The Frobenius Problem, Rational Polytopes, and Fourier-Dedekind Sums ${ }^{1}$

Matthias Beck ${ }^{2}$
Department of Mathematical Sciences, State University of New York, Binghamton, New York 13902-6000
E-mail: matthias@math.binghamton.edu

Ricardo Diaz
Department of Mathematics, The University of Northern Colorado, Greeley, Colorado 80639
E-mail: rdiaz@bentley.unco.edu
and
Sinai Robins ${ }^{3}$
Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
E-mail: srobins@math.temple.edu
Communicated by H. Stark
Received October 1, 1999; revised November 5, 2001

We study the number of lattice points in integer dilates of the rational polytope

$$
\mathscr{P}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{\geqslant 0}^{n}: \sum_{k=1}^{n} x_{k} a_{k} \leqslant 1\right\}
$$

where a_{1}, \ldots, a_{n} are positive integers. This polytope is closely related to the linear Diophantine problem of Frobenius: given relatively prime positive integers a_{1}, \ldots, a_{n}, find the largest value of t (the Frobenius number) such that $m_{1} a_{1}+\cdots+m_{n} a_{n}=t$ has no solution in positive integers m_{1}, \ldots, m_{n}. This is equivalent to the problem of finding the largest dilate $t \mathscr{P}$ such that the facet $\left\{\sum_{k=1}^{n} x_{k} a_{k}=t\right\}$ contains no lattice point. We present two methods for computing the Ehrhart quasipolynomials $L(\overline{\mathscr{P}}, t):=\#\left(t \mathscr{P} \cap \mathbb{Z}^{n}\right)$ and $L\left(\mathscr{P}^{\circ}, t\right):=\#\left(t \mathscr{P}^{\circ} \cap \mathbb{Z}^{n}\right)$. Within the computations a Dedekind-like finite Fourier sum appears. We obtain a reciprocity law for these sums, generalizing a theorem of Gessel. As a corollary of our formulas, we rederive the reciprocity law for Zagier's higher-dimensional Dedekind sums. Finally, we find bounds for the Fourier-Dedekind sums and use them to give new bounds for the Frobenius number. © 2002 Elsevier Science (USA)
Key Words: rational polytopes; lattice points; the linear diophantine problem of Frobenius; Ehrhart quasipolynomial; Dedekind sums.

[^0]
1. INTRODUCTION

Let a_{1}, \ldots, a_{n} be positive integers, $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$ be the n-dimensional integer lattice, and

$$
\begin{equation*}
\mathscr{P}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{k} \geqslant 0, \sum_{k=1}^{n} a_{k} x_{k} \leqslant 1\right\} \tag{1}
\end{equation*}
$$

a rational polytope with vertices

$$
(0, \ldots, 0),\left(\frac{1}{a_{1}}, 0, \cdots 0\right),\left(0, \frac{1}{a_{2}}, 0, \ldots, 0\right), \ldots,\left(0, \ldots, 0, \frac{1}{a_{n}}\right)
$$

For a positive integer $t \in \mathbb{N}$, let $L(\overline{\mathscr{P}}, t)$ be the number of lattice points in the dilated polytope $t \mathscr{P}=\{t x: x \in \mathscr{P}\}$. Denote further the relative interior of \mathscr{P} by \mathscr{P}° and the number of lattice points in $t \mathscr{P}^{\circ}$ by $L\left(\mathscr{P}^{\circ}, t\right)$. Then $L\left(\mathscr{P}^{\circ}, t\right)$ and $L(\overline{\mathscr{P}}, t)$ are quasipolynomials in t of degree n [11], i.e. expressions

$$
c_{n}(t) t^{n}+\cdots+c_{1}(t) t+c_{0}(t)
$$

where c_{0}, \ldots, c_{n} are periodic functions in t. In fact, if the a_{k} 's are pairwise relatively prime then c_{1}, \ldots, c_{n} are constants, so only c_{0} will show this periodic dependency on t.

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be a set of relatively prime positive integers, and

$$
\begin{equation*}
p_{A}^{\prime}(t)=\#\left\{\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}: \sum_{k=1}^{n} m_{k} a_{k}=t\right\} \tag{2}
\end{equation*}
$$

The function $p_{A}^{\prime}(t)$ can be described as the number of restricted partitions of t with parts in A, where we require that each part is used at least once. (We reserve the name p_{A} for the enumeration function of those partitions which do not have this restriction.) Geometrically, $p_{A}^{\prime}(t)$ enumerates the lattice points on the skewed facet of \mathscr{P}. Define $f\left(a_{1}, \ldots, a_{n}\right)$ to be the largest value of t for which

$$
p_{A}^{\prime}(t)=0
$$

In the 19th century, Frobenius inaugurated the study of $f\left(a_{1}, \ldots, a_{n}\right)$. For $n=2$, it is known (probably at least since Sylvester [28]) that $f\left(a_{1}, a_{2}\right)=a_{1} a_{2}$. For $n>2$, all attempts for explicit formulas have proved elusive. Here we focus on the study of $p_{A}^{\prime}(t)$, and show that it has an explicit representation as a quasipolynomial. Through the discussion of $p_{A}^{\prime}(t)$, we gain new insights into Frobenius's problem.

Another motivation to study $p_{A}^{\prime}(t)$ is the following trivial reduction formula to lower dimensions:

$$
\begin{equation*}
p_{\left\{a_{1}, \ldots, a_{n}\right\}}^{\prime}(t)=\sum_{m>0} p_{\left\{a_{1}, \ldots, a_{n-1}\right\}}^{\prime}\left(t-m a_{n}\right) . \tag{3}
\end{equation*}
$$

Here we use the convention that $p_{A}^{\prime}(t)=0$ if $t \leqslant 0$. This identity can be easily verified by viewing $p_{A}^{\prime}(t)$ as

$$
p_{A}^{\prime}(t)=\#\left\{\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}: \sum_{k=1}^{n-1} m_{k} a_{k}=t-m_{n} a_{n}\right\} .
$$

Hence, precise knowledge of the values of t for which $p_{A}^{\prime}(t)=0$ in lower dimensions sheds additional light on the Frobenius number in higher dimensions.

The number $p_{A}^{\prime}(t)$ appears in the lattice point count of \mathscr{P}. It is for this reason that we decided to focus on this particular rational polytope. We present two methods (Sections 2 and 3) for computing the terms appearing in $L\left(\mathscr{P}^{\circ}, t\right)$ and $L(\overline{\mathscr{P}}, t)$. Both methods are refinements of concepts that were earlier introduced by the authors [2,9]. In contrast to the mostly algebraic-geometric and topological ways of computing $L\left(\mathscr{P}^{\circ}, t\right)$ and $L(\overline{\mathscr{P}}, t)[1,6,7,14,17,18]$, our methods are analytic. In passing, we recover the Ehrhart-Macdonald reciprocity law relating $L\left(\mathscr{P}^{\circ}, t\right)$ and $L(\overline{\mathscr{P}}, t)[11,20]$. Within the computations a Dedekind-like finite Fourier sum appears, which shares some properties with its classical siblings, discussed in Section 4. In particular, we prove two reciprocity laws for these sums: a rederivation of the reciprocity law for Zagier's higher-dimensional Dedekind sums [30], and a new reciprocity law that generalizes a theorem of Gessel [13]. Finally, in Section 5 we give bounds on these generalized Dedekind sums and apply our results to give new bounds for the Frobenius number. The literature on such bounds is vast-see, for example, $[4,8,12,6$, 25-27, 29].

