Journal of Number Theory **96**, 1–21 (2002) doi:10.1006/jnth.2002.2786

# The Frobenius Problem, Rational Polytopes, and Fourier–Dedekind Sums<sup>1</sup>

## Matthias Beck<sup>2</sup>

Department of Mathematical Sciences, State University of New York, Binghamton, New York 13902-6000 E-mail: matthias@math.binghamton.edu

## Ricardo Diaz

Department of Mathematics, The University of Northern Colorado, Greeley, Colorado 80639 E-mail: rdiaz@bentley.unco.edu

#### and

## Sinai Robins<sup>3</sup>

Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122 E-mail: srobins@math.temple.edu

Communicated by H. Stark

Received October 1, 1999; revised November 5, 2001

We study the number of lattice points in integer dilates of the rational polytope

$$\mathscr{P} = \left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n_{\geq 0} \colon \sum_{k=1}^n x_k a_k \leq 1 \right\},$$

where  $a_1, \ldots, a_n$  are positive integers. This polytope is closely related to the *linear* Diophantine problem of Frobenius: given relatively prime positive integers  $a_1, \ldots, a_n$ , find the largest value of t (the Frobenius number) such that  $m_1a_1 + \cdots + m_na_n = t$  has no solution in positive integers  $m_1, \ldots, m_n$ . This is equivalent to the problem of finding the largest dilate  $t\mathcal{P}$  such that the facet  $\{\sum_{k=1}^n x_k a_k = t\}$  contains no lattice point. We present two methods for computing the Ehrhart quasipolynomials  $L(\bar{\mathcal{P}}, t) \coloneqq \#(t\mathcal{P} \cap \mathbb{Z}^n)$  and  $L(\mathcal{P}^\circ, t) \coloneqq \#(t\mathcal{P}^\circ \cap \mathbb{Z}^n)$ . Within the computations a Dedekind-like finite Fourier sum appears. We obtain a reciprocity law for these sums, generalizing a theorem of Gessel. As a corollary of our formulas, we rederive the reciprocity law for Zagier's higher-dimensional Dedekind sums. Finally, we find bounds for the Fourier–Dedekind sums and use them to give new bounds for the Frobenius number. © 2002 Elsevier Science (USA)

*Key Words:* rational polytopes; lattice points; the linear diophantine problem of Frobenius; Ehrhart quasipolynomial; Dedekind sums.

<sup>1</sup>Parts of this work appeared in the first author's Ph.D. thesis.

<sup>2</sup>To whom correspondence should be addressed.

<sup>3</sup>This author kindly acknowledges the support of NSA Grant MSPR-OOY-196.



#### BECK, DIAZ, AND ROBINS

#### 1. INTRODUCTION

Let  $a_1, \ldots, a_n$  be positive integers,  $\mathbb{Z}^n \subset \mathbb{R}^n$  be the *n*-dimensional integer lattice, and

$$\mathscr{P} = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \colon x_k \ge 0, \sum_{k=1}^n a_k x_k \le 1 \right\},\tag{1}$$

a rational polytope with vertices

$$(0,\ldots,0), (\frac{1}{a_1},0,\cdots,0), (0,\frac{1}{a_2},0,\ldots,0),\ldots, (0,\ldots,0,\frac{1}{a_n}).$$

For a positive integer  $t \in \mathbb{N}$ , let  $L(\bar{\mathscr{P}}, t)$  be the number of lattice points in the dilated polytope  $t\mathscr{P} = \{tx: x \in \mathscr{P}\}$ . Denote further the relative interior of  $\mathscr{P}$  by  $\mathscr{P}^{\circ}$  and the number of lattice points in  $t\mathscr{P}^{\circ}$  by  $L(\mathscr{P}^{\circ}, t)$ . Then  $L(\mathscr{P}^{\circ}, t)$  and  $L(\bar{\mathscr{P}}, t)$  are quasipolynomials in t of degree n [11], i.e. expressions

$$c_n(t) t^n + \cdots + c_1(t) t + c_0(t),$$

where  $c_0, \ldots, c_n$  are periodic functions in t. In fact, if the  $a_k$ 's are pairwise relatively prime then  $c_1, \ldots, c_n$  are constants, so only  $c_0$  will show this periodic dependency on t.

Let  $A = \{a_1, \ldots, a_n\}$  be a set of relatively prime positive integers, and

$$p'_{A}(t) = \# \left\{ (m_{1}, \dots, m_{n}) \in \mathbb{N}^{n} \colon \sum_{k=1}^{n} m_{k} a_{k} = t \right\}.$$
 (2)

The function  $p'_A(t)$  can be described as the number of *restricted partitions of* t with parts in A, where we require that each part is used at least once. (We reserve the name  $p_A$  for the enumeration function of those partitions which do not have this restriction.) Geometrically,  $p'_A(t)$  enumerates the lattice points on the skewed facet of  $\mathcal{P}$ . Define  $f(a_1, \ldots, a_n)$  to be the largest value of t for which

$$p_A'(t) = 0.$$

In the 19th century, Frobenius inaugurated the study of  $f(a_1, \ldots, a_n)$ . For n = 2, it is known (probably at least since Sylvester [28]) that  $f(a_1, a_2) = a_1a_2$ . For n > 2, all attempts for explicit formulas have proved elusive. Here we focus on the study of  $p'_A(t)$ , and show that it has an explicit representation as a quasipolynomial. Through the discussion of  $p'_A(t)$ , we gain new insights into Frobenius's problem.

Another motivation to study  $p'_{A}(t)$  is the following trivial reduction formula to lower dimensions:

$$p'_{\{a_1,\dots,a_n\}}(t) = \sum_{m>0} p'_{\{a_1,\dots,a_{n-1}\}}(t - ma_n).$$
(3)

Here we use the convention that  $p'_A(t) = 0$  if  $t \le 0$ . This identity can be easily verified by viewing  $p'_A(t)$  as

$$p'_{A}(t) = \# \left\{ (m_{1}, \dots, m_{n}) \in \mathbb{N}^{n} \colon \sum_{k=1}^{n-1} m_{k} a_{k} = t - m_{n} a_{n} \right\}.$$

Hence, precise knowledge of the values of t for which  $p'_A(t) = 0$  in lower dimensions sheds additional light on the Frobenius number in higher dimensions.

