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1. INTRODUCTION

In this paper we shall study the oscillatory behavior of the functional
differential equation(∣∣x�n−1��t�∣∣α−1

x�n−1��t�)′ + F�t� x�g�t��� = 0� n even (1.1)

where α is a positive constant, g�t� ∈ C��t0� ∞����� limt→∞ g�t� = ∞, and
F�t� x� ∈ C��t0� ∞�× ����, sgn F�t� x� = sgn x� t ≥ t0.
We shall assume that there exist a constant β > 0 and a function q�t� ∈

C��t0� ∞���+� such that

F�t� x�sgn x ≥ q�t��x�β for x �= 0 and t ≥ t0� (1.2)

By a solution of Eq. (1.1) we mean a function x�t� ∈ Cn−1��Tx� ∞����
for some Tx ≥ t0 which has the property that

∣∣x�n−1��t�∣∣α−1
x�n−1��t� ∈

C1��Tx� ∞���� and satisfies equation (1.1) on �Tx� ∞�. A nontrivial solu-
tion of Eq. (1.1) is called oscillatory if it has arbitrarily large zeros; other-
wise it is said to be nonoscillatory. Equation (1.1) is oscillatory if all of its
solutions are oscillatory.
The equation (1.1) with n = 2, namely, the equation(�x′�t��α−1x′�t�)′ + F�t� x�g�t��� = 0�

and/or related equations have been the subject of intensive studies in recent
years because these equations are natural generalizations of the equation

x′′�t� + F�t� x�g�t��� = 0�

For recent contributions we refer the reader to [2–5, 15, 19, 20] and ref-
erences therein. As far as we know the equation (1.1) has never been the
subject of systematic investigations.
In Section 2, we shall present some oscillation criteria for Eq. (1.1) which

extend several known results established in [2–10, 16, 18–20]. Section 3
contains extensions of some of the results presented in Section 2 to a special
case of (1.1), namely, the equation(∣∣x�n−1��t�∣∣α−1

x�n−1��t�)′ + q�t�f �x�g�t��� = 0� (1.3)

where α > 0 is a constant, q�t� ∈ C��t0�∞���+�� g�t� ∈ C��t0�∞����,
f �x� ∈ C�����, limt→∞ g�t� = ∞, and xf �x� > 0 for x �= 0. The function
f in equation (1.3) need not be a monotonic function. Here, we shall also
consider equations of neutral type of the form

d

dt

(∣∣�x�t� + p�t�x�τ�t����n−1�∣∣α−1�x�t� + p�t�x�τ�t����n−1�)+ F�t� x�g�t���
= 0� (1.4)
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where α� F , and g are as in Eq. (1.1), p�t� ∈ C��t0�∞���0���0 =
�0�∞�� τ�t� ∈ C1��t0�∞����, and limt→∞ τ�t� = ∞. The obtained results
extend those presented in [10, 12, 16]. In Section 4, we shall consider the
more general equation

(∣∣x�n−1��t�∣∣α−1
x�n−1��t�)′ + F(t� x�g�t��� d

dt
x�h�t��

)
= 0� (1.5)

where α is a positive constant, g�t�� h�t� ∈ C��t0�∞����� h�t� ≤ t� h′�t� >
0 for t ≥ t0� limt→∞ g�t� = ∞ = limt→∞ h�t�, and F ∈ C��t0�∞�× �2���.
We shall assume that there exist a function q�t� ∈ C��t0�∞���+� and

positive constants β and µ such that

F�t� x� y�sgn x ≥ q�t��x�β�y�µ for xy �= 0 and t ≥ t0� (1.6)

The results presented in this section extend some of our earlier work in [1,
2, 6].

2. MAIN RESULTS

We shall need the following:

Lemma 2.1 [18]. Let x�t� ∈ Cn��t0�∞���+�. If x�n��t� is eventually of
one sign for all large t, say, t1 ≥ t0, then there exist a tx ≥ t0 and an integer
l� 0 ≤ l ≤ n, with n+ l even for x�n��t� ≥ 0� or n+ l odd for x�n��t� ≤ 0 such
that

l > 0 implies that x�k��t� > 0 for t ≥ tx� k = 0� 1� � � � � l − 1

and

l ≤ n− 1 implies that �−1�l+kx�k��t� > 0

for t ≥ tx, k = l� l + 1� � � � � n− 1.

Lemma 2.2 [18]. If the function x�t� is as in Lemma 2.1 and x�n−1�×
�t�x�n��t� ≤ 0 for t ≥ tx, then there exists a constant θ� 0 < θ < 1, such that

x�t� ≥ θ

�n− 1�! t
n−1x�n−1��t� for all large t

and

x′�t/2� ≥ θ

�n− 2�! t
n−2x�n−1��t� for all large t�
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Lemma 2.3. [11]. If X and Y are nonnegative numbers, then

Xλ − λXYλ−1 + �λ− 1�Yλ ≥ 0� λ > 1

and

Xλ − λXYλ−1 − �1− λ�Yλ ≤ 0� 0 < λ < 1�

In the above inequalities the equality holds if and only if X = Y.

Theorem 2.1. Let condition (1.2) hold with α = β. If there exist
σ�t�� ρ�t� ∈ C1��t0�∞���+�, and a constant θ > 1 such that

σ�t� ≤ inf�t� g�t��� lim
t→∞σ�t� = ∞ and σ ′�t� > 0 for t ≥ t0

(2.1)
and for T ≥ t0,

lim sup
t→∞

∫ ∞

T

[
ρ�s�q�s� − λθ �ρ′�s��α+1

�ρ�s�σn−2�s�σ ′�s��α
]
ds = ∞� (2.2)

where λ = �1/�α+ 1��α+1�2�n− 1�!�α, then Eq. (1.1) is oscillatory.

