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We study the number of lattice points in integer dilates of the rational polytope

P ¼ ðx1; . . . ; xnÞ 2 Rn
50:

Xn

k¼1

xkak41

( )
;

where a1; . . . ; an are positive integers. This polytope is closely related to the linear

Diophantine problem of Frobenius: given relatively prime positive integers a1; . . . ; an;

find the largest value of t (the Frobenius number) such that m1a1 þ � � � þ mnan ¼ t has

no solution in positive integers m1; . . . ;mn: This is equivalent to the problem of

finding the largest dilate tP such that the facet f
Pn

k¼1 xkak ¼ tg contains no lattice

point. We present two methods for computing the Ehrhart quasipolynomials

Lð %PP; tÞ :¼ #ðtP \ ZnÞ and LðP8; tÞ :¼ #ðtP8 \ ZnÞ: Within the computations a

Dedekind-like finite Fourier sum appears. We obtain a reciprocity law for these

sums, generalizing a theorem of Gessel. As a corollary of our formulas, we rederive

the reciprocity law for Zagier’s higher-dimensional Dedekind sums. Finally, we find

bounds for the Fourier–Dedekind sums and use them to give new bounds for the

Frobenius number. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let a1; . . . ; an be positive integers, Zn 
 Rn be the n-dimensional integer
lattice, and

P ¼ ðx1; . . . ; xnÞ 2 Rn: xk50;
Xn

k¼1

akxk41

( )
; ð1Þ

a rational polytope with vertices

ð0; . . . ; 0Þ; ð 1
a1
; 0; � � � 0Þ; ð0; 1

a2
; 0; . . . ; 0Þ; . . . ; ð0; . . . ; 0; 1

an
Þ:

For a positive integer t 2 N; let Lð %PP; tÞ be the number of lattice points
in the dilated polytope tP ¼ ftx: x 2 Pg: Denote further the relative
interior ofP byP8 and the number of lattice points in tP8 by LðP8; tÞ: Then
LðP8; tÞ and Lð %PP; tÞ are quasipolynomials in t of degree n [11], i.e.
expressions

cnðtÞ tn þ � � � þ c1ðtÞ t þ c0ðtÞ;

where c0; . . . ; cn are periodic functions in t: In fact, if the ak’s are pairwise
relatively prime then c1; . . . ; cn are constants, so only c0 will show this
periodic dependency on t:

Let A ¼ fa1; . . . ; ang be a set of relatively prime positive integers, and

p0
AðtÞ ¼ # ðm1; . . . ;mnÞ 2 Nn:

Xn

k¼1

mkak ¼ t

( )
: ð2Þ

The function p0
AðtÞ can be described as the number of restricted partitions of

t with parts in A, where we require that each part is used at least once. (We
reserve the name pA for the enumeration function of those partitions which
do not have this restriction.) Geometrically, p0

AðtÞ enumerates the lattice
points on the skewed facet of P: Define f ða1; . . . ; anÞ to be the largest value
of t for which

p0
AðtÞ ¼ 0:

In the 19th century, Frobenius inaugurated the study of f ða1; . . . ; anÞ: For
n ¼ 2; it is known (probably at least since Sylvester [28]) that
f ða1; a2Þ ¼ a1a2: For n > 2; all attempts for explicit formulas have proved
elusive. Here we focus on the study of p0

AðtÞ; and show that it has an explicit
representation as a quasipolynomial. Through the discussion of p0

AðtÞ; we
gain new insights into Frobenius’s problem.
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Another motivation to study p0
AðtÞ is the following trivial reduction

formula to lower dimensions:

p0
fa1;...;angðtÞ ¼

X
m>0

p0
fa1;...;an�1gðt � manÞ: ð3Þ

Here we use the convention that p0
AðtÞ ¼ 0 if t40: This identity can be easily

verified by viewing p0
AðtÞ as

p0
AðtÞ ¼ # ðm1; . . . ;mnÞ 2 Nn:

Xn�1

k¼1

mkak ¼ t � mnan

( )
:

Hence, precise knowledge of the values of t for which p0
AðtÞ ¼ 0 in lower

dimensions sheds additional light on the Frobenius number in higher
dimensions.