The number  $p'_{\mathcal{A}}(t)$  appears in the lattice point count of  $\mathcal{P}$ . It is for this reason that we decided to focus on this particular rational polytope. We present two methods (Sections 2 and 3) for computing the terms appearing in  $L(\mathscr{P}^{\circ}, t)$  and  $L(\bar{\mathscr{P}}, t)$ . Both methods are refinements of concepts that were earlier introduced by the authors [2,9]. In contrast to the mostly algebraic-geometric and topological ways of computing  $L(\mathscr{P}^{\circ}, t)$  and  $L(\bar{\mathscr{P}}, t)$  [1, 6, 7, 14, 17, 18], our methods are analytic. In passing, we recover the Ehrhart-Macdonald reciprocity law relating  $L(\mathscr{P}^{\circ}, t)$  and  $L(\bar{\mathscr{P}}, t)$  [11, 20]. Within the computations a Dedekind-like finite Fourier sum appears, which shares some properties with its classical siblings, discussed in Section 4. In particular, we prove two reciprocity laws for these sums: a rederivation of the reciprocity law for Zagier's higher-dimensional Dedekind sums [30], and a new reciprocity law that generalizes a theorem of Gessel [13]. Finally, in Section 5 we give bounds on these generalized Dedekind sums and apply our results to give new bounds for the Frobenius number. The literature on such bounds is vast—see, for example, [4, 8, 12, 6, 25-27, 29].

## 2. THE RESIDUE METHOD

In [2], the first author used the residue theorem to count lattice points in a lattice polytope, that is, a polytope with integer vertices. Here we extend these methods to the case of *rational* vertices.

We are interested in the number of lattice points in the tetrahedron  $\mathcal{P}$  defined by (1) and integral dilates of it. We can interpret

$$L(\bar{\mathscr{P}},t) = \#\left\{ (m_1,\ldots,m_n) \in \mathbb{Z}^n \colon m_k \ge 0, \sum_{k=1}^n m_k a_k \le t \right\}$$

as the Taylor coefficient of  $z^t$  of the function

$$(1 + z^{a_1} + z^{2a_1} + \cdots) \cdots (1 + z^{a_n} + z^{2a_n} + \cdots)(1 + z + z^2 + \cdots)$$
$$= \frac{1}{1 - z^{a_1}} \cdots \frac{1}{1 - z^{a_n} 1 - z}.$$

Equivalently,

$$L(\bar{\mathscr{P}},t) = \operatorname{Res}\left(\frac{z^{-t-1}}{(1-z^{a_1})\cdots(1-z^{a_n})(1-z)}, z=0\right).$$
 (4)

If this expression counts the number of lattice points in  $\overline{t\mathcal{P}}$ , then the remaining task is to compute the other residues of

$$F_{-t}(z) \coloneqq \frac{z^{-t-1}}{(1-z^{a_1})\cdots(1-z^{a_n})(1-z)},$$

and use the residue theorem for the sphere  $\mathbb{C} \cup \{\infty\}$ .  $F_{-t}$  has poles at 0 and all  $a_1^{\text{th}}, \ldots, a_n^{\text{th}}$  roots of unity. It is particularly easy to get precise formulas if the poles at the nontrivial roots of unity are simple. For this reason, assume in the following that  $a_1, \ldots, a_n$  are *pairwise relatively prime*. Then the residues for the  $a_1^{\text{th}}, \ldots, a_n^{\text{th}}$  roots of unity are not hard to compute: Let  $\lambda^{a_1} = 1 \neq \lambda$ , then

$$\operatorname{Res}(F_{-t}(z), z = \lambda)$$

$$= \frac{\lambda^{-t-1}}{(1-\lambda^{a_2})\cdots(1-\lambda^{a_n})(1-\lambda)} \operatorname{Res}\left(\frac{1}{1-z^{a_1}}, z = \lambda\right)$$

$$= \frac{\lambda^{-t-1}}{(1-\lambda^{a_2})\cdots(1-\lambda^{a_n})(1-\lambda)} \lim_{z \to \lambda} \frac{z-\lambda}{1-z^{a_1}}$$

$$= -\frac{\lambda^{-t}}{a_1(1-\lambda^{a_2})\cdots(1-\lambda^{a_n})(1-\lambda)}.$$

If we add up all the nontrivial  $a_1^{\text{th}}$  roots of unity, we obtain

$$\sum_{\lambda^{a_1}=1\neq\lambda} \operatorname{Res}(F_{-t}(z), z = \lambda)$$
  
=  $\frac{-1}{a_1} \sum_{\lambda^{a_1}=1\neq\lambda} \frac{\lambda^{-t}}{(1-\lambda^{a_2})\cdots(1-\lambda^{a_n})(1-\lambda)}$   
=  $\frac{-1}{a_1} \sum_{k=1}^{a_1-1} \frac{\xi^{-kt}}{(1-\xi^{ka_2})\cdots(1-\xi^{ka_n})(1-\xi^k)},$ 

where  $\xi$  is a primitive  $a_1^{\text{th}}$  root of unity. This motivates the following

DEFINITION 1. Let  $c_1, \ldots, c_n \in \mathbb{Z}$  be relatively prime to  $c \in \mathbb{Z}$ , and  $t \in \mathbb{Z}$ . Define the *Fourier–Dedekind sum* as

$$\sigma_t(c_1,\ldots,c_n;c) = \frac{1}{c} \sum_{\lambda^c=1\neq\lambda} \frac{\lambda^t}{(\lambda^{c_1}-1)\cdots(\lambda^{c_n}-1)}$$

Some properties of  $\sigma_t$  are discussed in Section 4. With this notation, we can now write

$$\sum_{\lambda^{a_1}=1\neq\lambda} \operatorname{Res}(F_{-t}(z), z=\lambda) = (-1)^{n+1} \sigma_{-t}(a_2, \ldots, a_n, 1; a_1).$$

We get similar residues for the  $a_2^{\text{th}}, \ldots, a_n^{\text{th}}$  roots of unity. Finally, note that  $\text{Res}(F_{-t}, z = \infty) = 0$ , so that the residue theorem allows us to rewrite (4):

**THEOREM 1.** Let  $\mathscr{P}$  be given by (1), with  $a_1, \ldots, a_n$  pairwise relatively prime. Then

$$L(\bar{\mathscr{P}},t) = R_{-t}(a_1,\ldots,a_n) + (-1)^n \sum_{j=1}^n \sigma_{-t}(a_1,\ldots,\hat{a}_j,\ldots,a_n,1;a_j),$$

where  $R_{-t}(a_1, \ldots, a_n) = -\text{Res}(F_{-t}(z), z = 1)$ , and  $\hat{a}_j$  means we omit the term  $a_j$ .

