Oscillation Criteria for Certain nth Order Differential Equations with Deviating Arguments

Ravi P. Agarwal
Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
E-mail: matravip@nus.edu.sg
Said R. Grace
Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Orman, Giza 12221, Egypt
E-mail: srgrace@alpha1-eng.cairo.eun.eg
and
\section*{Donal O'Regan}
Department of Mathematics, National University of Ireland, Galway, Ireland E-mail: donal.oregan@nuigalway.ie
Submitted by William F. Ames
Received February 12, 2001

Oscillation criteria for nth order differential equations with deviating arguments of the form

$$
\left(\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{(n-1)}(t)\right)^{\prime}+F(t, x[g(t)])=0, \quad n \text { even }
$$

are established, where $g \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), F \in C\left(\left[t_{0}, \infty\right) \times \mathbb{R}, \mathbb{R}\right)$, and $\alpha>0$ is a constant. © 2001 Academic Press

Key Words: oscillation; nonoscillation; comparison; functional differential equation.

1. INTRODUCTION

In this paper we shall study the oscillatory behavior of the functional differential equation

$$
\begin{equation*}
\left(\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{(n-1)}(t)\right)^{\prime}+F(t, x[g(t)])=0, \quad n \text { even } \tag{1.1}
\end{equation*}
$$

where α is a positive constant, $g(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), \lim _{t \rightarrow \infty} g(t)=\infty$, and $F(t, x) \in C\left(\left[t_{0}, \infty\right) \times \mathbb{R}, \mathbb{R}\right)$, $\operatorname{sgn} F(t, x)=\operatorname{sgn} x, t \geq t_{0}$.

We shall assume that there exist a constant $\beta>0$ and a function $q(t) \in$ $C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$such that

$$
\begin{equation*}
F(t, x) \operatorname{sgn} x \geq q(t)|x|^{\beta} \quad \text { for } x \neq 0 \quad \text { and } \quad t \geq t_{0} . \tag{1.2}
\end{equation*}
$$

By a solution of Eq. (1.1) we mean a function $x(t) \in C^{n-1}\left(\left[T_{x}, \infty\right), \mathbb{R}\right)$ for some $T_{x} \geq t_{0}$ which has the property that $\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{(n-1)}(t) \in$ $C^{1}\left(\left[T_{x}, \infty\right), \mathbb{R}\right)$ and satisfies equation (1.1) on $\left[T_{x}, \infty\right)$. A nontrivial solution of Eq. (1.1) is called oscillatory if it has arbitrarily large zeros; otherwise it is said to be nonoscillatory. Equation (1.1) is oscillatory if all of its solutions are oscillatory.
The equation (1.1) with $n=2$, namely, the equation

$$
\left(\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)\right)^{\prime}+F(t, x[g(t)])=0
$$

and/or related equations have been the subject of intensive studies in recent years because these equations are natural generalizations of the equation

$$
x^{\prime \prime}(t)+F(t, x[g(t)])=0 .
$$

For recent contributions we refer the reader to $[2-5,15,19,20]$ and references therein. As far as we know the equation (1.1) has never been the subject of systematic investigations.

In Section 2, we shall present some oscillation criteria for Eq. (1.1) which extend several known results established in [2-10, 16, 18-20]. Section 3 contains extensions of some of the results presented in Section 2 to a special case of (1.1), namely, the equation

$$
\begin{equation*}
\left(\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{(n-1)}(t)\right)^{\prime}+q(t) f(x[g(t)])=0 \tag{1.3}
\end{equation*}
$$

where $\alpha>0$ is a constant, $q(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right), g(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$, $f(x) \in C(\mathbb{R}, \mathbb{R}), \lim _{t \rightarrow \infty} g(t)=\infty$, and $x f(x)>0$ for $x \neq 0$. The function f in equation (1.3) need not be a monotonic function. Here, we shall also consider equations of neutral type of the form

$$
\begin{align*}
& \frac{d}{d t}\left(\left|[x(t)+p(t) x[\tau(t)]]^{(n-1)}\right|^{\alpha-1}(x(t)+p(t) x[\tau(t)])^{(n-1)}\right)+F(t, x[g(t)]) \\
& \quad=0, \tag{1.4}
\end{align*}
$$

where α, F, and g are as in Eq. (1.1), $p(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}_{0}\right), \mathbb{R}_{0}=$ $[0, \infty), \tau(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$, and $\lim _{t \rightarrow \infty} \tau(t)=\infty$. The obtained results extend those presented in $[10,12,16]$. In Section 4, we shall consider the more general equation

$$
\begin{equation*}
\left(\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{(n-1)}(t)\right)^{\prime}+F\left(t, x[g(t)], \frac{d}{d t} x[h(t)]\right)=0 \tag{1.5}
\end{equation*}
$$

where α is a positive constant, $g(t), h(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), h(t) \leq t, h^{\prime}(t)>$ 0 for $t \geq t_{0}, \lim _{t \rightarrow \infty} g(t)=\infty=\lim _{t \rightarrow \infty} h(t)$, and $F \in C\left(\left[t_{0}, \infty\right) \times \mathbb{R}^{2}, \mathbb{R}\right)$.

We shall assume that there exist a function $q(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$and positive constants β and μ such that

$$
\begin{equation*}
F(t, x, y) \operatorname{sgn} x \geq q(t)|x|^{\beta}|y|^{\mu} \quad \text { for } x y \neq 0 \quad \text { and } \quad t \geq t_{0} . \tag{1.6}
\end{equation*}
$$

The results presented in this section extend some of our earlier work in [1, 2, 6].

2. MAIN RESULTS

We shall need the following:
Lemma 2.1 [18]. Let $x(t) \in C^{n}\left(\left[t_{0}, \infty\right)\right.$, $\left.\mathbb{R}^{+}\right)$. If $x^{(n)}(t)$ is eventually of one sign for all large t, say, $t_{1} \geq t_{0}$, then there exist $a t_{x} \geq t_{0}$ and an integer $l, 0 \leq l \leq n$, with $n+l$ even for $x^{(n)}(t) \geq 0$, or $n+l$ odd for $x^{(n)}(t) \leq 0$ such that

$$
l>0 \quad \text { implies that } x^{(k)}(t)>0 \quad \text { for } t \geq t_{x}, \quad k=0,1, \ldots, l-1
$$

and

$$
\begin{aligned}
& l \leq n-1 \quad \text { implies that }(-1)^{l+k} x^{(k)}(t)>0 \\
& \quad \text { for } t \geq t_{x}, k=l, l+1, \ldots, n-1 .
\end{aligned}
$$

Lemma 2.2 [18]. If the function $x(t)$ is as in Lemma 2.1 and $x^{(n-1)} \times$ $(t) x^{(n)}(t) \leq 0$ for $t \geq t_{x}$, then there exists a constant $\theta, 0<\theta<1$, such that

$$
x(t) \geq \frac{\theta}{(n-1)!} t^{n-1} x^{(n-1)}(t) \quad \text { for all large } t
$$

and

$$
x^{\prime}[t / 2] \geq \frac{\theta}{(n-2)!} t^{n-2} x^{(n-1)}(t) \quad \text { for all large } t .
$$

Lemma 2.3. [11]. If X and Y are nonnegative numbers, then

$$
X^{\lambda}-\lambda X Y^{\lambda-1}+(\lambda-1) Y^{\lambda} \geq 0, \quad \lambda>1
$$

and

$$
X^{\lambda}-\lambda X Y^{\lambda-1}-(1-\lambda) Y^{\lambda} \leq 0, \quad 0<\lambda<1 .
$$

In the above inequalities the equality holds if and only if $X=Y$.
Theorem 2.1. Let condition (1.2) hold with $\alpha=\beta$. If there exist $\sigma(t), \rho(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$, and a constant $\theta>1$ such that
$\sigma(t) \leq \inf \{t, g(t)\}, \quad \lim _{t \rightarrow \infty} \sigma(t)=\infty \quad$ and $\quad \sigma^{\prime}(t)>0 \quad$ for $t \geq t_{0}$
and for $T \geq t_{0}$,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{T}^{\infty}\left[\rho(s) q(s)-\lambda \theta \frac{\left(\rho^{\prime}(s)\right)^{\alpha+1}}{\left(\rho(s) \sigma^{n-2}(s) \sigma^{\prime}(s)\right)^{\alpha}}\right] d s=\infty \tag{2.1}
\end{equation*}
$$

where $\lambda=(1 /(\alpha+1))^{\alpha+1}(2(n-1)!)^{\alpha}$, then Eq. (1.1) is oscillatory.
Proof. Suppose to the contrary that Eq. (1.1) has a nonoscillatory solution $x(t)$. Without loss of generality, we may assume that $x(t)>0$ for $t \geq t_{1} \geq t_{0} \geq 0$. Since

$$
\left(\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{n-1}(t)\right)^{\prime}=-F(t, x[g(t)]) \leq 0
$$

it follows that the function $\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{(n-1)}(t)$ is decreasing and $x^{(n-1)}(t)$ is eventually of one sign. If $x^{(n-1)}(t)<0$ eventually, then since

$$
0 \geq\left(\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{(n-1)}(t)\right)^{\prime}=\alpha\left(-x^{(n-1)}(t)\right)^{\alpha-1} x^{(n)}(t)
$$

we find that $x^{(n)}(t) \leq 0$ eventually. But then Lemma 2.1 implies that $x^{(n-1)}(t)>0$ eventually. Further, when $x^{(n-1)}(t)>0$ eventually then again from Lemma 2.1 (note n is even) we have $x^{\prime}(t)>0$ eventually. Thus there exists a $t_{2} \geq t_{1}$ such that

$$
\begin{equation*}
x^{\prime}(t)>0 \quad \text { and } \quad x^{(n-1)}(t)>0 \quad \text { for } t \geq t_{2} . \tag{2.3}
\end{equation*}
$$