2. THE RESIDUE METHOD

In [2], the first author used the residue theorem to count lattice points in a lattice polytope, that is, a polytope with integer vertices. Here we extend these methods to the case of rational vertices.

We are interested in the number of lattice points in the tetrahedron \mathscr{P} defined by (1) and integral dilates of it. We can interpret

$$
L(\overline{\mathscr{P}}, t)=\#\left\{\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}: m_{k} \geqslant 0, \sum_{k=1}^{n} m_{k} a_{k} \leqslant t\right\}
$$

as the Taylor coefficient of z^{t} of the function

$$
\begin{aligned}
(1 & \left.+z^{a_{1}}+z^{2 a_{1}}+\cdots\right) \cdots\left(1+z^{a_{n}}+z^{2 a_{n}}+\cdots\right)\left(1+z+z^{2}+\cdots\right) \\
& =\frac{1}{1-z^{a_{1}}} \cdots \frac{1}{1-z^{a_{n}} 1-z} .
\end{aligned}
$$

Equivalently,

$$
\begin{equation*}
L(\overline{\mathscr{P}}, t)=\operatorname{Res}\left(\frac{z^{-t-1}}{\left(1-z^{a_{1}}\right) \cdots\left(1-z^{a_{n}}\right)(1-z)}, z=0\right) \tag{4}
\end{equation*}
$$

If this expression counts the number of lattice points in $\overline{t \mathscr{P}}$, then the remaining task is to compute the other residues of

$$
F_{-t}(z):=\frac{z^{-t-1}}{\left(1-z^{a_{1}}\right) \cdots\left(1-z^{a_{n}}\right)(1-z)}
$$

and use the residue theorem for the sphere $\mathbb{C} \cup\{\infty\} . F_{-t}$ has poles at 0 and all $a_{1}^{\text {th }}, \ldots, a_{n}^{\text {th }}$ roots of unity. It is particularly easy to get precise formulas if the poles at the nontrivial roots of unity are simple. For this reason, assume in the following that a_{1}, \ldots, a_{n} are pairwise relatively prime. Then the residues for the $a_{1}^{\text {th }}, \ldots, a_{n}^{\text {th }}$ roots of unity are not hard to compute: Let $\lambda^{a_{1}}=1 \neq \lambda$, then

$$
\begin{aligned}
& \operatorname{Res}\left(F_{-t}(z), z=\lambda\right) \\
& \quad=\frac{\lambda^{-t-1}}{\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{n}}\right)(1-\lambda)} \operatorname{Res}\left(\frac{1}{1-z^{a_{1}}}, z=\lambda\right) \\
& \quad=\frac{\lambda^{-t-1}}{\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{n}}\right)(1-\lambda)} \lim _{z \rightarrow \lambda} \frac{z-\lambda}{1-z^{a_{1}}} \\
& \quad=-\frac{\lambda^{-t}}{a_{1}\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{n}}\right)(1-\lambda)} .
\end{aligned}
$$

If we add up all the nontrivial $a_{1}^{\text {th }}$ roots of unity, we obtain

$$
\begin{aligned}
& \sum_{\lambda^{a_{1}}=1 \neq \lambda} \operatorname{Res}\left(F_{-t}(z), z=\lambda\right) \\
& =\frac{-1}{a_{1}} \sum_{\lambda^{a_{1}}=1 \neq \lambda} \frac{\lambda^{-t}}{\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{n}}\right)(1-\lambda)} \\
& \quad=\frac{-1}{a_{1}} \sum_{k=1}^{a_{1}-1} \frac{\xi^{-k t}}{\left(1-\xi^{k a_{2}}\right) \cdots\left(1-\xi^{k a_{n}}\right)\left(1-\xi^{k}\right)},
\end{aligned}
$$

where ξ is a primitive $a_{1}^{\text {th }}$ root of unity. This motivates the following
Definition 1. Let $c_{1}, \ldots, c_{n} \in \mathbb{Z}$ be relatively prime to $c \in \mathbb{Z}$, and $t \in \mathbb{Z}$. Define the Fourier-Dedekind sum as

$$
\sigma_{t}\left(c_{1}, \ldots, c_{n} ; c\right)=\frac{1}{c} \sum_{\lambda^{c}=1 \neq \lambda} \frac{\lambda^{t}}{\left(\lambda^{c_{1}}-1\right) \cdots\left(\lambda^{c_{n}}-1\right)}
$$

Some properties of σ_{t} are discussed in Section 4. With this notation, we can now write

$$
\sum_{\lambda^{a_{1}}=1 \neq \lambda} \operatorname{Res}\left(F_{-t}(z), z=\lambda\right)=(-1)^{n+1} \sigma_{-t}\left(a_{2}, \ldots, a_{n}, 1 ; a_{1}\right) .
$$

We get similar residues for the $a_{2}^{\text {th }}, \ldots, a_{n}^{\text {th }}$ roots of unity. Finally, note that $\operatorname{Res}\left(F_{-t}, z=\infty\right)=0$, so that the residue theorem allows us to rewrite (4):

Theorem 1. Let \mathscr{P} be given by (1), with a_{1}, \ldots, a_{n} pairwise relatively prime. Then

$$
L(\overline{\mathscr{P}}, t)=R_{-t}\left(a_{1}, \ldots, a_{n}\right)+(-1)^{n} \sum_{j=1}^{n} \sigma_{-t}\left(a_{1}, \ldots, \hat{a}_{j}, \ldots, a_{n}, 1 ; a_{j}\right)
$$

where $R_{-t}\left(a_{1}, \ldots, a_{n}\right)=-\operatorname{Res}\left(F_{-t}(z), z=1\right)$, and \hat{a}_{j} means we omit the term a_{j}.

Remarks. (1) R_{-t} can be easily calculated via

$$
\begin{aligned}
\operatorname{Res}\left(F_{-t}(z), z=1\right) & =\operatorname{Res}\left(e^{z} F_{-t}\left(e^{z}\right), z=0\right) \\
& =\operatorname{Res}\left(\frac{e^{-t z}}{\left(1-e^{a_{1} z}\right) \cdots\left(1-e^{a_{n} z}\right)\left(1-e^{z}\right)}, z=0\right)
\end{aligned}
$$

To facilitate the computation in higher dimensions, one can use mathematics software such as Maple or Mathematica. It is easy to see that $R_{-t}\left(a_{1}, \ldots, a_{n}\right)$ is a polynomial in t whose coefficients are rational expressions in a_{1}, \ldots, a_{n}. The first values for R_{-t} are

$$
\begin{aligned}
R_{-t}(a)= & \frac{t}{a}+\frac{1}{2 a}+\frac{1}{2} \\
R_{-t}(a, b)= & \frac{t^{2}}{2 a b}+\frac{t}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{a b}\right)+\frac{1}{4}\left(1+\frac{1}{a}+\frac{1}{b}\right) \\
& +\frac{1}{12}\left(\frac{a}{b}+\frac{b}{a}+\frac{1}{a b}\right) \\
R_{-t}(a, b, c)= & \frac{t^{3}}{6 a b c}+\frac{t^{2}}{4}\left(\frac{1}{a b}+\frac{1}{a c}+\frac{1}{b c}+\frac{1}{a b c}\right) \\
& +\frac{t}{12}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}+\frac{3}{a b}+\frac{3}{a c}+\frac{3}{b c}+\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b}+\frac{1}{a b c}\right) \\
& +\frac{1}{24}\left(3+\frac{3}{a}+\frac{3}{b}+\frac{3}{c}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\right. \\
& \left.+\frac{1}{a b}+\frac{1}{a c}+\frac{1}{b c}+\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b}\right) .
\end{aligned}
$$

(2) If a_{1}, \ldots, a_{n} are not pairwise relatively prime, we can get similar formulas for $L(\overline{\mathscr{P}}, t)$. In this case we do not have only simple poles, so that the computation of the residues gets slightly more complicated.