*Remarks.* (1)  $R_{-t}$  can be easily calculated via

$$\operatorname{Res}(F_{-t}(z), z = 1) = \operatorname{Res}(e^{z}F_{-t}(e^{z}), z = 0)$$
$$= \operatorname{Res}\left(\frac{e^{-tz}}{(1 - e^{a_{1}z})\cdots(1 - e^{a_{n}z})(1 - e^{z})}, z = 0\right).$$

To facilitate the computation in higher dimensions, one can use mathematics software such as Maple or Mathematica. It is easy to see that  $R_{-t}(a_1, \ldots, a_n)$  is a polynomial in t whose coefficients are rational expressions in  $a_1, \ldots, a_n$ . The first values for  $R_{-t}$  are

$$\begin{split} R_{-t}(a) &= \frac{t}{a} + \frac{1}{2a} + \frac{1}{2}, \\ R_{-t}(a,b) &= \frac{t^2}{2ab} + \frac{t}{2} \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{ab} \right) + \frac{1}{4} \left( 1 + \frac{1}{a} + \frac{1}{b} \right) \\ &+ \frac{1}{12} \left( \frac{a}{b} + \frac{b}{a} + \frac{1}{ab} \right) \\ R_{-t}(a,b,c) &= \frac{t^3}{6abc} + \frac{t^2}{4} \left( \frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc} + \frac{1}{abc} \right) \\ &+ \frac{t}{12} \left( \frac{3}{a} + \frac{3}{b} + \frac{3}{c} + \frac{3}{ab} + \frac{3}{ac} + \frac{3}{bc} + \frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} + \frac{1}{abc} \right) \\ &+ \frac{1}{24} \left( 3 + \frac{3}{a} + \frac{3}{b} + \frac{3}{c} + \frac{a}{b} + \frac{a}{c} + \frac{b}{a} + \frac{b}{c} + \frac{c}{a} + \frac{c}{b} \right) \\ &+ \frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc} + \frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} \right). \end{split}$$

(2) If  $a_1, \ldots, a_n$  are *not* pairwise relatively prime, we can get similar formulas for  $L(\bar{\mathscr{P}}, t)$ . In this case we do not have only simple poles, so that the computation of the residues gets slightly more complicated.

For the computation of  $L(\mathscr{P}^{\circ}, t)$  (the number of lattice points in the *interior* of our tetrahedron  $t\mathscr{P}$ ), we similarly write

$$L(\mathscr{P}^{\circ},t) = \#\left\{(m_1,\ldots,m_n) \in \mathbb{Z}^n: m_k > 0, \sum_{k=1}^n m_k a_k < t\right\}.$$

So now we can interpret  $L(\mathscr{P}^\circ,t)$  as the Taylor coefficient of  $z^t$  of the function

$$(z^{a_1} + z^{2a_1} + \cdots) \cdots (z^{a_n} + z^{2a_n} + \cdots)(z + z^2 + \cdots)$$
$$= \frac{z^{a_1}}{1 - z^{a_1}} \cdots \frac{z^{a_n}}{1 - z^{a_n}} \frac{z}{1 - z},$$

or equivalently as

$$\operatorname{Res}\left(\frac{z^{a_1}}{1-z^{a_1}}\cdots\frac{z^{a_n}}{1-z^{a_n}}\frac{z}{1-z}\,z^{-t-1}, z=0\right)$$
$$=\operatorname{Res}\left(\frac{-1}{z^2}\frac{1}{z^{a_1}-1}\cdots\frac{1}{z^{a_n}-1}\frac{1}{z-1}z^{t+1}, z=\infty\right).$$

To be able to use the residue theorem, this time we have to consider the function

$$-\frac{1}{z^{a_1}-1}\cdots\frac{1}{z^{a_n}-1}\frac{1}{z-1}z^{t-1}=(-1)^nF_t(z).$$

The residues at the finite poles of  $F_t$  can be computed as before, with t replaced by -t, and the proof of the following theorem is completely analogous to Theorem 1:

**THEOREM 2.** Let  $\mathscr{P}$  be given by (1), with  $a_1, \ldots, a_n$  pairwise relatively prime. Then

$$L(\mathscr{P}^{\circ},t) = (-1)^n R_t(a_1,\ldots,a_n) + \sum_{j=1}^n \sigma_t(a_1,\ldots,\hat{a_j},\ldots,a_n,1;a_j).$$

As an immediate consequence we get the remarkable

COROLLARY 1 (Ehrhart-Macdonald Reciprocity Law).

$$L(\mathscr{P}^{\circ}, -t) = (-1)^n L(\bar{\mathscr{P}}, t).$$

This result was conjectured for convex rational polytopes by Ehrhart [11], and first proved by Macdonald [20].

Of particular interest is the number of lattice points on the boundary of  $t\mathcal{P}$ . Besides computing  $L(\mathcal{P}^\circ, t)$  and  $L(\bar{\mathcal{P}}, t)$  and taking differences, we can also adjust our method to this situation, especially if we are interested in only *parts* of the boundary. As an example, we will compute  $p'_A(t)$  as defined in introduction (2), which appears in the context of the Frobenius problem. Again, for reasons of simplicity we assume in the following that  $a_1, \ldots, a_n$  are *pairwise coprime* positive integers.

This time we interpret

$$p'_{A}(t) = \# \left\{ (m_1, \dots, m_n) \in \mathbb{N}^n : \sum_{k=1}^n m_k a_k = t \right\}$$

as the Taylor coefficient of  $z^t$  of the function

$$(z^{a_1} + z^{2a_1} + \cdots) \cdots (z^{a_n} + z^{2a_n} + \cdots)$$
$$= \frac{z^{a_1}}{1 - z^{a_1}} \cdots \frac{z^{a_n}}{1 - z^{a_n}}.$$

That is,

$$p'_{A}(t) = \operatorname{Res}\left(\frac{z^{a_{1}}}{1-z^{a_{1}}}\cdots\frac{z^{a_{n}}}{1-z^{a_{n}}}z^{-t-1}, z=0\right)$$
$$= \operatorname{Res}\left(\frac{-1}{z^{2}}\frac{1}{z^{a_{1}}-1}\cdots\frac{1}{z^{a_{n}}-1}z^{t+1}, z=\infty\right).$$

Thus, we have to find the other residues of

$$G_t(z) \coloneqq \frac{z^{t-1}}{(z^{a_1}-1)\cdots(z^{a_n}-1)} = (z-1)F_t(z),$$

since

$$p'_{A}(t) = -\operatorname{Res}\left(G_{t}(z), z = \infty\right).$$
(5)

 $G_t$  has its other poles at all  $a_1^{\text{th}}, \ldots, a_n^{\text{th}}$  roots of unity. Again, note that  $G_t$  has *simple* poles at all the nontrivial roots of unity. Let  $\lambda$  be a nontrivial  $a_1^{\text{th}}$  root of unity, then

$$\operatorname{Res}(G_t(z), z = \lambda) = \frac{\lambda^{t-1}}{(\lambda^{a_2} - 1) \cdots (\lambda^{a_n} - 1)} \operatorname{Res}\left(\frac{1}{z^{a_1} - 1}, z = \lambda\right)$$
$$= \frac{\lambda^t}{a_1(\lambda^{a_2} - 1) \cdots (\lambda^{a_n} - 1)}.$$