Proof. Suppose to the contrary that Eq. (1.1) has a nonoscillatory solu-
tion x�t�. Without loss of generality, we may assume that x�t� > 0 for
t ≥ t1 ≥ t0 ≥ 0. Since(∣∣x�n−1��t�∣∣α−1

xn−1�t�)′ = −F�t� x�g�t��� ≤ 0

it follows that the function �x�n−1��t��α−1x�n−1��t� is decreasing and x�n−1��t�
is eventually of one sign. If x�n−1��t� < 0 eventually, then since

0 ≥
(∣∣x�n−1��t�∣∣α−1

x�n−1��t�
)′

= α
(
−x�n−1��t�

)α−1
x�n��t��

we find that x�n��t� ≤ 0 eventually. But then Lemma 2.1 implies that
x�n−1��t� > 0 eventually. Further, when x�n−1��t� > 0 eventually then again
from Lemma 2.1 (note n is even) we have x′�t� > 0 eventually. Thus there
exists a t2 ≥ t1 such that

x′�t� > 0 and x�n−1��t� > 0 for t ≥ t2� (2.3)

Define

w�t� = ρ�t�
(
x�n−1��t�)α
xβ�σ�t�/2� � t ≥ t2�

Then, for t ≥ t2, in view of (1.2) we have

w′�t� ≤ −ρ�t�q�t� + ρ′�t�
ρ�t� w�t�

− βσ ′�t�
2

ρ�t�
(
x�n−1��t�

)α
x′�σ�t�/2�

xβ+1�σ�t�/2� � (2.4)
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By Lemma 2.2 (notice since x�n−1��t� > 0 for t ≥ t2, we have
��x�n−1��t��α�′ ≤ 0 for t ≥ t2, which in turn implies x�n��t� ≤ 0 for
t ≥ t2), there exists a t3 ≥ t2 and a constant θ1� 0 < θ1 < 1 such that

x′�σ�t�/2� ≥ θ1
�n− 2�!σ

n−2�t�x�n−1��t� for t ≥ t3� (2.5)

since x�n−1��σ�t�� ≥ x�n−1��t� for t ≥ t3.
Using (2.5) in (2.4) with α = β, we find

w′�t� ≤ −ρ�t�q�t� + ρ′�t�
ρ�t� w�t�

− αθ1
2�n− 2�!σ

�n−2��t�σ ′�t�ρ−1/α�t�w�α+1�/α�t��

Fix t ≥ t3, and set

X =
(

αθ1
2�n− 2�!σ

n−2�t�σ ′�t�
)α/�α+1� w�t�

ρ1/�α+1��t� � λ = �α+ 1�/α > 1

and

Y =
(

α

α+ 1

)α[ρ′�t�
ρ�t� ρ

1/�α+1��t�
(

αθ1
2�n− 2�!σ

n−2�t�σ ′�t�
)−α/�α+1�]α

�

Then, by Lemma 2.3, we obtain

ρ′�t�
ρ�t� w�t� −

αθ1
2�n− 2�!σ

n−2�t�σ ′�t�ρ−1/α�t�w�α+1�/α�t�

≤
(

1
α+ 1

)α+1[
ρ�t�

(
ρ′�t�
ρ�t�

)α+1( θ1
2�n− 2�!σ

n−2�t�σ ′�t�
)−α]

� t ≥ t3�

Now, inequality (2.4) reduces to

w′�t� ≤ −ρ�t�
[
q�t� − λρ′�t�

ρ�t�
(

ρ′�t�
θ1ρ�t�σn−2�t�σ ′�t�

)α]
for t ≥ t3�

Integrating the above inequality from t3 to t, we get

0 < w�t�

≤ w�t3� −
∫ t
t3

[
ρ�s�q�s� − λρ′�s�

(
ρ′�s�

θ1ρ�s�σn−2�s�σ ′�s�
)α]

ds� (2.6)

Taking lim sup on both sides of (2.6) as t → ∞, we obtain a contradiction
to condition (2.2). This completes the proof.
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We can apply Theorem 2.1 to the second order half-linear equation(�x′�t��α−1x′�t�)′ + q�t��x�g�t���α−1x�g�t�� = 0� (2.7)

where α > 0 is a constant, q�t� ∈ C��t0�∞���+�� g�t� ∈ C��t0�∞����, and
limt→∞ g�t� = ∞. In fact, we get the following new result.

Corollary 2.1. If there exist two functions ρ�t�� σ�t� ∈ C1��t0�∞���+�
such that condition (2.1) holds, and

lim sup
t→∞

∫ t
t0

[
ρ�s�q�s� − 1

�α+ 1�α+1

�ρ′�s��α+1

�ρ�s�σ ′�s��α
]
ds = ∞� (2.8)

then Eq. (2.7) is oscillatory.

Proof. Let x�t� be a nonoscillatory solution of Eq. (2.7), say, x�t� > 0
for t ≥ t1 ≥ t0. It is easy to check that x′�t� > 0 and x′�σ�t�� ≥ x′�t� for
t ≥ t2 ≥ t1. Next, we define

w�t� = ρ�t�
(
x′�t�
x�σ�t��

)α
� t ≥ t2�

Then,

w′�t� ≤ ρ�t�q�t� + ρ′�t�
ρ�t� − αρ−1/α�t�w�α+1�/α�t� for t ≥ t2�

The rest of the proof is similar to that of Theorem 2.1 and hence is omitted.

The following example illustrates our theory.