Define

$$
w(t)=\rho(t) \frac{\left(x^{(n-1)}(t)\right)^{\alpha}}{x^{\beta}[\sigma(t) / 2]}, \quad t \geq t_{2} .
$$

Then, for $t \geq t_{2}$, in view of (1.2) we have

$$
\begin{align*}
w^{\prime}(t) \leq & -\rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)} w(t) \\
& -\frac{\beta \sigma^{\prime}(t)}{2} \rho(t) \frac{\left(x^{(n-1)}(t)\right)^{\alpha} x^{\prime}[\sigma(t) / 2]}{x^{\beta+1}[\sigma(t) / 2]} \tag{2.4}
\end{align*}
$$

By Lemma 2.2 (notice since $x^{(n-1)}(t)>0$ for $t \geq t_{2}$, we have $\left[\left(x^{(n-1)}(t)\right)^{\alpha}\right]^{\prime} \leq 0$ for $t \geq t_{2}$, which in turn implies $x^{(n)}(t) \leq 0$ for $t \geq t_{2}$), there exists a $t_{3} \geq t_{2}$ and a constant $\theta_{1}, 0<\theta_{1}<1$ such that

$$
\begin{equation*}
x^{\prime}[\sigma(t) / 2] \geq \frac{\theta_{1}}{(n-2)!} \sigma^{n-2}(t) x^{(n-1)}(t) \quad \text { for } t \geq t_{3} \tag{2.5}
\end{equation*}
$$

since $x^{(n-1)}(\sigma(t)) \geq x^{(n-1)}(t)$ for $t \geq t_{3}$.
Using (2.5) in (2.4) with $\alpha=\beta$, we find

$$
\begin{aligned}
w^{\prime}(t) & \leq-\rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)} w(t) \\
& -\frac{\alpha \theta_{1}}{2(n-2)!} \sigma^{(n-2)}(t) \sigma^{\prime}(t) \rho^{-1 / \alpha}(t) w^{(\alpha+1) / \alpha}(t)
\end{aligned}
$$

Fix $t \geq t_{3}$, and set

$$
X=\left(\frac{\alpha \theta_{1}}{2(n-2)!} \sigma^{n-2}(t) \sigma^{\prime}(t)\right)^{\alpha /(\alpha+1)} \frac{w(t)}{\rho^{1 /(\alpha+1)}(t)}, \quad \lambda=(\alpha+1) / \alpha>1
$$

and

$$
Y=\left(\frac{\alpha}{\alpha+1}\right)^{\alpha}\left[\frac{\rho^{\prime}(t)}{\rho(t)} \rho^{1 /(\alpha+1)}(t)\left(\frac{\alpha \theta_{1}}{2(n-2)!} \sigma^{n-2}(t) \sigma^{\prime}(t)\right)^{-\alpha /(\alpha+1)}\right]^{\alpha}
$$

Then, by Lemma 2.3, we obtain

$$
\begin{aligned}
& \frac{\rho^{\prime}(t)}{\rho(t)} w(t)-\frac{\alpha \theta_{1}}{2(n-2)!} \sigma^{n-2}(t) \sigma^{\prime}(t) \rho^{-1 / \alpha}(t) w^{(\alpha+1) / \alpha}(t) \\
& \quad \leq\left(\frac{1}{\alpha+1}\right)^{\alpha+1}\left[\rho(t)\left(\frac{\rho^{\prime}(t)}{\rho(t)}\right)^{\alpha+1}\left(\frac{\theta_{1}}{2(n-2)!} \sigma^{n-2}(t) \sigma^{\prime}(t)\right)^{-\alpha}\right], \quad t \geq t_{3}
\end{aligned}
$$

Now, inequality (2.4) reduces to

$$
w^{\prime}(t) \leq-\rho(t)\left[q(t)-\frac{\lambda \rho^{\prime}(t)}{\rho(t)}\left(\frac{\rho^{\prime}(t)}{\theta_{1} \rho(t) \sigma^{n-2}(t) \sigma^{\prime}(t)}\right)^{\alpha}\right] \quad \text { for } t \geq t_{3}
$$

Integrating the above inequality from t_{3} to t, we get

$$
\begin{align*}
0 & <w(t) \\
& \leq w\left(t_{3}\right)-\int_{t_{3}}^{t}\left[\rho(s) q(s)-\lambda \rho^{\prime}(s)\left(\frac{\rho^{\prime}(s)}{\theta_{1} \rho(s) \sigma^{n-2}(s) \sigma^{\prime}(s)}\right)^{\alpha}\right] d s \tag{2.6}
\end{align*}
$$

Taking $\lim \sup$ on both sides of (2.6) as $t \rightarrow \infty$, we obtain a contradiction to condition (2.2). This completes the proof.

We can apply Theorem 2.1 to the second order half-linear equation

$$
\begin{equation*}
\left(\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)\right)^{\prime}+q(t)|x[g(t)]|^{\alpha-1} x[g(t)]=0 \tag{2.7}
\end{equation*}
$$

where $\alpha>0$ is a constant, $q(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right), g(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$, and $\lim _{t \rightarrow \infty} g(t)=\infty$. In fact, we get the following new result.

Corollary 2.1. If there exist two functions $\rho(t), \sigma(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$ such that condition (2.1) holds, and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left[\rho(s) q(s)-\frac{1}{(\alpha+1)^{\alpha+1}} \frac{\left(\rho^{\prime}(s)\right)^{\alpha+1}}{\left(\rho(s) \sigma^{\prime}(s)\right)^{\alpha}}\right] d s=\infty \tag{2.8}
\end{equation*}
$$

then Eq. (2.7) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of Eq. (2.7), say, $x(t)>0$ for $t \geq t_{1} \geq t_{0}$. It is easy to check that $x^{\prime}(t)>0$ and $x^{\prime}[\sigma(t)] \geq x^{\prime}(t)$ for $t \geq t_{2} \geq t_{1}$. Next, we define

$$
w(t)=\rho(t)\left(\frac{x^{\prime}(t)}{x[\sigma(t)]}\right)^{\alpha}, \quad t \geq t_{2}
$$

Then,

$$
w^{\prime}(t) \leq \rho(t) q(t)+\frac{\rho^{\prime}(t)}{\rho(t)}-\alpha \rho^{-1 / \alpha}(t) w^{(\alpha+1) / \alpha}(t) \quad \text { for } t \geq t_{2}
$$

The rest of the proof is similar to that of Theorem 2.1 and hence is omitted.

The following example illustrates our theory.
EXAMPLE 2.1. Consider the second order half-linear differential equation

$$
\begin{equation*}
\left(\left|x^{\prime}(t)\right|^{\alpha-1} x^{\prime}(t)\right)^{\prime}+\frac{1}{t^{\alpha+1}}|x(t)|^{\alpha-1} x(t)=0, \quad t>0 \tag{2.9}
\end{equation*}
$$

where $\alpha>0$ is a constant. Here, we take $\rho(t)=t^{\alpha}$. Then,

$$
\begin{aligned}
\int_{T}^{t}[\rho & \left.(s) q(s)-\frac{1}{(\alpha+1)^{\alpha+1}} \frac{\left(\rho^{\prime}(s)\right)^{\alpha+1}}{\rho^{\alpha}(s)}\right] d s \\
& =\int_{T}^{t}\left[1-\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}\right] \frac{1}{s} d s \\
& =\left[1-\left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}\right] \ln \frac{t}{T} \rightarrow \infty \quad \text { as } t \rightarrow \infty
\end{aligned}
$$

All conditions of Corollary 2.1 are satisfied and hence Eq. (2.9) is oscillatory. We note that the above conclusion do not appear to follow from the known oscillation criteria in the literature.