For the computation of $L\left(\mathscr{P}^{\circ}, t\right)$ (the number of lattice points in the interior of our tetrahedron $t \mathscr{P}$), we similarly write

$$
L\left(\mathscr{P}^{\circ}, t\right)=\#\left\{\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}: m_{k}>0, \sum_{k=1}^{n} m_{k} a_{k}<t\right\}
$$

So now we can interpret $L\left(\mathscr{P}^{\circ}, t\right)$ as the Taylor coefficient of z^{t} of the function

$$
\begin{aligned}
& \left(z^{a_{1}}+z^{2 a_{1}}+\cdots\right) \cdots\left(z^{a_{n}}+z^{2 a_{n}}+\cdots\right)\left(z+z^{2}+\cdots\right) \\
& \quad=\frac{z^{a_{1}}}{1-z^{a_{1}}} \cdots \frac{z^{a_{n}}}{1-z^{a_{n}}} \frac{z}{1-z}
\end{aligned}
$$

or equivalently as

$$
\begin{aligned}
& \operatorname{Res}\left(\frac{z^{a_{1}}}{1-z^{a_{1}}} \cdots \frac{z^{a_{n}}}{1-z^{a_{n}}} \frac{z}{1-z} z^{-t-1}, z=0\right) \\
& \quad=\operatorname{Res}\left(\frac{-1}{z^{2}} \frac{1}{z^{a_{1}}-1} \cdots \frac{1}{z^{a_{n}}-1} \frac{1}{z-1} z^{t+1}, z=\infty\right) .
\end{aligned}
$$

To be able to use the residue theorem, this time we have to consider the function

$$
-\frac{1}{z^{a_{1}}-1} \cdots \frac{1}{z^{a_{n}}-1} \frac{1}{z-1} z^{t-1}=(-1)^{n} F_{t}(z) .
$$

The residues at the finite poles of F_{t} can be computed as before, with t replaced by $-t$, and the proof of the following theorem is completely analogous to Theorem 1:

Theorem 2. Let \mathscr{P} be given by (1), with a_{1}, \ldots, a_{n} pairwise relatively prime. Then

$$
L\left(\mathscr{P}^{\circ}, t\right)=(-1)^{n} R_{t}\left(a_{1}, \ldots, a_{n}\right)+\sum_{j=1}^{n} \sigma_{t}\left(a_{1}, \ldots, \hat{a}_{j}, \ldots, a_{n}, 1 ; a_{j}\right) .
$$

As an immediate consequence we get the remarkable
Corollary 1 (Ehrhart-Macdonald Reciprocity Law).

$$
L\left(\mathscr{P}^{\circ},-t\right)=(-1)^{n} L(\overline{\mathscr{P}}, t) .
$$

This result was conjectured for convex rational polytopes by Ehrhart [11], and first proved by Macdonald [20].

Of particular interest is the number of lattice points on the boundary of $t \mathscr{P}$. Besides computing $L\left(\mathscr{P}^{\circ}, t\right)$ and $L(\overline{\mathscr{P}}, t)$ and taking differences, we can also adjust our method to this situation, especially if we are interested in only parts of the boundary. As an example, we will compute $p_{A}^{\prime}(t)$ as defined in introduction (2), which appears in the context of the Frobenius problem. Again, for reasons of simplicity we assume in the following that a_{1}, \ldots, a_{n} are pairwise coprime positive integers.

This time we interpret

$$
p_{A}^{\prime}(t)=\#\left\{\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}: \sum_{k=1}^{n} m_{k} a_{k}=t\right\}
$$

as the Taylor coefficient of z^{t} of the function

$$
\begin{aligned}
& \left(z^{a_{1}}+z^{2 a_{1}}+\cdots\right) \cdots\left(z^{a_{n}}+z^{2 a_{n}}+\cdots\right) \\
& \quad=\frac{z^{a_{1}}}{1-z^{a_{1}}} \cdots \frac{z^{a_{n}}}{1-z^{a_{n}}} .
\end{aligned}
$$

That is,

$$
\begin{aligned}
p_{A}^{\prime}(t) & =\operatorname{Res}\left(\frac{z^{a_{1}}}{1-z^{a_{1}}} \cdots \frac{z^{a_{n}}}{1-z^{a_{n}}} z^{-t-1}, z=0\right) \\
& =\operatorname{Res}\left(\frac{-1}{z^{2}} \frac{1}{z^{a_{1}}-1} \cdots \frac{1}{z^{a_{n}}-1} z^{t+1}, z=\infty\right) .
\end{aligned}
$$

Thus, we have to find the other residues of

$$
G_{t}(z):=\frac{z^{t-1}}{\left(z^{a_{1}}-1\right) \cdots\left(z^{a_{n}}-1\right)}=(z-1) F_{t}(z)
$$

since

$$
\begin{equation*}
p_{A}^{\prime}(t)=-\operatorname{Res}\left(G_{t}(z), z=\infty\right) \tag{5}
\end{equation*}
$$

G_{t} has its other poles at all $a_{1}^{\text {th }}, \ldots, a_{n}^{\text {th }}$ roots of unity. Again, note that G_{t} has simple poles at all the nontrivial roots of unity. Let λ be a nontrivial $a_{1}^{\text {th }}$ root of unity, then

$$
\begin{aligned}
\operatorname{Res}\left(G_{t}(z), z=\lambda\right) & =\frac{\lambda^{t-1}}{\left(\lambda^{a_{2}}-1\right) \cdots\left(\lambda^{a_{n}}-1\right)} \operatorname{Res}\left(\frac{1}{z^{a_{1}}-1}, z=\lambda\right) \\
& =\frac{\lambda^{t}}{a_{1}\left(\lambda^{a_{2}}-1\right) \cdots\left(\lambda^{a_{n}}-1\right)} .
\end{aligned}
$$

Adding up all the nontrivial $a_{1}^{\text {th }}$ roots of unity, we obtain

$$
\begin{aligned}
\sum_{\lambda^{a_{1}}=1 \neq \lambda} \operatorname{Res}\left(G_{t}(z), z=\lambda\right) & =\frac{1}{a_{1}} \sum_{\lambda^{a_{1}}=1 \neq \lambda} \frac{\lambda^{t}}{\left(\lambda^{a_{2}}-1\right) \cdots\left(\lambda^{a_{n}}-1\right)} \\
& =\sigma_{t}\left(a_{2}, \ldots, a_{n} ; a_{1}\right) .
\end{aligned}
$$