Adding up all the nontrivial  $a_1^{\text{th}}$  roots of unity, we obtain

$$\sum_{\lambda^{a_1}=1\neq\lambda} \operatorname{Res}(G_t(z), z=\lambda) = \frac{1}{a_1} \sum_{\lambda^{a_1}=1\neq\lambda} \frac{\lambda^t}{(\lambda^{a_2}-1)\cdots(\lambda^{a_n}-1)}$$
$$= \sigma_t(a_2, \dots, a_n; a_1).$$

Together with the similar residues at the other roots of unity, (5) gives us

THEOREM 3.

$$p'_{A}(t) = R'_{t}(a_{1},...,a_{n}) + \sum_{j=1}^{n} \sigma_{t}(a_{1},...,\hat{a}_{j},...,a_{n};a_{j}),$$

where  $R'_t(a_1,...,a_n) = \text{Res}(G_t(z), z = 1).$ 

R' is as easily computed as before, the first values are

$$R'_{t}(a,b) = \frac{t}{ab} - \frac{1}{2} \left( \frac{1}{a} + \frac{1}{b} \right), R'_{t}(a,b,c)$$
$$= \frac{t^{2}}{2abc} - \frac{t}{2} \left( \frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc} \right)$$
$$+ \frac{1}{12} \left( \frac{3}{a} + \frac{3}{b} + \frac{3}{c} + \frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} \right),$$

$$R'_{t}(a,b,c,d) = \frac{t^{3}}{6abcd} - \frac{t^{2}}{4} \left( \frac{1}{abc} + \frac{1}{abd} + \frac{1}{acd} + \frac{1}{bcd} \right)$$
$$+ \frac{t}{12} \left( \frac{3}{ab} + \frac{3}{ac} + \frac{3}{ad} + \frac{3}{bc} + \frac{3}{bd} + \frac{3}{cd} \right)$$
$$+ \frac{a}{bcd} + \frac{b}{acd} + \frac{c}{abd} + \frac{d}{abc} \right)$$
$$- \frac{1}{24} \left( \frac{a}{bc} + \frac{a}{bd} + \frac{a}{cd} + \frac{b}{ad} + \frac{b}{ac} + \frac{b}{cd} \right)$$
$$+ \frac{c}{ab} + \frac{c}{ad} + \frac{c}{bd} + \frac{d}{ab} + \frac{d}{ac} + \frac{d}{bc} \right)$$
$$- \frac{1}{8} \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \right).$$

A general formula for  $R'_t(a_1, \ldots, a_n)$  was recently discovered in [3].

For generalizations, note that we can apply our method to any tetrahedron given in the form (1), with the  $a_k$ 's replaced by any rational numbers. Moreover, any convex rational polytope (that is, a convex polytope whose vertices have rational coordinates) can be described by a finite number of inequalities over the rationals. In other words, a convex lattice polytope  $\mathscr{P}$  is an intersection of finitely many half-spaces. This description of the polytope leads to an integral in several complex variables, as discussed in [2, Theorem 8] for lattice polytopes.

#### BECK, DIAZ, AND ROBINS

### 3. THE FOURIER METHOD

In this section we outline a Fourier-analytic method that achieves the same results. Although the theory is a little harder, the method is of independent interest. It draws connections to Brion's theorem on generating functions [5] and to the basic results of [9].

To be concrete, we illustrate the general case with the two-dimensional rational triangle  $\mathscr{P}$  whose vertices are  $v_0 = (0,0)$ ,  $v_1 = (\frac{t}{a}, 0)$ , and  $v_2 = (0, \frac{t}{b})$ . As before, the number of lattice points in the one-dimensional hypotenuse of this right triangle is

$$p'_{\{a,b\}}(t) = \#\{(m,n) \in \mathbb{N}^2 \colon am + bn = t\}.$$

We denote the tangent cone to  $\mathscr{P}$  at the vertex  $v_i$  by  $K_i$ . We recall that the exponential sum attached to the cone K (with vertex v) is by definition

$$\sigma_K(s) = \sum_{m \in \mathbb{Z}^n \cap K} e^{-2\pi \langle s, m \rangle},\tag{6}$$

where s is any complex vector that makes the infinite sum (6) converge. An equivalent formulation of (6) which appears more combinatorial is

$$\sigma_K(x) = \sum_{m \in \mathbb{Z}^n \cap K} x^m, \tag{7}$$

where  $x^{m} = x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}$  and  $x_{j} = e^{-2\pi s_{j}}$ .

In general dimension, let the vertices of the rational polytope  $\mathscr{P}$  be  $v_1, \ldots, v_l$ . Let the corresponding tangent cone at  $v_j$  be  $K_j$ . Finally, let the *finite* exponential sum over  $\mathscr{P}$  be

$$\sigma_{\mathscr{P}}(s) = \sum_{m \in \mathbb{Z}^n \cap \mathscr{P}} e^{-2\pi \langle s, m \rangle}.$$
(8)

Then there is the basic result that each exponential sum (7) is a rational function of x, and the following theorem relates these rational functions [5]:

THEOREM 4 (Brion). For a generic value of  $s \in \mathbb{C}^n$ ,

$$\sigma_{\mathscr{P}}(s) = \sum_{i=1}^{l} \sigma_{K_i}(s).$$
(9)

This result allows us to transfer the enumeration of lattice points in  $\mathcal{P}$  to the enumeration of lattice points in the tangent cones  $K_i$  at the vertices of  $\mathcal{P}$ , an easier task. In the theorem above, 'generic value of s' means any  $s \in \mathbb{C}^n$  for which these rational functions do not blow up to infinity.

To apply these results to our given rational triangle  $\mathcal{P}$ , we first employ the methods of [9] to get an explicit formula for the exponential sum for each tangent cone of  $\mathcal{P}$ . Then, by Brion's theorem on tangent cones, the sum of the three exponential sums attached to the tangent cones equals the exponential sum over  $\mathcal{P}$ . Canceling the singularities arising from each tangent cone, and letting  $s \to 1$ , we get the explicit formula of the previous section for the number of lattice points in the rational triangle  $\mathcal{P}$ .

In our case,  $K_1$  is generated by the two rational vectors  $-v_1$  and  $v_2 - v_1$ . We form the matrix

$$A_1 = \begin{pmatrix} -\frac{t}{a} & -\frac{t}{a} \\ 0 & \frac{t}{b} \end{pmatrix},$$

whose columns are the vectors that generate the cone  $K_1$ . Once we compute  $\sigma_{K_1}(s)$ ,  $\sigma_{K_2}(s)$  will follow by symmetry. The easiest exponential sum to compute is

$$\sigma_{K_0}(s) = \sum_{m \in \mathbb{Z}^2 \cap K_0} e^{-2\pi \langle s, m \rangle} = \sum_{\substack{m_1 \ge 0 \\ m_2 \ge 0}} e^{-2\pi (m_1 s_1 + m_2 s_2)}$$
$$= \frac{1}{(1 - e^{-2\pi s_1})(1 - e^{-2\pi s_2})}.$$

To compute  $\sigma_{K_i}(s)$   $(i \neq 0)$ , we first translate the cone  $K_i$  by the vector  $-v_i$  so that its new vertex is the origin. We therefore let  $K = K_i - v_i$ , and the following elementary lemma illustrates how a translation affects the Fourier transform. Let

$$\chi_K(x) = \begin{cases} 1 & \text{if } x \in K, \\ 0 & \text{if } x \notin K \end{cases}$$

denote the characteristic function of K.