For each $t \geq t_{0}$, we let $g(t) \leq t$ and define $\gamma(t)=\sup \left\{s \geq t_{0}: g(s) \leq t\right\}$. Clearly, $\gamma(t) \geq t$ and $g \circ \gamma(t)=t$. Our next result is embodied in the following:

THEOREM 2.2. Let condition (1.2) hold with $\alpha=\beta$. If

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} t^{\alpha(n-1)} \int_{\gamma(t)}^{\infty} q(s) d s>((n-1)!)^{\alpha} \tag{2.10}
\end{equation*}
$$

then Eq. (1.1) is oscillatory.
Proof. Let $x(t)$ be an eventually positive solution of Eq. (1.1), say, $x(t)>0$ for $t \geq t_{1} \geq t_{0}$. As in the proof of Theorem 2.1, we obtain (2.3) for $t \geq t_{2}$. Now integrating Eq. (1.1) from $t \geq t_{2}$ to u and letting $u \rightarrow \infty$, we get

$$
\left(x^{(n-1)}(t)\right)^{\alpha} \geq \int_{t}^{\infty} q(s) x^{\alpha}[g(s)] d s
$$

By Lemma 2.2 there exist a constant $\theta, 0<\theta<1$ and $t_{3} \geq t_{2}$ such that

$$
\begin{equation*}
x(t) \geq \frac{\theta}{(n-1)!} t^{n-1} x^{(n-1)}(t) \quad \text { for } t \geq t_{3} \tag{2.11}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
x^{\alpha}(t) & \geq\left(\frac{\theta}{(n-1)!} t^{n-1}\right)^{\alpha}\left(x^{(n-1)}(t)\right)^{\alpha} \\
& \geq\left(\frac{\theta}{(n-1)!} t^{n-1}\right)^{\alpha} \int_{t}^{\infty} q(s) x^{\alpha}[g(s)] d s \quad \text { for } t \geq t_{3}
\end{aligned}
$$

Now by $\gamma(t) \geq t$ and the fact that $x^{\prime}(t)>0$ and $g(s) \geq t$ for $s \geq \gamma(t)$, it follows that

$$
\begin{aligned}
x^{\alpha}(t) & \geq\left(\frac{\theta}{(n-1)!} t^{n-1}\right)^{\alpha} \int_{\gamma(t)}^{\infty} q(s) x^{\alpha}[g(s)] d s \\
& \geq\left(\frac{\theta}{(n-1)!} t^{n-1}\right)^{\alpha} x^{\alpha}(t) \int_{\gamma(t)}^{\infty} q(s) d s
\end{aligned}
$$

Dividing both sides of the above inequality by $x^{\alpha}(t)$, we get

$$
\begin{equation*}
\left(\frac{\theta}{(n-1)!} t^{n-1}\right)^{\alpha} \int_{\gamma(t)}^{\infty} q(s) d s \leq 1 \quad \text { for } t \geq t_{3} \tag{2.12}
\end{equation*}
$$

Thus,

$$
\limsup _{t \rightarrow \infty}\left(\frac{t^{n-1}}{(n-1)!}\right)^{\alpha} \int_{\gamma(t)}^{t} q(s) d s=c<\infty
$$

Suppose (2.10) holds. Then there exists a sequence $\left\{T_{m}\right\}_{m=1}^{\infty}$, with $T_{m} \rightarrow \infty$ as $m \rightarrow \infty$ such that

$$
\lim _{m \rightarrow \infty}\left(\frac{T_{m}}{(n-1)!}\right)^{\alpha} \int_{\gamma\left(T_{m}\right)}^{\infty} q(s) d s=c>1 .
$$

Thus, for $\epsilon=(c-1) / 2>0$, there exists $N>0$ such that

$$
\begin{equation*}
\frac{c+1}{2}=c-\epsilon<\left(\frac{T_{m}}{(n-1)!}\right)^{\alpha} \int_{\gamma\left(T_{m}\right)}^{\infty} q(s) d s \quad \text { for } m>N . \tag{2.13}
\end{equation*}
$$

Choose $K \in\left(2 /(c+1)^{1 / \alpha}, 1\right)$. From (2.12) and (2.13), we get

$$
1 \geq K^{\alpha}\left(\frac{T_{\lambda}}{(n-1)!}\right)^{\alpha} \int_{\gamma\left(T_{\lambda}\right)}^{\infty} q(s) d s>\frac{2}{c+1} \frac{c+1}{2}=1
$$

for T_{λ} sufficiently large. This contradiction proves that condition (2.10) is not satisfied. This completes the proof.

In Theorem 2.2 if $g(t) \geq t$, i.e., $g(t)$ is an advanced argument, and $g^{\prime}(t) \geq 0$ for $t \geq t_{0}$, we find that Theorem 2.2 takes the following form.

Theorem 2.3. Let condition (1.2) hold with $\alpha=\beta, g(t) \geq t$, and $g^{\prime}(t) \geq 0$ for $t \geq t_{0}$. If.

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} t^{\alpha(n-1)} \int_{t}^{\infty} q(s) d s>((n-1)!)^{\alpha}, \tag{2.14}
\end{equation*}
$$

then Eq. (1.1) is oscillatory.
Example 2.2. Consider the half-linear differential equation

$$
\begin{align*}
& \left(\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{(n-1)}(t)\right)^{\prime}+c t^{-\alpha(n-1)-1}|x[g(t)]|^{\alpha-1} x[g(t)] \tag{2.15}\\
& \quad=0, \quad t>0,
\end{align*}
$$

where α and c are positive constants, $g(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$, and $\lim _{t \rightarrow \infty} g(t)=\infty$. We conclude the following:
(i) If $g(t)=t / 2$, then $\gamma(t)=2 t$, and hence Eq. (2.15) is oscillatory by Theorem 2.2 provided that

$$
c>2^{-\alpha(n-1)}\left[\alpha(n-1)((n-1)!)^{\alpha}\right] .
$$

(ii) If $g(t) \geq t$ and $g^{\prime}(t) \geq 0$, then Eq. (2.15) is oscillatory by Theorem 2.3 provided that

$$
c>\alpha(n-1)((n-1)!)^{\alpha} .
$$

Next, we have the following comparison result.

Theorem 2.4. Let condition (1.2) hold and assume that there exist a function $\sigma(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$and a constant $\theta, 0<\theta<1$ such that

$$
\begin{gather*}
\sigma(t) \leq \inf \{t, g(t)\}, \quad \lim _{t \rightarrow \infty} \sigma(t)=\infty \quad \text { and } \tag{2.16}\\
\sigma^{\prime}(t) \geq 0 \quad \text { for } t \geq t_{0} .
\end{gather*}
$$

If every solution of the delay equation

$$
\begin{equation*}
y^{\prime}(t)+\left(\frac{\theta}{(n-1)!}\right)^{\alpha} \sigma^{\alpha(n-1)}(t)|y[\sigma(t)]|^{\beta / \alpha} \operatorname{sgn} y[\sigma(t)]=0 \tag{2.17}
\end{equation*}
$$

is oscillatory, then Eq. (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of Eq. (1.1), say, $x(t)>0$ for $t \geq t_{1} \geq t_{0}$. As in the proof of Theorem 2.1, we see that $x^{(n-1)}(t)>0$ for $t \geq t_{2} \geq t_{1}$. By Lemma 2.2 there exist a constant $\theta, 0<\theta<1$ and $t_{3} \geq t_{2}$ such that

$$
\begin{equation*}
x[\sigma(t)] \geq \frac{\theta}{(n-1)!} \sigma^{n-1}(t) x^{(n-1)}[\sigma(t)] \quad \text { for } t \geq t_{3} . \tag{2.18}
\end{equation*}
$$

Using (2.18) in Eq. (1.1), for $t \geq t_{3}$ we obtain

$$
\begin{align*}
& \left(\left(x^{(n-1)}(t)\right)^{\alpha}\right)^{\prime}+\left(\frac{\theta}{(n-1)!} \sigma^{n-1}(t)\right)^{\beta} q(t)\left(x^{(n-1)}[\sigma(t)]\right)^{\beta} \\
& \quad \leq\left(\left(x^{(n-1)}(t)\right)^{\alpha}\right)^{\prime}+q(t) x^{\beta}[\sigma(t)] \leq 0 . \tag{2.19}
\end{align*}
$$

Let $y(t)=\left(x^{(n-1)}(t)\right)^{\alpha}, t \geq t_{3}$, to get

$$
\begin{equation*}
y^{\prime}(t)+\left(\frac{\theta}{(n-1)!} \sigma^{n-1}(t)\right)^{\beta} q(t)\left(y^{\beta / \alpha}[\sigma(t)]\right) \leq 0 \quad \text { for } t \geq t_{3} \tag{2.20}
\end{equation*}
$$

Integrating inequality (2.20) from $t \geq t_{3}$ to u and letting $u \rightarrow \infty$, we find

$$
y(t) \geq \int_{t}^{\infty}\left(\frac{\theta}{(n-1)!} \sigma^{n-1}(s)\right)^{\beta} q(s) y^{\beta / \alpha}[\sigma(s)] d s \quad \text { for } t \geq t_{3}
$$

The function $y(t)$ is obviously decreasing on $\left[t_{3}, \infty\right)$. Hence, by Theorem 1 in [17], we conclude that there exists a positive solution $y(t)$ of Eq. (2.17) with $\lim _{t \rightarrow \infty} y(t)=0$, which contradicts the fact that Eq. (2.17) is oscillatory. This completes the proof.