Together with the similar residues at the other roots of unity, (5) gives us

Theorem 3.

$$
p_{A}^{\prime}(t)=R_{t}^{\prime}\left(a_{1}, \ldots, a_{n}\right)+\sum_{j=1}^{n} \sigma_{t}\left(a_{1}, \ldots, \hat{a}_{j}, \ldots, a_{n} ; a_{j}\right),
$$

where $R_{t}^{\prime}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{Res}\left(G_{t}(z), z=1\right)$.
R^{\prime} is as easily computed as before, the first values are

$$
\begin{aligned}
R_{t}^{\prime}(a, b)= & \frac{t}{a b}-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right), R_{t}^{\prime}(a, b, c) \\
= & \frac{t^{2}}{2 a b c}-\frac{t}{2}\left(\frac{1}{a b}+\frac{1}{a c}+\frac{1}{b c}\right) \\
& +\frac{1}{12}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}+\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b}\right), \\
R_{t}^{\prime}(a, b, c, d)= & \frac{t^{3}}{6 a b c d}-\frac{t^{2}}{4}\left(\frac{1}{a b c}+\frac{1}{a b d}+\frac{1}{a c d}+\frac{1}{b c d}\right) \\
& +\frac{t}{12}\left(\frac{3}{a b}+\frac{3}{a c}+\frac{3}{a d}+\frac{3}{b c}+\frac{3}{b d}+\frac{3}{c d}\right. \\
& \left.+\frac{a}{b c d}+\frac{b}{a c d}+\frac{c}{a b d}+\frac{d}{a b c}\right) \\
& -\frac{1}{24}\left(\frac{a}{b c}+\frac{a}{b d}+\frac{a}{c d}+\frac{b}{a d}+\frac{b}{a c}+\frac{b}{c d}\right. \\
& \left.+\frac{c}{a b}+\frac{c}{a d}+\frac{c}{b d}+\frac{d}{a b}+\frac{d}{a c}+\frac{d}{b c}\right) \\
& -\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right) .
\end{aligned}
$$

A general formula for $R_{t}^{\prime}\left(a_{1}, \ldots, a_{n}\right)$ was recently discovered in [3].
For generalizations, note that we can apply our method to any tetrahedron given in the form (1), with the a_{k} 's replaced by any rational numbers. Moreover, any convex rational polytope (that is, a convex polytope whose vertices have rational coordinates) can be described by a finite number of inequalities over the rationals. In other words, a convex lattice polytope \mathscr{P} is an intersection of finitely many half-spaces. This description of the polytope leads to an integral in several complex variables, as discussed in [2, Theorem 8] for lattice polytopes.

3. THE FOURIER METHOD

In this section we outline a Fourier-analytic method that achieves the same results. Although the theory is a little harder, the method is of independent interest. It draws connections to Brion's theorem on generating functions [5] and to the basic results of [9].

To be concrete, we illustrate the general case with the two-dimensional rational triangle \mathscr{P} whose vertices are $v_{0}=(0,0), v_{1}=\left(\frac{t}{a}, 0\right)$, and $v_{2}=\left(0, \frac{t}{b}\right)$. As before, the number of lattice points in the one-dimensional hypotenuse of this right triangle is

$$
p_{\{a, b\}}^{\prime}(t)=\#\left\{(m, n) \in \mathbb{N}^{2}: a m+b n=t\right\} .
$$

We denote the tangent cone to \mathscr{P} at the vertex v_{i} by K_{i}. We recall that the exponential sum attached to the cone K (with vertex v) is by definition

$$
\begin{equation*}
\sigma_{K}(s)=\sum_{m \in \mathbb{Z}^{n} \cap K} e^{-2 \pi\langle s, m\rangle} \tag{6}
\end{equation*}
$$

where s is any complex vector that makes the infinite sum (6) converge. An equivalent formulation of (6) which appears more combinatorial is

$$
\begin{equation*}
\sigma_{K}(x)=\sum_{m \in \mathbb{Z}^{n} \cap K} x^{m}, \tag{7}
\end{equation*}
$$

where $x^{m}=x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}$ and $x_{j}=e^{-2 \pi s_{j}}$.
In general dimension, let the vertices of the rational polytope \mathscr{P} be v_{1}, \ldots, v_{l}. Let the corresponding tangent cone at v_{j} be K_{j}. Finally, let the finite exponential sum over \mathscr{P} be

$$
\begin{equation*}
\sigma_{\mathscr{P}}(s)=\sum_{m \in \mathbb{Z}^{n} \cap \mathscr{P}} e^{-2 \pi(s, m\rangle} . \tag{8}
\end{equation*}
$$

Then there is the basic result that each exponential sum (7) is a rational function of x, and the following theorem relates these rational functions [5]:

Theorem 4 (Brion). For a generic value of $s \in \mathbb{C}^{n}$,

$$
\begin{equation*}
\sigma_{\mathscr{P}}(s)=\sum_{i=1}^{l} \sigma_{K_{i}}(s) . \tag{9}
\end{equation*}
$$

This result allows us to transfer the enumeration of lattice points in \mathscr{P} to the enumeration of lattice points in the tangent cones K_{i} at the vertices of \mathscr{P}, an easier task. In the theorem above, 'generic value of s ' means any $s \in \mathbb{C}^{n}$ for which these rational functions do not blow up to infinity.

To apply these results to our given rational triangle \mathscr{P}, we first employ the methods of [9] to get an explicit formula for the exponential sum for each tangent cone of \mathscr{P}. Then, by Brion's theorem on tangent cones, the sum of the three exponential sums attached to the tangent cones equals the exponential sum over \mathscr{P}. Canceling the singularities arising from each tangent cone, and letting $s \rightarrow 1$, we get the explicit formula of the previous section for the number of lattice points in the rational triangle \mathscr{P}.

In our case, K_{1} is generated by the two rational vectors $-v_{1}$ and $v_{2}-v_{1}$. We form the matrix

$$
A_{1}=\left(\begin{array}{cc}
-\frac{t}{a} & -\frac{t}{a} \\
0 & \frac{t}{b}
\end{array}\right)
$$

whose columns are the vectors that generate the cone K_{1}. Once we compute $\sigma_{K_{1}}(s), \sigma_{K_{2}}(s)$ will follow by symmetry. The easiest exponential sum to compute is

$$
\begin{aligned}
\sigma_{K_{0}}(s) & =\sum_{m \in \mathbb{Z}^{2} \cap K_{0}} e^{-2 \pi\langle s, m\rangle}=\sum_{\substack{m_{1} \geqslant 0 \\
m_{2} \geqslant 0}} e^{-2 \pi\left(m_{1} s_{1}+m_{2} s_{2}\right)} \\
& =\frac{1}{\left(1-e^{-2 \pi s_{1}}\right)\left(1-e^{-2 \pi s_{2}}\right)} .
\end{aligned}
$$

To compute $\sigma_{K_{i}}(s)(i \neq 0)$, we first translate the cone K_{i} by the vector $-v_{i}$ so that its new vertex is the origin. We therefore let $K=K_{i}-v_{i}$, and the following elementary lemma illustrates how a translation affects the Fourier transform. Let

$$
\chi_{K}(x)= \begin{cases}1 & \text { if } x \in K \\ 0 & \text { if } x \notin K\end{cases}
$$

denote the characteristic function of K.