LEMMA 1. Let

$$F_v(x) = \chi_{K+v}(x) \ e^{-2\pi \langle s, m \rangle}$$

for  $x \in \mathbb{R}^n$ ,  $s \in \mathbb{C}^n$ . Then

$$\hat{F}_v(\xi) = \hat{\chi}_K(\xi + is)e^{-2\pi i \langle \xi + is, v \rangle}$$

Proof.

$$\begin{split} \hat{F_v}(\xi) &= \int_{\mathbb{R}^n} \chi_{K+v}(x) \ e^{-2\pi \langle s,m \rangle} e^{2\pi i \langle \xi,x \rangle} \, dx \\ &= \int_{\mathbb{R}^n} e^{2\pi i \langle \xi+is,x \rangle} \chi_{K+v}(x) \, dx \\ &= \int_{\mathbb{R}^n} e^{2\pi i \langle \xi+is,y-v \rangle} \chi_K(y) \, dy \\ &= e^{-2\pi i \langle \xi+is,v \rangle} \int_{\mathbb{R}^n} e^{2\pi i \langle \xi+is,y \rangle} \chi_K(y) \, dy \\ &= e^{-2\pi i \langle \xi+is,v \rangle} \hat{\chi}_K(\xi+is). \end{split}$$

This lemma also shows why it is useful to study the Fourier transform of K at *complex* values of the variable; that is, at  $\xi + is$ . We study F(x) because (6) can be rewritten as

$$\sigma_{K_0+v}(s) = \sum_{m \in \mathbb{Z}^n} \chi_{K_0+v} \ e^{-2\pi \langle s,m \rangle} = \sum_{m \in \mathbb{Z}^n} F_v(m).$$

All of the lemmas of [9] remain true in this rational polytope context. The idea is to apply the Poisson summation to  $\sum_{m \in \mathbb{Z}^n} F_v(m)$  and write formally

$$\sum_{m\in\mathbb{Z}^n} F_v(m) = \sum_{m\in\mathbb{Z}^n} \hat{F_v}(m).$$

The right-hand side diverges, though, and some smoothing completes the picture. Because the steps are identical to those in [9], we omit the ensuing details. Let  $\xi_a = e^{\frac{2\pi i}{a}}$ . We get

$$\sigma_{K_{1}}(s_{1}, s_{2}) = \frac{\xi_{a}^{ts_{1}}}{4a} \sum_{r=0}^{a-1} \xi_{a}^{rt} \left( \coth \frac{\pi b}{t} \left( s_{1,2} + \frac{irt}{a} \right) - 1 \right) \\ \times \left( \coth \frac{\pi}{t} \left( s_{1,1} + \frac{irt}{a} \right) + 1 \right), \tag{10}$$

where

$$s_{1,1} = \langle s, \text{ generator } 1 \text{ of } K_1 \rangle = \left\langle (s_1, s_2), \left( -\frac{t}{a}, 0 \right) \right\rangle = -\frac{ts_1}{a}$$

and

$$s_{1,2} = \langle s, \text{ generator 2 of } K_1 \rangle = \left\langle (s_1, s_2), \left( -\frac{t}{a}, \frac{t}{b} \right) \right\rangle = -\frac{ts_1}{a} + \frac{ts_2}{b}.$$

By (9), we have

$$\#\{\mathbb{Z}^2 \cap t\mathscr{P}\} = \sum_{m \in \mathbb{Z}^2 \cap t\mathscr{P}} 1 = \lim_{s \to 0} (\sigma_{K_0}(s) + \sigma_{K_1}(s) + \sigma_{K_2}(s)).$$

Using the explicit description of  $\sigma_{K_i}(s)$  in terms of cotangent functions, we can cancel their singularities at s = 0 and simply add the holomorphic contributions to  $\sigma_{K_i}(s)$  at s = 0. The left-hand side of (9) is holomorphic in *s*, so that we are guaranteed that the singularities on the right-hand side cancel each other.

The only term in the finite sum (10) that contributes a singularity at s = 0 is the r = 0 term. We expand the three exponential sums  $\sigma_{K_i}(s)$  into their Laurent expansions about s = 0. Here we only require the first 3 terms of their Laurent expansions. In dimension n we would require the first n + 1 terms; otherwise every step is the same in general dimension n.

We make use of the Laurent series

$$\frac{1}{1 - e^{-\alpha s}} = \frac{1}{\alpha s} + \frac{1}{2} + \frac{\alpha s}{12} + O(s^2)$$

near s = 0, as well as the Laurent series for  $\cot \pi s$  near s = 0. After expanding each cotangent in (10) for  $\sigma_{K_0}(s)$ ,  $\sigma_{K_1}(s)$  and  $\sigma_{K_2}(s)$  and letting  $s \to 0$ , we obtain Theorem 1 above as

$$\begin{split} L(\bar{\mathscr{P}},t) &= \frac{t^2}{2ab} + \frac{t}{2} \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{ab} \right) \\ &+ \frac{1}{4} \left( 1 + \frac{1}{a} + \frac{1}{b} \right) + \frac{1}{12} \left( \frac{a}{b} + \frac{b}{a} + \frac{1}{ab} \right) \\ &+ \frac{1}{a} \sum_{r=1}^{a-1} \frac{\zeta_a^{rt}}{(1 - \zeta_a^{rb})(1 - \zeta_a^r)} + \frac{1}{b} \sum_{r=1}^{b-1} \frac{\zeta_b^{rt}}{(1 - \zeta_b^{ra})(1 - \zeta_b^r)} \end{split}$$

Note that, as before, the periodic portion of  $L(\bar{\mathcal{P}}, t)$  is entirely contained in the "constant" *t* term. By Ehrhart's reciprocity law ([11, Corollary 1]), there is a similar expression for  $L(\mathcal{P}, t)$ , and taking

$$L(\bar{\mathscr{P}},t) - L(\mathscr{P},t) - \left[\frac{t}{a}\right] - \left[\frac{t}{b}\right] - 1$$

gives us  $p_{\{a,b\}}(t)$ . The same analysis gives us Theorem 1 in  $\mathbb{R}^n$ .

