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Abstract

We introduce and study the toric fiber product of two ideals in polynomial rings that are homogeneous
with respect to the same multigrading. Under the assumption that the set of degrees of the variables form a
linearly independent set, we can explicitly describe generating sets and Gröbner bases for these ideals. This
allows us to unify and generalize some results in algebraic statistics.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A common problem in algebraic statistics is to convert the parametric representation of a
statistical model into the implicit representation in terms of finding the defining prime ideal of
the model. This is a special case of the implicitization problem that arises frequently in com-
putational algebraic geometry. In algebraic statistics, we are usually presented with a family of
statistical models and we would like to find a theorem which gives a complete description of
all the ideals for all the statistical models in this family. A useful approach has been to try to
find decomposition rules for the models and the resulting ideals, and subsequently reduce the
problem to finding the defining prime ideals in a few special cases which can then be handled
theoretically or using a computer algebra system. This approach has played a role in attacking
the problem of determining phylogenetic invariants for various tree-based models of evolution
[1,15] and for studying Markov bases of hierarchical models [6,11].
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In this paper, we introduce the toric fiber product, an operation that takes two homogeneous
ideals with compatible multigradings and produces a new homogeneous ideal. This operation
generalizes the Segre product of two schemes as well as the gluing operations for toric ideals
that appear in [6,11,15]. When the underlying grading group has special structure, we are able
to explicitly compute generating sets and special Gröbner bases for the toric fiber product from
generating sets and Gröbner bases of the component ideals.

Given a positive integer n, let [n] = {1,2, . . . , n} denote the set of the first n positive integers.
Let r > 0 be a positive integer and s, t ∈ Zr

>0 be two vectors of positive integers. Let

K[x] = K
[
xi
j

∣∣ i ∈ [r], j ∈ [si]
]

and

K[y] = K
[
yi
k

∣∣ i ∈ [r], k ∈ [ti]
]

be multigraded polynomial rings subject to the multigrading

deg
(
xi
j

) = deg
(
yi
k

) = ai ∈ Zd .

We assume throughout that there exists a vector ω ∈ Qd such that ωT ai = 1 for all i. This
implies that ideals in K[x] or K[y] that are homogeneous with respect to the multigrading are
homogeneous in the usual sense. Denote by A = {a1, . . . ,ar} and let NA be the affine semigroup
generated by A.

If I and J are homogeneous ideals (with respect to the multigrading) in K[x] and K[y],
respectively, the quotient rings R = K[x]/I and S = K[y]/J are also multigraded rings. Let

K[z] = K
[
zi
jk

∣∣ i ∈ [r], j ∈ [si], k ∈ [ti]
]

and let φI,J be the ring homomorphism

φI,J : K[z] → R ⊗K S,

zi
jk �→ xi

j ⊗ yi
k.

Definition 1. The toric fiber product of I and J , denoted I ×A J is the kernel of φI,J :

I ×A J = ker(φI,J ).

Two fundamental examples, illustrating the coarsest and finest possible multigradings, are
Segre products and sums of monomial ideals.

Example 2. Suppose that r = 1 and I = J = 0. Then φI,J is the ring homomorphism

φI,J : K
[
zjk

∣∣ j ∈ [s], k ∈ [t]] → K
[
xj , yk

∣∣ j ∈ [s], k ∈ [t]],
zjk �→ xjyk.
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The toric fiber product is

I ×A J = ker(φI,J ) = 〈
zj1k1zj2k2 − zj1k2zj2k1

∣∣ j1, j2 ∈ [s], k1, k2 ∈ [t]〉;
that is, I ×A J is the ideal of 2 × 2 minors of a generic matrix.

Example 3. Suppose that r > 0 and s, t = (1, . . . ,1) are the all ones vector. Suppose that
deg(xi) = deg(yi) = deg(zi) = ei , the ith standard unit vector. If I ∈ K[x] and J ∈ K[y] are
homogeneous with respect to this multigrading, they must both be monomial ideals. Then the
toric fiber product is simply

I ×A J = I (z) + J (z),

where I (z) denotes the ideal I with z variables substituted for the x variables (and similarly
for J (z)).

Our main interest in toric fiber products is when I and J are the prime ideals of unirational
varieties. Then the ideal I ×A J is also prime and defines a unirational variety. In practice, we are
often presented with the parametrization of a unirational variety and we are interested in finding
its defining ideal. One useful tool is to find a nice grading such that the ideal is, in fact, a toric
fiber product. This grading is usually considerably coarser than the finest grading associated to
the ideal. If A is a linearly independent set, we can determine generators and Gröbner bases of
the toric fiber product I ×A J explicitly from generators and Gröbner bases of I and J .

Example 4. Let φ be the ring homomorphism

φ : K
[
qi1 • i3 • i5

∣∣ i1, i3, i5 ∈ [3]] → K
[
ai1i2, bi2i3, ci3i4, di4i5

∣∣ i1, i3, i5 ∈ [3], i2, i4 ∈ [2]],
qi1 • i3 • i5 �→

2∑
i2=1

2∑
i4=1

ai1i2bi2i3ci3i4di4i5 .

Each of the polynomials appearing in the parametrization is homogeneous with respect to the
grading deg(qi1 • i3 • i5) = ei3 , the i3th standard unit vector. The polynomials appearing in the
parametrization can be written in factored form as

qi1 • i3 • i5 �→
(

2∑
i2=1

ai1i2bi2i3

)(
2∑

i4=1

ci3i4di4i5

)
.

The ideal K = ker(φ) is a toric fiber product K = I ×A I . The underlying ring R = K[qi1 • i3 |
i1, i3 ∈ [3]] has the grading deg(qi1i3) = ei3 , the i3th standard unit vector. The ideal I is the kernel
of the ring homomorphism

φ̂ :R → K
[
ai1i2, bi2i3

∣∣ i1, i3 ∈ [3], i2 ∈ [2]],
qi1 • i3 �→

2∑
ai1i2bi2i3 .
i2=1
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Thus, I is the principal ideal generated by the determinant of the matrix:⎛
⎝q1•1 q1•2 q1•3

q2•1 q2•2 q2•3

q3•1 q3•2 q3•3

⎞
⎠ .