Lemma 1. Let

$$
F_{v}(x)=\chi_{K+v}(x) e^{-2 \pi\langle s, m\rangle}
$$

for $x \in \mathbb{R}^{n}, s \in \mathbb{C}^{n}$. Then

$$
\hat{F}_{v}(\xi)=\hat{\chi}_{K}(\xi+i s) e^{-2 \pi i\langle\xi+i s, v\rangle}
$$

Proof.

$$
\begin{aligned}
\hat{F}_{v}(\xi) & =\int_{\mathbb{R}^{n}} \chi_{K+v}(x) e^{-2 \pi\langle s, m\rangle} e^{2 \pi i\langle\xi, x\rangle} d x \\
& =\int_{\mathbb{R}^{n}} e^{2 \pi i\langle\xi+i s, x\rangle} \chi_{K+v}(x) d x \\
& =\int_{\mathbb{R}^{n}} e^{2 \pi i\langle\xi+i s, y-v\rangle} \chi_{K}(y) d y \\
& =e^{-2 \pi i\langle\xi+i s, v\rangle} \int_{\mathbb{R}^{n}} e^{2 \pi i\langle\xi+i s, y\rangle} \chi_{K}(y) d y \\
& =e^{-2 \pi i\langle\xi+i s, v\rangle} \hat{\chi}_{K}(\xi+i s)
\end{aligned}
$$

This lemma also shows why it is useful to study the Fourier transform of K at complex values of the variable; that is, at $\xi+i s$. We study $F(x)$ because (6) can be rewritten as

$$
\sigma_{K_{0}+v}(s)=\sum_{m \in \mathbb{Z}^{n}} \chi_{K_{0}+v} e^{-2 \pi\langle s, m\rangle}=\sum_{m \in \mathbb{Z}^{n}} F_{v}(m)
$$

All of the lemmas of [9] remain true in this rational polytope context. The idea is to apply the Poisson summation to $\sum_{m \in \mathbb{Z}^{n}} F_{v}(m)$ and write formally

$$
\sum_{m \in \mathbb{Z}^{n}} F_{v}(m)=\sum_{m \in \mathbb{Z}^{n}} \hat{F}_{v}(m) .
$$

The right-hand side diverges, though, and some smoothing completes the picture. Because the steps are identical to those in [9], we omit the ensuing details. Let $\xi_{a}=e^{\frac{2 \pi i}{a}}$. We get

$$
\begin{align*}
\sigma_{K_{1}}\left(s_{1}, s_{2}\right)= & \frac{\xi_{a}^{t s_{1}}}{4 a} \sum_{r=0}^{a-1} \xi_{a}^{r t}\left(\operatorname{coth} \frac{\pi b}{t}\left(s_{1,2}+\frac{i r t}{a}\right)-1\right) \\
& \times\left(\operatorname{coth} \frac{\pi}{t}\left(s_{1,1}+\frac{i r t}{a}\right)+1\right), \tag{10}
\end{align*}
$$

where

$$
s_{1,1}=\left\langle s, \text { generator } 1 \text { of } K_{1}\right\rangle=\left\langle\left(s_{1}, s_{2}\right),\left(-\frac{t}{a}, 0\right)\right\rangle=-\frac{t s_{1}}{a}
$$

and

$$
s_{1,2}=\left\langle s, \text { generator } 2 \text { of } K_{1}\right\rangle=\left\langle\left(s_{1}, s_{2}\right),\left(-\frac{t}{a}, \frac{t}{b}\right)\right\rangle=-\frac{t s_{1}}{a}+\frac{t s_{2}}{b} .
$$

By (9), we have

$$
\#\left\{\mathbb{Z}^{2} \cap t \mathscr{P}\right\}=\sum_{m \in \mathbb{Z}^{2} \cap t \mathscr{P}} 1=\lim _{s \rightarrow 0}\left(\sigma_{K_{0}}(s)+\sigma_{K_{1}}(s)+\sigma_{K_{2}}(s)\right)
$$

Using the explicit description of $\sigma_{K_{i}}(s)$ in terms of cotangent functions, we can cancel their singularities at $s=0$ and simply add the holomorphic contributions to $\sigma_{K_{i}}(s)$ at $s=0$. The left-hand side of (9) is holomorphic in s, so that we are guaranteed that the singularities on the right-hand side cancel each other.

The only term in the finite sum (10) that contributes a singularity at $s=0$ is the $r=0$ term. We expand the three exponential sums $\sigma_{K_{i}}(s)$ into their Laurent expansions about $s=0$. Here we only require the first 3 terms of their Laurent expansions. In dimension n we would require the first $n+1$ terms; otherwise every step is the same in general dimension n.

We make use of the Laurent series

$$
\frac{1}{1-e^{-\alpha s}}=\frac{1}{\alpha s}+\frac{1}{2}+\frac{\alpha s}{12}+O\left(s^{2}\right)
$$

near $s=0$, as well as the Laurent series for $\cot \pi s$ near $s=0$. After expanding each cotangent in (10) for $\sigma_{K_{0}}(s), \sigma_{K_{1}}(s)$ and $\sigma_{K_{2}}(s)$ and letting $s \rightarrow 0$, we obtain Theorem 1 above as

$$
\begin{aligned}
L(\overline{\mathscr{P}}, t)= & \frac{t^{2}}{2 a b}+\frac{t}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{a b}\right) \\
& +\frac{1}{4}\left(1+\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{12}\left(\frac{a}{b}+\frac{b}{a}+\frac{1}{a b}\right) \\
& +\frac{1}{a} \sum_{r=1}^{a-1} \frac{\xi_{a}^{r t}}{\left(1-\xi_{a}^{r b}\right)\left(1-\xi_{a}^{r}\right)}+\frac{1}{b} \sum_{r=1}^{b-1} \frac{\xi_{b}^{r t}}{\left(1-\xi_{b}^{r a}\right)\left(1-\xi_{b}^{r}\right)} .
\end{aligned}
$$

Note that, as before, the periodic portion of $L(\overline{\mathscr{P}}, t)$ is entirely contained in the "constant" t term. By Ehrhart's reciprocity law ([11, Corollary 1]), there is a similar expression for $L(\mathscr{P}, t)$, and taking

$$
L(\overline{\mathscr{P}}, t)-L(\mathscr{P}, t)-\left[\frac{t}{a}\right]-\left[\frac{t}{b}\right]-1
$$

gives us $p_{\{a, b\}}(t)$. The same analysis gives us Theorem 1 in \mathbb{R}^{n}.

4. THE FOURIER-DEDEKIND SUM

In the derivation of the various lattice count formulas, we naturally arrived at the Fourier-Dedekind sum

$$
\sigma_{t}\left(c_{1}, \ldots, c_{n} ; c\right)=\frac{1}{c} \sum_{\lambda^{c}=1 \neq \lambda} \frac{\lambda^{t}}{\left(\lambda^{c_{1}}-1\right) \cdots\left(\lambda^{c_{n}}-1\right)}
$$

This expression is a generalization of the classical Dedekind sum $\mathfrak{s}(h, k)$ [23] and its various generalizations [10, 13, 21, 22, 30]. In fact, an easy calculation shows

$$
\begin{aligned}
\sigma_{0}(a, 1 ; c) & =\frac{1}{c} \sum_{\lambda^{c}=1 \neq \lambda} \frac{1}{\left(\lambda^{a}-1\right)(\lambda-1)} \\
& =\frac{1}{4}-\frac{1}{4 c}-\frac{1}{4 c} \sum_{k=1}^{c-1} \cot \frac{\pi k a}{c} \cot \frac{\pi k}{c}=\frac{1}{4}-\frac{1}{4 c}-\mathfrak{s}(a, c) .
\end{aligned}
$$

In general, note that $\sigma_{t}\left(c_{1}, \ldots, c_{n} ; c\right)$ is a rational number: It is an element of the cyclotomic field of $c^{\text {th }}$ roots of unity, and invariant under all Galois transformations of this field.