We can apply the results established in [14] to obtain the following corollary.

Corollary 2.2. Let conditions (1.2) and (2.16) hold. If

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\sigma(t)}^{t} \sigma^{\alpha(n-1)}(s) q(s) d s>\frac{((n-1)!)^{\alpha}}{e} \quad \text { when } \alpha=\beta \tag{2.21}
\end{equation*}
$$

or

$$
\begin{equation*}
\int^{\infty} \sigma^{\beta(n-1)}(s) q(s) d s=\infty \quad \text { when } 0<\beta / \alpha<1 \tag{2.22}
\end{equation*}
$$

then equation (1.1) is oscillatory.
Theorem 2.5. Let condition (1.2) hold with $\alpha>1$ and $\beta>1$, and assume that there exist two functions $\sigma(t), \rho(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$such that condition (2.1) is satisfied, and

$$
\begin{equation*}
\rho^{\prime}(t) \geq 0 \quad \text { and } \quad\left(\frac{\rho^{\prime}(t)}{\sigma^{n-2}(t) \sigma^{\prime}(t)}\right)^{\prime} \leq 0 \quad \text { for } t \geq t_{0} . \tag{2.23}
\end{equation*}
$$

If

$$
\begin{equation*}
\int^{\infty} \rho(s) q(s) d s=\infty \tag{2.24}
\end{equation*}
$$

then Eq. (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of Eq. (1.1), say, $x(t)>0$ for $t \geq t_{1} \geq t_{0}$. As in the proof of Theorem 2.1 we obtain (2.3) for $t \geq t_{2}$. Next, we define $w(t)$ as in the proof of Theorem 2.1 to obtain (2.4) which takes the form

$$
\begin{equation*}
w^{\prime}(t) \leq-\rho(t) q(t)+\rho^{\prime}(t) \frac{\left(x^{(n-1)}(t)\right)^{\alpha}}{x^{\beta}[\sigma(t) / 2]} \quad \text { for } t \geq t_{2} . \tag{2.25}
\end{equation*}
$$

Since $x^{(n-1)}(t)$ is nonincreasing on $\left[t_{2}, \infty\right)$, there exist a $t_{3} \geq t_{2}$ and positive constants b and $\theta_{1}, 0<\theta_{1}<1$ such that $\left(x^{(n-1)}(t)\right)^{\alpha-1} \leq b$ for $t \geq t_{3}$, and (2.5) holds for $t \geq t_{3}$. Now (2.25) takes the form

$$
\begin{equation*}
w^{\prime}(t) \leq-\rho(t) q(t)+b \frac{(n-2)!}{\theta_{1}} \frac{\rho^{\prime}(t)}{\sigma^{n-2}(t)} \frac{x^{\prime}[\sigma(t) / 2]}{x^{\beta}[\sigma(t) / 2]}, \quad t \geq t_{3} . \tag{2.26}
\end{equation*}
$$

But, by the Bonnet theorem for a fixed $t \geq t_{3}$ and for some $\xi \in\left[t_{3}, t\right]$, we have

$$
\begin{aligned}
\int_{t_{3}}^{t} & \frac{\rho^{\prime}(s)}{\sigma^{n-2}(s) \sigma^{\prime}(s)} \frac{x^{\prime}[\sigma(s) / 2] \sigma^{\prime}(s) / 2}{x^{\beta}[\sigma(s) / 2]} d s \\
& =\left(\frac{\rho^{\prime}\left(t_{3}\right)}{\sigma^{n-2}\left(t_{3}\right) \sigma^{\prime}\left(t_{3}\right)}\right) \int_{t_{3}}^{\xi} \frac{x^{\prime}[\sigma(s) / 2] \sigma^{\prime}(s) / 2}{x^{\beta}[\sigma(s) / 2]} d s \\
& =\left(\frac{\rho^{\prime}\left(t_{3}\right)}{\sigma^{n-2}\left(t_{3}\right) \sigma^{\prime}\left(t_{3}\right)}\right) \int_{x\left[\sigma\left(t_{3}\right) / 2\right]}^{x[\sigma(\xi) / 2]} w^{-\beta} d w
\end{aligned}
$$

and hence, since $\rho^{\prime}\left(t_{3}\right) \geq 0$ and

$$
\begin{aligned}
\int_{x\left[\sigma\left(t_{3}\right) / 2\right]}^{x[\sigma(\xi) / 2]} \frac{d w}{w^{\beta}} & =\frac{1}{\beta-1}\left(x^{1-\beta}\left[\sigma\left(t_{3}\right) / 2\right]-x^{1-\beta}[\sigma(\xi) / 2]\right) \\
& <\frac{1}{\beta-1} x^{1-\beta}\left[\sigma\left(t_{3}\right) / 2\right]
\end{aligned}
$$

we find

$$
\begin{equation*}
\int_{t_{3}}^{t} \frac{\rho^{\prime}(s)}{\sigma^{n-2}(s) \sigma^{\prime}(s)} \frac{x^{\prime}[\sigma(s) / 2] \sigma^{\prime}(s) / 2}{x^{\beta}[\sigma(s) / 2]} d s \leq K \quad \text { for } t \geq t_{3}, \tag{2.27}
\end{equation*}
$$

where

$$
K=\frac{\rho^{\prime}\left(t_{3}\right)}{\sigma^{n-2}\left(t_{3}\right) \sigma^{\prime}\left(t_{3}\right)} \frac{1}{\beta-1} x^{1-\beta}\left[\sigma\left(t_{3}\right) / 2\right] .
$$

Now in view of (2.27) it follows that

$$
\int_{t_{3}}^{t} \rho(s) q(s) d s \leq-w(t)+w\left(t_{3}\right)+K<\infty .
$$

This contradicts (2.24) and so the proof is complete.
Theorem 2.6. Let condition (2.23) in Theorem 2.5 be replaced by

$$
\rho^{\prime}(t) \geq 0 \quad \text { and } \quad \int_{t_{0}}^{\infty}\left|\left(\frac{\rho^{\prime}(s)}{\sigma^{n-2}(s) \sigma^{\prime}(s)}\right)^{\prime}\right| d s<\infty
$$

then the conclusion of Theorem 2.5 holds.
Proof. The proof is similar to that of Theorem 2.5 and hence is omitted.

Theorem 2.7. Let condition (1.2) hold with $\beta>\alpha$ and assume that there exists $\sigma(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$such that condition (2.1) is satisfied. If

$$
\begin{equation*}
\int^{\infty} \sigma^{n-2}(s) \sigma^{\prime}(s)\left(\int_{s}^{\infty} q(u) d u\right)^{1 / \alpha} d s=\infty \tag{2.28}
\end{equation*}
$$

then Eq. (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of Eq. (1.1), say, $x(t)>0$ for $t \geq t_{1} \geq t_{0}$. As in the proof of Theorem 2.5 we take $\rho(t)=1$ and obtain

$$
\int_{t_{2}}^{\infty} q(s) d s \leq \frac{\left(x^{(n-1)}\left(t_{2}\right)\right)^{\alpha}}{x^{\beta}\left[\sigma\left(t_{2}\right) / 2\right]}<\infty
$$

and therefore for $t \geq t_{2}$,

$$
\begin{aligned}
& \int_{t}^{\infty} q(s) d s \quad \leq \frac{\left(x^{(n-1)}(t)\right)^{\alpha}}{x^{\beta}[\sigma(t) / 2]} \quad \text { or } \\
&\left(\int_{t}^{\infty} q(s) d s\right)^{1 / \alpha} \leq \frac{x^{(n-1)}(t)}{x^{\beta / \alpha}[\sigma(t) / 2]}
\end{aligned}
$$

Now by Lemma 2.2 there exist a $t_{3} \geq t_{2}$ and a constant $\theta_{1}, 0<\theta_{1}<1$ such that (2.5) holds for $t \geq t_{3}$. Thus, for $t \geq t_{3}$,

$$
\begin{aligned}
& \left(\frac{\theta_{1}}{2(n-2)!} \sigma^{n-2}(t) \sigma^{\prime}(t)\right)\left(\int_{t}^{\infty} q(s) d s\right)^{1 / \alpha} \\
& \quad \leq \frac{\theta_{1}}{2(n-2)!} \sigma^{n-2}(t) \sigma^{\prime}(t) \frac{x^{(n-1)}(t)}{x^{\beta / \alpha}[\sigma(t) / 2]} \\
& \quad \leq \frac{x^{\prime}[\sigma(t) / 2] \sigma^{\prime}(t) / 2}{x^{\beta / \alpha}[\sigma(t) / 2]} .
\end{aligned}
$$

Integrating the above inequality from t_{3} to t, we get

$$
\begin{aligned}
\frac{\theta_{1}}{2(n-2)!} \int_{t_{3}}^{t} \sigma^{n-2}(s) \sigma^{\prime}(s)\left(\int_{s}^{\infty} q(u) d u\right)^{1 / \alpha} d s & \leq \int_{t_{3}}^{t} \frac{x^{\prime}[\sigma(s) / 2] \sigma^{\prime}(s) / 2}{x^{\beta / \alpha}[\sigma(s) / 2]} d s \\
& =\int_{x\left[\sigma\left(t_{3}\right) / 2\right]}^{x[\sigma(t) / 2]} w^{-\beta / \alpha} d w \\
& \leq \frac{\alpha}{\beta-\alpha} x^{(\alpha-\beta) / \alpha}\left[\sigma\left(t_{3}\right) / 2\right]<\infty
\end{aligned}
$$

which contradicts condition (2.28). This completes the proof.
Example 2.3. The equation

$$
\begin{aligned}
& \left(\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{(n-1)}(t)\right)^{\prime}+t^{-(n-1) \alpha-1}|x[\gamma t]|^{\beta} \operatorname{sgn} x[g(t)] \\
& \quad=0, \quad t \geq t_{0}>0
\end{aligned}
$$

which α, β, and γ are positive constants, $\beta>\alpha$, and $\gamma \leq 1$, is oscillatory by Theorem 2.7.