Example 2.1. Consider the second order half-linear differential equa-
tion (�x′�t��α−1x′�t�)′ + 1

tα+1 �x�t��α−1x�t� = 0� t > 0� (2.9)

where α > 0 is a constant. Here, we take ρ�t� = tα. Then,∫ t
T

[
ρ�s�q�s� − 1

�α+ 1�α+1

�ρ′�s��α+1

ρα�s�
]
ds

=
∫ t
T

[
1−

(
α

α+ 1

)α+1]1
s
ds

=
[
1−

(
α

α+ 1

)α+1]
ln
t

T
→ ∞ as t → ∞�

All conditions of Corollary 2.1 are satisfied and hence Eq. (2.9) is oscilla-
tory. We note that the above conclusion do not appear to follow from the
known oscillation criteria in the literature.
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For each t ≥ t0, we let g�t� ≤ t and define γ�t� = sup�s ≥ t0 � g�s� ≤ t�.
Clearly, γ�t� ≥ t and g ◦ γ�t� = t. Our next result is embodied in the
following:

Theorem 2.2. Let condition (1.2) hold with α = β. If

lim sup
t→∞

tα�n−1�
∫ ∞

γ�t�
q�s�ds > ��n− 1�!�α� (2.10)

then Eq. (1.1) is oscillatory.

Proof. Let x�t� be an eventually positive solution of Eq. (1.1), say,
x�t� > 0 for t ≥ t1 ≥ t0. As in the proof of Theorem 2.1, we obtain (2.3)
for t ≥ t2. Now integrating Eq. (1.1) from t ≥ t2 to u and letting u→ ∞,
we get

(
x�n−1��t�)α ≥

∫ ∞

t
q�s�xα�g�s��ds�

By Lemma 2.2 there exist a constant θ� 0 < θ < 1 and t3 ≥ t2 such that

x�t� ≥ θ

�n− 1�! t
n−1x�n−1��t� for t ≥ t3� (2.11)

Thus,

xα�t� ≥
(

θ

�n− 1�! t
n−1

)α
�x�n−1��t��α

≥
(

θ

�n− 1�! t
n−1

)α ∫ ∞

t
q�s�xα�g�s��ds for t ≥ t3�

Now by γ�t� ≥ t and the fact that x′�t� > 0 and g�s� ≥ t for s ≥ γ�t�, it
follows that

xα�t� ≥
(

θ

�n− 1�! t
n−1

)α ∫ ∞

γ�t�
q�s�xα�g�s��ds

≥
(

θ

�n− 1�! t
n−1

)α
xα�t�

∫ ∞

γ�t�
q�s�ds�

Dividing both sides of the above inequality by xα�t�, we get(
θ

�n− 1�! t
n−1

)α ∫ ∞

γ�t�
q�s�ds ≤ 1 for t ≥ t3� (2.12)

Thus,

lim sup
t→∞

(
tn−1

�n− 1�!
)α ∫ t

γ�t�
q�s�ds = c <∞�
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Suppose (2.10) holds. Then there exists a sequence �Tm�∞m=1, with Tm → ∞
as m→ ∞ such that

lim
m→∞

(
Tm

�n− 1�!
)α ∫ ∞

γ�Tm�
q�s�ds = c > 1�

Thus, for ε = �c − 1�/2 > 0, there exists N > 0 such that

c + 1
2

= c − ε <
(

Tm
�n− 1�!

)α ∫ ∞

γ�Tm�
q�s�ds for m > N� (2.13)

Choose K ∈ �2/�c + 1�1/α� 1�. From (2.12) and (2.13), we get

1 ≥ Kα
(

Tλ
�n− 1�!

)α ∫ ∞

γ�Tλ�
q�s�ds > 2

c + 1
c + 1
2

= 1

for Tλ sufficiently large. This contradiction proves that condition (2.10) is
not satisfied. This completes the proof.

In Theorem 2.2 if g�t� ≥ t, i.e., g�t� is an advanced argument, and
g′�t� ≥ 0 for t ≥ t0, we find that Theorem 2.2 takes the following form.

Theorem 2.3. Let condition (1.2) hold with α = β� g�t� ≥ t, and
g′�t� ≥ 0 for t ≥ t0. If.

lim sup
t→∞

tα�n−1�
∫ ∞

t
q�s�ds > ��n− 1�!�α� (2.14)

then Eq. (1.1) is oscillatory.

Example 2.2. Consider the half-linear differential equation(∣∣x�n−1��t�∣∣α−1
x�n−1��t�)′ + ct−α�n−1�−1�x�g�t���α−1x�g�t�� (2.15)

= 0� t > 0�

where α and c are positive constants, g�t� ∈ C��t0�∞����, and
limt→∞ g�t� = ∞. We conclude the following:

(i) If g�t� = t/2, then γ�t� = 2t, and hence Eq. (2.15) is oscillatory
by Theorem 2.2 provided that

c > 2−α�n−1��α�n− 1���n− 1�!�α��
(ii) If g�t� ≥ t and g′�t� ≥ 0, then Eq. (2.15) is oscillatory by Theorem

2.3 provided that

c > α�n− 1���n− 1�!�α�
Next, we have the following comparison result.
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Theorem 2.4. Let condition (1.2) hold and assume that there exist a func-
tion σ�t� ∈ C1��t0�∞���+� and a constant θ� 0 < θ < 1 such that

σ�t� ≤ inf�t� g�t��� lim
t→∞σ�t� = ∞ and (2.16)

σ ′�t� ≥ 0 for t ≥ t0�
If every solution of the delay equation

y ′�t� +
(

θ

�n− 1�!
)α
σα�n−1��t��y�σ�t���β/αsgn y�σ�t�� = 0 (2.17)

is oscillatory, then Eq. (1.1) is oscillatory.