Some obvious properties are
$\sigma_{t}\left(c_{1}, \ldots, c_{n} ; c\right)=\sigma_{t}\left(c_{\pi(1)}, \ldots, c_{\pi(n)} ; c\right) \quad$ for any $\pi \in S_{n}$,
$\sigma_{t}\left(c_{1}, \ldots, c_{n} ; c\right)=\sigma_{(t \bmod c)}\left(c_{1} \bmod c, \ldots, c_{n} \bmod c ; c\right)$,
$\sigma_{t}\left(c_{1}, \ldots, c_{n} ; c\right)=\sigma_{b t}\left(b c_{1}, \ldots, b c_{n} ; c\right) \quad$ for any $b \in \mathbb{Z}$ with $(b, c)=1$.
We can get more familiar-looking formulas for σ_{t} in certain dimensions. For example, counting points in dimension 1 , we find that

$$
L(\overline{\mathscr{P}}, t)=\#\{m \in \mathbb{Z}: m \geqslant 0, m c \leqslant t\}=\left\lfloor\frac{t}{c}\right\rfloor+1
$$

so that Theorem 1 implies

$$
\begin{equation*}
\sigma_{-t}(1 ; c)=\frac{1}{c} \sum_{\lambda^{c}=1 \neq \lambda} \frac{\lambda^{-t}}{(\lambda-1)}=\frac{t}{c}-\left\lfloor\frac{t}{c}\right\rfloor-\frac{1}{2}+\frac{1}{2 c}=\left(\left(\frac{t}{c}\right)\right)+\frac{1}{2 c} . \tag{12}
\end{equation*}
$$

Here, $((x))=x-\lfloor x\rfloor-1 / 2$ is a sawtooth function (differing slightly from the one appearing in the classical Dedekind sums). This restates the wellknown finite Fourier expansion of the sawtooth function (see, e.g., [23]).

As another example, we reformulate

$$
\sigma_{t}(a, b ; c)=\frac{1}{c} \sum_{\lambda^{c}=1 \neq \lambda} \frac{\lambda^{t}}{\left(\lambda^{a}-1\right)\left(\lambda^{b}-1\right)}
$$

by means of finite Fourier series. Consider

$$
\begin{align*}
\sigma_{t}(a ; c) & =\frac{1}{c} \sum_{\lambda^{c}=1 \neq \lambda} \frac{\lambda^{-t}}{\left(\lambda^{a}-1\right)}=\frac{1}{c} \sum_{k=1}^{c-1} \frac{\xi^{k t}}{\left(\xi^{k a}-1\right)}=\frac{1}{c} \sum_{k=1}^{c-1} \frac{\xi^{k a^{-1} t}}{\left(\xi^{k}-1\right)} \\
& =\left(\left(\frac{-a^{-1} t}{c}\right)\right)+\frac{1}{2 c} \tag{13}
\end{align*}
$$

where ξ is a primitive $c^{\text {th }}$ root of unity and $a a^{-1} \equiv 1 \bmod c$; here, the last equality follows from (12). We use the well-known convolution theorem for finite Fourier series:

Theorem 5. Let $f(t)=\frac{1}{N} \sum_{k=0}^{N-1} a_{k} \xi^{k t}$ and $g(t)=\frac{1}{N} \sum_{k=0}^{N-1} b_{k} \xi^{k t}$, where ξ is a primitive $N^{\text {th }}$ root of unity. Then

$$
\frac{1}{N} \sum_{k=0}^{N-1} a_{k} b_{k} \xi^{k t}=\sum_{m=0}^{N-1} f(t-m) g(m)
$$

Hence by (13),

$$
\begin{aligned}
\sigma_{t}(a, b ; c) & =\sum_{m=0}^{c-1} \sigma_{t-m}(a ; c) \sigma_{m}(b ; c) \\
& =\sum_{m=0}^{c-1}\left[\left(\left(\frac{-a^{-1}(t-m)}{c}\right)\right)+\frac{1}{2 c}\right]\left[\left(\left(\frac{-b^{-1} m}{c}\right)\right)+\frac{1}{2 c}\right] \\
& =\sum_{m=0}^{c-1}\left(\left(\frac{a^{-1}(m-t)}{c}\right)\right)\left(\left(\frac{-b^{-1} m}{c}\right)\right)-\frac{1}{4 c} .
\end{aligned}
$$

Here, $a a^{-1} \equiv b b^{-1} \equiv 1 \bmod c$. The last equality follows from

$$
\sum_{m=0}^{c-1}\left(\left(\frac{m}{c}\right)\right)=-\frac{1}{2}
$$

Furthermore, by the periodicity of $((x))$,

$$
\begin{equation*}
\sigma_{t}(a, b ; c)=\sum_{m=0}^{c-1}\left(\left(\frac{-a^{-1}(b m+t)}{c}\right)\right)\left(\left(\frac{m}{c}\right)\right)-\frac{1}{4 c} . \tag{14}
\end{equation*}
$$

The expression on the right is, up to a trivial term, a special case of a Dedekind-Rademacher sum [10,19,21,22]. It is a curious fact that the function $\sigma_{t}(a, b ; c)$ is the nontrivial part of a multiplier system of a weight- 0 modular form [24, p. 121].

We conclude this section by proving two reciprocity laws for Fourier-Dedekind sums. The first one is equivalent to Zagier's reciprocity law for his higher dimensional Dedekind sums [30]. They are essentially Fourier-Dedekind sums with $t=0$, that is, trivial numerators.

Theorem 6. For pairwise relatively prime integers a_{1}, \ldots, a_{n},

$$
\sum_{j=1}^{n} \sigma_{0}\left(a_{1}, \ldots, \hat{a}_{j}, \ldots, a_{n} ; a_{j}\right)=1-R_{0}^{\prime}\left(a_{1}, \ldots, a_{n}\right)
$$

where R_{t}^{\prime} is the rational function given in Theorem 3.
It is well known [11] that the constant term of a lattice polytope (that is, a polytope with integral vertices) equals the Euler characteristic of the polytope. Consider the polytope

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{>0}^{n}: \sum_{k=1}^{n} x_{k} a_{k}=1\right\}
$$

whose dilates correspond to the quantor $p_{A}^{\prime}(t)$ of Theorem 3. If we dilate this polytope only by multiples of $a_{1} \cdots a_{n}$, say $t=a_{1} \cdots a_{n} w$, we obtain the dilates of a lattice polytope. Theorem 3 simplifies for these t to

$$
p_{A}^{\prime}\left(a_{1} \cdots a_{n} w\right)=R_{a_{1} \cdots a_{n} w}^{\prime}\left(a_{1}, \ldots, a_{n}\right)+\sum_{j=1}^{n} \sigma_{0}\left(a_{1}, \ldots, \hat{a}_{j}, \ldots, a_{n} ; a_{j}\right)
$$

using the periodicity of σ_{t} (11). On the other hand, we know that the constant term (in terms of w) is the Euler characteristic of the polytope and hence equals 1 , which yields the identity

$$
1=R_{0}^{\prime}\left(a_{1}, \ldots, a_{n}\right)+\sum_{j=1}^{n} \sigma_{0}\left(a_{1}, \ldots, \hat{a}_{j}, \ldots, a_{n} ; a_{j}\right)
$$

The second one is a new reciprocity law, which generalizes the following [13].

