kwangju 500-757, Republic of Korea
b Department of Mathematics, Kyungpook National University, Taegu 702-701, Republic of Korea

\textbf{ARTICLE INFO}

\textbf{Article history:}
Received 28 June 2011
Accepted 3 February 2012
Available online 6 March 2012
Submitted by R.A. Brualdi

\textbf{AMS classification:}
53A05
53A07

\textbf{Keywords:}
Gaussian curvature
Surface area
Co-area formula
Sphere
Paraboloid
Hessian
Gauss–Kronecker curvature

\textbf{ABSTRACT}

We establish a characterization of spheres in \mathbb{E}^3 with respect to a surface area property of regions with the aid of a new meaning of Gaussian curvature. Furthermore, with respect to a volume property of regions, we characterize elliptic paraboloids in arbitrary dimensional Euclidean spaces.

Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

\textbf{1. Introduction}

Consider a sphere $S^2(a)$ of radius a in the Euclidean space \mathbb{E}^3. Then by an elementary calculus, it is easy to show that for any two parallel planes with distance h both of which intersect $S^2(a)$, the surface area of the region of $S^2(a)$ between the planes is $2\pi ah$.

In fact, Archimedes proved the above area property of $S^2(a)$ [8, p. 78]. For a differential geometric proof, see Archimedes’ Theorem [6, pp. 116–118].
Conversely, it is natural to ask the following question:

Question 1. Are there any other surfaces which satisfy the above area property?

In Section 2, we prove the following:

Theorem 2. Let M be a closed and convex surface in the 3-dimensional Euclidean space E^3. If M satisfies the condition:

(C) for any two parallel planes with distance h both of which intersect M, the surface area of the region of M between the planes is a nonnegative function $\phi(h)$, which depends only on h.

Then M is an Euclidean sphere.

To establish Theorem 2, first of all, using co-area formula, we prove a lemma (Lemma 6) about a new meaning of Gaussian curvature of M at a point $p \in M$.

A paraboloid of rotation in the 3-dimensional Euclidean space E^3 has an interesting volume property which is originally due to Archimedes. Consider a region of a paraboloid of rotation cut off by a plane not necessarily perpendicular to its axis. Let p be the point of contact of the tangent plane parallel to the base. The line through p, parallel to the axis of the paraboloid meets the base at a point v. Archimedes shows that the volume of the section is $3/2$ times the volume of the cone with the same base and vertex p [8, Chapter 7 and Appendix A].

In fact, in a long series of propositions, Archimedes proves the following [8, p. 66 and Appendices A and B].

Proposition 3. The volume of such a region of a paraboloid of rotation in the 3-dimensional Euclidean space E^3 is proportional to $\|p - v\|^2$, where the ratio depends only on the paraboloid.

This proposition implies directly Archimedes’ results (See Remark 8).

Conversely, it is natural to ask the following question:

Question 4. Which surfaces satisfy the above volume property?

In Section 3, we prove the following:

Theorem 5. Let M be a smooth convex hypersurface in the $(n + 1)$-dimensional Euclidean space E^{n+1}. Then M is an elliptic paraboloid if and only if there exists a line L for which M satisfies the condition:

(L) for any point p on M and any hyperplane section of M parallel to the tangent plane of M at p, let v denote the point where the line through p parallel to L meets the hyperplane. Then the volume of the region of M between these two parallel hyperplanes is a times $\|p - v\|^{(n+2)/2}$ for some constant a which depends only on the hypersurface M.

To complete the proof of Theorem 5, first of all, we get a formula for the Gauss–Kronecker curvature of M at a point $p \in M$ (Lemma 7).

Throughout this article, all objects are smooth and connected, otherwise mentioned.

2. Spheres

Suppose that M is a closed and convex surface in the 3-dimensional Euclidean space E^3. Then the Gaussian curvature K is non-negative. For a fixed point $p \in M$ and for a sufficiently small $h > 0$, consider a plane Φ parallel to the tangent plane Ψ of M at p with distance h which intersects M. We denote by $M_p(h)$ the surface area between the two planes Φ and Ψ.

We introduce a coordinate system (x, y, z) of E^3 with the origin p, the tangent plane of M at p is $z = 0$, and $M = \text{graph}(f)$ for a non-negative convex function $f : \mathbb{R}^2 \to \mathbb{R}$. Then we have
\[M_p(h) = \int \int \mathcal{X} < h \sqrt{1 + |\nabla f|^2} dX, \] (2.1)

where \(\mathcal{X} = (x, y) \), \(dX = dxdy \) and \(\nabla f \) denote the gradient vector of \(f \).