Proof. Let x�t� be a nonoscillatory solution of Eq. (1.1), say, x�t� > 0
for t ≥ t1 ≥ t0. As in the proof of Theorem 2.1, we see that x�n−1��t� > 0 for
t ≥ t2 ≥ t1. By Lemma 2.2 there exist a constant θ, 0 < θ < 1 and t3 ≥ t2
such that

x�σ�t�� ≥ θ

�n− 1�!σ
n−1�t�x�n−1��σ�t�� for t ≥ t3� (2.18)

Using (2.18) in Eq. (1.1), for t ≥ t3 we obtain

((
x�n−1��t�)α)′ + (

θ

�n− 1�!σ
n−1�t�

)β
q�t�(x�n−1��σ�t��)β

≤
((
x�n−1��t�)α)′ + q�t�xβ�σ�t�� ≤ 0� (2.19)

Let y�t� =
(
x�n−1��t�

)α
� t ≥ t3� to get

y ′�t� +
( θ

�n− 1�!σ
n−1�t�

)β
q�t�(yβ/α�σ�t��) ≤ 0 for t ≥ t3� (2.20)

Integrating inequality (2.20) from t ≥ t3 to u and letting u→ ∞, we find

y�t� ≥
∫ ∞

t

( θ

�n− 1�!σ
n−1�s�

)β
q�s�yβ/α�σ�s��ds for t ≥ t3�

The function y�t� is obviously decreasing on �t3�∞�. Hence, by Theorem 1
in [17], we conclude that there exists a positive solution y�t� of Eq. (2.17)
with limt→∞ y�t� = 0, which contradicts the fact that Eq. (2.17) is oscilla-
tory. This completes the proof.

We can apply the results established in [14] to obtain the following
corollary.
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Corollary 2.2. Let conditions (1.2) and (2.16) hold. If

lim inf
t→∞

∫ t
σ�t�

σα�n−1��s�q�s�ds > ��n− 1�!�α
e

when α = β (2.21)

or ∫ ∞
σβ�n−1��s�q�s�ds = ∞ when 0 < β/α < 1� (2.22)

then equation (1.1) is oscillatory.

Theorem 2.5. Let condition (1.2) hold with α > 1 and β > 1, and
assume that there exist two functions σ�t�� ρ�t� ∈ C1��t0�∞���+� such that
condition (2.1) is satisfied, and

ρ′�t� ≥ 0 and
( ρ′�t�
σn−2�t�σ ′�t�

)′
≤ 0 for t ≥ t0� (2.23)

If ∫ ∞
ρ�s�q�s�ds = ∞� (2.24)

then Eq. (1.1) is oscillatory.

Proof. Let x�t� be a nonoscillatory solution of Eq. (1.1), say, x�t� > 0
for t ≥ t1 ≥ t0. As in the proof of Theorem 2.1 we obtain (2.3) for t ≥ t2.
Next, we define w�t� as in the proof of Theorem 2.1 to obtain (2.4) which
takes the form

w′�t� ≤ −ρ�t�q�t� + ρ′�t�
(
x�n−1��t�

)α
xβ�σ�t�/2� for t ≥ t2� (2.25)

Since x�n−1��t� is nonincreasing on �t2�∞�, there exist a t3 ≥ t2 and positive
constants b and θ1� 0 < θ1 < 1 such that �x�n−1��t��α−1 ≤ b for t ≥ t3, and
(2.5) holds for t ≥ t3. Now (2.25) takes the form

w′�t� ≤ −ρ�t�q�t� + b�n− 2�!
θ1

ρ′�t�
σn−2�t�

x′�σ�t�/2�
xβ�σ�t�/2� � t ≥ t3� (2.26)

But, by the Bonnet theorem for a fixed t ≥ t3 and for some ξ ∈ �t3� t�,
we have ∫ t

t3

ρ′�s�
σn−2�s�σ ′�s�

x′�σ�s�/2�σ ′�s�/2
xβ�σ�s�/2� ds

=
(

ρ′�t3�
σn−2�t3�σ ′�t3�

) ∫ ξ
t3

x′�σ�s�/2�σ ′�s�/2
xβ�σ�s�/2� ds

=
(

ρ′�t3�
σn−2�t3�σ ′�t3�

) ∫ x�σ�ξ�/2�
x�σ�t3�/2�

w−β dw
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and hence, since ρ′�t3� ≥ 0 and

∫ x�σ�ξ�/2�
x�σ�t3�/2�

dw

wβ
= 1
β− 1

(
x1−β�σ�t3�/2� − x1−β�σ�ξ�/2�

)

<
1

β− 1
x1−β�σ�t3�/2��

we find ∫ t
t3

ρ′�s�
σn−2�s�σ ′�s�

x′�σ�s�/2�σ ′�s�/2
xβ�σ�s�/2� ds ≤ K for t ≥ t3� (2.27)

where

K = ρ′�t3�
σn−2�t3�σ ′�t3�

1
β− 1

x1−β�σ�t3�/2��

Now in view of (2.27) it follows that∫ t
t3

ρ�s�q�s�ds ≤ −w�t� +w�t3� +K <∞�

This contradicts (2.24) and so the proof is complete.

Theorem 2.6. Let condition (2.23) in Theorem 2.5 be replaced by

ρ′�t� ≥ 0 and
∫ ∞

t0

∣∣∣∣
(

ρ′�s�
σn−2�s�σ ′�s�

)′∣∣∣∣ds <∞�

then the conclusion of Theorem 2.5 holds.

Proof. The proof is similar to that of Theorem 2.5 and hence is omit-
ted.

Theorem 2.7. Let condition (1.2) hold with β > α and assume that there
exists σ�t� ∈ C1��t0�∞���+� such that condition (2.1) is satisfied. If

∫ ∞
σn−2�s�σ ′�s�

(∫ ∞

s
q�u�du

)1/α

ds = ∞� (2.28)

then Eq. (1.1) is oscillatory.