Using the machinery in Section 2, one can show that the ideal K = I ×A I is generated by
determinants of flattenings and slices of the 3-dimensional tensor (qi1 • i3 • i5). In particular, K is
generated by the 3 × 3 minors of the matrices

⎛
⎝q1•1•1 q1•1•2 q1•1•3 q1•2•1 q1•2•2 q1•2•3 q1•3•1 q1•3•2 q1•3•3

q2•1•1 q2•1•2 q2•1•3 q2•2•1 q2•2•2 q2•2•3 q2•3•1 q2•3•2 q2•3•3

q3•1•1 q3•1•2 q3•1•3 q3•2•1 q3•2•2 q3•2•3 q3•3•1 q3•3•2 q3•3•3

⎞
⎠ ,

⎛
⎝q1•1•1 q1•2•1 q1•3•1 q2•1•1 q2•2•1 q2•3•1 q3•1•1 q3•2•1 q3•3•1

q1•1•2 q1•2•2 q1•3•2 q2•1•2 q2•2•2 q2•3•2 q3•1•2 q3•2•2 q3•3•2

q1•1•3 q1•2•3 q1•3•3 q2•1•3 q2•2•3 q2•3•3 q3•1•3 q3•2•3 q3•3•3

⎞
⎠ ,

together with the 2 × 2 minors of the matrices⎛
⎝q1•1•1 q1•1•2 q1•1•3

q2•1•1 q2•1•2 q2•1•3

q3•1•1 q3•1•2 q3•1•3

⎞
⎠ ,

⎛
⎝q1•2•1 q1•2•2 q1•2•3

q2•2•1 q2•2•2 q2•2•3

q3•2•1 q3•2•2 q3•2•3

⎞
⎠ ,

⎛
⎝ q1•3•1 q1•3•2 q1•3•3

q2•3•1 q2•3•2 q2•3•3

q3•3•1 q3•3•2 q3•3•3

⎞
⎠ .

Furthermore, this collection of 2×2 and 3×3 minors form a Gröbner basis for K . This example
is a special case of Corollary 25.

The main focus of this paper is on the special case of toric fiber products where A is a linearly
independent set. As we will see, this played a significant role in Example 4. It is probably impos-
sible to recover explicitly the generating set of K = I ×A J from the ideals I and J , if A is not
linearly independent. Indeed, in the next section, we will see an example where I is generated
by quadrics and J = 〈0〉 but I ×A J requires minimal generators of arbitrarily large degree.

The outline for this paper is as follows. In the next section, we use a contraction of an ideal
under a monomial homomorphism to determine generating sets and Gröbner bases for the toric
fiber products I ×A J , when A is linearly independent. In Section 3, we consider applications of
the main result. This includes proofs of some known results about the defining ideals of products
of projective schemes, and their Gröbner bases. We also illustrate how the toric fiber product
arises in algebraic statistics. This allows us to unify results about reducible hierarchical models
and group-based models on phylogenetic trees.

2. Contractions under monomial homomorphisms

Let B ∈ Zd×n be a d × n integral matrix. Consider the ring homomorphism

φB : K[z1, . . . , zn] → K[t1, . . . , td ],

zj �→
d∏

t
bij

i .
i=1
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We call φB a monomial homomorphism. The ideal IB = ker(φB) is called a toric ideal. Sturm-
fels’ book [14] is a standard reference for background on toric ideals. In this section, we consider
the contractions φ−1

B (I) of arbitrary ideals I in K[t], and apply these results to toric fiber prod-
ucts. The main idea here is to compare the initial ideals of I to the initial ideals of φ−1

B (I).
Let ω ∈ Zd

�0 be a vector of weights. The vector ω induces a partial order ≺ω on the set of

monomials in K[t] by declaring that ta ≺ω tb if ωT a < ωT b. The partial order ≺ω is called a
weight order on K[t]. Note that it need not be a term order on K[t].

Given a polynomial f ∈ K[t], the initial form inω(f ) is the sum of all terms of f that have
the highest weight with respect to the partial order ≺ω. If I is an ideal of K[t], the initial ideal
inω(I ) is the ideal

inω(I ) = 〈
inω(f )

∣∣ f ∈ I
〉
.

Our main use for weight orders comes from the following useful fact.

Proposition 5. [14, Proposition 1.11] For any term order ≺ and any ideal I ⊂ K[t] there exists
a vector ω ∈ Zd

�0 such that inω(I ) = in≺(I ).

We say that a finite collection of polynomials G ⊂ I is a Gröbner basis of I with respect to the
weight order ω if 〈inω(g) | g ∈ G〉 = inω(I ) and this ideal is a monomial ideal. A collection of
polynomials such that 〈inω(g) | g ∈ G〉 = inω(I ) is called a pseudo-Gröbner basis. Any Gröbner
basis or pseudo-Gröbner basis of I generates I .

Every weight order ≺ω on K[t] determines a weight order ≺φ∗
Bω on K[z] via the pullback

of ω through φ. That is, φ∗
Bω = ωT B . Note that this construction has two important properties.

First, if za is a monomial then its weight with respect to φ∗
Bω equals the weight of φB(za)

with respect to ω. Second, if f ∈ ker(φB) is a binomial then inφ∗
Bω(f ) = f , which implies that

inφ∗
Bω(IB) = IB for all ω ∈ Rd .

Lemma 6. Let I be an ideal in K[t]. Then

inφ∗
Bω

(
φ−1

B (I)
) ⊆ φ−1

B

(
inω(I )

)
.