The number p0
AðtÞ appears in the lattice point count of P: It is

for this reason that we decided to focus on this particular rational
polytope. We present two methods (Sections 2 and 3) for computing
the terms appearing in LðP8; tÞ and Lð %PP; tÞ: Both methods are
refinements of concepts that were earlier introduced by the authors [2,9].
In contrast to the mostly algebraic–geometric and topological ways of
computing LðP8; tÞ and Lð %PP; tÞ [1, 6, 7, 14, 17, 18], our methods are analytic.
In passing, we recover the Ehrhart–Macdonald reciprocity law relating
LðP8; tÞ and Lð %PP; tÞ [11, 20]. Within the computations a Dedekind-like
finite Fourier sum appears, which shares some properties with its
classical siblings, discussed in Section 4. In particular, we prove two
reciprocity laws for these sums: a rederivation of the reciprocity
law for Zagier’s higher-dimensional Dedekind sums [30], and a
new reciprocity law that generalizes a theorem of Gessel [13]. Finally,
in Section 5 we give bounds on these generalized Dedekind sums and
apply our results to give new bounds for the Frobenius number.
The literature on such bounds is vast}see, for example, [4, 8, 12, 6,
25–27, 29].

2. THE RESIDUE METHOD

In [2], the first author used the residue theorem to count lattice
points in a lattice polytope, that is, a polytope with integer
vertices. Here we extend these methods to the case of rational

vertices.
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We are interested in the number of lattice points in the tetrahedron P
defined by (1) and integral dilates of it. We can interpret

Lð %PP; tÞ ¼ # ðm1; . . . ;mnÞ 2 Zn: mk50;
Xn

k¼1

mkak4t

( )

as the Taylor coefficient of zt of the function

ð1þ za1 þ z2a1 þ � � �Þ � � � ð1þ zan þ z2an þ � � �Þð1þ z þ z2 þ � � �Þ

¼ 1

1� za1
� � � 1

1� zan

1

1� z
:

Equivalently,

Lð %PP; tÞ ¼ Res
z�t�1

ð1� za1Þ � � � ð1� zanÞð1� zÞ; z ¼ 0

� �
: ð4Þ

If this expression counts the number of lattice points in tP; then the
remaining task is to compute the other residues of

F�tðzÞ :¼
z�t�1

ð1� za1Þ � � � ð1� zanÞð1� zÞ;

and use the residue theorem for the sphere C [ f1g: F�t has poles at 0 and
all ath

1 ; . . . ; ath
n roots of unity. It is particularly easy to get precise formulas if

the poles at the nontrivial roots of unity are simple. For this reason, assume
in the following that a1; . . . ; an are pairwise relatively prime. Then the
residues for the ath

1 ; . . . ; a
th
n roots of unity are not hard to compute: Let

la1 ¼ 1al; then

ResðF�tðzÞ; z ¼ lÞ

¼ l�t�1

ð1� la2Þ � � � ð1� lanÞð1� lÞRes
1

1� za1
; z ¼ l

� �

¼ l�t�1

ð1� la2Þ � � � ð1� lanÞð1� lÞ lim
z!l

z � l
1� za1

¼ � l�t

a1ð1� la2Þ � � � ð1� lanÞð1� lÞ:
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If we add up all the nontrivial ath
1 roots of unity, we obtain

X
la1¼1al

ResðF�tðzÞ; z ¼ lÞ

¼ �1

a1

X
la1¼1al

l�t

ð1� la2Þ � � � ð1� lanÞð1� lÞ

¼ �1

a1

Xa1�1

k¼1

x�kt

ð1� xka2Þ � � � ð1� xkanÞð1� xkÞ
;

where x is a primitive ath
1 root of unity. This motivates the following

Definition 1. Let c1; . . . ; cn 2 Z be relatively prime to c 2 Z; and t 2 Z:
Define the Fourier–Dedekind sum as

stðc1; . . . ; cn; cÞ ¼ 1

c

X
lc¼1al

lt

ðlc1 � 1Þ � � � ðlcn � 1Þ:

Some properties of st are discussed in Section 4. With this notation, we can
now write

X
la1¼1al

ResðF�tðzÞ; z ¼ lÞ ¼ ð�1Þnþ1s�tða2; . . . ; an; 1; a1Þ:

We get similar residues for the ath
2 ; . . . ; ath

n roots of unity. Finally, note that
ResðF�t; z ¼ 1Þ ¼ 0; so that the residue theorem allows us to rewrite (4):

Theorem 1. Let P be given by (1), with a1; . . . ; an pairwise relatively

prime. Then

Lð %PP; tÞ ¼ R�tða1; . . . ; anÞ þ ð�1Þn
Xn

j¼1

s�tða1; . . . ; #ajaj ; . . . ; an; 1; ajÞ;

where R�tða1; . . . ; anÞ ¼ �ResðF�tðzÞ; z ¼ 1Þ; and #ajaj means we omit the

term aj:

Remarks. (1) R�t can be easily calculated via

ResðF�tðzÞ; z ¼ 1Þ ¼ResðezF�tðezÞ; z ¼ 0Þ

¼Res
e�tz

ð1� ea1zÞ � � � ð1� eanzÞð1� ezÞ; z ¼ 0

� �
:
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To facilitate the computation in higher dimensions, one can use
mathematics software such as Maple or Mathematica. It is easy to see that
R�tða1; . . . ; anÞ is a polynomial in t whose coefficients are rational
expressions in a1; . . . ; an: The first values for R�t are

R�tðaÞ ¼
t

a
þ 1

2a
þ 1

2
;

R�tða; bÞ ¼ t2

2ab
þ t

2

1

a
þ 1

b
þ 1

ab

� �
þ 1

4
1þ 1

a
þ 1

b

� �

þ 1

12

a

b
þ b

a
þ 1

ab

� �

R�tða; b; cÞ ¼ t3

6abc
þ t2

4

1

ab
þ 1

ac
þ 1

bc
þ 1

abc

� �

þ t

12

3

a
þ 3

b
þ 3

c
þ 3

ab
þ 3

ac
þ 3

bc
þ a

bc
þ b

ac
þ c

ab
þ 1

abc

� �

þ 1

24
3þ 3

a
þ 3

b
þ 3

c
þ a

b
þ a

c
þ b

a
þ b

c
þ c

a
þ c

b

�

þ 1

ab
þ 1

ac
þ 1

bc
þ a

bc
þ b

ac
þ c

ab

�
:

(2) If a1; . . . ; an are not pairwise relatively prime, we can get similar
formulas for Lð %PP; tÞ: In this case we do not have only simple poles, so that
the computation of the residues gets slightly more complicated.

For the computation of LðP8; tÞ (the number of lattice points in the
interior of our tetrahedron tP), we similarly write

LðP8; tÞ ¼ # ðm1; . . . ;mnÞ 2 Zn: mk > 0;
Xn

k¼1

mkakot

( )
:

So now we can interpret LðP8; tÞ as the Taylor coefficient of zt of the
function

ðza1 þ z2a1 þ � � �Þ � � � ðzan þ z2an þ � � �Þðz þ z2 þ � � �Þ

¼ za1

1� za1
� � � zan

1� zan

z

1� z
;
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or equivalently as

Res
za1

1� za1
� � � zan

1� zan

z

1� z
z�t�1; z ¼ 0

� �

¼ Res
�1

z2
1

za1 � 1
� � � 1

zan � 1

1

z � 1
ztþ1; z ¼ 1

� �
:

To be able to use the residue theorem, this time we have to consider the
function

� 1

za1 � 1
� � � 1

zan � 1

1

z � 1
zt�1 ¼ ð�1Þn

FtðzÞ:

The residues at the finite poles of Ft can be computed as before, with t

replaced by �t; and the proof of the following theorem is completely
analogous to Theorem 1:

Theorem 2. Let P be given by (1), with a1; . . . ; an pairwise relatively

prime. Then

LðP8; tÞ ¼ ð�1Þn
Rtða1; . . . ; anÞ þ

Xn

j¼1

stða1; . . . ; #ajaj; . . . ; an; 1; ajÞ:

As an immediate consequence we get the remarkable

Corollary 1 (Ehrhart–Macdonald Reciprocity Law).

LðP8;�tÞ ¼ ð�1Þn
Lð %PP; tÞ:

This result was conjectured for convex rational polytopes by Ehrhart [11],
and first proved by Macdonald [20].

Of particular interest is the number of lattice points on the
boundary of tP: Besides computing LðP8; tÞ and Lð %PP; tÞ and taking
differences, we can also adjust our method to this situation, especially
if we are interested in only parts of the boundary. As an example,
we will compute p0

AðtÞ as defined in introduction (2), which appears
in the context of the Frobenius problem. Again, for reasons of
simplicity we assume in the following that a1; . . . ; an are pairwise coprime

positive integers.
This time we interpret

p0
AðtÞ ¼ # ðm1; . . . ;mnÞ 2 Nn:

Xn

k¼1

mkak ¼ t

( )
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as the Taylor coefficient of zt of the function

ðza1 þ z2a1 þ � � �Þ � � � ðzan þ z2an þ � � �Þ

¼ za1

1� za1
� � � zan

1� zan
:

That is,

p0
AðtÞ ¼Res

za1

1� za1
� � � zan

1� zan
z�t�1; z ¼ 0

� �

¼Res
�1

z2
1

za1 � 1
� � � 1

zan � 1
ztþ1; z ¼ 1

� �
:

Thus, we have to find the other residues of

GtðzÞ :¼
zt�1

ðza1 � 1Þ � � � ðzan � 1Þ ¼ ðz � 1ÞFtðzÞ;

since

p0
AðtÞ ¼ �Res ðGtðzÞ; z ¼ 1Þ: ð5Þ

Gt has its other poles at all ath
1 ; . . . ; ath

n roots of unity. Again, note that Gt has
simple poles at all the nontrivial roots of unity. Let l be a nontrivial ath