Proof. Let x�t� be a nonoscillatory solution of Eq. (1.1), say, x�t� > 0
for t ≥ t1 ≥ t0. As in the proof of Theorem 2.5 we take ρ�t� = 1 and obtain

∫ ∞

t2

q�s�ds ≤
(
x�n−1��t2�

)α
xβ�σ�t2�/2�

<∞�
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and therefore for t ≥ t2,∫ ∞

t
q�s�ds ≤

(
x�n−1��t�)α
xβ�σ�t�/2� or

(∫ ∞

t
q�s�ds

)1/α

≤ x�n−1��t�
xβ/α�σ�t�/2� �

Now by Lemma 2.2 there exist a t3 ≥ t2 and a constant θ1� 0 < θ1 < 1 such
that (2.5) holds for t ≥ t3. Thus, for t ≥ t3,(

θ1
2�n− 2�!σ

n−2�t�σ ′�t�
)(∫ ∞

t
q�s�ds

)1/α

≤ θ1
2�n− 2�!σ

n−2�t�σ ′�t� x�n−1��t�
xβ/α�σ�t�/2�

≤ x′�σ�t�/2�σ ′�t�/2
xβ/α�σ�t�/2� �

Integrating the above inequality from t3 to t, we get

θ1
2�n−2�!

∫ t
t3

σn−2�s�σ ′�s�
(∫ ∞

s
q�u�du

)1/α

ds≤
∫ t
t3

x′�σ�s�/2�σ ′�s�/2
xβ/α�σ�s�/2� ds

=
∫ x�σ�t�/2�
x�σ�t3�/2�

w−β/αdw

≤ α

β−αx
�α−β�/α�σ�t3�/2�<∞�

which contradicts condition (2.28). This completes the proof.

Example 2.3. The equation(∣∣∣x�n−1��t��α−1x�n−1��t�
)′

+ t−�n−1�α−1�x�γt��β sgn x�g�t��

= 0� t ≥ t0 > 0�

which α�β� and γ are positive constants, β > α� and γ ≤ 1, is oscillatory
by Theorem 2.7.

3. SOME EXTENSIONS

Here we shall extend our results of Section 2 to Eqs. (1.3) and (1.4). For
Eq. (1.3) when the function f need not be monotonic we need the following
notations and a lemma due to Mahfoud [16],

�t0 =
{ �−∞�−t0� ∪ �t0�∞� if t0 > 0
�−∞� 0� ∪ �0�∞� if t0 = 0,
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C��� = �f � � → � is continuous and xf �x� > 0 for x �= 0�
and

CB��t0�
= {

f ∈ C��� � f is of bounded variation on any interval

�a� b� ⊂ �t0
}
�

Lemma 3.1. Suppose t0 > 0 and f ∈ C���. Then, f ∈ CB��t0� if and
only if f �x� = H�x�G�x� for all x ∈ �t0 , where G� �t0 → �+ = �0�∞� is
nondecreasing on �−∞�−t0� and nonincreasing on �t0�∞�, and H� �t0 → �
is nondecreasing on �t0 .

To obtain an extension, we assume that f ∈ C��t0�� t0 ≥ 0� and let G and
H be a pair of continuous components of f with H being the nondecreasing
one. Also, we assume that

H�x� sgn x ≥ �x�β for x �= 0 and β > 0 is a constant� (3.1)

As in Section 2, if x�t� is a nonoscillatory solution of Eq. (1.3), say, x�t� > 0
for t ≥ t1 ≥ t0, then there exists a t2 ≥ t1 such that (2.3) holds for all t ≥ t2.
Next, there exist a t3 ≥ t2 and a constant b > 0 such that

x�n−1��t� ≤ b for t ≥ t3� (3.2)

Integrating (3.2) �n− 1� times, there exist a t4 ≥ t3 and a positive constant
K > 0 such that

x�g�t�� ≤ Kgn−1�t� for t ≥ t4� (3.3)

Now it follows from Eq. (1.3) that

0 = d

dt

(
x�n−1��t�)α + q�t�G�x�g�t���H�x�g�t���

≥ d

dt

((
x�n−1��t�)α)+ q�t�G�x�g�t���xβ�g�t��

≥ d

dt

((
x�n−1��t�)α)+ q�t�G�Kgn−1�t��xβ�σ�t�� for t ≥ t4� (3.4)

where

σ ∈ C1��t0�∞���+�� σ�t� ≤ inf�t� g�t�� → ∞
as t → ∞� σ ′�t� ≥ 0 for t ≥ t0� (3.5)

Integrating the above inequality from t to u �t4 ≤ t ≤ u� and letting u→ ∞,
we obtain

x�n−1��t� ≥
(∫ ∞

t
q�s�G�K�gn−1�s���xβ�σ�s��ds

)1/α

�
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Following similar steps as in the proof of Lemma 2.1 in [13], we find that
if inequality (3.4) has an eventually positive solution, then so does the
equation

d

dt

(
y�n−1��t�)α + q�t�G�Kgn−1�t��yβ�σ�t�� = 0� (3.6)

Thus, to extend the results of Section 2, we shall need to apply the following
theorem.

Theorem 3.1. Assume that f ∈ C��t0�� t0 ≥ 0, and let G and H be a pair
of continuous components of f with H being the nondecreasing one. Moreover,
assume that conditions (3.1) and (3.5) hold. If, for every K > 0, the equation(∣∣∣x�n−1��t�

∣∣∣α−1
x�n−1��t�

)′
+ q�t�G�Kgn−1�t���x�σ�t���β−1x�σ�t�� = 0

is oscillatory, then Eq. (1.3) is also oscillatory.

We note that Theorem 3.1 together with the results of Section 2 can
be applied to equations of type (1.3) with f being any of the following
functions:

(i) f �x� = �x�β−1x/�1+ �x�γ�� β� γ are positive constants,

(ii) f �x� = �x�β−1x exp�−�x�γ�� β� γ are positive constants,

(iii) f �x� = �x�β−1x sech x�β is a positive constant.

