Some characterizations of spheres and elliptic paraboloids

Dong-Soo Kim ${ }^{\text {a, }}$, Young Ho Kim ${ }^{\text {b,*,2 }}$
${ }^{a}$ Department of Mathematics, Chonnam National University, Kwangju 500-757, Republic of Korea
b Department of Mathematics, Kyungpook National University, Taegu 702-701, Republic of Korea

ARTICLEINFO

Article history:

Received 28 June 2011
Accepted 3 February 2012
Available online 6 March 2012
Submitted by R.A. Brualdi

AMS classification:

53A05
53A07
Keywords:
Gaussian curvature
Surface area
Co-area formula
Sphere
Paraboloid
Hessian
Gauss-Kronecker curvature

Abstract

We establish a characterization of spheres in \mathbb{E}^{3} with respect to a surface area property of regions with the aid of a new meaning of Gaussian curvature. Furthermore, with respect to a volume property of regions, we characterize elliptic paraboloids in arbitrary dimensional Euclidean spaces.

Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

1. Introduction

Consider a sphere $S^{2}(a)$ of radius a in the Euclidean space \mathbb{E}^{3}. Then by an elementary calculus, it is easy to show that for any two parallel planes with distance h both of which intersect $S^{2}(a)$, the surface area of the region of $S^{2}(a)$ between the planes is $2 \pi a h$.

In fact, Archimedes proved the above area property of $S^{2}(a)$ [8, p. 78]. For a differential geometric proof, see Archimedes' Theorem [6, pp. 116-118].

[^0]Conversely, it is natural to ask the following question:
Question 1. Are there any other surfaces which satisfy the above area property?
In Section 2, we prove the following:
Theorem 2. Let M be a closed and convex surface in the 3 -dimensional Euclidean space \mathbb{E}^{3}. If M satisfies the condition:
(C) for any two parallel planes with distance h both of which intersect M, the surface area of the region of M between the planes is a nonnegative function $\phi(h)$, which depends only on h.

Then M is an Euclidean sphere.
To establish Theorem 2, first of all, using co-area formula, we prove a lemma (Lemma 6) about a new meaning of Gaussian curvature of M at a point $p \in M$.

A paraboloid of rotation in the 3-dimensional Euclidean space \mathbb{E}^{3} has an interesting volume property which is originally due to Archimedes. Consider a region of a paraboloid of rotation cut off by a plane not necessarily perpendicular to its axis. Let p be the point of contact of the tangent plane parallel to the base. The line through p, parallel to the axis of the paraboloid meets the base at a point v. Archimedes shows that the volume of the section is $3 / 2$ times the volume of the cone with the same base and vertex $p[8$, Chapter 7 and Appendix A].

In fact, in a long series of propositions, Archimedes proves the following [8, p. 66 and Appendices A and $B]$.

Proposition 3. The volume of such a region of a paraboloid of rotation in the 3-dimensional Euclidean space \mathbb{E}^{3} is proportional to $\|p-v\|^{2}$, where the ratio depends only on the paraboloid.

This proposition implies directly Archimedes' results (See Remark 8).
Conversely, it is natural to ask the following question:
Question 4. Which surfaces satisfy the above volume property?
In Section 3, we prove the following:
Theorem 5. Let M be a smooth convex hypersurface in the $(n+1)$-dimensional Euclidean space \mathbb{E}^{n+1}. Then M is an elliptic paraboloid if and only if there exists a line L for which M satisfies the condition:
(L) for any point p on M and any hyperplane section of M parallel to the tangent plane of M at p, let v denote the point where the line through p parallel to L meets the hyperplane. Then the volume of the region of M between these two parallel hyperplanes is a times $\|p-v\|^{(n+2) / 2}$ for some constant a which depends only on the hypersurface M.

To complete the proof of Theorem 5, first of all, we get a formula for the Gauss-Kronecker curvature of M at a point $p \in M$ (Lemma 7).

Throughout this article, all objects are smooth and connected, otherwise mentioned.

2. Spheres

Suppose that M is a closed and convex surface in the 3-dimensional Euclidean space \mathbb{E}^{3}. Then the Gaussian curvature K is non-negative. For a fixed point $p \in M$ and for a sufficiently small $h>0$, consider a plane Φ parallel to the tangent plane Ψ of M at p with distance h which intersects M. We denote by $M_{p}(h)$ the surface area between the two planes Φ and Ψ.