Proof. Let f ∈ φ−1
B (I). We must show that φB(inφ∗

Bω(f )) ∈ inω(I ). Without loss of generality,
we may assume that f is reduced with respect to any Gröbner basis of the toric ideal IB . This is
because IB ⊂ inφ∗

Bω(φ−1(I )) for any I and φB(IB) = 0. Since f is reduced with respect to IB ,
this means there is at most one term of f in each B graded degree. In particular, there can
be no cancellation amongst the terms of φB(f ). Since each pair of monomial of f and image
monomial of φB(f ) have the same weight with respect to φ∗

Bω and ω, respectively, we deduce
that φB(inφ∗

Bω(f )) ∈ inω(I ) which completes the proof. �
Lemma 7. Let M = 〈m1, . . . ,mr 〉 ⊂ K[t] be a monomial ideal. Then

φ−1
B (M) = φ−1

B

(〈m1〉
) + · · · + φ−1

B

(〈mr 〉
)
.

Furthermore φ−1(M) = M ′ + IB , where M ′ is a monomial ideal.
B
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Proof. We use the same argument as the proof of Lemma 6. In particular, suppose f ∈ φ−1
B (M).

We may suppose that f is reduced with respect to any Gröbner basis of IB . Then each monomial
in f maps to a monomial in K[t], and f ∈ φ−1

B (M) if and only if each monomial of φB(f )

belongs to M . This means that if n is a monomial of f , φB(n) ∈ 〈mi〉 for some i. Furthermore,
this shows that each monomial of f belongs to φ−1

B (M). �
Lemmas 6 and 7 suggest a strategy for determining the ideals φ−1

B (I). First, we compute
an initial ideal of I . Then we determine φ−1

B (inω(I )) using combinatorial arguments. If we are
lucky, we find a collection of polynomials G ⊂ φ−1

B (I) such that 〈inφ∗
Bω(G)〉 = inφ∗

Bω(φ−1
B (I)).

Then we can conclude that G is a pseudo-Gröbner basis for φ−1
B (I) with respect to the weight

order ≺φ∗
Bω.

In general, this strategy is not possible to implement, because either inφ∗
Bω(φ−1

B (I)) =
φ−1

B (inω(I )) or there is no combinatorial description of φ−1
B (M) where M is a monomial ideal,

or both. However, in the special case that arises when taking a toric fiber product, we will see
that there is a simple answer to both problems.

To give our main algebraic result concerning the Gröbner bases and generating sets of the
toric fiber products I ×A J , we first need to show that the toric fiber product is the contraction of
a monomial homomorphism φ−1

B (I + J ), for suitable B . To this end, we will derive an alternate
description of the toric fiber product which fits into this framework.

With the setup from Section 1, consider the monomial homomorphism

φB : K[z] → K[x, y] := K
[
xi
j , y

i
k

∣∣ i ∈ [r], j ∈ [si], k ∈ [ti]
]
,

zi
jk �→ xi

j y
i
k. (1)

For the remainder of this section B denotes the matrix arising from a toric fiber product according
to Eq. (1). This matrix only depends on r , s, and t .

Proposition 8.

I ×A J = φ−1
B (I + J ).

Note that the ideal I + J is considered as an ideal in K[x, y] after taking the extensions of I

and J .

Proof of Proposition 8. Note that K[x, y] ∼= K[x] ⊗K K[y]. Hence K[x, y]/(I + J ) ∼=
K[x]/I ⊗K K[y]/J . Given any ring homomorphism φ :R → S and induced ring homomorphism
φ̂ :R → S/I , we have ker(φ̂) = φ−1(I ), and this completes the proof. �
Lemma 9. Let m = x

i1
j1

x
i2
j2

· · ·xid
jd

be a monomial in K[x, y]. Then

φ−1
B

(〈m〉) = 〈
z
i1
j1k1

z
i2
j2k2

· · · zid
jdkd

∣∣ k1 ∈ [ti1], . . . , kd ∈ [tid ]
〉 + IB.

Similarly, if n = y
i1
k1

y
i2
k2

· · ·yid
kd

is a monomial in K[x, y], then

φ−1
B

(〈n〉) = 〈
z
i1
j1k1

z
i2
j2k2

· · · zid
jdkd

∣∣ j1 ∈ [si1], . . . , jd ∈ [sid ]
〉 + IB.
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Proof. It suffices to handle the first case. By the second part of Lemma 7 it suffices to determine
the monomials that belong to φ−1

B (〈m〉). Denote by M ′ the monomial ideal on the right-hand

side of the equation. Given a monomial m′ = ∏
z
il
jlkl

∈ K[z], its image is the monomial
∏

x
il
jl
y

il
kl

which belongs to 〈m〉 if and only if
∏

x
il
jl

belongs to 〈m〉. But this implies that these exists a
monomial in M ′ dividing m′. �
Proposition 10. Let B be the matrix representing the monomial homomorphism arising from the
toric fiber product. Then

IB = 〈
zi
j1k2

zi
j2k1

− zi
j1k1

zi
j2k2

∣∣ 1 � i � r, 1 � j1 < j2 � si , 1 � k1 < k2 � ti
〉

and these quadrics are a Gröbner basis for IB with respect to any term order that selects the
underlined terms as leading terms.

Denote by QuadB the set of quadrics described in Proposition 10.

Proof of Proposition 10. First of all, there exist term orders which select the underlined terms
as leading terms. Indeed, let ≺ be the lexicographic term order such that z

i1
j1k1

≺ z
i2
j2k2

if i1 < i2

or i1 = i2 and j1 < j2 or i1 = i2 and j1 = j2 and k1 > k2. In particular, ≺ selects the underlined
terms of the quadrics in QuadB as leading terms.

Since IB is a toric ideal, it suffices to show that if f is any binomial in IB , there exists a
quadric g ∈ QuadB such that in≺(g) | in≺(f ). To each binomial

f = z
i1
j1k1

· · · zid
jdkd

− z
i′1
j ′

1k
′
1
· · · zi′d

j ′
dk′

d

we associate the tableaux of indices

f =
⎡
⎢⎣

i1 j1 k1
...

...
...

id jd kd

⎤
⎥⎦ −

⎡
⎢⎣

i′1 j ′
1 k′

1
...