However, the results of Section 2 are not applicable to Eq. (1.3) with any
one of the above choices of f .
Next, we shall extend the results of Section 2 to neutral equations of type

(1.4). In fact, if we define z�t� = x�t� +p�t�x�τ�t��, then Eq. (1.4) becomes(
�z�n−1��t��α−1z�n−1��t�

)′
+ F�t� x�g�t��� = 0� (3.7)

Now if x�t� is a nonoscillatory solution of Eq. (1.4), say, x�t� > 0 and
x�τ�t�� > 0 for t ≥ t1 ≥ t0� Then, z�t� > 0 for t ≥ t1 and there exists a
t2 ≥ t1 such that z�n−1��t� > 0 and z′�t� > 0 for t ≥ t2. In what follows we
shall examine the following two cases for τ�t� and p�t�:

(i) �0 ≤ p�t� ≤ 1� τ�t� < t� and

(ii) �p�t� ≥ 1� τ�t� > t�.
For case (i), we assume that

0 ≤ p�t� ≤ 1� τ�t� < t and τ�t� is strictly
increasing for t ≥ t0 and p�t� �≡ 1 eventually.

(3.8)
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Now,

x�t�= z�t� − p�t�x�τ�t��
= z�t� − p�t��z�τ�t�� − p�τ�t��x�τ ◦ τ�t��
≥ z�t� − p�t�z�τ�t��� ≥ �1− p�t��z�t� for t ≥ t2� (3.9)

Using conditions (1.2) and (3.9) in Eq. (3.7), we get

d

dt

(
z�n−1��t�

)α
+ q�t��1− p�g�t���βzβ�g�t�� ≤ 0 for t ≥ t3 ≥ t2�

Now if (3.5) holds, then

d

dt
�z�n−1��t��α + q�t��1− p�g�t���βzβ�σ�t�� ≤ 0 for t ≥ t3� (3.10)

As in the above discussion, we conclude that if inequality (3.10) has an
eventually positive solution, then so does the equation

d

dt
�y�n−1��t��α + q�t��1− p�g�t���βyβ�σ�t�� = 0� (3.11)

Thus, we have the following result:

Theorem 3.2. Let conditions (1.2), (3.5), and (3.8) hold. If the equation

(�y�n−1��t��α−1y�n−1��t�)′ + q�t��1− p�g�t���β�y�σ�t���β−1y�σ�t�� = 0

is oscillatory, then Eq. (1.4) is also oscillatory.

For case (ii), we assume that

p�t� ≥ 1� p�t� �≡ 1 eventually,

τ�t� > t and τ�t� is strictly increasing for t ≥ t0� (3.12)

and there exists σ∗�t� ∈ C1��t0�∞���+� such that

σ∗�t� ≤ inf�t� τ−1og�t�� → ∞ as t → ∞ and

�σ∗�t��′ ≥ 0 for t ≥ t0� (3.13)

where τ−1 is the inverse function of τ. We also let

P∗�t� = 1
p�τ−1�t��

(
1− 1

p�τ−1 ◦ τ−1�t��
)

for all large t�
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Now, since z′�t� > 0 for t ≥ t2, we obtain

x�t� = 1
p�τ−1�t��

(
z�τ−1�t�� − x�τ−1�t��)

= z�τ−1�t��
p�τ−1�t�� −

1
p�τ−1�t��

(
τ�τ−1 ◦ τ−1�t��
p�τ−1 ◦ τ−1�t�� −

x�τ−1 ◦ τ−1�t��
p�τ−1 ◦ τ−1�t��

)

≥ z�τ−1�t��
p�τ−1�t�� −

z�τ−1 ◦ τ−1�t��
p�τ−1�t��p�τ−1 ◦ τ−1�t��

≥ 1
p�τ−1�t��

[
1− 1

p�τ−1 ◦ τ−1�t��
]
z�τ−1�t��

= P∗�t�z�τ−1�t�� for t ≥ t2� (3.14)

Using (1.2), (3.13), and (3.14) in Eq. (3.7), we have

0 ≥ d

dt

(
z�n−1��t�)α + q�t��P∗�g�t���βzβ�τ−1 ◦ g�t��

≥ d

dt

(
z�n−1��t�)α + q�t��P∗�g�t���βzβ�σ∗�t�� for t ≥ t3 ≥ t2�

Thus, similar to Theorem 3.2 we have the following result:

Theorem 3.3. Let conditions (1.2), (3.12), and (3.13) hold. If the equa-
tion(∣∣y�n−1��t�∣∣α−1

y�n−1��t�)′ + q�t��P∗�g�t���β�y�σ∗�t���β−1y�σ∗�t�� = 0

is oscillatory, then Eq. (1.4) is also oscillatory.

Remark 3.1. Further extensions to equations of the form(∣∣�x�t� + p�t�x�τ�t����n−1�∣∣α−1�x�t� + p�t�x�τ�t�0���n−1�)′ + q�t�f �x�g�t���
= 0�

where f need not be monotonic, can be obtained easily by Theorems 3.1–
3.3.

Example 3.1. For the equation
d

dt

(∣∣�x�t� + px�γt���n−1�∣∣α−1�x�t� + px�γt��)+ t−�n−1�α−1�x�λt��β sgn x�λt�
= 0 for t ≥ t0 > 0� (3.15)

where p�α�β� γ, and λ are positive constants, and β > α, we conclude the
following:

(i) If p < 1� γ < 1, and λ ≤ 1, then Eq. (3.15) is oscillatory by
Theorems 3.1 and 2.7.