1 root
of unity, then

ResðGtðzÞ; z ¼ lÞ ¼ lt�1

ðla2 � 1Þ � � � ðlan � 1ÞRes
1

za1 � 1
; z ¼ l

� �

¼ lt

a1ðla2 � 1Þ � � � ðlan � 1Þ:

Adding up all the nontrivial ath
1 roots of unity, we obtain

X
la1¼1al

ResðGtðzÞ; z ¼ lÞ ¼ 1

a1

X
la1¼1al

lt

ðla2 � 1Þ � � � ðlan � 1Þ

¼ stða2; . . . ; an; a1Þ:

Together with the similar residues at the other roots of unity, (5) gives us
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Theorem 3.

p0
AðtÞ ¼ R0

tða1; . . . ; anÞ þ
Xn

j¼1

stða1; . . . ; #ajaj; . . . ; an; ajÞ;

where R0
tða1; . . . ; anÞ ¼ ResðGtðzÞ; z ¼ 1Þ:

R0 is as easily computed as before, the first values are

R0
tða; bÞ ¼ t

ab
� 1

2

1

a
þ 1

b

� �
;R0

tða; b; cÞ

¼ t2

2abc
� t

2

1

ab
þ 1

ac
þ 1

bc

� �

þ 1

12

3

a
þ 3

b
þ 3

c
þ a

bc
þ b

ac
þ c

ab

� �
;

R0
tða; b; c; dÞ ¼ t3

6abcd
� t2

4

1

abc
þ 1

abd
þ 1

acd
þ 1

bcd

� �

þ t

12

3

ab
þ 3

ac
þ 3

ad
þ 3

bc
þ 3

bd
þ 3

cd

�

þ a

bcd
þ b

acd
þ c

abd
þ d

abc

�

� 1

24

a

bc
þ a

bd
þ a

cd
þ b

ad
þ b

ac
þ b

cd

�

þ c

ab
þ c

ad
þ c

bd
þ d

ab
þ d

ac
þ d

bc

�

� 1

8

1

a
þ 1

b
þ 1

c
þ 1

d

� �
:

A general formula for R0
tða1; . . . ; anÞ was recently discovered in [3].

For generalizations, note that we can apply our method to any
tetrahedron given in the form (1), with the ak’s replaced by any rational
numbers. Moreover, any convex rational polytope (that is, a convex
polytope whose vertices have rational coordinates) can be described by a
finite number of inequalities over the rationals. In other words, a convex
lattice polytope P is an intersection of finitely many half-spaces. This
description of the polytope leads to an integral in several complex variables,
as discussed in [2, Theorem 8] for lattice polytopes.
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3. THE FOURIER METHOD

In this section we outline a Fourier-analytic method that achieves the
same results. Although the theory is a little harder, the method is of
independent interest. It draws connections to Brion’s theorem on generating
functions [5] and to the basic results of [9].

To be concrete, we illustrate the general case with the two-dimensional
rational triangle P whose vertices are v0 ¼ ð0; 0Þ; v1 ¼ ðt

a
; 0Þ; and v2 ¼ ð0; t

b
Þ:

As before, the number of lattice points in the one-dimensional hypotenuse
of this right triangle is

p0
fa;bgðtÞ ¼ #fðm; nÞ 2 N2: am þ bn ¼ tg:

We denote the tangent cone to P at the vertex vi by Ki: We recall that the
exponential sum attached to the cone K (with vertex v) is by definition

sKðsÞ ¼
X

m2Zn\K

e�2phs;mi; ð6Þ

where s is any complex vector that makes the infinite sum (6) converge. An
equivalent formulation of (6) which appears more combinatorial is

sKðxÞ ¼
X

m2Zn\K

xm; ð7Þ

where xm ¼ xm1

1 � � � xmn
n and xj ¼ e�2psj :

In general dimension, let the vertices of the rational polytope P
be v1; . . . ; vl : Let the corresponding tangent cone at vj be Kj: Finally, let
the finite exponential sum over P be

sPðsÞ ¼
X

m2Zn\P
e�2phs;mi: ð8Þ

Then there is the basic result that each exponential sum (7) is a rational
function of x; and the following theorem relates these rational functions [5]:

Theorem 4 (Brion). For a generic value of s 2 C
n;

sPðsÞ ¼
Xl

i¼1

sKi
ðsÞ: ð9Þ

This result allows us to transfer the enumeration of lattice points in P to
the enumeration of lattice points in the tangent cones Ki at the vertices of P;
an easier task. In the theorem above, ‘generic value of s’ means any s 2 C

n

for which these rational functions do not blow up to infinity.
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To apply these results to our given rational triangle P; we first
employ the methods of [9] to get an explicit formula for the exponential
sum for each tangent cone of P: Then, by Brion’s theorem on tangent
cones, the sum of the three exponential sums attached to the tangent
cones equals the exponential sum over P: Canceling the singularities
arising from each tangent cone, and letting s ! 1; we get the explicit
formula of the previous section for the number of lattice points in the
rational triangle P:

In our case, K1 is generated by the two rational vectors �v1 and v2 � v1:
We form the matrix

A1 ¼
�t

a
�t

a

0 t
b

 !
;

whose columns are the vectors that generate the cone K1: Once we compute
sK1

ðsÞ; sK2
ðsÞ will follow by symmetry. The easiest exponential sum to

compute is

sK0
ðsÞ ¼

X
m2Z2\K0

e�2phs;mi ¼
X

m150
m250

e�2pðm1s1þm2s2Þ

¼ 1

ð1� e�2ps1Þð1� e�2ps2Þ:

To compute sKi
ðsÞ ðia0Þ; we first translate the cone Ki by the vector �vi so

that its new vertex is the origin. We therefore let K ¼ Ki � vi; and the
following elementary lemma illustrates how a translation affects the Fourier
transform. Let

wKðxÞ ¼
1 if x 2 K ;

0 if xeK

(

denote the characteristic function of K :

Lemma 1. Let

FvðxÞ ¼ wKþvðxÞ e�2phs;mi

for x 2 Rn; s 2 C
n: Then

F̂vðxÞ ¼ #wwKðxþ isÞe�2pihxþis;vi:
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Proof.

F̂vðxÞ ¼
Z
Rn

wKþvðxÞ e�2phs;mie2pihx;xi dx

¼
Z
Rn

e2pihxþis;xiwKþvðxÞ dx

¼
Z
Rn

e2pihxþis;y�viwKðyÞ dy

¼ e�2pihxþis;vi
Z
Rn

e2pihxþis;yiwKðyÞ dy

¼ e�2pihxþis;vi #wwKðxþ isÞ: ]

This lemma also shows why it is useful to study the Fourier transform of
K at complex values of the variable; that is, at xþ is: We study FðxÞ because
(6) can be rewritten as

sK0þvðsÞ ¼
X
m2Zn

wK0þv e�2phs;mi ¼
X
m2Zn

FvðmÞ:

All of the lemmas of [9] remain true in this rational polytope context. The
idea is to apply the Poisson summation to

P
m2Zn FvðmÞ and write formallyX

m2Zn

FvðmÞ ¼
X
m2Zn

F̂vðmÞ:

The right-hand side diverges, though, and some smoothing completes the
picture. Because the steps are identical to those in [9], we omit the ensuing

details. Let xa ¼ e
2pi
a : We get

sK1
ðs1; s2Þ ¼

xts1
a

4a

Xa�1

r¼0

xrt
a coth

pb

t
s1;2 þ

irt

a

� �
� 1

� �

� coth
p
t

s1;1 þ
irt

a

� �
þ 1

� �
; ð10Þ

where

s1;1 ¼ hs; generator 1 of K1i ¼ ðs1; s2Þ; �t

a
; 0


 �D E
¼ �ts1

a

and

s1;2 ¼ hs; generator 2 of K1i ¼ ðs1; s2Þ; �t

a
;

t

b


 �D E
¼ �ts1

a
þ ts2

b
:
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By (9), we have

#fZ2 \ tPg ¼
X

m2Z2\tP

1 ¼ lim
s!0

ðsK0
ðsÞ þ sK1

ðsÞ þ sK2
ðsÞÞ:

Using the explicit description of sKi
ðsÞ in terms of cotangent functions, we

can cancel their singularities at s ¼ 0 and simply add the holomorphic
contributions to sKi

ðsÞ at s ¼ 0: The left-hand side of (9) is holomorphic in s;
so that we are guaranteed that the singularities on the right-hand side cancel
each other.