...
...

i′d j ′
d k′

d

⎤
⎥⎦ .

Note that two individual tableau represent the same monomial if and only if one can be obtained
from the other by swapping rows. A binomial f belongs to IB if and only if the image of each
monomial under φB is the same. In tableau notation, this can be expressed as⎡

⎢⎣
i1 j1
...

...

id jd

⎤
⎥⎦

⎡
⎢⎣

i1 k1
...

...

id kd

⎤
⎥⎦ =

⎡
⎢⎣

i′1 j ′
1

...
...

i′d j ′
d

⎤
⎥⎦

⎡
⎢⎣

i′1 k′
1

...
...

i′d k′
d

⎤
⎥⎦ .

In each expression, the first tableau denotes the indices of the x variables and the second tableau
denotes the indices of the y variables. Thus, after rearranging the rows of the second tableau of f

we may write

f =
⎡
⎢⎣

i1 j1 k1
...

...
...

⎤
⎥⎦ −

⎡
⎢⎣

i1 j1 k′
1

...
...

...
′

⎤
⎥⎦ .
id jd kd id jd kd
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Furthermore, we will assume that the rows of each tableau are ordered lexicographically with
111 ≺ 112 ≺ · · · . A monomial is reduced with respect to the set QuadB if and only if there is no
subtableau of the form [

i j1 k2

i j2 k1

]
,

where j1 < j2 and k1 < k2. This implies that in a monomial that has been reduced with respect
to QuadB , for each fixed value of i, both the j ’s and k’s are nondecreasing down their column
in the subtableau containing all the rows with it = i. However, among all the tableaux that have
the same image under φB , there is only one that has this property and it is minimal with respect
to ≺. Thus, if f ∈ IB , its leading term must be divisible by some leading term in QuadB . �

For the rest of this section, we will assume that A is a linearly independent set. Let f ∈ I be
a homogeneous polynomial (with respect to the multigrading by NA). If f has degree d and v

terms we can write

f =
v∑

u=1

cux
iu1
ju

1
x

iu2
ju

2
· · ·xiud

ju
d
,

where each cu ∈ K is a coefficient. However, the fact that f is homogeneous and A is linearly
independent guarantees that each multiset of upper indices Mu = {iu1 , . . . , iud } is independent of u.
That is, for all u,u′, Mu = Mu′ . Thus after possibly rearranging the indeterminates appearing in
each monomial we can always write

f =
v∑

u=1

cux
i1
ju

1
x

i2
ju

2
· · ·xid

ju
d
.

Now let k = (k1, . . . , kd) with k1 ∈ [ti1], k2 ∈ [ti2], . . . , kd ∈ [tid ] and consider the polynomial
fk ∈ K[z] defined by

fk =
v∑

u=1

cuz
i1
ju

1 k1
z
i2
ju

2 k2
· · · zid

ju
d kd

.

Note that since f ∈ I , the new homogeneous polynomial fk ∈ I ×A J for all k. This follows
because

φB(fk) = y
i1
k1

y
i2
k2

· · ·yid
kd

· f ∈ I.

Definition 11. Let A be linearly independent and let F ⊂ I be a collection of homogeneous
polynomials. To each f ∈ F we associate the set Tf = ∏d

l=1[til ] of indices. Denote by

Lift(F ) = {fk | f ∈ F, k ∈ Tf }

which we call the lifting of F to I ×A J . If G ⊂ J is a collection of homogeneous polynomials
we define Lift(G) in the analogous way.
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Theorem 12. Suppose that A is linearly independent. Let F ⊂ I be a homogeneous Gröbner
basis for I with respect to the weight vector ω1 and let G ⊂ J be a homogeneous Gröbner basis
for J with respect to the weight vector ω2. Then

Lift(F ) ∪ Lift(G) ∪ QuadB

is a pseudo-Gröbner basis for I ×A J with respect to the weight order φ∗
B(ω1,ω2).

Proof. First of all, note that since the generators of I and J are in disjoint sets of variables, F ∪G

is a Gröbner basis for I + J with respect to the weight order (ω1,ω2). Let M = in(ω1,ω2)(I + J )

be the initial ideal of I + J with respect to (ω1,ω2). Since M is a monomial ideal and each
minimal generator of I + J belongs to K[x] or K[y], we can use Lemmas 7 and 9 to compute
φ−1

B (M). However, each of the monomials appearing in φ−1
B (M) appears as the φ∗

B(ω1,ω2)

leading term of some polynomial in Lift(F ) or Lift(G). Additionally, QuadB generates IB . So
we deduce that the initial forms in Lift(F )∪Lift(G)∪QuadB ⊂ I ×A J generate φ−1

B (M). Thus,
by Lemma 6, we deduce that φ−1

B (M) = inφ∗
B(ω1,ω2)(I ×A J ) and this completes the proof. �

Theorem 13. With the same assumptions as Theorem 12, let ω be a weight vector such that
QuadB is a Gröbner basis for IB . Then

Lift(F ) ∪ Lift(G) ∪ QuadB

is a Gröbner basis for I ×A J with respect to the weight order φ∗
B(ω1,ω2) + εω for sufficiently

small ε > 0.

Proof. If we choose ε very small, we will have inφ∗
B(ω1,ω2)(fk) = inφ∗

B(ω1,ω2)+εω(fk) for all
fk ∈ Lift(F ) ∪ Lift(G). This implies that inφ∗

B(ω1,ω2)+εω(I ×A J ) = inω(inφ∗
B(ω1,ω2)(I ×A J ))

since we only need to determine the initial terms of 〈QuadB〉. But because ω induces a term
order that make QuadB into a Gröbner basis for IB we are done. �
Corollary 14. Let A be a linearly independent set. Let F be a homogeneous generating set for
I and G be a homogeneous generating set for J . Then

Lift(F ) ∪ Lift(G) ∪ QuadB

is a generating set for I ×A J .