We introduce a coordinate system (x, y, z) of \mathbb{E}^{3} with the origin p, the tangent plane of M at p is $z=0$, and $M=\operatorname{graph}(\mathrm{f})$ for a non-negative convex function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Then we have

$$
\begin{equation*}
M_{p}(h)=\iint_{f(X)<h} \sqrt{1+|\nabla f|^{2}} d X, \tag{2.1}
\end{equation*}
$$

where $X=(x, y), d X=d x d y$ and ∇f denote the gradient vector of f.
First of all, we prove
Lemma 6. If the Gaussian curvature $K(p)$ of M at p is positive, then we have

$$
M_{p}^{\prime}(0)=\frac{2 \pi}{\sqrt{K(p)}}
$$

Proof. Consider the Taylor expansion of $f(X)$ as follows:

$$
\begin{equation*}
f(X)=X^{t} A X+f_{3}(X), \tag{2.2}
\end{equation*}
$$

where A is a symmetric 2×2 matrix and $f_{3}(X)$ is an $O\left(|X|^{3}\right)$ function. Then the Hessian matrix of f at the origin is given by

$$
D^{2} f(0)=2 A .
$$

Hence we see that

$$
\begin{equation*}
K(p)=\operatorname{det} D^{2} f(0)=4 \operatorname{det} A . \tag{2.3}
\end{equation*}
$$

Since $K(p)>0$ and f is non-negative, we see that the matrix A is positive definite. Thus there exists a non-singular matrix B satisfying

$$
\begin{equation*}
A=B^{t} B, \tag{2.4}
\end{equation*}
$$

where B^{t} denotes the transpose of B. Therefore we obtain

$$
\begin{equation*}
f(X)=|B X|^{2}+f_{3}(X) . \tag{2.5}
\end{equation*}
$$

In order to compute $M_{p}^{\prime}(0)$, we use the decomposition of $M_{p}(h)$ as follows:

$$
\begin{align*}
& M_{p}(h)=Q(h)+N(h), \\
& Q(h)=\iint_{f(X)<h} 1 d X, \tag{2.6}\\
& N(h)=\iint_{f(X)<h}\left(\sqrt{1+|\nabla f|^{2}}-1\right) d X .
\end{align*}
$$

Then we have

$$
N(h) \leq \iint_{f(X)<h}|\nabla f| d X .
$$

Hence, by the co-area formula [2, p. 86] we get

$$
\begin{equation*}
\frac{N(h)}{h} \leq \frac{1}{h} \int_{t=0}^{h}\left(\int_{f^{-1}(t)} 1 d s_{t}\right) d t \tag{2.7}
\end{equation*}
$$

where $d s_{t}$ denotes the line element of the curve $f^{-1}(t)$, which shows that the integrand is nothing but the length $L(t)$ of $f^{-1}(t)$. By the fundamental theorem of calculus, we see that

$$
\begin{align*}
N^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{N(h)}{h} \\
& =L(0) \tag{2.8}\\
& =0 .
\end{align*}
$$

Now we let $h=\epsilon^{2}$ and $X=\epsilon Y$, then (2.6) gives

$$
\begin{align*}
\frac{Q(h)}{h} & =\frac{1}{h} \iint_{f(X)<h} 1 d X \tag{2.9}\\
& =\iint_{|B Y|^{2}+\epsilon g_{3}(Y)<1} 1 d Y,
\end{align*}
$$

where $g_{3}(Y)$ is an $O\left(|Y|^{3}\right)$ function. As $\epsilon \rightarrow 0$, it follows from (2.9) that

$$
\begin{equation*}
Q^{\prime}(0)=\iint_{|B Y|^{2}<1} 1 d Y . \tag{2.10}
\end{equation*}
$$

If we let $W=B Y$, then from (2.10) we get

$$
\begin{equation*}
Q^{\prime}(0)=\frac{1}{\operatorname{det} B} \iint_{|W|<1} 1 d W=\frac{\pi}{\operatorname{det} B} . \tag{2.11}
\end{equation*}
$$

Hence it follows from (2.3) and (2.4) that

$$
\begin{equation*}
Q^{\prime}(0)=\frac{2 \pi}{\sqrt{K(p)}} \tag{2.12}
\end{equation*}
$$

Thus together with (2.8) and (2.12), (2.6) completes the proof of Lemma 6.
Now we give a proof of Theorem 2. Since M is closed, there exists a point p where $K(p)>0$. Hence we see that $U=\{p \in M \mid K(p)>0\}$ is nonempty. Together with Condition (C), Lemma 6 implies that at every point $p \in U$, we have $K(p)=4 \pi^{2} / \phi^{\prime}(0)^{2}$, which is independent of $p \in M$. Thus, continuity of K shows that $U=M$, and hence we have $K=4 \pi^{2} / \phi^{\prime}(0)^{2}$ on M. This completes the proof of Theorem 2.