#### BECK, DIAZ, AND ROBINS

### 4. THE FOURIER-DEDEKIND SUM

In the derivation of the various lattice count formulas, we naturally arrived at the Fourier–Dedekind sum

$$\sigma_t(c_1,\ldots,c_n;c)=\frac{1}{c}\sum_{\lambda^c=1\neq\lambda}\frac{\lambda^t}{(\lambda^{c_1}-1)\cdots(\lambda^{c_n}-1)}.$$

This expression is a generalization of the classical Dedekind sum  $\mathfrak{s}(h,k)$  [23] and its various generalizations [10, 13, 21, 22, 30]. In fact, an easy calculation shows

$$\sigma_0(a, 1; c) = \frac{1}{c} \sum_{\lambda^c = 1 \neq \lambda} \frac{1}{(\lambda^a - 1)(\lambda - 1)}$$
  
=  $\frac{1}{4} - \frac{1}{4c} - \frac{1}{4c} \sum_{k=1}^{c-1} \cot \frac{\pi k a}{c} \cot \frac{\pi k}{c} = \frac{1}{4} - \frac{1}{4c} - \mathfrak{s}(a, c).$ 

In general, note that  $\sigma_t(c_1, \ldots, c_n; c)$  is a rational number: It is an element of the cyclotomic field of  $c^{\text{th}}$  roots of unity, and invariant under all Galois transformations of this field.

Some obvious properties are

$$\sigma_t(c_1, \dots, c_n; c) = \sigma_t(c_{\pi(1)}, \dots, c_{\pi(n)}; c) \quad \text{for any } \pi \in S_n,$$
  

$$\sigma_t(c_1, \dots, c_n; c) = \sigma_{(t \mod c)}(c_1 \mod c, \dots, c_n \mod c; c),$$
  

$$\sigma_t(c_1, \dots, c_n; c) = \sigma_{bt}(bc_1, \dots, bc_n; c) \quad \text{for any } b \in \mathbb{Z} \text{ with } (b, c) = 1.$$
(11)

We can get more familiar-looking formulas for  $\sigma_t$  in certain dimensions. For example, counting points in dimension 1, we find that

$$L(\bar{\mathscr{P}},t) = \#\{m \in \mathbb{Z} \colon m \ge 0, mc \le t\} = \left\lfloor \frac{t}{c} \right\rfloor + 1,$$

so that Theorem 1 implies

$$\sigma_{-t}(1;c) = \frac{1}{c} \sum_{\lambda^{c}=1 \neq \lambda} \frac{\lambda^{-t}}{(\lambda - 1)} = \frac{t}{c} - \left\lfloor \frac{t}{c} \right\rfloor - \frac{1}{2} + \frac{1}{2c} = \left( \left( \frac{t}{c} \right) \right) + \frac{1}{2c}.$$
 (12)

Here,  $((x)) = x - \lfloor x \rfloor - 1/2$  is a sawtooth function (differing slightly from the one appearing in the classical Dedekind sums). This restates the well-known finite Fourier expansion of the sawtooth function (see, e.g., [23]).

As another example, we reformulate

$$\sigma_t(a,b;c) = \frac{1}{c} \sum_{\lambda^c = 1 \neq \lambda} \frac{\lambda^t}{(\lambda^a - 1)(\lambda^b - 1)}$$

by means of finite Fourier series. Consider

$$\sigma_t(a;c) = \frac{1}{c} \sum_{\lambda^c = 1 \neq \lambda} \frac{\lambda^{-t}}{(\lambda^a - 1)} = \frac{1}{c} \sum_{k=1}^{c-1} \frac{\xi^{kt}}{(\xi^{ka} - 1)} = \frac{1}{c} \sum_{k=1}^{c-1} \frac{\xi^{ka^{-1}t}}{(\xi^k - 1)}$$
$$= \left( \left( \frac{-a^{-1}t}{c} \right) \right) + \frac{1}{2c},$$
(13)

where  $\xi$  is a primitive  $c^{\text{th}}$  root of unity and  $aa^{-1} \equiv 1 \mod c$ ; here, the last equality follows from (12). We use the well-known convolution theorem for finite Fourier series:

THEOREM 5. Let  $f(t) = \frac{1}{N} \sum_{k=0}^{N-1} a_k \xi^{kt}$  and  $g(t) = \frac{1}{N} \sum_{k=0}^{N-1} b_k \xi^{kt}$ , where  $\xi$  is a primitive  $N^{th}$  root of unity. Then

$$\frac{1}{N}\sum_{k=0}^{N-1}a_kb_k\xi^{kt} = \sum_{m=0}^{N-1}f(t-m)g(m).$$

Hence by (13),

$$\sigma_t(a,b;c) = \sum_{m=0}^{c-1} \sigma_{t-m}(a;c)\sigma_m(b;c)$$
  
=  $\sum_{m=0}^{c-1} \left[ \left( \left( \frac{-a^{-1}(t-m)}{c} \right) \right) + \frac{1}{2c} \right] \left[ \left( \left( \frac{-b^{-1}m}{c} \right) \right) + \frac{1}{2c} \right]$   
=  $\sum_{m=0}^{c-1} \left( \left( \frac{a^{-1}(m-t)}{c} \right) \right) \left( \left( \frac{-b^{-1}m}{c} \right) \right) - \frac{1}{4c}.$ 

Here,  $aa^{-1} \equiv bb^{-1} \equiv 1 \mod c$ . The last equality follows from

$$\sum_{m=0}^{c-1} \left( \left( \frac{m}{c} \right) \right) = -\frac{1}{2}.$$

Furthermore, by the periodicity of ((x)),

$$\sigma_t(a,b;c) = \sum_{m=0}^{c-1} \left( \left( \frac{-a^{-1}(bm+t)}{c} \right) \right) \left( \left( \frac{m}{c} \right) \right) - \frac{1}{4c}.$$
 (14)

The expression on the right is, up to a trivial term, a special case of a *Dedekind–Rademacher sum* [10, 19, 21, 22]. It is a curious fact that the function  $\sigma_t(a, b; c)$  is the nontrivial part of a multiplier system of a weight-0 modular form [24, p. 121].

We conclude this section by proving two reciprocity laws for Fourier–Dedekind sums. The first one is equivalent to Zagier's reciprocity law for his *higher dimensional Dedekind sums* [30]. They are essentially Fourier–Dedekind sums with t = 0, that is, trivial numerators.

**THEOREM 6.** For pairwise relatively prime integers  $a_1, \ldots, a_n$ ,

$$\sum_{j=1}^{n} \sigma_0(a_1, \dots, \hat{a_j}, \dots, a_n; a_j) = 1 - R'_0(a_1, \dots, a_n),$$

where  $R'_{t}$  is the rational function given in Theorem 3.