First of all, we prove

Lemma 6. If the Gaussian curvature \(K(p) \) of \(M \) at \(p \) is positive, then we have

\[M_p'(0) = \frac{2\pi}{\sqrt{K(p)}}. \]

Proof. Consider the Taylor expansion of \(f(X) \) as follows:

\[f(X) = \mathcal{X}^t A \mathcal{X} + f_3(X), \] (2.2)

where \(A \) is a symmetric \(2 \times 2 \) matrix and \(f_3(X) \) is an \(O(|X|^3) \) function. Then the Hessian matrix of \(f \) at the origin is given by

\[D^2 f(0) = 2A. \]

Hence we see that

\[K(p) = \det D^2 f(0) = 4 \det A. \] (2.3)

Since \(K(p) > 0 \) and \(f \) is non-negative, we see that the matrix \(A \) is positive definite. Thus there exists a non-singular matrix \(B \) satisfying

\[A = B^t B, \] (2.4)

where \(B^t \) denotes the transpose of \(B \). Therefore we obtain

\[f(X) = |BX|^2 + f_3(X). \] (2.5)

In order to compute \(M_p'(0) \), we use the decomposition of \(M_p(h) \) as follows:

\[M_p(h) = Q(h) + N(h), \]

\[Q(h) = \int \int_{f(X) < h} 1 dX, \]

\[N(h) = \int \int_{f(X) < h} (\sqrt{1 + |\nabla f|^2} - 1) dX. \] (2.6)

Then we have

\[N(h) \leq \int \int_{f(X) < h} |\nabla f| dX. \]

Hence, by the co-area formula [2, p. 86] we get

\[\frac{N(h)}{h} \leq \frac{1}{h} \int_{t=0}^{h} \left(\int_{f^{-1}(t)} |\nabla f| \right) dt. \] (2.7)
where ds_t denotes the line element of the curve $f^{-1}(t)$, which shows that the integrand is nothing but the length $L(t)$ of $f^{-1}(t)$. By the fundamental theorem of calculus, we see that

$$N'(0) = \lim_{h \to 0} \frac{N(h)}{h} = L(0) = 0. \tag{2.8}$$

Now we let $h = \epsilon^2$ and $X = \epsilon Y$, then (2.6) gives

$$Q(h) = \frac{1}{h} \int \int_{f(X) < h} 1\,dX = \int \int_{|BY|^2 + \epsilon g_3(Y) < 1} 1\,dY, \tag{2.9}$$

where $g_3(Y)$ is an $O(|Y|^3)$ function. As $\epsilon \to 0$, it follows from (2.9) that

$$Q'(0) = \int \int_{|BY|^2 < 1} 1\,dY. \tag{2.10}$$

If we let $W = BY$, then from (2.10) we get

$$Q'(0) = \frac{1}{\det B} \int \int_{|W| < 1} 1\,dW = \frac{\pi}{\det B}. \tag{2.11}$$

Hence it follows from (2.3) and (2.4) that

$$Q'(0) = \frac{2\pi}{\sqrt{K(p)}}. \tag{2.12}$$

Thus together with (2.8) and (2.12), (2.6) completes the proof of Lemma 6.

Now we give a proof of Theorem 2. Since M is closed, there exists a point p where $K(p) > 0$. Hence we see that $U = \{ p \in M|K(p) > 0 \}$ is nonempty. Together with Condition (C), Lemma 6 implies that at every point $p \in U$, we have $K(p) = 4\pi^2/\phi'(0)^2$, which is independent of $p \in M$. Thus, continuity of K shows that $U = M$, and hence we have $K = 4\pi^2/\phi'(0)^2$ on M. This completes the proof of Theorem 2. \square

3. Elliptic paraboloids

Suppose that M is a smooth convex hypersurface in the $(n + 1)$-dimensional Euclidean space \mathbb{R}^{n+1}. For a fixed point $p \in M$ and for a sufficiently small $t > 0$, consider a hyperplane Φ parallel to the tangent hyperplane Ψ of M at p with distance t which intersects M.

We denote by $S_p(t)$ (respectively, $R_p(t)$) the volume of the region bounded by the hypersurface and the hyperplane Φ (respectively, of the cylinder with base $\Phi \cap M$ and height t). Then $R_p(t)$ is $(n + 1)$ times the volume of the cone with the same base and the vertex p.

Now we may introduce a coordinate system $(x, z) = (x_1, x_2, \ldots, x_n, z)$ of \mathbb{R}^{n+1} with the origin p, the tangent plane of M at p is $z = 0$. Furthermore, we may assume that M is locally the graph of a non-negative convex function $f: \mathbb{R}^n \to \mathbb{R}$. Then we have

$$R_p(t) = t \int_{f(x) < t} 1\,dx, \tag{3.1}$$

$$S_p(t) = \int_{f(x) < t} \{t - f(x)\}dx.$$
where \(dx = dx_1 dx_2 \cdots dx_n \).