3. SOME EXTENSIONS

Here we shall extend our results of Section 2 to Eqs. (1.3) and (1.4). For Eq. (1.3) when the function f need not be monotonic we need the following notations and a lemma due to Mahfoud [16],

$$
\mathbb{R}_{t_{0}}= \begin{cases}\left(-\infty,-t_{0}\right] \cup\left[t_{0}, \infty\right) & \text { if } t_{0}>0 \\ (-\infty, 0) \cup(0, \infty) & \text { if } t_{0}=0\end{cases}
$$

$$
C(\mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R} \text { is continuous and } x f(x)>0 \text { for } x \neq 0\}
$$

and

$$
C_{B}\left(\mathbb{R}_{t_{0}}\right)
$$

$$
\begin{aligned}
& \quad=\{f \in C(\mathbb{R}): f \text { is of bounded variation on any interval } \\
& \left.[a, b] \subset \mathbb{R}_{t_{0}}\right\} .
\end{aligned}
$$

Lemma 3.1. Suppose $t_{0}>0$ and $f \in C(\mathbb{R})$. Then, $f \in C_{B}\left(\mathbb{R}_{t_{0}}\right)$ if and only if $f(x)=H(x) G(x)$ for all $x \in \mathbb{R}_{t_{0}}$, where $G: \mathbb{R}_{t_{0}} \rightarrow \mathbb{R}^{+}=(0, \infty)$ is nondecreasing on $\left(-\infty,-t_{0}\right)$ and nonincreasing on $\left(t_{0}, \infty\right)$, and $H: \mathbb{R}_{t_{0}} \rightarrow \mathbb{R}$ is nondecreasing on $\mathbb{R}_{t_{0}}$.
To obtain an extension, we assume that $f \in C\left(\mathbb{R}_{t_{0}}\right), t_{0} \geq 0$, and let G and H be a pair of continuous components of f with H being the nondecreasing one. Also, we assume that
$H(x) \operatorname{sgn} x \geq|x|^{\beta} \quad$ for $x \neq 0 \quad$ and $\quad \beta>0$ is a constant.
As in Section 2, if $x(t)$ is a nonoscillatory solution of Eq. (1.3), say, $x(t)>0$ for $t \geq t_{1} \geq t_{0}$, then there exists a $t_{2} \geq t_{1}$ such that (2.3) holds for all $t \geq t_{2}$. Next, there exist a $t_{3} \geq t_{2}$ and a constant $b>0$ such that

$$
\begin{equation*}
x^{(n-1)}(t) \leq b \quad \text { for } t \geq t_{3} . \tag{3.2}
\end{equation*}
$$

Integrating (3.2) $(n-1)$ times, there exist a $t_{4} \geq t_{3}$ and a positive constant $K>0$ such that

$$
\begin{equation*}
x[g(t)] \leq K g^{n-1}(t) \quad \text { for } t \geq t_{4} . \tag{3.3}
\end{equation*}
$$

Now it follows from Eq. (1.3) that

$$
\begin{align*}
0 & =\frac{d}{d t}\left(x^{(n-1)}(t)\right)^{\alpha}+q(t) G(x[g(t)]) H(x[g(t)]) \\
& \geq \frac{d}{d t}\left(\left(x^{(n-1)}(t)\right)^{\alpha}\right)+q(t) G(x[g(t)]) x^{\beta}[g(t)] \\
& \geq \frac{d}{d t}\left(\left(x^{(n-1)}(t)\right)^{\alpha}\right)+q(t) G\left(K g^{n-1}(t)\right) x^{\beta}[\sigma(t)] \quad \text { for } t \geq t_{4}, \tag{3.4}
\end{align*}
$$

where

$$
\begin{gather*}
\sigma \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right), \quad \sigma(t) \leq \inf \{t, g(t)\} \rightarrow \infty \\
\text { as } t \rightarrow \infty, \quad \sigma^{\prime}(t) \geq 0 \quad \text { for } t \geq t_{0} . \tag{3.5}
\end{gather*}
$$

Integrating the above inequality from t to $u\left(t_{4} \leq t \leq u\right)$ and letting $u \rightarrow \infty$, we obtain

$$
x^{(n-1)}(t) \geq\left(\int_{t}^{\infty} q(s) G\left(K\left[g^{n-1}(s)\right]\right) x^{\beta}[\sigma(s)] d s\right)^{1 / \alpha}
$$

Following similar steps as in the proof of Lemma 2.1 in [13], we find that if inequality (3.4) has an eventually positive solution, then so does the equation

$$
\begin{equation*}
\frac{d}{d t}\left(y^{(n-1)}(t)\right)^{\alpha}+q(t) G\left(K g^{n-1}(t)\right) y^{\beta}[\sigma(t)]=0 . \tag{3.6}
\end{equation*}
$$

Thus, to extend the results of Section 2, we shall need to apply the following theorem.

Theorem 3.1. Assume that $f \in C\left(\mathbb{R}_{t_{0}}\right), t_{0} \geq 0$, and let G and H be a pair of continuous components of f with H being the nondecreasing one. Moreover, assume that conditions (3.1) and (3.5) hold. If, for every $K>0$, the equation

$$
\left(\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{(n-1)}(t)\right)^{\prime}+q(t) G\left(K g^{n-1}(t)\right)|x[\sigma(t)]|^{\beta-1} x[\sigma(t)]=0
$$

is oscillatory, then Eq. (1.3) is also oscillatory.
We note that Theorem 3.1 together with the results of Section 2 can be applied to equations of type (1.3) with f being any of the following functions:
(i) $f(x)=|x|^{\beta-1} x /\left(1+|x|^{\gamma}\right), \beta, \gamma$ are positive constants,
(ii) $f(x)=|x|^{\beta-1} x \exp \left(-|x|^{\gamma}\right), \beta, \gamma$ are positive constants,
(iii) $f(x)=|x|^{\beta-1} x \operatorname{sech} x, \beta$ is a positive constant.

However, the results of Section 2 are not applicable to Eq. (1.3) with any one of the above choices of f.

Next, we shall extend the results of Section 2 to neutral equations of type (1.4). In fact, if we define $z(t)=x(t)+p(t) x[\tau(t)]$, then Eq. (1.4) becomes

$$
\begin{equation*}
\left(\left|z^{(n-1)}(t)\right|^{\alpha-1} z^{(n-1)}(t)\right)^{\prime}+F(t, x[g(t)])=0 \tag{3.7}
\end{equation*}
$$

Now if $x(t)$ is a nonoscillatory solution of Eq. (1.4), say, $x(t)>0$ and $x[\tau(t)]>0$ for $t \geq t_{1} \geq t_{0}$. Then, $z(t)>0$ for $t \geq t_{1}$ and there exists a $t_{2} \geq t_{1}$ such that $z^{(n-1)}(t)>0$ and $z^{\prime}(t)>0$ for $t \geq t_{2}$. In what follows we shall examine the following two cases for $\tau(t)$ and $p(t)$:
(i) $\{0 \leq p(t) \leq 1, \tau(t)<t\}$ and
(ii) $\{p(t) \geq 1, \tau(t)>t\}$.

For case (i), we assume that

$$
\begin{equation*}
0 \leq p(t) \leq 1, \tau(t)<t \text { and } \tau(t) \text { is strictly } \tag{3.8}
\end{equation*}
$$ increasing for $t \geq t_{0}$ and $p(t) \not \equiv 1$ eventually.