It is well known [11] that the constant term of a *lattice* polytope (that is, a polytope with integral vertices) equals the Euler characteristic of the polytope. Consider the polytope

$$\left\{(x_1,\ldots,x_n)\in\mathbb{R}^n_{>0}:\ \sum_{k=1}^n\ x_ka_k=1\right\},\$$

whose dilates correspond to the quantor  $p'_A(t)$  of Theorem 3. If we dilate this polytope only by multiples of  $a_1 \cdots a_n$ , say  $t = a_1 \cdots a_n w$ , we obtain the dilates of a lattice polytope. Theorem 3 simplifies for these t to

$$p'_{A}(a_{1}\cdots a_{n}w) = R'_{a_{1}\cdots a_{n}w}(a_{1},\ldots,a_{n}) + \sum_{j=1}^{n} \sigma_{0}(a_{1},\ldots,\hat{a}_{j},\ldots,a_{n};a_{j}),$$

using the periodicity of  $\sigma_t$  (11). On the other hand, we know that the constant term (in terms of w) is the Euler characteristic of the polytope and hence equals 1, which yields the identity

$$1 = R'_0(a_1, \ldots, a_n) + \sum_{j=1}^n \sigma_0(a_1, \ldots, \hat{a_j}, \ldots, a_n; a_j).$$

The second one is a new reciprocity law, which generalizes the following [13].

THEOREM 7 (Gessel). Let *m* and *n* be relatively prime and suppose that  $0 \le r < m + n$ . Then

$$\frac{1}{m} \sum_{\lambda^{m}=1 \neq \lambda} \frac{\lambda^{r+1}}{(\lambda^{n}-1)(\lambda-1)} + \frac{1}{n} \sum_{\lambda^{n}=1 \neq \lambda} \frac{\lambda^{r+1}}{(\lambda^{m}-1)(\lambda-1)}$$
$$= -\frac{1}{12} \left(\frac{m}{n} + \frac{n}{m} + \frac{1}{mn}\right) + \frac{1}{4} \left(\frac{1}{m} + \frac{1}{n} - 1\right)$$
$$+ \frac{r}{2} \left(\frac{1}{m} + \frac{1}{n} - \frac{1}{mn}\right) - \frac{r^{2}}{2mn}.$$

It is not hard to see that Gessel's theorem follows as the two-dimensional case of

THEOREM 8. Let  $a_1, \ldots, a_n$  be pairwise relatively prime integers and  $0 < t < a_1 + \cdots + a_n$ . Then

$$\sum_{j=1}^n \sigma_t(a_1,\ldots,\hat{a_j},\ldots,a_n;a_j) = -R'_t(a_1,\ldots,a_n),$$

where  $R'_t$  is the rational function given in Theorem 3.

*Proof.* By definition,  $p'_A(t) = 0$  if  $0 < t < a_1 + \dots + a_n$ . Hence Theorem 3 yields an identity for these values of t:

$$0 = R'_t(a_1,\ldots,a_n) + \sum_{j=1}^n \sigma_t(a_1,\ldots,\hat{a}_j,\ldots,a_n;a_j).$$

It is worth noticing that both Theorems 6 and 7 imply the reciprocity law for the classical Dedekind sum  $\mathfrak{s}(a, b)$ . It should be finally mentioned that in special cases there are other reciprocity laws, for example, for the sum appearing on the right-hand side in (14) [10, 22]. We note that, as a consequence, we can compute  $\sigma_t(a, b; c)$  in polynomial time.

## 5. THE FROBENIUS PROBLEM

In this last section we apply Theorem 3 (the explicit formula for  $p'_A(t)$ ) to Frobenius's original problem. As an example, we will discuss the threedimensional case. Note that a bound for dimension 3 yields a bound for the general case: It can be easily verified that

$$f(a_1, \dots, a_n) \leq f(a_1, a_2, a_3) + a_4 + \dots + a_n.$$
 (15)

Furthermore, in dimension 3 it suffices to assume that  $a_1, a_2, a_3$  are pairwise coprime, due to Johnson's formula [15]: If  $g = (a_1, a_2)$ , then

$$f(a_1, a_2, a_3) = g \cdot f\left(\frac{a_1}{g}, \frac{a_2}{g}, a_3\right).$$
 (16)

Now assume a, b, c pairwise relatively prime, and recall (14):

$$\sigma_t(a,b;c) = \sum_{m=0}^{c-1} \left( \left( \frac{-a^{-1}(bm+t)}{c} \right) \right) \left( \left( \frac{m}{c} \right) \right) - \frac{1}{4c}$$

where  $aa^{-1} \equiv 1 \mod c$ . We will use the Cauchy–Schwartz inequality

$$\left|\sum_{k=1}^{n} a_k a_{\pi(k)}\right| \leqslant \sum_{k=1}^{n} a_k^2.$$
(17)

Here  $a_k \in \mathbb{R}$ , and  $\pi \in S_n$  is a permutation. Since  $(a^{-1}b, c) = 1$ , we can use (17) to obtain

$$\sigma_t(a,b;c) \ge -\sum_{m=0}^{c-1} \left( \left(\frac{m}{c}\right) \right)^2 - \frac{1}{4c} = \sum_{m=0}^{c-1} \left(\frac{m}{c} - \frac{1}{2}\right)^2 - \frac{1}{4c}$$
$$= -\frac{1}{c^2} \frac{(2c-1)(c-1)c}{6} + \frac{1}{c} \frac{c(c-1)}{2} - \frac{c}{4} - \frac{1}{4c}$$
$$= -\frac{c}{12} - \frac{1}{12c}.$$

This also restates Rademacher's bound on the classical Dedekind sums [23]. Using this in the formula for dimension 3 (remark after Theorem 3), we get

$$p'_{\{a,b,c\}}(t) \ge \frac{t^2}{2abc} - \frac{t}{2} \left( \frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc} \right) + \frac{1}{12} \left( \frac{3}{a} + \frac{3}{b} + \frac{3}{c} + \frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} \right) - \frac{1}{12} (a + b + c) - \frac{1}{12} \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$

$$=\frac{t^2}{2abc} - \frac{t}{2}\left(\frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc}\right) + \frac{1}{12}\left(\frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab}\right)$$
$$-\frac{1}{12}(a+b+c) + \frac{1}{6}\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).$$

The larger zero of the right-hand side is an upper bound for the solution of the Frobenius problem:

$$\begin{split} f(a,b,c) &\leqslant abc \left( \frac{1}{2} \left( \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} \right) + \left[ \frac{1}{4} \left( \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} \right)^2 \right. \\ &\left. - \frac{2}{abc} \left( \frac{1}{12} \left( \frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} \right) - \frac{1}{12} (a + b + c) \right. \\ &\left. + \frac{1}{6} \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \right) \right]^{1/2} \right) \\ &\leqslant \frac{1}{2} (a + b + c) + abc \sqrt{\frac{1}{4} \left( \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} \right)^2 + \frac{1}{6} \left( \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} \right)} \\ &= \frac{1}{2} (a + b + c) + abc \sqrt{\frac{1}{2} \left( \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} \right) \left( \frac{1}{2} \left( \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} \right) + \frac{1}{3} \right)} \\ &\leqslant \frac{1}{2} (a + b + c) + abc \sqrt{\frac{1}{2} \left( \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} \right) \left( \frac{1}{2} \left( \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} \right) + \frac{1}{3} \right)} \\ &\leqslant \frac{1}{2} (a + b + c) + abc \sqrt{\frac{1}{4} \left( \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} \right)} . \end{split}$$

