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1. Introduction

Consider a sphere S?(a) of radius a in the Euclidean space [E3. Then by an elementary calculus, it is
easy to show that for any two parallel planes with distance h both of which intersect S (a), the surface
area of the region of $%(a) between the planes is 27 ah.

In fact, Archimedes proved the above area property of S%(a) [8, p. 78]. For a differential geometric
proof, see Archimedes’ Theorem [6, pp. 116-118].
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Conversely, it is natural to ask the following question:

Question 1. Are there any other surfaces which satisfy the above area property?
In Section 2, we prove the following:

Theorem 2. Let M be a closed and convex surface in the 3-dimensional Euclidean space E2. If M satisfies
the condition:

(C) for any two parallel planes with distance h both of which intersect M, the surface area of the region of
M between the planes is a nonnegative function ¢ (h), which depends only on h.

Then M is an Euclidean sphere.

To establish Theorem 2, first of all, using co-area formula, we prove a lemma (Lemma 6) about a
new meaning of Gaussian curvature of M at a point p € M.

A paraboloid of rotation in the 3-dimensional Euclidean space E? has an interesting volume prop-
erty which is originally due to Archimedes. Consider a region of a paraboloid of rotation cut off by
a plane not necessarily perpendicular to its axis. Let p be the point of contact of the tangent plane
parallel to the base. The line through p, parallel to the axis of the paraboloid meets the base at a point
v. Archimedes shows that the volume of the section is 3/2 times the volume of the cone with the same
base and vertex p [8, Chapter 7 and Appendix A].

In fact, in a long series of propositions, Archimedes proves the following [8, p. 66 and Appendices
A and B].

Proposition 3. The volume of such a region of a paraboloid of rotation in the 3-dimensional Euclidean
space B3 is proportional to ||p — v||?, where the ratio depends only on the paraboloid.

This proposition implies directly Archimedes’ results (See Remark 8).
Conversely, it is natural to ask the following question:

Question 4. Which surfaces satisfy the above volume property?

In Section 3, we prove the following:

Theorem 5. Let M be a smooth convex hypersurface in the (n + 1)-dimensional Euclidean space E"1.
Then M is an elliptic paraboloid if and only if there exists a line L for which M satisfies the condition:

(L) for any point p on M and any hyperplane section of M parallel to the tangent plane of M at p, let v denote
the point where the line through p parallel to L meets the hyperplane. Then the volume of the region of M
between these two parallel hyperplanes is a times ||p — v|| (n+2)/2 for some constant a which depends only
on the hypersurface M.

To complete the proof of Theorem 5, first of all, we get a formula for the Gauss-Kronecker curvature
of M at a point p € M (Lemma 7).
Throughout this article, all objects are smooth and connected, otherwise mentioned.

2. Spheres

Suppose that M is a closed and convex surface in the 3-dimensional Euclidean space E3. Then the
Gaussian curvature K is non-negative. For a fixed point p € M and for a sufficiently small h > 0,
consider a plane @ parallel to the tangent plane ¥ of M at p with distance h which intersects M. We
denote by M, (h) the surface area between the two planes ® and W.

We introduce a coordinate system (x, y, z) of E> with the origin p, the tangent plane of M at p is
z = 0,and M = graph(f) for a non-negative convex function f : R? — R. Then we have
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M, (h) = //f(x)<h,/1 + |Vf|2dX, 1)

where X = (x, y), dX = dxdy and Vf denote the gradient vector of f.
First of all, we prove

Lemma 6. If the Gaussian curvature K(p) of M at p is positive, then we have

2

VK@)

M, (0) =

Proof. Consider the Taylor expansion of f (X) as follows:
FX) = X"AX + f(X), (22)

where A is a symmetric 2 x 2 matrix and f3(X) is an O(|X|?) function. Then the Hessian matrix of f at
the origin is given by

D*f(0) = 2A.
Hence we see that
K(p) = det D*f(0) = 4detA. (23)

Since K(p) > 0and f is non-negative, we see that the matrix A is positive definite. Thus there exists
a non-singular matrix B satisfying

A= BB, (2.4)
where B! denotes the transpose of B. Therefore we obtain
FOO = IBX” + f5(X). (2.5)
In order to compute M;/z (0), we use the decomposition of M, (h) as follows:

Mp(h) = Q(h) + N(h),
Q(h) = / /f o< 1dX, (2.6)

N = |, /f W1 1972 = Dax.