Now,

$$
\begin{align*}
x(t) & =z(t)-p(t) x[\tau(t)] \\
& =z(t)-p(t)[z[\tau(t)]-p[\tau(t)] x[\tau \circ \tau(t)] \\
& \geq z(t)-p(t) z[\tau(t)]] \geq(1-p(t)) z(t) \quad \text { for } t \geq t_{2} . \tag{3.9}
\end{align*}
$$

Using conditions (1.2) and (3.9) in Eq. (3.7), we get

$$
\frac{d}{d t}\left(z^{(n-1)}(t)\right)^{\alpha}+q(t)(1-p[g(t)])^{\beta} z^{\beta}[g(t)] \leq 0 \quad \text { for } t \geq t_{3} \geq t_{2}
$$

Now if (3.5) holds, then

$$
\begin{equation*}
\frac{d}{d t}\left(z^{(n-1)}(t)\right)^{\alpha}+q(t)(1-p[g(t)])^{\beta} z^{\beta}[\sigma(t)] \leq 0 \quad \text { for } t \geq t_{3} . \tag{3.10}
\end{equation*}
$$

As in the above discussion, we conclude that if inequality (3.10) has an eventually positive solution, then so does the equation

$$
\begin{equation*}
\frac{d}{d t}\left(y^{(n-1)}(t)\right)^{\alpha}+q(t)(1-p[g(t)])^{\beta} y^{\beta}[\sigma(t)]=0 . \tag{3.11}
\end{equation*}
$$

Thus, we have the following result:
Theorem 3.2. Let conditions (1.2), (3.5), and (3.8) hold. If the equation

$$
\left(\left|y^{(n-1)}(t)\right|^{\alpha-1} y^{(n-1)}(t)\right)^{\prime}+q(t)(1-p[g(t)])^{\beta}|y[\sigma(t)]|^{\beta-1} y[\sigma(t)]=0
$$

is oscillatory, then Eq. (1.4) is also oscillatory.
For case (ii), we assume that

$$
\begin{align*}
p(t) \geq 1, p(t) & \not \equiv 1 \text { eventually, } \\
\tau(t) & >t \text { and } \tau(t) \text { is strictly increasing for } t \geq t_{0}, \tag{3.12}
\end{align*}
$$

and there exists $\sigma^{*}(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$such that

$$
\begin{gather*}
\sigma^{*}(t) \leq \inf \left\{t, \tau^{-1} \operatorname{og}(t)\right\} \rightarrow \infty \quad \text { as } t \rightarrow \infty \quad \text { and } \\
\left(\sigma^{*}(t)\right)^{\prime} \geq 0 \quad \text { for } t \geq t_{0} \tag{3.13}
\end{gather*}
$$

where τ^{-1} is the inverse function of τ. We also let

$$
P^{*}(t)=\frac{1}{p\left[\tau^{-1}(t)\right]}\left(1-\frac{1}{p\left[\tau^{-1} \circ \tau^{-1}(t)\right]}\right) \quad \text { for all large } t
$$

Now, since $z^{\prime}(t)>0$ for $t \geq t_{2}$, we obtain

$$
\begin{align*}
x(t) & =\frac{1}{p\left[\tau^{-1}(t)\right]}\left(z\left[\tau^{-1}(t)\right]-x\left[\tau^{-1}(t)\right]\right) \\
& =\frac{z\left[\tau^{-1}(t)\right]}{p\left[\tau^{-1}(t)\right]}-\frac{1}{p\left[\tau^{-1}(t)\right]}\left(\frac{\tau\left[\tau^{-1} \circ \tau^{-1}(t)\right]}{p\left[\tau^{-1} \circ \tau^{-1}(t)\right]}-\frac{x\left[\tau^{-1} \circ \tau^{-1}(t)\right]}{p\left[\tau^{-1} \circ \tau^{-1}(t)\right]}\right) \\
& \geq \frac{z\left[\tau^{-1}(t)\right]}{p\left[\tau^{-1}(t)\right]}-\frac{z\left[\tau^{-1} \circ \tau^{-1}(t)\right]}{p\left[\tau^{-1}(t)\right] p\left[\tau^{-1} \circ \tau^{-1}(t)\right]} \\
& \geq \frac{1}{p\left[\tau^{-1}(t)\right]}\left[1-\frac{1}{p\left[\tau^{-1} \circ \tau^{-1}(t)\right]}\right] z\left[\tau^{-1}(t)\right] \\
& =P^{*}(t) z\left[\tau^{-1}(t)\right] \quad \text { for } t \geq t_{2} \tag{3.14}
\end{align*}
$$

Using (1.2), (3.13), and (3.14) in Eq. (3.7), we have

$$
\begin{aligned}
0 & \geq \frac{d}{d t}\left(z^{(n-1)}(t)\right)^{\alpha}+q(t)\left(P^{*}[g(t)]\right)^{\beta} z^{\beta}\left[\tau^{-1} \circ g(t)\right] \\
& \geq \frac{d}{d t}\left(z^{(n-1)}(t)\right)^{\alpha}+q(t)\left(P^{*}[g(t)]\right)^{\beta} z^{\beta}\left[\sigma^{*}(t)\right] \quad \text { for } t \geq t_{3} \geq t_{2}
\end{aligned}
$$

Thus, similar to Theorem 3.2 we have the following result:
THEOREM 3.3. Let conditions (1.2), (3.12), and (3.13) hold. If the equation

$$
\left(\left|y^{(n-1)}(t)\right|^{\alpha-1} y^{(n-1)}(t)\right)^{\prime}+q(t)\left(P^{*}[g(t)]\right)^{\beta}\left|y\left[\sigma^{*}(t)\right]\right|^{\beta-1} y\left[\sigma^{*}(t)\right]=0
$$

is oscillatory, then Eq. (1.4) is also oscillatory.
Remark 3.1. Further extensions to equations of the form

$$
\begin{aligned}
& \left(\left|[x(t)+p(t) x[\tau(t)]]^{(n-1)}\right|^{\alpha-1}\left(x(t)+p(t) x\left[\tau(t)_{0}\right]\right)^{(n-1)}\right)^{\prime}+q(t) f(x[g(t)]) \\
& \quad=0
\end{aligned}
$$

where f need not be monotonic, can be obtained easily by Theorems 3.13.3.

Example 3.1. For the equation

$$
\begin{align*}
& \frac{d}{d t}\left(\left|[x(t)+p x[\gamma t]]^{(n-1)}\right|^{\alpha-1}[x(t)+p x[\gamma t]]\right)+t^{-(n-1) \alpha-1}|x[\lambda t]|^{\beta} \operatorname{sgn} x[\lambda t] \\
& \quad=0 \quad \text { for } t \geq t_{0}>0 \tag{3.15}
\end{align*}
$$

where p, α, β, γ, and λ are positive constants, and $\beta>\alpha$, we conclude the following:
(i) If $p<1, \gamma<1$, and $\lambda \leq 1$, then Eq. (3.15) is oscillatory by Theorems 3.1 and 2.7.
(ii) If $p>1, \gamma>1$, and $\lambda \leq \gamma$, then Eq. (3.15) is oscillatory by Theorems 3.2 and 2.7.

4. FURTHER OSCILLATION CRITERIA

Our first oscillatory criterion for the equation (1.5) is embodied in the following theorem.

Theorem 4.1. Let condition (1.6) hold, and $h(t) \leq g(t) \leq t$ for $t \geq t_{0}$. If for every $\theta_{i}, 0<\theta_{i}<1, i=1,2$ the equations

$$
\begin{align*}
y^{\prime}(t) & +\left[\frac{\theta_{1}}{(n-1)^{\beta}((n-2)!)^{\lambda}}\right](h(t))^{(n-2) \lambda} H(t) q(t)|y[h(t)]|^{\lambda / \alpha} \operatorname{sgn} y[h(t)] \\
& =0 \tag{4.1}
\end{align*}
$$

and

$$
\begin{align*}
& z^{\prime}(t)+\left[\frac{\theta_{2}}{\left(2^{n-2}(n-2)!\right)^{\lambda}}\right](t-h(t))^{(n-2) \lambda} H(t) q(t)\left|z\left[\frac{t+h(t)}{2}\right]\right|^{\lambda / \alpha} \\
& \quad \times \operatorname{sgn} z\left[\frac{t+h(t)}{2}\right]=0 \tag{4.2}
\end{align*}
$$

where $\lambda=\beta+\mu \leq \alpha$ and $H(t)=(h(t))^{\beta}\left(h^{\prime}(t)\right)^{\lambda}$ are oscillatory, then Eq. (1.5) is oscillatory.

Proof. Let $x(t)$ be a nonoscillatory solution of Eq. (1.5), say, $x(t)>0$ for $t \geq t_{1} \geq t_{0}$. It is easy to check that there exists a $t_{2} \geq t_{1}$ such that $x^{(n-1)}(t)>0$ and $x^{\prime}(t)>0$ for $t \geq t_{2}$. We distinguish the following two cases:
(I) $x^{(n-1)}(t)>0, \ldots, x^{\prime \prime}(t)>0$ and $x^{\prime}(t)>0$ for $t \geq t_{2}$, and
(II) $x^{(n-1)}(t)>0, \ldots, x^{\prime \prime}(t)<0$ and $x^{\prime}(t)>0$ for $t \geq t_{2}$.

