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a b s t r a c t

In this short communication,we observe that theGraphical Traveling Salesman Polyhedron
is the intersection of the positive orthant with the Minkowski sum of the Symmetric
Traveling Salesman Polytope and the polar of the metric cone. This follows almost trivially
from known facts. There are nonetheless two reasons why we find this observation worth
communicating: It is very surprising; it helps us understand the relationship between these
two important families of polyhedra.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Symmetric Traveling Salesman Polytope is the convexhull of all characteristic vectors of edge sets of cycles (i.e., circuits)
on the vertex set Vn := {1, . . . , n} (in other words, Hamiltonian cycles in the complete graph with vertex set Vn). For the
formal definition, denote by En the set of all two-element subsets of Vn. This is the set of all possible edges of a graph with
vertex set Vn. The Symmetric Traveling Salesman Polytope is then the following set:

Sn := conv
{
χC | C is the edge set of a Hamiltonian cycle with vertex set Vn

}
⊂ REn .

Here, for an edge set F , χ F is the characteristic vector in REn with χ Fe = 1 if e ∈ F , and zero otherwise. The importance of
the Symmetric Traveling Salesman Polytope comes mainly, but not exclusively, from its use in the solution of the so-called
Symmetric Traveling Salesman Problem, which consists of finding a Hamiltonian cycle of minimum cost.
TheGraphical Traveling Salesman Polyhedron is the convex hull of all characteristic vectors of edgemulti-sets of connected

Eulerian multi-graphs on the vertex set Vn. A multi-graph with vertex set Vn has as its edge set a sub-multi-set of En, which
is to say that our multi-graphs can have parallel edges but no loops. By defining, for any multi-set F of edges of Kn, its
characteristic vector χ F ∈ REn in such a way that χ Fe counts the number of occurrences of e in F , the Graphical Traveling
Salesman Polyhedron is formally defined as

Pn := conv
{
χ F | F is the edge multi-set of a connected Eulerian multi-graph with vertex set Vn

}
⊂ REn .
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Ever since the seminal work of Naddef & Rinaldi [4,5] on the two polyhedra, Pn is considered to be an important tool
for investigating the facets of Sn. Moreover, in works of Carr [2] and Applegate, Bixby, Chvàtal & Cook [1], Pn has been used
algorithmically in contributing to solution schemes for the Symmetric Traveling Salesman Problem.
Numerous authors have expressed how close the connection between Graphical and Symmetric Traveling Salesman

Polyhedra is. The most basic justification for this opinion is the fact that Sn is a face of Pn — consisting of all points x whose
‘‘degree’’ is two at every vertex:

∑
v 6=u xuv = 2 for all u ∈ Vn. However, the connections are far deeper (see [3] or [6] and the

references therein). In this short communication, we contribute the following surprising geometric observation to the issue
of the relationship between these two polyhedra:

Theorem. Pn is the intersection of the positive orthant with the Minkowski sum of Sn and the polar CMn of the metric cone Cn:

Pn = (Sn + CMn ) ∩ REn+ . (1)

The metric cone consists of all a ∈ REn which satisfy the triangle inequality:
auv ≤ auw + awv (2)

for all pairwise distinct vertices u, v, w ∈ Vn. Consequently, its polar is generated as a cone by the vectors (we abbreviate
χ {e} to χ e)

χuw + χwv − χuv. (3)
The proof of this theorem is an application of three or four known facts or techniques in the area of Symmetric and

Graphical Traveling Salesman polyhedra.

2. Proof

We start with showing that Pn ⊂ (Sn+CMn )∩REn+ . While Pn ⊂ REn+ holds trivially, Pn ⊂ Sn+CMn follows from an argument
of [5], which we reproduce here for the sake of completeness.
Let x ∈ ZEn+ be a the characteristic vector of the edge multi-set of a connected Eulerian multi-graph Gwith vertex set Vn.

We prove by induction on the numberm of edges of G, that x can be written as a sum of a cycle and a number of vectors (3).
Ifm = n, then there is nothing to prove. Letm ≥ n+ 1. There exists a vertex w of degree at least four in G. We distinguish
two cases. The easy case occurs when G \ w is still connected. Here, we let u and v be two arbitrary (possibly identical)
neighbors of w. By either replacing the edges uw and wv of G with the new edge uv, if u 6= v, or deleting uw and wv, if
u = v, one obtains a connected Eulerian multi-graph G′ with fewer edges than G. The change in the vector x amounts to
subtracting the expression (3): x′ = x − (χuw + χwv − χuv), if u 6= v, and x′ = x − (χuw + χwv), if u = v. In the slightly
more difficult case when the graph G \w has at least two connected components, we can let u and v be two neighbors ofw
in distinct components of G \ w. This makes sure that the graph G′ is still connected. We conclude by induction that x′, and
hence x, can be written as a sum of a cycle and a number of vectors (3).
We now prove Pn ⊃ (Sn + CMn ) ∩ REn+ . For this, we show that any inequality which is facet-defining for Pn is valid for

(Sn + CMn ) ∩ REn+ .
We again invoke an argument from [5]: Naddef & Rinaldi have shown1 that the inequalities defining facets of Pn fall

into one of two categories: the non-negativity inequalities xe ≥ 0, with e ∈ En (or positive scalar multiples thereof), or
inequalities whose coefficient vectors satisfy the triangle inequality (2). We reproduce the proof of this statement.
First recall that an inequality a · x ≥ α is said to be dominated by another inequality b · x ≥ β , if the face defined by the

first inequality is contained in the face defined by the second inequality.
Suppose that a · x ≥ α is not dominated by a non-negativity inequality (it need not be define a facet, though), and let

u, v, w be three distinct vertices in Vn. Then there exists an x ∈ ZEn+ defining the edge multi-set of a connected Eulerian
multi-graph G which has an edge between u and v, such that a · x = α. If we replace the edge uv of G by the two edges
uw and wv, then we obtain a connected Eulerian multi-graph, whose edge multi-set is given, in terms of its characteristic
vector, by x′ := x+ χuw + χwv − χuv . Now a · x′ ≥ α, implies auw + awv − auv ≥ 0, i.e., the triangle inequality.
We now conclude the proof of the inclusion Pn ⊃ (Sn + CMn ) ∩ REn+ . Let a · x ≥ α be an inequality which is facet-defining

for Pn. First note that the non-negativity inequalities are clearly satisfied by the right hand side of (1). Hence, using what we
have just discussed, let us assume that a satisfies the triangle inequality. This means that a is a member of the metric cone
Cn. Consequently, the inequality a · x ≥ 0 is valid for CMn . Further, since Sn ⊂ Pn, the inequality a · x ≥ α is clearly valid for
Sn. Hence the inequality is valid for Sn + CMn .
This concludes the proof of the theorem. �
Note that, in passing, we have proved the following. If we define P ′n to be the set of all y ∈ REn which satisfy a · y ≥ α for

every inequality a · x ≥ α defining a facet of Pn but not being a scalar multiple of a non-negativity inequality, then we have
Sn + CMn ⊂ P

′
n.

1 In fact, Proposition 2.2 of [5] states that the facet-defining inequalities for Pn fall into three classes — one of which is the class of non-negativity
inequalities and the other two satisfy the triangle inequality.
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