Then we have

N < |, /f s 1V

Hence, by the co-area formula [2, p. 86] we get

N(h) 1 rh
— < - 1ds; ) dt, (2.7)
h h Je=0 \Jf=1(t)
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where ds; denotes the line element of the curve f~1(t), which shows that the integrand is nothing but
the length L(t) of f~1(t). By the fundamental theorem of calculus, we see that

N(h
VO = i 5
—
= L(0) (2.8)
= 0.
Now we let h = €% and X = €Y, then (2.6) gives
h 1 g
oW _ 1 g
h o< (2.9)

- / / 1dy,
JJIBY|2+eg3(Y)<1

where g5(Y) is an O(|Y|?) function. As € — 0, it follows from (2.9) that

Q(0) = ‘[/|BY\2<1 1dy. (2.10)

If we let W = BY, then from (2.10) we get

1 T
Qo = detB //\W|<1 1w = detB’ (211)
Hence it follows from (2.3) and (2.4) that
Q) = = (212)
JK®)

Thus together with (2.8) and (2.12), (2.6) completes the proof of Lemma 6.

Now we give a proof of Theorem 2. Since M is closed, there exists a point p where K(p) > 0. Hence
we see that U = {p € M|K(p) > 0} is nonempty. Together with Condition (C), Lemma 6 implies that
at every point p € U, we have K(p) = 4n2/¢’(0)2, which is independent of p € M. Thus, continuity
of K shows that U = M, and hence we have K = 472/¢'(0)?> on M. This completes the proof of
Theorem 2. O

3. Elliptic paraboloids

Suppose that M is a smooth convex hypersurface in the (n+ 1)-dimensional Euclidean space E"+1.
For a fixed point p € M and for a sufficiently small t > 0, consider a hyperplane ® parallel to the
tangent hyperplane ¥ of M at p with distance t which intersects M.

We denote by Sy (t) (respectively, R, (t)) the volume of the region bounded by the hypersurface and
the hyperplane @ (respectively, of the cylinder with base ® N M and height t). Then Ry (t) is (n + 1)
times the volume of the cone with the same base and the vertex p.

Now we may introduce a coordinate system (x, z) = (x1, X2, . . ., X5, z) of E"*1 with the origin
p, the tangent plane of M at p is z = 0. Furthermore, we may assume that M is locally the graph of a
non-negative convex function f : R" — RR. Then we have

Rp(t) = t/ 1dx,
f(x)<t

Sy(t) = /f ot =T,
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where dx = dx1dx; - - - dxp,.
Note that we also have

Sp(t) = /f I (I

4t n
- / { / 1dx)dz.
z=0 Jf(x)<z

Hence together with the fundamental theorem of calculus, (3.2) shows that

(3.2)

£5/,(6) = t/f(x)<t 1dx = Ry(0). (3.3)

First of all, we prove the following.

Lemma 7. If the Gauss-Kronecker curvature K(p) of M at p is positive, then we have

i 1 Ry(0) 220,
) t(n+2)/2 p(6) = /K(p)’

where wy, denotes the volume of the n-dimensional unit ball.

(3.4)

Proof. Consider the Taylor expansion of f(x) as follows:

[ =x'Ax+ f3(x), (3.5)
where x denotes the column vector (xq, X, . .., Xp)', A is a symmetric n x n matrix, and f3(x) is an
0(|x|?) function.

Then the Hessian matrix of f at the origin is given by
D*f(0) = 2A.
Hence we see that
K(p) = det D*f(0) = 2" det A. (3.6)

Since K(p) > 0and f is non-negative, we see that the matrix A is positive definite. Thus there exists
a nonsingular matrix B satisfying

A = BB, (3.7)
where B! denotes the transpose of B. Therefore we obtain
F) = 1BxI> + f5(0. (3.8)

Now we let t = €2 and x = €y. Then (3.3) gives

] ‘1 n n
Rt =—// 1dx = 1dy, 39
t(n1+2)/2 p(©) t"/2 ) Jf <t 1By|2+egs (y) <1 v (3.9)

where g3 (y) is an O(|y|?) function. As € — 0, it follows from (3.9) that

. 1
lim 7R (0) = ./‘By‘z<1 1dy. (3.10)
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If we let w = By, then from (3.10) we get

lim —— R (t) ! // 1d On (311)
im-—-——r = — w = s .
t—0 t(+2)/2°P | det B| JJjw|<1 | det B

where w; denotes the volume of the n-dimensional unit ball. Hence it follows from (3.6) and (3.7) that

im - R (o) = 2n (3.12)
) t(1+2)/2 p(D) = /K(p) ’

This completes the proof of Lemma 7.