Note that we also have

\[
S_p(t) = \int_{f(x) < t} \{t - f(x)\} dx = \int_{z=0}^{t} \{ \int_{f(x) < z} dx \} dz.
\]

Hence together with the fundamental theorem of calculus, (3.2) shows that

\[
tS'_p(t) = t \int_{f(x) < t} 1dx = R_p(t).
\]

First of all, we prove the following.

Lemma 7. If the Gauss–Kronecker curvature \(K(p) \) of \(M \) at \(p \) is positive, then we have

\[
\lim_{t \to 0} \frac{1}{t^{(n+2)/2}} R_p(t) = \frac{2^{n/2} \omega_n}{\sqrt{K(p)}},
\]

where \(\omega_n \) denotes the volume of the \(n \)-dimensional unit ball.

Proof. Consider the Taylor expansion of \(f(x) \) as follows:

\[
f(x) = x^t Ax + f_3(x),
\]

where \(x \) denotes the column vector \((x_1, x_2, \ldots, x_n)^t\), \(A \) is a symmetric \(n \times n \) matrix, and \(f_3(x) \) is an \(O(|x|^3) \) function.

Then the Hessian matrix of \(f \) at the origin is given by

\[
D^2 f(0) = 2A.
\]

Hence we see that

\[
K(p) = \det D^2 f(0) = 2^n \det A.
\]

Since \(K(p) > 0 \) and \(f \) is non-negative, we see that the matrix \(A \) is positive definite. Thus there exists a nonsingular matrix \(B \) satisfying

\[
A = B^t B,
\]

where \(B^t \) denotes the transpose of \(B \). Therefore we obtain

\[
f(x) = |Bx|^2 + f_3(x).
\]

Now we let \(t = \epsilon^2 \) and \(x = \epsilon y \). Then (3.3) gives

\[
\frac{1}{t^{(n+2)/2}} R_p(t) = \frac{1}{t^{n/2}} \int_{f(x) < t} 1dx = \int_{|By|^2 + \epsilon g_3(y) < 1} 1dy,
\]

where \(g_3(y) \) is an \(O(|y|^3) \) function. As \(\epsilon \to 0 \), it follows from (3.9) that

\[
\lim_{t \to 0} \frac{1}{t^{(n+2)/2}} R_p(t) = \int_{|By|^2 < 1} 1dy.
\]
If we let \(w = By \), then from (3.10) we get
\[
\lim_{t \to 0} \frac{1}{t^{(n+2)/2}} R_p(t) = \frac{1}{|\det B|} \int_{|w| < 1} \frac{\omega_n}{|\det B|},
\]
(3.11)
where \(\omega_n \) denotes the volume of the \(n \)-dimensional unit ball. Hence it follows from (3.6) and (3.7) that
\[
\lim_{t \to 0} \frac{1}{t^{(n+2)/2}} R_p(t) = \frac{2^{n/2} \omega_n}{\sqrt{K(p)}}.
\]
(3.12)
This completes the proof of Lemma 7.

Now we give a proof of the if part of Theorem 5. We may assume that the line \(L \) is the \(z \)-axis and the convex hypersurface \(M \) is given locally by \(z = f(x) \) for some convex function \(f : \mathbb{R}^n \to \mathbb{R} \). For a fixed point \(p = (x, f(x)) \) in \(M \) with positive Gauss–Kronecker curvature \(K(p) \) and \(t > 0 \), consider the region of \(M \) cut off by the hyperplane parallel to the tangent hyperplane to \(M \) at \(p \) with distance \(t > 0 \). Then the hypothesis shows that \(S_p(t) = a\|p - v\|(n+2)/2 \) for all \(t \in \mathbb{R} \), where \(a \) is a constant.

If we let
\[
N = \frac{1}{W} (-f_{x_1}, -f_{x_2}, \ldots, -f_{x_n}, 1),
\]
(3.13)
where \(W = \{1 + f_{x_1}^2 + f_{x_2}^2 + \cdots + f_{x_n}^2\}^{1/2} \), then \(N \) is an upward unit normal vector. Let \(\theta \) be the angle between \(N \) and \(\frac{\partial f}{\partial x} \), then we have \(\cos \theta = 1/W \).