3. Elliptic paraboloids

Suppose that M is a smooth convex hypersurface in the $(n+1)$-dimensional Euclidean space \mathbb{E}^{n+1}. For a fixed point $p \in M$ and for a sufficiently small $t>0$, consider a hyperplane Φ parallel to the tangent hyperplane Ψ of M at p with distance t which intersects M.

We denote by $S_{p}(t)$ (respectively, $R_{p}(t)$) the volume of the region bounded by the hypersurface and the hyperplane Φ (respectively, of the cylinder with base $\Phi \cap M$ and height t). Then $R_{p}(t)$ is $(n+1)$ times the volume of the cone with the same base and the vertex p.

Now we may introduce a coordinate system $(x, z)=\left(x_{1}, x_{2}, \ldots, x_{n}, z\right)$ of \mathbb{E}^{n+1} with the origin p, the tangent plane of M at p is $z=0$. Furthermore, we may assume that M is locally the graph of a non-negative convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then we have

$$
\begin{align*}
R_{p}(t) & =t \int_{f(x)<t} 1 d x, \\
S_{p}(t) & =\int_{f(x)<t}\{t-f(x)\} d x, \tag{3.1}
\end{align*}
$$

where $d x=d x_{1} d x_{2} \cdots d x_{n}$.
Note that we also have

$$
\begin{align*}
S_{p}(t) & =\int_{f(x)<t}\{t-f(x)\} d x \\
& =\int_{z=0}^{t}\left\{\int_{f(x)<z} 1 d x\right\} d z . \tag{3.2}
\end{align*}
$$

Hence together with the fundamental theorem of calculus, (3.2) shows that

$$
\begin{equation*}
t S_{p}^{\prime}(t)=t \int_{f(x)<t} 1 d x=R_{p}(t) \tag{3.3}
\end{equation*}
$$

First of all, we prove the following.
Lemma 7. If the Gauss-Kronecker curvature $K(p)$ of M at p is positive, then we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{t^{(n+2) / 2}} R_{p}(t)=\frac{2^{n / 2} \omega_{n}}{\sqrt{K(p)}}, \tag{3.4}
\end{equation*}
$$

where ω_{n} denotes the volume of the n-dimensional unit ball.
Proof. Consider the Taylor expansion of $f(x)$ as follows:

$$
\begin{equation*}
f(x)=x^{t} A x+f_{3}(x), \tag{3.5}
\end{equation*}
$$

where x denotes the column vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}, A$ is a symmetric $n \times n$ matrix, and $f_{3}(x)$ is an $O\left(|x|^{3}\right)$ function.

Then the Hessian matrix of f at the origin is given by

$$
D^{2} f(0)=2 A .
$$

Hence we see that

$$
\begin{equation*}
K(p)=\operatorname{det} D^{2} f(0)=2^{n} \operatorname{det} A . \tag{3.6}
\end{equation*}
$$

Since $K(p)>0$ and f is non-negative, we see that the matrix A is positive definite. Thus there exists a nonsingular matrix B satisfying

$$
\begin{equation*}
A=B^{t} B \tag{3.7}
\end{equation*}
$$

where B^{t} denotes the transpose of B. Therefore we obtain

$$
\begin{equation*}
f(x)=|B x|^{2}+f_{3}(x) . \tag{3.8}
\end{equation*}
$$

Now we let $t=\epsilon^{2}$ and $x=\epsilon y$. Then (3.3) gives

$$
\begin{equation*}
\frac{1}{t^{(n+2) / 2}} R_{p}(t)=\frac{1}{t^{n / 2}} \iint_{f(x)<t} 1 d x=\int_{|B y|^{2}+\epsilon g_{3}(y)<1} 1 d y, \tag{3.9}
\end{equation*}
$$

where $g_{3}(y)$ is an $O\left(|y|^{3}\right)$ function. As $\epsilon \rightarrow 0$, it follows from (3.9) that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{t^{(n+2) / 2}} R_{p}(t)=\int_{|B y|^{2}<1} 1 d y \tag{3.10}
\end{equation*}
$$

If we let $w=B y$, then from (3.10) we get

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{t^{(n+2) / 2}} R_{p}(t)=\frac{1}{|\operatorname{det} B|} \iint_{|w|<1} 1 d w=\frac{\omega_{n}}{|\operatorname{det} B|}, \tag{3.11}
\end{equation*}
$$

where ω_{n} denotes the volume of the n-dimensional unit ball. Hence it follows from (3.6) and (3.7) that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{t^{(n+2) / 2}} R_{p}(t)=\frac{2^{n / 2} \omega_{n}}{\sqrt{K(p)}} \tag{3.12}
\end{equation*}
$$