The only term in the finite sum (10) that contributes a singularity
at s ¼ 0 is the r ¼ 0 term. We expand the three exponential sums
sKi

ðsÞ into their Laurent expansions about s ¼ 0: Here we only require
the first 3 terms of their Laurent expansions. In dimension n we would
require the first n þ 1 terms; otherwise every step is the same in general
dimension n:

We make use of the Laurent series

1

1� e�as
¼ 1

as
þ 1

2
þ as

12
þ Oðs2Þ

near s ¼ 0; as well as the Laurent series for cot ps near s ¼ 0: After
expanding each cotangent in (10) for sK0

ðsÞ; sK1
ðsÞ and sK2

ðsÞ and letting
s ! 0; we obtain Theorem 1 above as

Lð %PP; tÞ ¼ t2

2ab
þ t

2

1

a
þ 1

b
þ 1

ab

� �

þ 1

4
1þ 1

a
þ 1

b

� �
þ 1

12

a

b
þ b

a
þ 1

ab

� �

þ 1

a

Xa�1

r¼1

xrt
a

ð1� xrb
a Þð1� xr

aÞ
þ 1

b

Xb�1

r¼1

xrt
b

ð1� xra
b Þð1� xr

bÞ
:

Note that, as before, the periodic portion of Lð %PP; tÞ is entirely contained in
the ‘‘constant’’ t term. By Ehrhart’s reciprocity law ([11, Corollary 1]), there
is a similar expression for LðP; tÞ; and taking

Lð %PP; tÞ � LðP; tÞ � t

a

h i
� t

b

h i
� 1

gives us pfa;bgðtÞ: The same analysis gives us Theorem 1 in Rn:
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4. THE FOURIER–DEDEKIND SUM

In the derivation of the various lattice count formulas, we naturally
arrived at the Fourier–Dedekind sum

stðc1; . . . ; cn; cÞ ¼ 1

c

X
lc¼1al

lt

ðlc1 � 1Þ � � � ðlcn � 1Þ:

This expression is a generalization of the classical Dedekind sum sðh; kÞ [23]
and its various generalizations [10, 13, 21, 22, 30]. In fact, an easy calculation
shows

s0ða; 1; cÞ ¼ 1

c

X
lc¼1al

1

ðla � 1Þðl� 1Þ

¼ 1

4
� 1

4c
� 1

4c

Xc�1

k¼1

cot
pka

c
cot

pk

c
¼ 1

4
� 1

4c
� sða; cÞ:

In general, note that stðc1; . . . ; cn; cÞ is a rational number: It is an element of
the cyclotomic field of cth roots of unity, and invariant under all Galois
transformations of this field.

Some obvious properties are

stðc1; . . . ; cn; cÞ ¼ stðcpð1Þ; . . . ; cpðnÞ; cÞ for any p 2 Sn;

stðc1; . . . ; cn; cÞ ¼ sðt mod cÞðc1 mod c; . . . ; cn mod c; cÞ;

stðc1; . . . ; cn; cÞ ¼ sbtðbc1; . . . ; bcn; cÞ for any b 2 Z with ðb; cÞ ¼ 1: ð11Þ

We can get more familiar-looking formulas for st in certain dimensions. For
example, counting points in dimension 1, we find that

Lð %PP; tÞ ¼ #fm 2 Z: m50;mc4tg ¼ t

c

j k
þ 1;

so that Theorem 1 implies

s�tð1; cÞ ¼ 1

c

X
lc¼1al

l�t

ðl� 1Þ ¼
t

c
� t

c

j k
� 1

2
þ 1

2c
¼ t

c


 �
 �
þ 1

2c
: ð12Þ

Here, ððxÞÞ ¼ x � bxc � 1=2 is a sawtooth function (differing slightly from
the one appearing in the classical Dedekind sums). This restates the well-
known finite Fourier expansion of the sawtooth function (see, e.g., [23]).
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As another example, we reformulate

stða; b; cÞ ¼ 1

c

X
lc¼1al

lt

ðla � 1Þðlb � 1Þ

by means of finite Fourier series. Consider

stða; cÞ ¼
1

c

X
lc¼1al

l�t

ðla � 1Þ ¼
1

c

Xc�1

k¼1

xkt

ðxka � 1Þ
¼ 1

c

Xc�1

k¼1

xka�1t

ðxk � 1Þ

¼ �a�1t

c

� �� �
þ 1

2c
; ð13Þ

where x is a primitive cth root of unity and aa�1 � 1 mod c; here, the last
equality follows from (12). We use the well-known convolution theorem for
finite Fourier series:

Theorem 5. Let f ðtÞ ¼ 1
N

PN�1
k¼0 akx

kt and gðtÞ ¼ 1
N

PN�1
k¼0 bkx

kt; where x
is a primitive Nth root of unity. Then

1

N

XN�1

k¼0

akbkx
kt ¼

XN�1

m¼0

f ðt � mÞgðmÞ:

Hence by (13),

stða; b; cÞ ¼
Xc�1

m¼0

st�mða; cÞsmðb; cÞ

¼
Xc�1

m¼0

�a�1ðt � mÞ
c

� �� �
þ 1

2c

� �
�b�1m

c

� �� �
þ 1

2c

� �

¼
Xc�1

m¼0

a�1ðm � tÞ
c

� �� �
�b�1m

c

� �� �
� 1

4c
:

Here, aa�1 � bb�1 � 1 mod c: The last equality follows from

Xc�1

m¼0

m

c


 �
 �
¼ �1

2
:

Furthermore, by the periodicity of ððxÞÞ;

stða; b; cÞ ¼
Xc�1

m¼0

�a�1ðbm þ tÞ
c

� �� �
m

c


 �
 �
� 1

4c
: ð14Þ
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The expression on the right is, up to a trivial term, a special case of a
Dedekind–Rademacher sum [10, 19, 21,22]. It is a curious fact that the
function stða; b; cÞ is the nontrivial part of a multiplier system of a weight-0
modular form [24, p. 121].