(ii) If p > 1� γ > 1, and λ ≤ γ, then Eq. (3.15) is oscillatory by
Theorems 3.2 and 2.7.
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4. FURTHER OSCILLATION CRITERIA

Our first oscillatory criterion for the equation (1.5) is embodied in the
following theorem.

Theorem 4.1. Let condition (1.6) hold, and h�t� ≤ g�t� ≤ t for t ≥ t0. If
for every θi� 0 < θi < 1� i = 1� 2 the equations

y ′�t� +
[

θ1
�n− 1�β��n− 2�!�λ

]
�h�t���n−2�λH�t�q�t��y�h�t���λ/α sgn y�h�t��

= 0 (4.1)

and

z′�t� +
[

θ2
�2n−2�n− 2�!�λ

]
�t − h�t���n−2�λH�t�q�t�

∣∣∣∣z
[
t + h�t�

2

]∣∣∣∣
λ/α

× sgn z
[
t + h�t�

2

]
= 0� (4.2)

where λ = β + µ ≤ α and H�t� = �h�t��β�h′�t��λ are oscillatory, then
Eq. (1.5) is oscillatory.

Proof. Let x�t� be a nonoscillatory solution of Eq. (1.5), say, x�t� > 0
for t ≥ t1 ≥ t0. It is easy to check that there exists a t2 ≥ t1 such that
x�n−1��t� > 0 and x′�t� > 0 for t ≥ t2. We distinguish the following two
cases:

(I) x�n−1��t� > 0� � � � � x′′�t� > 0 and x′�t� > 0 for t ≥ t2, and
(II) x�n−1��t� > 0� � � � � x′′�t� < 0 and x′�t� > 0 for t ≥ t2.

Assume (I) holds. By Lemma 2.2 there exist a t3 ≥ t2 and bi > 0� 0 <
bi < 1� i = 1� 2 such that, for t ≥ t3,

x�g�t�� ≥ x�h�t�� ≥ b1
�n− 1�!h

n−1�t�x�n−1��h�t�� (4.3)

and

d

dt
x�h�t�� = x′�h�t��h′�t� ≥ b2

�n− 2�!h
n−2�t�h′�t�x�n−1��h�t��� (4.4)

Using conditions (1.6), (4.3), and (4.4) in Eq. (1.5), we get

d

dt

(
x�n−1��t�)α + (

b1
�n− 1�!

)β( b2
�n− 2�!

)µ
h�n−2�λ�t�H�t�q�t�

×(
x�n−1��h�t��)λ ≤ 0 for t ≥ t3�
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Setting w�t� = �x�n−1��t��α� t ≥ t3 we have

w′�t� + θ
β
1 θ

µ
2

�n− 1�β��n− 2�!�λ h
�n−2�λ�t�H�t�q�t�wλ/α�h�t��

≤ 0 for t ≥ t3� (4.5)

Integrating (4.5) from t ≥ t3 to u and letting u→ ∞, we find

w�t� ≥
[

θ
β
1 θ

µ
2

�n− 1�β��n− 2�!�λ
] ∫ ∞

t
h�n−2�λ�s�H�s�q�s�wλ/α�h�s��ds�

The function w�t� = �x�n−1��t��α is clearly strictly decreasing for t ≥ t3.
Hence, by Theorem 1 in [17], there exists a positive solution y�t� of
Eq. (1.5) with y�t� → 0 as t → ∞. But this contradicts the assumption
that Eq. (4.1) is oscillatory.
Assume (II) holds. By Lemma 2.2 there exists a T1 ≥ t1 and a constant

a� 0 < a < 1 such that

x�g�t�� ≥ x�h�t�� ≥ ah�t�x′�h�t�� for t ≥ T1� (4.6)

Using conditions (1.6) and (4.6) in Eq. (1.5) and setting v�t� = x′�t� for
t ≥ T1, we obtain

d

dt

(
v�n−2��t�)α + aβH�t�q�t�vλ�h�t�� ≤ 0 for t ≥ T1� (4.7)

It is clear that function v�t� satisfies
�−1�iv�i��t� > 0� i = 0� 1� � � � � n− 2 and t ≥ T1� (4.8)

Now by Lemma 2.2.4 in [2], there exists a T ≥ T1 such that

v�h�t�� ≥
[�t − h�t��n−2

2n−2�n− 2�!
]
v�n−2�

[
t + h�t�

2

]
for

T ≤ h�t� ≤ t + h�t�
2

� (4.9)

Thus, (4.7) takes the form

w′�t� + aβ

�2n−2�n− 2�!�λ �t − h�t��
�n−2�λH�t�q�t�wλ/α�h�t��

≤ 0� t ≥ T� (4.10)

where w�t� = (
v�n−2��t�)α� t ≥ T . The rest of the proof is similar to that of

case (I) and hence is omitted.
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Now applying the results established in [14] to Theorem 4.1, we obtain

Corollary 4.1. Let condition (1.6) hold, and let h�t� ≤ g�t� ≤ t for
t ≥ t0. If

�I1�

lim inf
t→∞

∫ t
h�t�
h�n−2�α�s�H�s�q�s�ds > �n− 1�β��n− 2�!�α

e

and

lim inf
t→∞

∫ t
�t+h�t��/2

�s − h�s���n−2�αH�s�q�s�ds > �2n−2�n− 2�!�α
e

are satisfied when λ = β+ µ = α,

�I2� ∫ ∞
h�n−2�λ�s�H�s�q�s�ds = ∞

and ∫ ∞
�s − h�s���n−2�λH�s�q�s�ds = ∞

hold when λ < α, then Eq. (1.5) is oscillatory.