Proof. If F and F ′ generate I , Lift(F ) and Lift(F ′) generate the same ideal. This holds, in
particular, if F ′ is a Gröbner basis for I . A similar statement holds of G as well. Thus

〈
Lift(F ) ∪ Lift(G) ∪ QuadB

〉 = 〈
Lift(F ′) ∪ Lift(G′) ∪ QuadB

〉
, (2)

where F ′ and G′ are Gröbner bases for I and J , respectively. But the ideal on the right-hand side
of Eq. (2) is I ×A J , since a Gröbner basis of an ideal generates that ideal. �
Corollary 15. Suppose that A is linearly independent, and that inω1(I ) and inω2(J ) are square-
free monomial ideals. Then inφ∗ (ω1,ω2)+εω(I ×A J ) is a squarefree monomial ideal.
B
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Proof. Since inω1(I ) and inω2(J ) are squarefree monomial ideals, then the φ∗
B(ω1,ω2) + εω

initial term of every polynomial in Lift(F ) and Lift(G) is squarefree. Since the ω leading terms
of QuadB are also squarefree, and the union of Lift(F ), Lift(G), and QuadB form a Gröbner
basis for I ×A J we deduce that inφ∗

B(ω1,ω2)+εω(I ×A J ) is a squarefree monomial ideal. �
It seems natural to ask whether any more refined information about the toric fiber product

I ×A J can be computed from I and J (for instance, homological properties, Betti numbers,
Hilbert series). In view of Example 3, it seems that there is no hope of explicitly determining any
of these properties from I and J , since the sums of even simple monomial ideals can display com-
plicated behavior. There is, however, a compact description of the multigraded Hilbert function
and series of I ×A J . We refer the reader to [13] for an introduction to multigraded Hilbert func-
tions. Note that since we have assumed that the underlying grading is positive, dimK((K[x]/I)u)

and dimK((K[y]/J )u) are finite for all u ∈ NA. Thus the Hilbert function and series exist.

Corollary 16. Suppose that A is linearly independent. Then the Hilbert functions of K[x]/I ,
K[y]/J and K[z]/I ×A J satisfy

h
(
K[z]/I ×A J ;u) = h

(
K[x]/I ;u)

h
(
K[y]/J ;u)

.

Thus the Hilbert series of K[z]/I ×A J is the Hadamard product

H
(
K[z]/I ×A J ; t

) = H
(
K[x]/I ; t

) ∗ H
(
K[y]/J ; t

)
.

Proof. It suffices to produce the first equation, since this is the definition of the Hadamard prod-
uct of two series. Let G be a Gröbner basis for I ×A J constructed according to Theorem 13. Let
M = inφ∗

B(ω1,ω2)+εω(I ×A J ) be the corresponding initial ideal. We need to count the number
of monomials in the u graded pieces of K[z] \ M . A monomial m = zα belongs to K[z] \ M

if and only if m is not divisible by any of the initial terms of polynomials of Lift(F ), Lift(G)

or QuadB . This implies that φB(m) is not divisible by the leading terms of polynomials of F

or G. The monomial φB(m) is a product of a degree u monomial in K[x] \ inω1(I ) and a degree
u monomial in K[y] \ inω2(J ). Any such product has a unique preimage that is not divisible by
any leading term in QuadB . Thus we have shown that the standard monomials of I ×A J of
degree u are in bijection with a product of a standard monomial of I of degree u and a standard
monomial of J of multidegree u, which yields the desired equality of Hilbert functions. �

To close this section, we provide an example which shows the necessity of the condition that
A be a linearly independent in all of the preceding results.

Example 17. For a fixed vector of positive integers d = (d1, d2, d3) with di > 1 for all i, consider
the ring homomorphism

φd : K
[
pi1i2i3

∣∣ ij ∈ [dj ]
] → K

[
ai1i2, bi1i3, ci2i3

∣∣ ij ∈ [dj ]
]
,

pi1i2i3 �→ ai1i2bi1i3ci2i3 .

Computing the minimal generators of the ideal Kd = ker(φd) for various values of d is a bench-
mark problem for algorithms for computing Gröbner bases of toric ideals [10,12]. These ideals
are extremely complicated and while there are explicit generating sets known for some special
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values of d [2], there is, at present, no uniform description of the generating sets of these ideals.
Work of De Loera and Onn [4] suggests that it is impossible for any simple description of a
generating set to exist for all d . In particular, it is known that Kd requires minimal generators of
degree at least 2 min(d1, d2, d3).

The ideals Kd are examples of toric fiber products that do not have linearly independent A.
In particular, consider the grading deg(pi1i2i3) = ei1 ⊕ ei2 where ek denotes the kth standard unit
vector. Consider the ring homomorphism

ψd : K
[
qi1i2i3

∣∣ ij ∈ [dj ]
] → K

[
bi1i3, ci2i3

∣∣ ij ∈ [dj ]
]
,

qi1i2i3 �→ bi1i3ci2i3

and let Id = ker(ψd). This ideal is generated by quadrics: it is an ideal of the form IB

arising from a toric fiber product with linearly independent A as in Proposition 10. Grade
K[q] by deg(qi1i2i3) = ei1 ⊕ ei2 . Let Jd = 〈0〉 be the zero ideal in K[a] with the grading
deg(ai1i2) = ei1 ⊕ ei2 . Let A = {ei1 ⊕ei2 | ij ∈ [dj ]}. Then Kd = Id ×AJd . So although Id and Jd

are generated in degree 2 or less, Kd can require minimal generators of arbitrarily large degree.

3. Applications

3.1. Segre products

The simplest example of the toric fiber product is the usual Segre product of two projective
schemes. In this setting I ⊂ K[x] and J ⊂ K[y] are homogeneous ideals in the usual coarse
grading by degree. The monomial homomorphism φB is

φB : K[z] → K[x, y],
zjk �→ xiyj .

In this case, all variables xj and yk have degree 1 and since A = {1} is a linearly independent
set we are in a position to apply the results of Section 2. Theorem 12 shows how to produce
Gröbner bases for I ×A J from Gröbner bases for I and J . For instance, we deduce the following
corollary, which appears in [9].