Now we give a proof of the if part of Theorem 5. We may assume that the line L is the z-axis and
the convex hypersurface M is given locally by z = f(x) for some convex function f : R"™ — R. For a
fixed point p = (x, f(x)) in M with positive Gauss-Kronecker curvature K(p) and t > 0, consider the
region of M cut off by the hyperplane parallel to the tangent hyperplane to M at p with distance t > 0.
Then the hypothesis shows that S, (t) = al[p — V|| (+2)/2 for all t € R, where a is a constant.

If we let

1
N = W(_fxlv_fxza"'v_fxnvl)a (3.13)
where W = {1+f2 +f2 +--- +fX2"}1/2, then N is an upward unit normal vector. Let § be the angle

between N and ﬁ then we have cos 6 = 1/W.
Hence we get ||p — v|| = tW, which shows that

Sp(t) = aw /24272, (3.14)
Thus (3.3) yields
Ry(t) = zizaw("“)/zt("“)/z. (3.15)

Therefore, Lemma 7 shows that

2n+2 2 1
“n (3.16)

Kp)= ——"
® (n+ 2)%a® wn+2

Since the Gauss-Kronecker curvature K(p) of M at p is given by [9, p. 93]

det D*f (x)

i (3.17)

K(p) =

3

it follows from (3.16) that the determinant det D?f(x) of the Hessian of f(x) is a positive constant.
The continuity of det D> (x) shows that it is a positive constant on the whole space R". Thus f(x) is a
globally defined quadratic polynomial [3,5]. This completes the proof of the if part of Theorem 5.

Finally, consider an elliptic paraboloid M : z = Zf:]a,?xf, a; > 0, a hyperplane X intersecting M,
a point p € M where the tangent plane of M is parallel to ¥, and a point v where the line through p
parallel to the z-axis meets X. Then the linear mapping

T (X1, X2, ..., Xp, 2) = (a1X1, A2X2, . . ., ApXn, Z) (3.18)
transforms M onto a paraboloid of revolution M’ : z = x% + x% + -4 xﬁ, ¥ to a hyperplane X',

p € M to a point of tangency p’ € M’, and v to a point v’ where the line through p’ parallel to the z-axis
meets ¥’ (cf. [8, Appendix A]).
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Let’s consider the affine mapping defined by

Xy =ty + hy, ..., X, = txn + hy,

7 =2thixy + - + 2thyXy + 2z + b3 + - -+ h2. 519)
Then for any constants, t, hy, . .., h,, where t is not 0, the affine mapping takes the paraboloid M’ into
1tseslippose that the equation of ¥’ is given by

7= p1Xy + paxy + -+ paxy + d. (3.20)
Then we denote by T, the affine mapping defined by (3.19) with

hy =p1/2. ... hy = pu/2.t =/ (P? + -+ + P2 + 2d)/2. (3.21)
The inverse mapping T, ' of T, takes ¥ into £” : 7/ = 1,p/ to p” = 0, the origin, and v’ to

v/ =(0,0,...,0,1).
It follows from (3.18) and (3.19) that Ty (resp., T2_1) magnifies volumes by the factor aja; - - - a,

(resp., t_(”+2)) and segments parallel to the z-axis by the factor 1 (resp., t ~2). Hence, if we denote by
VS(M) the volume of the region of M cut off by X and so on, we obtain

vs(iM) Vs(M')
p — v||(n+2)/2 T owmay - ap||p’ — v'||(+2)/2
B t"F2vs(M”)
aqay- ~/'/an(t2I|p” —V||)(n+2)/2 (3.22)
VS(M"™)
T aa-a
20n—1

nn+2)aaz---a,’

where 0,1 denotes the surface area of the (n — 1)-dimensional unit sphere. This completes the proof
of the only if part of Theorem 5. [

Remark 8. Consider a region of an elliptic paraboloid M cut off by a hyperplane X. Then with the same
notations as above, (3.22) shows that VS(M) = c||p — v||**%/2_Since ||p — v|| = tW, it follows from
(3.3) that R, (t) = r";—ZVS(M). Therefore the volume VC(M) of the cone with the vertex p becomes

2&121) VS(M). For n = 2, this gives Archimedes’ results.
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