Next we shall provide sufficient conditions for the oscillation of Eq. (1.5)
when β ≤ α and µ ≤ α.
Theorem 4.2. Let condition (1.6) hold, and let g�t� ≤ t and g′�t� ≥ 0

for t ≥ t0. If for every positive constant θi� i = 1� 2 the equations

y ′�t� +
[

θ1
��n− 1�!�β

]
�h′�t��µg�n−1�β�t�q�t��y�g�t���β/α

× sgn y�g�t�� = 0 (4.11)

and

z′�t� + θ2
�2n−2�n− 2�!�µ �t − h�t��

�n−2�µ�h′�t��µq�t�
∣∣∣∣z
[
t + h�t�

2

]∣∣∣∣
µ/α

× sgn z
[
t + h�t�

2

]
= 0 (4.12)

are oscillatory, then Eq. (1.5) is oscillatory.
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Proof. Let x�t� be a nonoscillatory solution of Eq. (1.5), say x�t� > 0
for t ≥ t1 ≥ t0. As in Theorem 4.1, we have cases (I) and (II) for t ≥ t2.
Assume (I) holds. Then there exist a t3 ≥ t2 and positive constants a and

b such that

d

dt
x�h�t�� ≥ ah′�t� for t ≥ t3 (4.13)

and

x�g�t�� ≥ b

�n− 1�!g
n−1�t�x�n−1��g�t�� for t ≥ t3� (4.14)

Using conditions (1.6), (4.13), and (4.14) in Eq. (1.5), we obtain

w′�t� +
[

aµbβ

��n− 1�!�β
]
�h′�t��µg�n−1�β�t�q�t�wβ/α�g�t�� ≤ 0 for t ≥ t3�

where w�t� = �x�n−1��t��α� t ≥ t3. Now proceeding as in the proof of
Theorem 4.1(I), we arrive at the desired contradiction.
Assume (II) holds. Then there exist a T ≥ t1 and a positive constant a1

such that (4.9) holds, and

x�g�t�� ≥ a1 for t ≥ T� (4.15)

Thus (4.10) takes the form

w′�t� +
[

a
β
1

�2n−2�n− 2�!�µ
]
�t − h�t���n−2�µ�h′�t��µq�t�wµ/α

[ t + h�t�
2

]
≤ 0 for t ≥ T�

The rest of the proof is similar to that of Theorem 4.1(II) and hence is
omitted.

The following result provides sufficient conditions for the oscillation of
Eq. (1.5) when β and µ are arbitrary positive constants.

Theorem 4.3. Let condition (1.6) hold, and let g�t� ≤ t and g′�t� ≥ 0
for t ≥ t0. If for every positive constant θ1� θ2 the equation(∣∣∣y�n−1��t�

∣∣∣α−1
y�n−1��t�

)′
+θ1�h′�t��µq�t��y�g�t���βsgn y�g�t��=0 (4.16)

is oscillatory, and every bounded solution of the equation(∣∣∣z�n−2��t�
∣∣∣α−1

z�n−2��t�
)′
+θ2�h′�t��µq�t��z�h�t���µsgn z�h�t��=0 (4.17)

is oscillatory, then Eq. (1.5) is oscillatory.
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Proof. Let x�t� be a nonoscillatory solution of Eq. (1.5), say, x�t� > 0
for t ≥ t1 ≥ t0. As in the proof of Theorem 4.1 we consider cases (I) and
(II).
In case (I) inequality (4.13) holds for t ≥ t3. Thus, Eq. (1.5) leads to

d

dt

(
x�n−1��t�)α + aµ�h′�t��µq�t�xβ�g�t�� ≤ 0 for t ≥ t3�

Using an argument presented in Section 3, we find that the equation

d

dt

(
x�n−1��t�)α + aµ�h′�t��µq�t�xβ�g�t�� = 0

has a positive solution, which is a contradiction.
If (II) holds, then (4.15) is satisfied for t ≥ T ≥ t1, and hence we have

d

dt

(
v�n−2��t�)α + aβ1 �h′�t��µq�t�vβ�h�t�� ≤ 0 for t ≥ T� (4.18)

where v�t� = x′�t� and (4.8) holds for t ≥ T .
Integrating inequality (4.18) �n − 1� times from t ≥ T to u, using (4.8),

and letting u→ ∞, we find

v�t� ≥ aβ1
∫ ∞

t

�s − t�n−3

�n− 3�!
(∫ ∞

s
�h′�τ��µq�τ�vβ�h�τ��dτ

)1/α

ds�

Now following similar steps of the proof of Theorem 1 in [17], we con-
clude that Eq. (4.17) has a solution z�t� with limt→∞ z�t� = 0, which is a
contradiction. This completes the proof.

Example 4.1. Consider the equation(∣∣x�n−1��t�∣∣α−1
x�n−1��t�

)′
+ q�t�

∣∣∣x[ t
2

]∣∣∣β∣∣∣ d
dt
x
[ t
2

]∣∣∣µ sgn x
[ t
2

]
= 0� (4.19)

where q�t� ∈ C��t0�∞���+�� α�β, and µ are positive constants. Let β ≤ α
and µ ≤ α. Then, by Theorem 4.2, Eq. (4.19) is oscillatory if for every
positive constant θ1� θ2 the equations

y ′�t� +
[

θ1
2µ�2n−1�n− 1�!�β

]
t�n−1�βq�t�

∣∣∣y[ t
2

]∣∣∣β/αsgn y[ t
2

]
= 0

and

z′�t� +
[

θ2
�22n−3�n− 2�!�µ

]
t�n−2�µq�t�

∣∣∣z[3t
4

]∣∣∣µ/αsgn z[ t
2

]
= 0

are oscillatory. We also note that Eq. (4.19) is oscillatory if we take q�t� =
tn−2−k� 0 < k < 1 when α = β = µ, and

q�t� = 1
t
min�t�n−1�β� t�n−2�µ�� t > 1

when β < α and µ < α.
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