Assume (I) holds. By Lemma 2.2 there exist a $t_{3} \geq t_{2}$ and $b_{i}>0,0<$ $b_{i}<1, i=1,2$ such that, for $t \geq t_{3}$,

$$
\begin{equation*}
x[g(t)] \geq x[h(t)] \geq \frac{b_{1}}{(n-1)!} h^{n-1}(t) x^{(n-1)}[h(t)] \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t} x[h(t)]=x^{\prime}[h(t)] h^{\prime}(t) \geq \frac{b_{2}}{(n-2)!} h^{n-2}(t) h^{\prime}(t) x^{(n-1)}[h(t)] . \tag{4.4}
\end{equation*}
$$

Using conditions (1.6), (4.3), and (4.4) in Eq. (1.5), we get

$$
\begin{aligned}
& \frac{d}{d t}\left(x^{(n-1)}(t)\right)^{\alpha}+\left(\frac{b_{1}}{(n-1)!}\right)^{\beta}\left(\frac{b_{2}}{(n-2)!}\right)^{\mu} h^{(n-2) \lambda}(t) H(t) q(t) \\
& \quad \times\left(x^{(n-1)}[h(t)]\right)^{\lambda} \leq 0 \quad \text { for } t \geq t_{3} .
\end{aligned}
$$

Setting $w(t)=\left(x^{(n-1)}(t)\right)^{\alpha}, t \geq t_{3}$ we have

$$
\begin{align*}
w^{\prime}(t) & +\frac{\theta_{1}^{\beta} \theta_{2}^{\mu}}{(n-1)^{\beta}((n-2)!)^{\lambda}} h^{(n-2) \lambda}(t) H(t) q(t) w^{\lambda / \alpha}[h(t)] \\
& \leq 0 \quad \text { for } t \geq t_{3} . \tag{4.5}
\end{align*}
$$

Integrating (4.5) from $t \geq t_{3}$ to u and letting $u \rightarrow \infty$, we find

$$
w(t) \geq\left[\frac{\theta_{1}^{\beta} \theta_{2}^{\mu}}{(n-1)^{\beta}((n-2)!)^{\lambda}}\right] \int_{t}^{\infty} h^{(n-2) \lambda}(s) H(s) q(s) w^{\lambda / \alpha}[h(s)] d s .
$$

The function $w(t)=\left(x^{(n-1)}(t)\right)^{\alpha}$ is clearly strictly decreasing for $t \geq t_{3}$. Hence, by Theorem 1 in [17], there exists a positive solution $y(t)$ of Eq. (1.5) with $y(t) \rightarrow 0$ as $t \rightarrow \infty$. But this contradicts the assumption that Eq. (4.1) is oscillatory.

Assume (II) holds. By Lemma 2.2 there exists a $T_{1} \geq t_{1}$ and a constant $a, 0<a<1$ such that

$$
\begin{equation*}
x[g(t)] \geq x[h(t)] \geq a h(t) x^{\prime}[h(t)] \quad \text { for } t \geq T_{1} . \tag{4.6}
\end{equation*}
$$

Using conditions (1.6) and (4.6) in Eq. (1.5) and setting $v(t)=x^{\prime}(t)$ for $t \geq T_{1}$, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(v^{(n-2)}(t)\right)^{\alpha}+a^{\beta} H(t) q(t) v^{\lambda}[h(t)] \leq 0 \quad \text { for } t \geq T_{1} . \tag{4.7}
\end{equation*}
$$

It is clear that function $v(t)$ satisfies

$$
\begin{equation*}
(-1)^{i} v^{(i)}(t)>0, \quad i=0,1, \ldots, n-2 \quad \text { and } \quad t \geq T_{1} . \tag{4.8}
\end{equation*}
$$

Now by Lemma 2.2.4 in [2], there exists a $T \geq T_{1}$ such that

$$
\begin{align*}
v[h(t)] & \geq\left[\frac{(t-h(t))^{n-2}}{2^{n-2}(n-2)!}\right] v^{(n-2)}\left[\frac{t+h(t)}{2}\right] \quad \text { for } \\
T & \leq h(t) \leq \frac{t+h(t)}{2} . \tag{4.9}
\end{align*}
$$

Thus, (4.7) takes the form

$$
\begin{align*}
& w^{\prime}(t)+\frac{a^{\beta}}{\left[2^{n-2}(n-2)!\right]^{\lambda}}[t-h(t)]^{(n-2) \lambda} H(t) q(t) w^{\lambda / \alpha}[h(t)] \\
& \quad \leq 0, \quad t \geq T, \tag{4.10}
\end{align*}
$$

where $w(t)=\left(v^{(n-2)}(t)\right)^{\alpha}, t \geq T$. The rest of the proof is similar to that of case (I) and hence is omitted.

Now applying the results established in [14] to Theorem 4.1, we obtain
Corollary 4.1. Let condition (1.6) hold, and let $h(t) \leq g(t) \leq t$ for $t \geq t_{0}$. If

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{h(t)}^{t} h^{(n-2) \alpha}(s) H(s) q(s) d s>\frac{(n-1)^{\beta}((n-2)!)^{\alpha}}{e} \tag{1}
\end{equation*}
$$

and

$$
\liminf _{t \rightarrow \infty} \int_{(t+h(t)) / 2}^{t}[s-h(s)]^{(n-2) \alpha} H(s) q(s) d s>\frac{\left(2^{n-2}(n-2)!\right)^{\alpha}}{e}
$$

are satisfied when $\lambda=\beta+\mu=\alpha$,
(I_{2})

$$
\int^{\infty} h^{(n-2) \lambda}(s) H(s) q(s) d s=\infty
$$

and

$$
\int^{\infty}[s-h(s)]^{(n-2) \lambda} H(s) q(s) d s=\infty
$$

hold when $\lambda<\alpha$, then Eq. (1.5) is oscillatory.
Next we shall provide sufficient conditions for the oscillation of Eq. (1.5) when $\beta \leq \alpha$ and $\mu \leq \alpha$.

Theorem 4.2. Let condition (1.6) hold, and let $g(t) \leq t$ and $g^{\prime}(t) \geq 0$ for $t \geq t_{0}$. If for every positive constant $\theta_{i}, i=1,2$ the equations

$$
\begin{align*}
y^{\prime}(t) & +\left[\frac{\theta_{1}}{((n-1)!)^{\beta}}\right]\left(h^{\prime}(t)\right)^{\mu} g^{(n-1) \beta}(t) q(t)|y[g(t)]|^{\beta / \alpha} \\
& \times \operatorname{sgn} y[g(t)]=0 \tag{4.11}
\end{align*}
$$

and

$$
\begin{align*}
z^{\prime}(t) & +\frac{\theta_{2}}{\left(2^{n-2}(n-2)!\right)^{\mu}}(t-h(t))^{(n-2) \mu}\left(h^{\prime}(t)\right)^{\mu} q(t)\left|z\left[\frac{t+h(t)}{2}\right]\right|^{\mu / \alpha} \\
& \times \operatorname{sgn} z\left[\frac{t+h(t)}{2}\right]=0 \tag{4.12}
\end{align*}
$$

are oscillatory, then Eq. (1.5) is oscillatory.

Proof. Let $x(t)$ be a nonoscillatory solution of Eq. (1.5), say $x(t)>0$ for $t \geq t_{1} \geq t_{0}$. As in Theorem 4.1, we have cases (I) and (II) for $t \geq t_{2}$.

Assume (I) holds. Then there exist a $t_{3} \geq t_{2}$ and positive constants a and b such that

$$
\begin{equation*}
\frac{d}{d t} x[h(t)] \geq a h^{\prime}(t) \quad \text { for } t \geq t_{3} \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
x[g(t)] \geq \frac{b}{(n-1)!} g^{n-1}(t) x^{(n-1)}[g(t)] \quad \text { for } t \geq t_{3} . \tag{4.14}
\end{equation*}
$$

Using conditions (1.6), (4.13), and (4.14) in Eq. (1.5), we obtain

$$
w^{\prime}(t)+\left[\frac{a^{\mu} b^{\beta}}{((n-1)!)^{\beta}}\right]\left(h^{\prime}(t)\right)^{\mu} g^{(n-1) \beta}(t) q(t) w^{\beta / \alpha}[g(t)] \leq 0 \quad \text { for } t \geq t_{3},
$$

where $w(t)=\left(x^{(n-1)}(t)\right)^{\alpha}, t \geq t_{3}$. Now proceeding as in the proof of Theorem 4.1(I), we arrive at the desired contradiction.