For the last inequality, we used the fact that  $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} \leq \frac{1}{6} + \frac{1}{10} + \frac{1}{15} = \frac{1}{3}$ . This proves, using (15) and (16),

THEOREM 9. Let  $a_1 \leq a_2 \leq \cdots \leq a_n$  be relatively prime. Then

$$f(a_1,\ldots,a_n) \leq \frac{1}{2} \left( \sqrt{a_1 a_2 a_3 (a_1 + a_2 + a_3)} + a_1 + a_2 + a_3 \right) + a_4 + \cdots + a_n.$$

*Remark.* (1) Sometimes the Frobenius problem is stated in a slightly different form: Given relatively prime positive integers  $a_1, \ldots, a_n$ , find the largest value of t such that  $\sum_{k=1}^{n} m_k a_k = t$  has no solution in *nonnegative* integers  $m_1, \ldots, m_n$ . This number is denoted by  $g(a_1, \ldots, a_n)$ . It is, however, easy to see that

$$g(a_1,\ldots,a_n)=f(a_1,\ldots,a_n)-a_1-\cdots-a_n$$

So we can restate Theorem 9 in a more compact form as

$$g(a_1,\ldots,a_n) \leq \frac{1}{2}(\sqrt{a_1a_2a_3(a_1+a_2+a_3)}-a_1-a_2-a_3).$$

(2) Bounds on the Frobenius number in the literature include results by Erdős and Graham [12]

$$g(a_1,\ldots,a_n) \leq 2a_n \left\lfloor \frac{a_1}{n} \right\rfloor - a_1,$$

Selmer [27]

$$g(a_1,\ldots,a_n) \leq 2a_{n-1} \left\lfloor \frac{a_n}{n} \right\rfloor - a_n,$$

and Vitek [29]

$$g(a_1,\ldots,a_n) \leq \left\lfloor \frac{1}{2}(a_2-1)(a_n-2) \right\rfloor - 1.$$

Theorem 9 is certainly of the same order. What might be more interesting, however, is the fact that the bound in Theorem 9 is of a different nature than the bounds stated above: namely, it involves three variables, and is thus—especially in terms of estimating  $g(a_1, a_2, a_3)$ —more symmetric.

## REFERENCES

- 1. A. I. Barvinok, Computing the Ehrhart polynomial of a convex lattice polytope, *Discrete Comput. Geom.* **12** (1994), 35–48.
- 2. M. Beck, Counting lattice points by means of the residue theorem, *Ramanujan J.* 4, No. 3 (2000), 299–310.
- 3. M. Beck, I. M. Gessel, and T. Komatsu, The polynomial part of a restricted partition function related to the Frobenius problem, *Electron. J. Combin.* 8, No. 1 (2001), N 7.
- 4. A. Brauer and J. E. Shockley, On a problem of Frobenius, J. Reine Angew. Math. 211 (1962), 215–220.
- 5. M. Brion, Points entiers dans les polyèdres convexes, *Ann. Sci. École Norm. Sup* (4) **21**, No. 4 (1988), 653–663.
- 6. M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, *J. Amer. Math. Soc.* **10**, No. 4 (1997), 797–833.
- S. E. Cappell and J. L. Shaneson, Euler-Maclaurin expansions for lattices above dimension one, C. R. Acad. Sci. Paris Ser. I Math. 321, No. 7 (1995), 885–890.
- 8. J. L. Davison, On the linear diophantine problem of Frobenius, J. Number Theory 48 (1994), 353–363.
- R. Diaz and S. Robins, The Erhart polynomial of a lattice polytope, Ann. Math. 145 (1997), 503–518.
- 10. U. Dieter, Das Verhalten der Kleinschen Funktionen  $\log \sigma_{g,h}(w_1, w_2)$  gegenüber Modultransformationen und verallgemeinerte Dedekindsche Summen, *J. Reine Angew. Math.* **201** (1959), 37–70.

- E. Ehrhart, Sur un problème de géométrie diophantienne linéaire II, J. Reine Angew. Math. 227 (1967), 25–49.
- 12. P. Erdös and R. L. Graham, On a linear diophantine problem of Frobenius, *Acta Arithm.* **21** (1972), 399–408.
- I. Gessel, Generating functions and generalized Dedekind sums, *Electronic J. Combin.* 4, No. 2 (1997), R 11.
- V. Guillemin, Riemann-Roch for toric orbifolds, J. Differential Geom. 45, No. 1 (1997), 53-73.
- 15. S. M. Johnson, A linear diophantine problem, Canad. J. Math. 12 (1960), 390-398.
- 16. R. Kannan, Lattice translates of a polytope and the Frobenius problem, *Combinatorica* **12** (1992), 161–177.
- J.-M. Kantor and A. G. Khovanskii, Une application du Théorème de Riemann-Roch combinatoire au polynôme d'Ehrhart des polytopes entier de ℝ<sup>n</sup>, C. R. Acad. Sci. Paris, Series I 317 (1993), 501–507.
- A. G. Khovanskii and A. V. Pukhlikov, The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, *St. Petersburg Math. J.* 4, No. 4 (1993), 789–812.
- 19. D. E. Knuth, Notes on generalized Dedekind sums, Acta Arithm. 33 (1977), 297-325.
- I. G. Macdonald, Polynomials associated with finite cell complexes, J. London Math. Soc. 4 (1971), 181–192.
- 21. C. Meyer, Über einige Anwendungen Dedekindscher Summen, J. Reine Angew. Math. 198 (1957), 143–203.
- 22. H. Rademacher, Some remarks on certain generalized Dedekind sums, *Acta Arithm.* 9 (1964), 97–105.
- 23. H. Rademacher and E. Grosswald, Dedekind sums, Carus Mathematical Monographs, The Mathematical Association of America, Washington, DC, 1972.
- 24. S. Robins, Generalized Dedekind η-products, Contemp. Math. 166 (1994), 119-128.
- 25. O. J. Rodseth, On a linear problem of Frobenius, J. Reine Angew. Math. 301 (1978), 171–178.
- O. J. Rodseth, On a linear problem of Frobenius II, J. Reine Angew. Math. 307/308 (1979), 431–440.
- E. S. Selmer, On the linear diophantine problem of Frobenius, J. Reine Angew. Math. 293/ 294 (1977), 1–17.
- 28. J. J. Sylvester, Mathematical questions with their solutions, Ed. Times 41 (1884), 171-178.
- Y. Vitek, Bounds for a linear diophantine problem of Frobenius, J. London Math. Soc. (2) 10 (1975), 390–398.
- 30. D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149-172.