We conclude this section by proving two reciprocity laws for
Fourier–Dedekind sums. The first one is equivalent to Zagier’s
reciprocity law for his higher dimensional Dedekind sums [30].
They are essentially Fourier–Dedekind sums with t ¼ 0; that is, trivial
numerators.

Theorem 6. For pairwise relatively prime integers a1; . . . ; an;

Xn

j¼1

s0ða1; . . . ; âj; . . . ; an; ajÞ ¼ 1� R0
0ða1; . . . ; anÞ;

where R0
t is the rational function given in Theorem 3.

It is well known [11] that the constant term of a lattice polytope (that is,
a polytope with integral vertices) equals the Euler characteristic of the
polytope. Consider the polytope

ðx1; . . . ; xnÞ 2 Rn
>0:

Xn

k¼1

xkak ¼ 1

( )
;

whose dilates correspond to the quantor p0
AðtÞ of Theorem 3. If we

dilate this polytope only by multiples of a1 � � � an; say t ¼ a1 � � � anw;
we obtain the dilates of a lattice polytope. Theorem 3 simplifies for
these t to

p0
Aða1 � � � anwÞ ¼ R0

a1���anwða1; . . . ; anÞ þ
Xn

j¼1

s0ða1; . . . ; âj ; . . . ; an; ajÞ;

using the periodicity of st (11). On the other hand, we know that the
constant term (in terms of w) is the Euler characteristic of the polytope and
hence equals 1, which yields the identity

1 ¼ R0
0ða1; . . . ; anÞ þ

Xn

j¼1

s0ða1; . . . ; âj ; . . . ; an; ajÞ:

The second one is a new reciprocity law, which generalizes the following
[13].
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Theorem 7 (Gessel). Let m and n be relatively prime and suppose that

04rom þ n: Then

1

m

X
lm¼1al

lrþ1

ðln � 1Þðl� 1Þ þ
1

n

X
ln¼1al

lrþ1

ðlm � 1Þðl� 1Þ

¼ � 1

12

m

n
þ n

m
þ 1

mn

� �
þ 1

4

1

m
þ 1

n
� 1

� �

þ r

2

1

m
þ 1

n
� 1

mn

� �
� r2

2mn
:

It is not hard to see that Gessel’s theorem follows as the two-dimensional
case of

Theorem 8. Let a1; . . . ; an be pairwise relatively prime integers and

0otoa1 þ � � � þ an: Then

Xn

j¼1

stða1; . . . ; âj; . . . ; an; ajÞ ¼ �R0
tða1; . . . ; anÞ;

where R0
t is the rational function given in Theorem 3.

Proof. By definition, p0
AðtÞ ¼ 0 if 0otoa1 þ � � � þ an: Hence Theorem 3

yields an identity for these values of t:

0 ¼ R0
tða1; . . . ; anÞ þ

Xn

j¼1

stða1; . . . ; âj; . . . ; an; ajÞ: ]

It is worth noticing that both Theorems 6 and 7 imply the reciprocity law
for the classical Dedekind sum sða; bÞ: It should be finally mentioned that in
special cases there are other reciprocity laws, for example, for the sum
appearing on the right-hand side in (14) [10, 22]. We note that, as a
consequence, we can compute stða; b; cÞ in polynomial time.

5. THE FROBENIUS PROBLEM

In this last section we apply Theorem 3 (the explicit formula for p0
AðtÞ) to

Frobenius’s original problem. As an example, we will discuss the three-
dimensional case. Note that a bound for dimension 3 yields a bound for the
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general case: It can be easily verified that

f ða1; . . . ; anÞ4f ða1; a2; a3Þ þ a4 þ � � � þ an: ð15Þ

Furthermore, in dimension 3 it suffices to assume that a1; a2; a3 are pairwise
coprime, due to Johnson’s formula [15]: If g ¼ ða1; a2Þ; then

f ða1; a2; a3Þ ¼ g � f
a1

g
;
a2

g
; a3

� �
: ð16Þ

Now assume a; b; c pairwise relatively prime, and recall (14):