Corollary 18. Let d be a vector of nonnegative integers greater than 1. Let Kd be the defining
ideal of the product of projective spaces Pd1−1 ×· · ·×Pdn−1 under the standard Segre embedding
into Pd1···dn−1. Then Kd is generated by the 2×2 minors of all flattenings of a generic d1 ×· · ·×
dn tensor. Furthermore, these 2 × 2 minors form a Gröbner basis for Kd and the ring K[z]/Kd

is Cohen–Macaulay.

A flattening is a matrix obtained by partitioning the n indices of a tensor into two nonempty
sets. For instance, a flattening of a 2 × 2 × 2 × 2 tensor with partition {1,2} | {3,4} is⎛

⎜⎜⎝
z1111 z1112 z1121 z1122

z1211 z1212 z1221 z1222

z2111 z2112 z2121 z2122

z2211 z2212 z2221 z2222

⎞
⎟⎟⎠ .

In [9], Ha refers to the 2 × 2 minors of flattenings as minors of a box-shaped matrix.
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Proof of Corollary 18. It is easy to see that any 2 × 2 minor of a flattening belongs to Kd and,
furthermore, these are the only degree two binomials in the ideal Kd . Note that Kd = K ′

d ×A 〈0〉
where d ′ = (d1, . . . , dn−1) and A = {1}. By repeatedly applying Theorem 12, we can construct
generating sets and Gröbner bases for Kd . The lifting operation preserves degrees and every
polynomial in QuadB has degree two, so the resulting Gröbner bases have degree two. Since
the only degree two binomials in Kd are the 2 × 2 minors of flattenings, these must form a
Gröbner basis. By Corollary 15, the resulting initial ideal is squarefree. Since Kd is a toric ideal,
this implies that the K[z]/ inω(Kd) is Cohen–Macaulay (the simplicial complex associated to
inω(Kd) is a regular triangulation [14, Theorem 8.3] and, hence, a shellable ball) which in turn
implies that K[z]/Kd is Cohen–Macaulay. �
3.2. Reducible models

Probably the first instance where a version of Theorem 12 was used in some generality was
in the study of reducible hierarchical models in [6,11]. Hierarchical log-linear models are a class
of statistical models used in the analysis of multivariate discrete data. To each such hierarchical
model is associated a toric ideal IΔ,d . The generators of the toric ideal IΔ,d are useful for per-
forming various statistical tests, as first demonstrated in [5]. In this section, we will only describe
these models in a purely algebraic language and show how results about the Gröbner bases of
reducible models follow from the theory in Section 2.

Let Δ be a simplicial complex with ground set [n] and let d = (d1, . . . , dn) be a vector of
integers with di � 2 for all i. We suppose that |Δ| = ⋃

F∈Δ F = [n]. For a subset F ⊂ [n], we
use the notation DF to denote the set of indices:

DF =
∏
k∈F

[dk].

For a given string of indices i ∈ D[n], iF is the subvector iF = (ik1 , . . . , iks ) where F =
{k1, . . . , ks}. Denote by

K[p] = K[pi | i ∈ D[n]]
and

K[a] = K
[
aF

jF

∣∣ F ∈ facet(Δ), jF ∈ DF

]
.

Consider the ring homomorphism

φΔ,d : K[p] → K[a],
pi �→

∏
F∈facet(Δ)

aF
iF .

Definition 19. The toric ideal IΔ,d = ker(φΔ,d) is the ideal of the hierarchical model defined
by Δ and d .

Example 20. Let Δ be the simplicial complex with facets facet(Δ) = {{1,2}, {2,3}, {3,4}}. Then

φΔ,d : K
[
pi1i2i3i4

∣∣ il ∈ [dl]
] → K

[
a

{1,2}
j1j2

, a
{2,3}
j2j3

, a
{3,4}
j3j4

∣∣ jl ∈ [dl]
]
,

pi1i2i3i4 �→ a
{1,2}

a
{2,3}

a
{3,4}

.
i1i2 i2i3 i3i4
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If Δ is the simplicial complex with facet(Δ) = {{1,2}, {1,3}, {2,3}}, then we get the ring homo-
morphism from Example 17.

Definition 21. A simplicial complex Δ is called reducible if there are two subcomplexes
Δ1,Δ2 ⊂ Δ such that Δ1 ∪ Δ2 = Δ and Δ1 ∩ Δ2 = 2S for some S ⊂ [n]. The set S is called a
separator.

For instance, the first simplicial complex from Example 20 is reducible with S = {1}
or S = {2}, whereas the second simplicial complex from Example 20 is not reducible. We will
show that if Δ is reducible, the ideal IΔ,d can be written as a toric fiber product. This will allow
us to deduce Theorem 4.17 from [11].

To this end, let d1 and d2 be the induced subvectors of d on the index sets |Δ1| and |Δ2|,
respectively. That is d1 = d|Δ1| and d2 = d|Δ2|. For l ∈ {1,2} let

K[p]l = K[pi|Δl | | i|Δl | ∈ D|Δl |]

and consider the ring homomorphism

φΔl,d
l : K[p]l → K[a],

pi|Δl | �→
∏

F∈facet(Δl)

aF
(i|Δl |)F

.

We denote by IΔl,d
l the kernel of φΔl,d

l , which is the toric ideal of the hierarchical model asso-
ciated to Δl . Since Δ1 ∩Δ2 = 2S , there exists two facets, F1 ∈ Δ1 and F2 ∈ Δ2 such that S ⊆ F1
and S ⊆ F2. We introduce a grading on K[a] so that

deg
(
aF

jF

) =
{

e(jF )S if F ∈ {F1,F2}, and
0 otherwise.