This completes the proof of Lemma 7.
Now we give a proof of the if part of Theorem 5 . We may assume that the line L is the z-axis and the convex hypersurface M is given locally by $z=f(x)$ for some convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. For a fixed point $p=(x, f(x))$ in M with positive Gauss-Kronecker curvature $K(p)$ and $t>0$, consider the region of M cut off by the hyperplane parallel to the tangent hyperplane to M at p with distance $t>0$. Then the hypothesis shows that $S_{p}(t)=a\|p-v\|^{(n+2) / 2}$ for all $t \in \mathbb{R}$, where a is a constant.

If we let

$$
\begin{equation*}
N=\frac{1}{W}\left(-f_{x_{1}},-f_{x_{2}}, \ldots,-f_{x_{n}}, 1\right), \tag{3.13}
\end{equation*}
$$

where $W=\left\{1+f_{\chi_{1}}^{2}+f_{x_{2}}^{2}+\cdots+f_{\chi_{n}}^{2}\right\}^{1 / 2}$, then N is an upward unit normal vector. Let θ be the angle between N and $\overrightarrow{p v}$, then we have $\cos \theta=1 / W$.

Hence we get $\|p-v\|=t W$, which shows that

$$
\begin{equation*}
S_{p}(t)=a W^{(n+2) / 2} t^{(n+2) / 2} \tag{3.14}
\end{equation*}
$$

Thus (3.3) yields

$$
\begin{equation*}
R_{p}(t)=\frac{n+2}{2} a W^{(n+2) / 2} t^{(n+2) / 2} \tag{3.15}
\end{equation*}
$$

Therefore, Lemma 7 shows that

$$
\begin{equation*}
K(p)=\frac{2^{n+2} \omega_{n}^{2}}{(n+2)^{2} a^{2}} \frac{1}{W^{n+2}} . \tag{3.16}
\end{equation*}
$$

Since the Gauss-Kronecker curvature $K(p)$ of M at p is given by [9, p. 93]

$$
\begin{equation*}
K(p)=\frac{\operatorname{det} D^{2} f(x)}{W^{n+2}}, \tag{3.17}
\end{equation*}
$$

it follows from (3.16) that the determinant $\operatorname{det} D^{2} f(x)$ of the Hessian of $f(x)$ is a positive constant. The continuity of $\operatorname{det} D^{2} f(x)$ shows that it is a positive constant on the whole space \mathbb{R}^{n}. Thus $f(x)$ is a globally defined quadratic polynomial [3,5]. This completes the proof of the if part of Theorem 5.

Finally, consider an elliptic paraboloid $M: z=\sum_{i=1}^{n} a_{i}^{2} x_{i}^{2}, a_{i}>0$, a hyperplane Σ intersecting M, a point $p \in M$ where the tangent plane of M is parallel to Σ, and a point v where the line through p parallel to the z-axis meets Σ. Then the linear mapping

$$
\begin{equation*}
T_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, z\right)=\left(a_{1} x_{1}, a_{2} x_{2}, \ldots, a_{n} x_{n}, z\right) \tag{3.18}
\end{equation*}
$$

transforms M onto a paraboloid of revolution $M^{\prime}: z=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}, \Sigma$ to a hyperplane Σ^{\prime}, $p \in M$ to a point of tangency $p^{\prime} \in M^{\prime}$, and v to a point v^{\prime} where the line through p^{\prime} parallel to the z-axis meets Σ^{\prime} (cf. [8, Appendix A]).

Let's consider the affine mapping defined by

$$
\begin{align*}
x_{1}^{\prime} & =t x_{1}+h_{1}, \ldots, x_{n}^{\prime}=t x_{n}+h_{n}, \\
z^{\prime} & =2 t h_{1} x_{1}+\cdots+2 t h_{n} x_{n}+t^{2} z+h_{1}^{2}+\cdots+h_{n}^{2} . \tag{3.19}
\end{align*}
$$

Then for any constants, t, h_{1}, \ldots, h_{n}, where t is not 0 , the affine mapping takes the paraboloid M^{\prime} into itself.