Theorem 7 (Gessel). Let m and n be relatively prime and suppose that $0 \leqslant r<m+n$. Then

$$
\begin{aligned}
\frac{1}{m} & \sum_{\lambda^{m}=1 \neq \lambda} \frac{\lambda^{r+1}}{\left(\lambda^{n}-1\right)(\lambda-1)}+\frac{1}{n} \sum_{\lambda^{n}=1 \neq \lambda} \frac{\lambda^{r+1}}{\left(\lambda^{m}-1\right)(\lambda-1)} \\
= & -\frac{1}{12}\left(\frac{m}{n}+\frac{n}{m}+\frac{1}{m n}\right)+\frac{1}{4}\left(\frac{1}{m}+\frac{1}{n}-1\right) \\
& +\frac{r}{2}\left(\frac{1}{m}+\frac{1}{n}-\frac{1}{m n}\right)-\frac{r^{2}}{2 m n} .
\end{aligned}
$$

It is not hard to see that Gessel's theorem follows as the two-dimensional case of

Theorem 8. Let a_{1}, \ldots, a_{n} be pairwise relatively prime integers and $0<t<a_{1}+\cdots+a_{n}$. Then

$$
\sum_{j=1}^{n} \sigma_{t}\left(a_{1}, \ldots, \hat{a}_{j}, \ldots, a_{n} ; a_{j}\right)=-R_{t}^{\prime}\left(a_{1}, \ldots, a_{n}\right)
$$

where R_{t}^{\prime} is the rational function given in Theorem 3.
Proof. By definition, $p_{A}^{\prime}(t)=0$ if $0<t<a_{1}+\cdots+a_{n}$. Hence Theorem 3 yields an identity for these values of t :

$$
0=R_{t}^{\prime}\left(a_{1}, \ldots, a_{n}\right)+\sum_{j=1}^{n} \sigma_{t}\left(a_{1}, \ldots, \hat{a}_{j}, \ldots, a_{n} ; a_{j}\right)
$$

It is worth noticing that both Theorems 6 and 7 imply the reciprocity law for the classical Dedekind sum $\mathfrak{s}(a, b)$. It should be finally mentioned that in special cases there are other reciprocity laws, for example, for the sum appearing on the right-hand side in (14) [10,22]. We note that, as a consequence, we can compute $\sigma_{t}(a, b ; c)$ in polynomial time.

5. THE FROBENIUS PROBLEM

In this last section we apply Theorem 3 (the explicit formula for $p_{A}^{\prime}(t)$) to Frobenius's original problem. As an example, we will discuss the threedimensional case. Note that a bound for dimension 3 yields a bound for the
general case: It can be easily verified that

$$
\begin{equation*}
f\left(a_{1}, \ldots, a_{n}\right) \leqslant f\left(a_{1}, a_{2}, a_{3}\right)+a_{4}+\cdots+a_{n} \tag{15}
\end{equation*}
$$

Furthermore, in dimension 3 it suffices to assume that a_{1}, a_{2}, a_{3} are pairwise coprime, due to Johnson's formula [15]: If $g=\left(a_{1}, a_{2}\right)$, then

$$
\begin{equation*}
f\left(a_{1}, a_{2}, a_{3}\right)=g \cdot f\left(\frac{a_{1}}{g}, \frac{a_{2}}{g}, a_{3}\right) \tag{16}
\end{equation*}
$$

Now assume a, b, c pairwise relatively prime, and recall (14):

$$
\sigma_{t}(a, b ; c)=\sum_{m=0}^{c-1}\left(\left(\frac{-a^{-1}(b m+t)}{c}\right)\right)\left(\left(\frac{m}{c}\right)\right)-\frac{1}{4 c}
$$

where $a a^{-1} \equiv 1 \bmod c$. We will use the Cauchy-Schwartz inequality

$$
\begin{equation*}
\left|\sum_{k=1}^{n} a_{k} a_{\pi(k)}\right| \leqslant \sum_{k=1}^{n} a_{k}^{2} \tag{17}
\end{equation*}
$$

Here $a_{k} \in \mathbb{R}$, and $\pi \in S_{n}$ is a permutation. Since $\left(a^{-1} b, c\right)=1$, we can use (17) to obtain

$$
\begin{aligned}
\sigma_{t}(a, b ; c) & \geqslant-\sum_{m=0}^{c-1}\left(\left(\frac{m}{c}\right)\right)^{2}-\frac{1}{4 c}=\sum_{m=0}^{c-1}\left(\frac{m}{c}-\frac{1}{2}\right)^{2}-\frac{1}{4 c} \\
& =-\frac{1(2 c-1)(c-1) c}{c^{2}}+\frac{1}{c} \frac{c(c-1)}{2}-\frac{c}{4}-\frac{1}{4 c} \\
& =-\frac{c}{12}-\frac{1}{12 c}
\end{aligned}
$$

This also restates Rademacher's bound on the classical Dedekind sums [23]. Using this in the formula for dimension 3 (remark after Theorem 3), we get

$$
\begin{aligned}
p_{\{a, b, c\}}^{\prime}(t) \geqslant & \frac{t^{2}}{2 a b c}-\frac{t}{2}\left(\frac{1}{a b}+\frac{1}{a c}+\frac{1}{b c}\right) \\
& +\frac{1}{12}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}+\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b}\right) \\
& -\frac{1}{12}(a+b+c)-\frac{1}{12}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{t^{2}}{2 a b c}-\frac{t}{2}\left(\frac{1}{a b}+\frac{1}{a c}+\frac{1}{b c}\right)+\frac{1}{12}\left(\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b}\right) \\
& -\frac{1}{12}(a+b+c)+\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) .
\end{aligned}
$$

The larger zero of the right-hand side is an upper bound for the solution of the Frobenius problem:

$$
\begin{aligned}
f(a, b, c) \leqslant & a b c\left(\frac{1}{2}\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{a c}\right)+\left[\frac{1}{4}\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{a c}\right)^{2}\right.\right. \\
& -\frac{2}{a b c}\left(\frac{1}{12}\left(\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b}\right)-\frac{1}{12}(a+b+c)\right. \\
& \left.\left.\left.+\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right)\right]^{1 / 2}\right) \\
\leqslant & \frac{1}{2}(a+b+c)+a b c \sqrt{\frac{1}{4}\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{a c}\right)^{2}+\frac{1}{6}\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{a c}\right)} \\
= & \frac{1}{2}(a+b+c)+a b c \sqrt{\frac{1}{2}\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{a c}\right)\left(\frac{1}{2}\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{a c}\right)+\frac{1}{3}\right)} \\
\leqslant & \frac{1}{2}(a+b+c)+a b c \sqrt{\frac{1}{4}\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{a c}\right)}
\end{aligned}
$$