Hence we get \(\|p - v\| = tW \), which shows that
\[
S_p(t) = aW^{(n+2)/2}t^{(n+2)/2}.
\]
(3.14)
Thus (3.3) yields
\[
R_p(t) = \frac{n + 2}{2} a W^{(n+2)/2} t^{(n+2)/2}.
\]
(3.15)
Therefore, Lemma 7 shows that
\[
K(p) = \frac{2^{n+2} \omega_n^2}{(n + 2)^2 a^2 W^{n+2}}.
\]
(3.16)
Since the Gauss–Kronecker curvature \(K(p) \) of \(M \) at \(p \) is given by [9, p. 93]
\[
K(p) = \frac{\det D^2f(x)}{W^{n+2}},
\]
(3.17)
it follows from (3.16) that the determinant \(\det D^2f(x) \) of the Hessian of \(f(x) \) is a positive constant. The continuity of \(\det D^2f(x) \) shows that it is a positive constant on the whole space \(\mathbb{R}^n \). Thus \(f(x) \) is a globally defined quadratic polynomial [3, 5]. This completes the proof of the if part of Theorem 5.

Finally, consider an elliptic paraboloid \(M : z = \Sigma_{i=1}^n a_i^2 x_i^2, a_i > 0 \), a hyperplane \(\Sigma \) intersecting \(M \), a point \(p \in M \) where the tangent plane of \(M \) is parallel to \(\Sigma \), and a point \(v \) where the line through \(p \) parallel to the \(z \)-axis meets \(\Sigma \). Then the linear mapping
\[
T_1(x_1, x_2, \ldots, x_n, z) = (a_1x_1, a_2x_2, \ldots, a_nx_n, z)
\]
(3.18)
transforms \(M \) onto a paraboloid of revolution \(M' : z = x_1^2 + x_2^2 + \cdots + x_n^2, \Sigma \) to a hyperplane \(\Sigma' \), \(p \in M \) to a point of tangency \(p' \in M' \), and \(v \) to a point \(v' \) where the line through \(p' \) parallel to the \(z \)-axis meets \(\Sigma' \) (cf. [8, Appendix A]).
Let’s consider the affine mapping defined by

\[x'_1 = tx_1 + h_1, \ldots, x'_n = tx_n + h_n, \]
\[z' = 2th_1x_1 + \cdots + 2th_nx_n + t^2z + h_1^2 + \cdots + h_n^2. \] (3.19)

Then for any constants, \(t, h_1, \ldots, h_n \), where \(t \) is not 0, the affine mapping takes the paraboloid \(M' \) into itself.

Suppose that the equation of \(\Sigma' \) is given by

\[z'' = p_1x'_1 + p_2x'_2 + \cdots + p_nx'_n + d. \] (3.20)

Then we denote by \(T_2 \) the affine mapping defined by (3.19) with

\[h_1 = p_1/2, \ldots, h_n = p_n/2, t = \sqrt{(p_1^2 + \cdots + p_n^2 + 2d)/2}. \] (3.21)

The inverse mapping \(T_2^{-1} \) of \(T_2 \) takes \(\Sigma' \) into \(\Sigma'' : z'' = 1, p' to p'' = 0, \) the origin, and \(v' \) to \(v'' = (0, 0, \ldots, 0, 1) \).

It follows from (3.18) and (3.19) that \(T_1 \) (resp., \(T_2^{-1} \)) magnifies volumes by the factor \(a_1a_2\cdots a_n \) (resp., \(t^{-(n+2)} \)) and segments parallel to the \(z \)-axis by the factor 1 (resp., \(t^{-2} \)). Hence, if we denote by \(VS(M) \) the volume of the region of \(M \) cut off by \(\Sigma \) and so on, we obtain

\[
\frac{VS(M)}{\|p - v\|^{(n+2)/2}} = \frac{VS(M')}{\|p' - v'\|^{(n+2)/2}} = \frac{a_1a_2\cdots a_n\|p' - v'\|^{(n+2)/2}}{t^{n+2}VS(M')} = \frac{2\sigma_{n-1}}{n(n + 2)a_1a_2\cdots a_n},
\] (3.22)

where \(\sigma_{n-1} \) denotes the surface area of the \((n - 1)\)-dimensional unit sphere. This completes the proof of the only if part of Theorem 5. \(\square \)

Remark 8. Consider a region of an elliptic paraboloid \(M \) cut off by a hyperplane \(\Sigma \). Then with the same notations as above, (3.22) shows that \(VS(M) = c\|p - v\|^{(n+2)/2} \). Since \(\|p - v\| = tW \), it follows from (3.3) that \(R_p(t) = \frac{n+2}{2(n+1)}VS(M) \). Therefore the volume \(VC(M) \) of the cone with the vertex \(p \) becomes \(\frac{n+2}{2(n+1)}VS(M) \). For \(n = 2 \), this gives Archimedes’ results.

Acknowledgments

The authors would like to express their deep thanks to late Professor Jeong-Seon Baek for valuable advice that improved this article and Professor Minkyu Kwak for giving us some information [3,5]. They also appreciate the referee for giving helpful suggestions to improve Theorem 2 and providing information [1,7] with some comments for the further study.

References