The vector eiS for iS ∈ dS is the standard unit vector in ZDs with a 1 in the iS position and a
zero elsewhere. This multigrading on K[a] induces a multigrading on K[p], K[p]1 and K[p]2,
where, for instance, we take the degree of pi to be deg(pi) = eiS . Thus, all of IΔ,d , IΔ1,d

1 and
IΔ2,d

2 are homogeneous with respect to this multigrading, because the maps φΔ,d , φΔ1,d
1 and

φΔ2,d
2 all preserve the multidegree.

Theorem 22. Let Δ be reducible with components Δ1 and Δ2 and separator S. Then

IΔ,d = IΔ1,d
1 ×A IΔ2,d

2

with A linearly independent.

Proof. It is clear that A is linearly independent since it is a collection of disjoint standard unit
vectors. Suppose that T is an arbitrary face of Δ. We first note the general fact that if we modify
the ring homomorphism φΔ,d so that

pi �→ aT
iT ·

∏
aF

iF

F∈facet(Δ)



S. Sullivant / Journal of Algebra 316 (2007) 560–577 573
this does not change ker(φΔ,d), since any variable aT
iT

must appear with precisely same multiplic-

ity as aF
iF

for any facet F with T ⊆ F in the image of a monomial φΔ,d . Consider the modified
parametrization

pi �→ (
aS

iS

)2 ·
∏

F∈facet(Δ)

aF
iF ,

where S is the separator. We factorize the expression on the right as:

(
aS

iS

)2 ·
∏

F∈facet(Δ)

aF
iF =

∏
l∈{1,2}

(
aS

iS ·
∏

F∈facet(Δ)∩facet(Δl)

aF
iF

)
.

Since the expression on the right inside the parentheses involves a product of terms for all facets
of Δl , this product represents the parametrization for IΔl,d

l . In other words, we have shown that
the ring homomorphism φΔ,d factors through

φB : K[p] → K[p]1 ⊗ K[p]2,

pi �→ pi|Δ1| ⊗ pi|Δ2| .

Thus IΔ,d is a toric fiber product. �
3.3. Reducible models with hidden variables

Pushing the idea from Section 3.2 one step further, we can also use the machinery to compute
the ideals of reducible models from submodels when some of the random variables are hidden.
Parametrically, we have the following setup for the algebraic description of a hidden variable
models.

Let Δ be a simplicial complex on [n], d = (d1, . . . , dn) be a vector of integers with di � 2
for all i. Let H = {h1, . . . , ht } ⊂ [n] be the collection of hidden nodes and O = [n] \ H be the
collection of observed nodes. Let

K[q] = K[qi | iO ∈ DO, il = • if l ∈ H ]
and let K[p], φΔ,d , and IΔ,d be defined as in Section 3.2. If iO ∈ DO and jH ∈ DH we use the
notation piO jH to denote the indeterminate pi such that il = (iO)l if l ∈ O and il = (jH )l if l ∈ H .
Consider the ring homomorphism

ψH : K[q] → K[p],
qi �→

∑
jH ∈DH

piO jH .

Denote by IH,Δ,d = ker(ψH ◦φΔ,d) which is the ideal of the hidden variable hierarchical model.
This ideal is rarely a toric ideal. Hidden variable graphical models have been studied in [7,8]
from the perspective of computational algebra though we seem to be the first to write down some
general principles for determining their defining prime ideals.

Definition 23. We call the hidden variable ideal IH,Δ,d reducible if Δ is a reducible simplicial
complex and H ∩ S = ∅.
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Suppose that IH,Δ,d is a reducible hidden variable ideal. Let Δ1 and Δ2 be the two component
subcomplexes, let H1 = H ∩ |Δ1| and H2 = H ∩ |Δ2| and let d1 and d2 be the two induced
vectors of indices. Denote by K[q]1 and K[q]2 the two rings with variables indexed by the
elements of D|Δ1| and D|Δ2|.

Theorem 24. Let IH,Δ,d be a reducible hidden variable ideal. Let S be the separator. In each of
the rings K[q], K[q]1, and K[q]2, let the degree of a variable be deg(qi) = eiS . Then

IH,Δ,d = IH1,Δ1,d
1 ×A IH2,Δ2,d

2

with A linearly independent.

Proof. The same proof as of Theorem 22 applies here. �
As an example of an application of Theorem 24 we will deduce a corollary generalizing

Example 4. We call this example the partially hidden Markov chain. Let Δ = {{1,2}, {2,3},
{3,4}, . . . , {2n,2n+ 1}} be a chain of odd length and suppose that H = {2,4,6, . . . ,2n} consists
of all the even numbers. To describe the generators of the ideal IH,Δ,d we need two matrix
constructions. First, each even number 2j ∈ [2n + 1] defines a flattening of the n + 1 tensor (qi)

into a matrix Xj . The rows and column indices of the matrix Xj are the elements of DF with F =
{1,3, . . . ,2j − 1} and the elements of DF ′ with F ′ = {2j + 1,2j + 3, . . . ,2n + 1}, respectively.
Thus Xj is a d1d3 · · ·d2j−1d2j+1d2j+3 · · ·d2n+1 matrix. The entry in the iF row and jF ′ column
is qiF jF ′ (with appropriate •’s added).

Second, to each odd number 2j + 1 ∈ [2n + 1] with 0 < j < n, and each i ∈ [d2j+1] we
introduce a matrix Yj,i which is a flattening of an n-dimensional slice of the (n+ 1)-dimensional
tensor (qi). The row and column indices of the matrix Yj,i are the elements of DF with F =
{1,3, . . . ,2j − 1} and the elements of DF ′ with F ′ = {2j + 3,2j + 5, . . . ,2n + 1}. Thus, Yj,i

is a d1d3 · · ·d2j−1d2j+3d2j+5 · · ·d2n+1 matrix. The entry in the iF row and jF ′ column is qiF ijF ′
(with appropriate bullets added). Examples of Xj and Yj,i are illustrated in Example 4 (note that
the second 3 × 9 matrix in Example 4 is the transpose of X4).