For the last inequality, we used the fact that $\frac{1}{a b}+\frac{1}{b c}+\frac{1}{a c} \leqslant \frac{1}{6}+\frac{1}{10}+\frac{1}{15}=\frac{1}{3}$. This proves, using (15) and (16),

Theorem 9. Let $a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n}$ be relatively prime. Then

$$
f\left(a_{1}, \ldots, a_{n}\right) \leqslant \frac{1}{2}\left(\sqrt{a_{1} a_{2} a_{3}\left(a_{1}+a_{2}+a_{3}\right)}+a_{1}+a_{2}+a_{3}\right)+a_{4}+\cdots+a_{n}
$$

Remark. (1) Sometimes the Frobenius problem is stated in a slightly different form: Given relatively prime positive integers a_{1}, \ldots, a_{n}, find the largest value of t such that $\sum_{k=1}^{n} m_{k} a_{k}=t$ has no solution in nonnegative integers m_{1}, \ldots, m_{n}. This number is denoted by $g\left(a_{1}, \ldots, a_{n}\right)$. It is, however, easy to see that

$$
g\left(a_{1}, \ldots, a_{n}\right)=f\left(a_{1}, \ldots, a_{n}\right)-a_{1}-\cdots-a_{n} .
$$

So we can restate Theorem 9 in a more compact form as

$$
g\left(a_{1}, \ldots, a_{n}\right) \leqslant \frac{1}{2}\left(\sqrt{a_{1} a_{2} a_{3}\left(a_{1}+a_{2}+a_{3}\right)}-a_{1}-a_{2}-a_{3}\right) .
$$

(2) Bounds on the Frobenius number in the literature include results by Erdős and Graham [12]

$$
g\left(a_{1}, \ldots, a_{n}\right) \leqslant 2 a_{n}\left\lfloor\frac{a_{1}}{n}\right\rfloor-a_{1}
$$

Selmer [27]

$$
g\left(a_{1}, \ldots, a_{n}\right) \leqslant 2 a_{n-1}\left\lfloor\frac{a_{n}}{n}\right\rfloor-a_{n}
$$

and Vitek [29]

$$
g\left(a_{1}, \ldots, a_{n}\right) \leqslant\left\lfloor\frac{1}{2}\left(a_{2}-1\right)\left(a_{n}-2\right)\right\rfloor-1
$$

Theorem 9 is certainly of the same order. What might be more interesting, however, is the fact that the bound in Theorem 9 is of a different nature than the bounds stated above: namely, it involves three variables, and is thus-especially in terms of estimating $g\left(a_{1}, a_{2}, a_{3}\right)$-more symmetric.

REFERENCES

1. A. I. Barvinok, Computing the Ehrhart polynomial of a convex lattice polytope, Discrete Comput. Geom. 12 (1994), 35-48.
2. M. Beck, Counting lattice points by means of the residue theorem, Ramanujan J. 4, No. 3 (2000), 299-310.
3. M. Beck, I. M. Gessel, and T. Komatsu, The polynomial part of a restricted partition function related to the Frobenius problem, Electron. J. Combin. 8, No. 1 (2001), N 7.
4. A. Brauer and J. E. Shockley, On a problem of Frobenius, J. Reine Angew. Math. 211 (1962), 215-220.
5. M. Brion, Points entiers dans les polyèdres convexes, Ann. Sci. École Norm. Sup (4) 21, No. 4 (1988), 653-663.
6. M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10, No. 4 (1997), 797-833.
7. S. E. Cappell and J. L. Shaneson, Euler-Maclaurin expansions for lattices above dimension one, C. R. Acad. Sci. Paris Ser. I Math. 321, No. 7 (1995), 885-890.
8. J. L. Davison, On the linear diophantine problem of Frobenius, J. Number Thoery 48 (1994), 353-363.
9. R. Diaz and S. Robins, The Erhart polynomial of a lattice polytope, Ann. Math. 145 (1997), 503-518.
10. U. Dieter, Das Verhalten der Kleinschen Funktionen $\log \sigma_{g, h}\left(w_{1}, w_{2}\right)$ gegenüber Modultransformationen und verallgemeinerte Dedekindsche Summen, J. Reine Angew. Math. 201 (1959), 37-70.
11. E. Ehrhart, Sur un problème de géométrie diophantienne linéaire II, J. Reine Angew. Math. 227 (1967), 25-49.
12. P. Erdös and R. L. Graham, On a linear diophantine problem of Frobenius, Acta Arithm. 21 (1972), 399-408.
13. I. Gessel, Generating functions and generalized Dedekind sums, Electronic J. Combin. 4, No. 2 (1997), R 11.
14. V. Guillemin, Riemann-Roch for toric orbifolds, J. Differential Geom. 45, No. 1 (1997), 53-73.
15. S. M. Johnson, A linear diophantine problem, Canad. J. Math. 12 (1960), 390-398.
16. R. Kannan, Lattice translates of a polytope and the Frobenius problem, Combinatorica 12 (1992), 161-177.
17. J.-M. Kantor and A. G. Khovanskii, Une application du Théorème de Riemann-Roch combinatoire au polynôme d'Ehrhart des polytopes entier de \mathbb{R}^{n}, C. R. Acad. Sci. Paris, Series I 317 (1993), 501-507.
18. A. G. Khovanskii and A. V. Pukhlikov, The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, St. Petersburg Math. J. 4, No. 4 (1993), 789-812.
19. D. E. Knuth, Notes on generalized Dedekind sums, Acta Arithm. 33 (1977), 297-325.
20. I. G. Macdonald, Polynomials associated with finite cell complexes, J. London Math. Soc. 4 (1971), 181-192.
21. C. Meyer, Über einige Anwendungen Dedekindscher Summen, J. Reine Angew. Math. 198 (1957), 143-203.
22. H. Rademacher, Some remarks on certain generalized Dedekind sums, Acta Arithm. 9 (1964), 97-105.
23. H. Rademacher and E. Grosswald, Dedekind sums, Carus Mathematical Monographs, The Mathematical Association of America, Washington, DC, 1972.
24. S. Robins, Generalized Dedekind η-products, Contemp. Math. 166 (1994), 119-128.
25. O. J. Rodseth, On a linear problem of Frobenius, J. Reine Angew. Math. 301 (1978), 171-178.
26. O. J. Rodseth, On a linear problem of Frobenius II, J. Reine Angew. Math. 307/308 (1979), 431-440.
27. E. S. Selmer, On the linear diophantine problem of Frobenius, J. Reine Angew. Math. 293/ 294 (1977), 1-17.
28. J. J. Sylvester, Mathematical questions with their solutions, Ed. Times 41 (1884), 171-178.
29. Y. Vitek, Bounds for a linear diophantine problem of Frobenius, J. London Math. Soc. (2) 10 (1975), 390-398.
30. D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149-172.

[^0]: ${ }^{1}$ Parts of this work appeared in the first author's Ph.D. thesis.
 ${ }^{2}$ To whom correspondence should be addressed.
 ${ }^{3}$ This author kindly acknowledges the support of NSA Grant MSPR-OOY-196.