stða; b; cÞ ¼
Xc�1

m¼0

�a�1ðbm þ tÞ
c

� �� �
m

c


 �
 �
� 1

4c
;

where aa�1 � 1 mod c: We will use the Cauchy–Schwartz inequality

Xn

k¼1

akapðkÞ

�����
�����4
Xn

k¼1

a2
k: ð17Þ

Here ak 2 R; and p 2 Sn is a permutation. Since ða�1b; cÞ ¼ 1; we can use
(17) to obtain

stða; b; cÞ5 �
Xc�1

m¼0

m

c


 �
 �2
� 1

4c
¼
Xc�1

m¼0

m

c
� 1

2

� �2

� 1

4c

¼ � 1

c2
ð2c � 1Þðc � 1Þc

6
þ 1

c

cðc � 1Þ
2

� c

4
� 1

4c

¼ � c

12
� 1

12c
:

This also restates Rademacher’s bound on the classical Dedekind sums [23].
Using this in the formula for dimension 3 (remark after Theorem 3), we get

p0
fa;b;cgðtÞ5

t2

2abc
� t

2

1

ab
þ 1

ac
þ 1

bc

� �

þ 1

12

3

a
þ 3

b
þ 3

c
þ a

bc
þ b

ac
þ c

ab

� �

� 1

12
ða þ b þ cÞ � 1

12

1

a
þ 1

b
þ 1

c

� �
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¼ t2

2abc
� t

2

1

ab
þ 1

ac
þ 1

bc

� �
þ 1

12

a

bc
þ b

ac
þ c

ab

� �

� 1

12
ða þ b þ cÞ þ 1

6

1

a
þ 1

b
þ 1

c

� �
:

The larger zero of the right-hand side is an upper bound for the solution of
the Frobenius problem:

f ða; b; cÞ4 abc
1

2

1

ab
þ 1

bc
þ 1

ac

� �
þ 1

4

1

ab
þ 1

bc
þ 1

ac

� �2
" 

� 2

abc

1

12

a

bc
þ b

ac
þ c

ab

� �
� 1

12
ða þ b þ cÞ

�

þ1

6

1

a
þ 1

b
þ 1

c

� ���1=2!

4
1

2
ða þ b þ cÞ þ abc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

1

ab
þ 1

bc
þ 1

ac

� �2

þ1

6

1

ab
þ 1

bc
þ 1

ac

� �s

¼ 1

2
ða þ b þ cÞ þ abc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

1

ab
þ 1

bc
þ 1

ac

� �
1

2

1

ab
þ 1

bc
þ 1

ac

� �
þ 1

3

� �s

4
1

2
ða þ b þ cÞ þ abc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

1

ab
þ 1

bc
þ 1

ac

� �s
:

For the last inequality, we used the fact that 1
ab
þ 1

bc
þ 1

ac
41

6
þ 1

10
þ 1

15
¼ 1

3
:

This proves, using (15) and (16),

Theorem 9. Let a14a24 � � �4an be relatively prime. Then

f ða1; . . . ; anÞ4
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2a3 a1 þ a2 þ a3ð Þ

p
þ a1 þ a2 þ a3


 �
þ a4 þ � � � þ an:

Remark. (1) Sometimes the Frobenius problem is stated in a slightly
different form: Given relatively prime positive integers a1; . . . ; an; find the
largest value of t such that

Pn
k¼1 mkak ¼ t has no solution in nonnegative

integers m1; . . . ;mn: This number is denoted by gða1; . . . ; anÞ: It is, however,
easy to see that

gða1; . . . ; anÞ ¼ f ða1; . . . ; anÞ � a1 � � � � � an:
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So we can restate Theorem 9 in a more compact form as

gða1; . . . ; anÞ4
1

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2a3ða1 þ a2 þ a3Þ

p
� a1 � a2 � a3Þ:

(2) Bounds on the Frobenius number in the literature include results by
Erd +oos and Graham [12]

gða1; . . . ; anÞ42an

a1

n

j k
� a1;

Selmer [27]

gða1; . . . ; anÞ42an�1
an

n

j k
� an;

and Vitek [29]

gða1; . . . ; anÞ4 1
2ða2 � 1Þðan � 2Þ
� �

� 1:

Theorem 9 is certainly of the same order. What might be more interesting,
however, is the fact that the bound in Theorem 9 is of a different nature than
the bounds stated above: namely, it involves three variables, and is
thus}especially in terms of estimating gða1; a2; a3Þ}more symmetric.
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transformationen und verallgemeinerte Dedekindsche Summen, J. Reine Angew. Math. 201

(1959), 37–70.



RATIONAL POLYTOPES 21
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