Assume (II) holds. Then there exist a $T \geq t_{1}$ and a positive constant a_{1} such that (4.9) holds, and

$$
\begin{equation*}
x[g(t)] \geq a_{1} \quad \text { for } t \geq T \tag{4.15}
\end{equation*}
$$

Thus (4.10) takes the form

$$
\begin{aligned}
w^{\prime}(t)+ & {\left[\frac{a_{1}^{\beta}}{\left(2^{n-2}(n-2)!\right)^{\mu}}\right](t-h(t))^{(n-2) \mu}\left(h^{\prime}(t)\right)^{\mu} q(t) w^{\mu / \alpha}\left[\frac{t+h(t)}{2}\right] } \\
& \leq 0 \quad \text { for } t \geq T .
\end{aligned}
$$

The rest of the proof is similar to that of Theorem 4.1(II) and hence is omitted.

The following result provides sufficient conditions for the oscillation of Eq. (1.5) when β and μ are arbitrary positive constants.

Theorem 4.3. Let condition (1.6) hold, and let $g(t) \leq t$ and $g^{\prime}(t) \geq 0$ for $t \geq t_{0}$. If for every positive constant θ_{1}, θ_{2} the equation

$$
\begin{equation*}
\left(\left|y^{(n-1)}(t)\right|^{\alpha-1} y^{(n-1)}(t)\right)^{\prime}+\theta_{1}\left(h^{\prime}(t)\right)^{\mu} q(t)|y[g(t)]|^{\beta} \operatorname{sgn} y[g(t)]=0 \tag{4.16}
\end{equation*}
$$

is oscillatory, and every bounded solution of the equation

$$
\begin{equation*}
\left(\left|z^{(n-2)}(t)\right|^{\alpha-1} z^{(n-2)}(t)\right)^{\prime}+\theta_{2}\left(h^{\prime}(t)\right)^{\mu} q(t)|z[h(t)]|^{\mu} \operatorname{sgn} z[h(t)]=0 \tag{4.17}
\end{equation*}
$$

is oscillatory, then Eq. (1.5) is oscillatory.

Proof. Let $x(t)$ be a nonoscillatory solution of Eq. (1.5), say, $x(t)>0$ for $t \geq t_{1} \geq t_{0}$. As in the proof of Theorem 4.1 we consider cases (I) and (II).

In case (I) inequality (4.13) holds for $t \geq t_{3}$. Thus, Eq. (1.5) leads to

$$
\frac{d}{d t}\left(x^{(n-1)}(t)\right)^{\alpha}+a^{\mu}\left(h^{\prime}(t)\right)^{\mu} q(t) x^{\beta}[g(t)] \leq 0 \quad \text { for } t \geq t_{3} .
$$

Using an argument presented in Section 3, we find that the equation

$$
\frac{d}{d t}\left(x^{(n-1)}(t)\right)^{\alpha}+a^{\mu}\left(h^{\prime}(t)\right)^{\mu} q(t) x^{\beta}[g(t)]=0
$$

has a positive solution, which is a contradiction.
If (II) holds, then (4.15) is satisfied for $t \geq T \geq t_{1}$, and hence we have

$$
\begin{equation*}
\frac{d}{d t}\left(v^{(n-2)}(t)\right)^{\alpha}+a_{1}^{\beta}\left(h^{\prime}(t)\right)^{\mu} q(t) v^{\beta}[h(t)] \leq 0 \quad \text { for } t \geq T, \tag{4.18}
\end{equation*}
$$

where $v(t)=x^{\prime}(t)$ and (4.8) holds for $t \geq T$.
Integrating inequality (4.18) $(n-1)$ times from $t \geq T$ to u, using (4.8), and letting $u \rightarrow \infty$, we find

$$
v(t) \geq a_{1}^{\beta} \int_{t}^{\infty} \frac{(s-t)^{n-3}}{(n-3)!}\left(\int_{s}^{\infty}\left(h^{\prime}(\tau)\right)^{\mu} q(\tau) v^{\beta}[h(\tau)] d \tau\right)^{1 / \alpha} d s
$$

Now following similar steps of the proof of Theorem 1 in [17], we conclude that Eq. (4.17) has a solution $z(t)$ with $\lim _{t \rightarrow \infty} z(t)=0$, which is a contradiction. This completes the proof.
Example 4.1. Consider the equation

$$
\begin{equation*}
\left(\left|x^{(n-1)}(t)\right|^{\alpha-1} x^{(n-1)}(t)\right)^{\prime}+q(t)\left|x\left[\frac{t}{2}\right]\right|^{\beta}\left|\frac{d}{d t} x\left[\frac{t}{2}\right]\right|^{\mu} \operatorname{sgn} x\left[\frac{t}{2}\right]=0 \tag{4.19}
\end{equation*}
$$

where $q(t) \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right), \alpha, \beta$, and μ are positive constants. Let $\beta \leq \alpha$ and $\mu \leq \alpha$. Then, by Theorem 4.2, Eq. (4.19) is oscillatory if for every positive constant θ_{1}, θ_{2} the equations

$$
y^{\prime}(t)+\left[\frac{\theta_{1}}{2^{\mu}\left(2^{n-1}(n-1)!\right)^{\beta}}\right] t^{(n-1) \beta} q(t)\left|y\left[\frac{t}{2}\right]\right|^{\beta / \alpha} \operatorname{sgn} y\left[\frac{t}{2}\right]=0
$$

and

$$
z^{\prime}(t)+\left[\frac{\theta_{2}}{\left(2^{2 n-3}(n-2)!\right)^{\mu}}\right] t^{(n-2) \mu} q(t)\left|z\left[\frac{3 t}{4}\right]\right|^{\mu / \alpha} \operatorname{sgn} z\left[\frac{t}{2}\right]=0
$$

are oscillatory. We also note that Eq. (4.19) is oscillatory if we take $q(t)=$ $t^{n-2-k}, 0<k<1$ when $\alpha=\beta=\mu$, and

$$
q(t)=\frac{1}{t} \min \left\{t^{(n-1) \beta}, t^{(n-2) \mu}\right\}, \quad t>1
$$

when $\beta<\alpha$ and $\mu<\alpha$.

REFERENCES

1. R. P. Agarwal and S. R. Grace, Oscillation of certain functional differential equations, Comput. Math. Appl. 38 (1999), 143-153.
2. R. P. Agarwal, S. R. Grace, and D. O'Regan, "Oscillation Theory for Difference and Functional Differential Equations," Kluwer, Dordrecht, 2000.
3. R. P. Agarwal, S.-H. Shieh, and C. C. Yeh, Oscillation criteria for second-order retarded differential equations, Math. Comput. Model. 26 (1997), 1-11.
4. A. Elbert, A half-linear second order differential equation, in "Proceedings of the Colloquia Math. Soc. János Bolyai 30: Qualitative Theory of Differential Equations," Szeged, 1979, pp. 153-180.
5. A. Elbert and T. Kusano, Oscillation and nonoscillation theorems for a class of second order quasilinear differential equations, Acta Math. Hungar. 56 (1990), 325-336.
6. S. R. Grace, Oscillatory and asymptotic behavior of delay differential equations with a nonlinear damping term, J. Math. Anal. Appl. 168 (1992), 306-318.
7. S. R. Grace, Oscillation theorems for damped functional differential equations, Funkcial. Ekvac. 35 (1992), 261-278.
8. S. R. Grace, Oscillation theorems for certain functional differential equations, J. Math. Anal. Appl. 184 (1994), 100-111.
9. S. R. Grace, Oscillation criteria of comparison type for nonlinear functional differential equations, Math. Nachr. 173 (1995), 177-192.
10. S. R. Grace and B. S. Lalli, Oscillation theorems for nth order delay differential equations, J. Math. Anal. Appl. 91 (1983), 352-366.
11. G. H. Hardy, J. E. Littlewood, and G. Polya, "Inequalities," 2nd ed., Cambridge Univ. Press, Cambridge, UK, 1988.
12. J. Jeroš and T. Kusano, Oscillation properties of first order nonlinear functional differential equations of neutral type, Differential Integral Equations 4 (1991), 425-436.
13. A. G. Kartsatos, On nth order differential inequalities, J. Math. Anal. Appl. 52 (1975), 1-9.
14. R. G. Koplatadze and T. A. Chanturia, On oscillatory and monotone solutions of first order differential equations with deviating arguments, Differencial'nye Uraunenija 18 (1982), 1463-1465.
15. T. Kusano and B. S. Lalli, On oscillation of half-linear functional differential equations with deviating arguments, Hiroshima Math. J. 24 (1994), 549-563.
16. W. E. Mahfoud, Remarks on some oscillation theorems for nth order differential equations with a retarded argument, J. Math. Anal. Appl. 62 (1978), 68-80.
17. Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays, Arch. Math. 36 (1981), 168-178.
18. Ch. G. Philos, A new criterion for the oscillatory and asymptotic behavior of delay differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Mat. 39 (1981), 61-64.
19. P. J. Y. Wong and R. P. Agarwal, Oscillation theorems and existence criteria of asymptotically monotone solutions for second order differential equations, Dynam. Systems Appl. 4 (1995), 477-496.
20. P. J. Y. Wong and R. P. Agarwal, Oscillatory behaviour of solutions of certain second order nonlinear differential equations, J. Math. Anal. Appl. 198 (1996), 337-354.