Suppose that the equation of Σ^{\prime} is given by

$$
\begin{equation*}
z^{\prime}=p_{1} x_{1}^{\prime}+p_{2} x_{2}^{\prime}+\cdots+p_{n} x_{n}^{\prime}+d \tag{3.20}
\end{equation*}
$$

Then we denote by T_{2} the affine mapping defined by (3.19) with

$$
\begin{equation*}
h_{1}=p_{1} / 2, \ldots, h_{n}=p_{n} / 2, t=\sqrt{\left(p_{1}^{2}+\cdots+p_{n}^{2}+2 d\right) / 2} \tag{3.21}
\end{equation*}
$$

The inverse mapping T_{2}^{-1} of T_{2} takes Σ^{\prime} into $\Sigma^{\prime \prime}: z^{\prime}=1, p^{\prime}$ to $p^{\prime \prime}=0$, the origin, and v^{\prime} to $v^{\prime \prime}=(0,0, \ldots, 0,1)$.

It follows from (3.18) and (3.19) that T_{1} (resp., T_{2}^{-1}) magnifies volumes by the factor $a_{1} a_{2} \cdots a_{n}$ (resp., $t^{-(n+2)}$) and segments parallel to the z-axis by the factor 1 (resp., t^{-2}). Hence, if we denote by $V S(M)$ the volume of the region of M cut off by Σ and so on, we obtain

$$
\begin{align*}
\frac{V S(M)}{\|p-v\|^{(n+2) / 2}} & =\frac{V S\left(M^{\prime}\right)}{a_{1} a_{2} \cdots a_{n}\left\|p^{\prime}-v^{\prime}\right\|^{(n+2) / 2}} \\
& =\frac{t^{n+2} V S\left(M^{\prime \prime}\right)}{a_{1} a_{2} \cdots a_{n}\left(t^{2}\left\|p^{\prime \prime}-v^{\prime \prime}\right\|\right)^{(n+2) / 2}} \tag{3.22}\\
& =\frac{V S\left(M^{\prime \prime}\right)}{a_{1} a_{2} \cdots a_{n}} \\
& =\frac{2 \sigma_{n-1}}{n(n+2) a_{1} a_{2} \cdots a_{n}}
\end{align*}
$$

where σ_{n-1} denotes the surface area of the $(n-1)$-dimensional unit sphere. This completes the proof of the only if part of Theorem 5 .

Remark 8. Consider a region of an elliptic paraboloid M cut off by a hyperplane Σ. Then with the same notations as above, (3.22) shows that $V S(M)=c\|p-v\|^{(n+2) / 2}$. Since $\|p-v\|=t W$, it follows from (3.3) that $R_{p}(t)=\frac{n+2}{2} V S(M)$. Therefore the volume $V C(M)$ of the cone with the vertex p becomes $\frac{n+2}{2(n+1)} V S(M)$. For $n=2$, this gives Archimedes' results.

Acknowledgments

The authors would like to express their deep thanks to late Professor Jeong-Seon Baek for valuable advice that improved this article and Professor Minkyu Kwak for giving us some information [3,5]. They also appreciate the referee for giving helpful suggestions to improve Theorem 2 and providing information [1,7] with some comments for the further study.

References

[1] W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitatstheorie. Band I. Elementare Differentialgeometrie, third ed., Dover Publications, New York, NY, 1945 (in German).
[2] I. Chavel, Eigenvalues in Riemannian Geometry, Including a Chapter by Burton Randol, With an Appendix by Jozef Dodziuk, Academic Press Inc., Orlando, FL, 1984.
[3] K. Jörgens, Über die Losungen der Differentialgleichung $r t-s^{2}=1$, Math. Ann. 127 (1954) 130-134.
[4] B. O'Neill, Elementary Differential Geometry, Revised second ed., Elsevier/Academic Press, Amsterdam, 2006.
[5] A.V. Pogorelov, On the improper convex affine hyperspheres, Geom. Dedicata 1 (1) (1972) 33-46.
[6] A. Pressley, Elementary Differential Geometry, Undergraduate Mathematics Series, Springer-Verlag London Ltd., London, 2001.
[7] O. Stamm, Umkehrung eines Satzes von Archimedes über die Kugel, Abh. Math. Sem. Univ. Hamburg 17 (1951) 112-132.
[8] S. Stein, Archimedes. What Did He Do Besides Cry Eureka?, Mathematical Association of America, Washington, DC, 1999.
[9] J.A. Thorpe, Elementary Topics in Differential Geometry, Undergraduate Texts in Mathematics, Springer-Verlag, New York, Heidelberg, 1979.

[^0]: * Corresponding author.

 E-mail addresses: dosokim@chonnam.chonnam.ac.kr (D.-S. Kim), yhkim@knu.ac.kr (Y.H. Kim).
 ${ }^{1}$ Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0022926).
 ${ }^{2}$ Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0007184).