Corollary 25. Let Δ = {{1,2}, {2,3}, {3,4}, . . . , {2n,2n + 1}} be a chain of odd length and
suppose that H = {2,4,6, . . . ,2n} consists of all the even numbers. Let G be the union of all
(d2j + 1) × (d2j + 1) minors of Xj for j ∈ [n] such that d2j < min(d2j−1, d2j+1) together with
the union of all the 2 × 2 minors of Yj,i for 0 < j < n and i ∈ [d2j+1]. Then G is a Gröbner
basis for IH,Δ,d .

Proof. Note that IH,Δ,d is reducible with separator S = {2n}. Thus, by applying induction and
liberal application of Theorem 24, we need only determine Gröbner bases for IH ′,Δ′,d ′ in the
special case of Δ′ = {{1,2}, {2,3}} and H ′ = 2 for all triples d ′ = (d1, d2, d3). Then we can lift
the polynomials to get a Gröbner basis for IΔ,H,d . In this special case, we are considering the
ideal that is the kernel of the ring homomorphism

φd : K
[
qi1 • i3

∣∣ i1 ∈ [d1], i3 ∈ [d3]
] → K

[
ai1i2, bi2i3

∣∣ ij ∈ [dj ]
]
,

qi1 • i3 �→
d2∑

ai1i2bi2i3 .
i2=1
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Thus, IH ′,Δ′,d is the vanishing ideal of Secd2−1(Pd1−1 × Pd3−1), the variety of secant (d2 − 1)-
planes to the Segre embedding of Pd1−1 × Pd3−1. If d2 � min(d1, d3) then IH,Δ,d = 〈0〉 is the
zero ideal. If d2 < min(d1, d3) then IH,Δ,d is generated by the (d2 + 1) × (d2 + 1) minors of the
matrix (qi1 • i3). Lifting these determinantal polynomials to K[q] yields the minors of matrix Xj .
The minors of the matrices Yj,i are the elements of QuadB for each of the toric fiber products
that are used in building up IH,Δ,d . �
3.4. Group-based models on phylogenetic trees

In this section, we show how the toric fiber product arises in the construction of phylogenetic
invariants for group-based models on phylogenetic trees. The fact that these phylogenetic mod-
els are toric fiber products plays a significant role in [15] where phylogenetic invariants for the
group-based models were originally constructed. The toric fiber product also plays a prominent
role in [3] where, in the case of trivalent trees with underlying group Z2, it is proven that these
phylogenetic ideals are Gorenstein, their Hilbert polynomials are computed, and their deforma-
tions are studied. For the sake of simplicity of exposition, we will describe the underlying models
in the Fourier coordinates (as opposed to the probability coordinates) and we only address the
case of models whose labeling function is the identity map. We refer the reader to [15,16] for
descriptions of these models in the probability coordinates and the application of the discrete
Fourier transform. Also [15] contains the full description of these models with arbitrary friendly
labeling functions.

Let T be a tree with n + 1 leaves. Label the leaves 1,2, . . . , n + 1, let the root of T be
at the leaf n + 1, and direct the edges of T away from the root. Given an edge e, a leaf l is
called an descendant of e if there is a directed path from e to l. Denote by de(e) the set of all
descendants of the edge e. We assume that the tree T has the property that for every edge e the
set of descendants de(e) is an interval of integers, i.e. de(e) = {i, i + 1, . . . , j − 1, j} for some
i � j ∈ [n]. This amounts to saying that T has a drawing in the plane so that the leaves of T lie
on a circle in numerical order.

Let G be a group. We will use additive notation for G although G might not be abelian. If
g1, . . . , gn is a sequence of elements in G, we denote by ge the sum of the group elements gi

such that i ∈ de(e); that is,

ge =
∑

i∈de(e)

gi .

Since G may not be abelian we use the convention that the sum is always taken in increasing
order of the indices i ∈ de(e). Let

K[q] = K[qg1...gn | gi ∈ G] and K[a] = K
[
a

(e)
h

∣∣ e ∈ E(T ), h ∈ G
]

and consider the ring homomorphism

φG,T : K[q] → K[a],
qg1...gn �→

∏
e∈E(T )

a(e)
ge

.

Definition 26. The ideal IG,T = ker(φG,T ) is the ideal of the group-based phylogenetic model
with group G and tree T .
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Note that since T is an acyclic directed graph, there is an induced partial order on the edges
of T . Namely e < e′ if there is a directed path from e′ to e. Let T be a tree that contains an interior
edge (an edge not incident to any leaf). Then e induces a decomposition of T as the composition
T +

e ∗T −
e where T −

e is the subtree of T consisting of all edges e′ ∈ T with e′ � e and T +
e consists

of all edges e′ ∈ T such that e′ < e. Thus T −
e and T +

e overlap in the single edge e. We root T −
e

by the tail of e, and keep the root of T +
e at the original root n + 1.

Without loss of generality, we may assume that the nonroot leaves of T −
e consist of

{1,2, . . . , k}, and the nonroot leaves of T +
e are {e, k + 1, . . . , n}. Let K[q]+ and K[q]− denote

the ambient polynomial rings of IG,T +
e

and IG,T −
e

, respectively.

Theorem 27. Let T be a tree with an interior edge e, and resulting decomposition T = T +
e ∗T −

e .
For each variable qg in K[q], K[q]+ and K[q]−, let deg(qg) = ege , the standard unit vector with
label ge. Then

IG,T = IG,T +
e

×A IG,T −
e

with A linear independent.

Proof. Clearly A is linearly independent since it consists of standard unit vectors. To prove that
IG,T is a toric fiber product, we use our standard technique of modifying the parameterization.
As usual, it does not hurt to square a variable a

(e)
ge

everywhere it appears. Thus we have:

φG,T (qg) = a(e)
ge

·
∏

e′∈E(T )

a(e′)
ge′

=
∏

e′∈E(T +
e )

a(e′)
qe′

∏
e′∈E(T −

e )

a(e′)
qe′

= φG,T +
e

(qg+)φG,T −
e

(qg−).

Thus, IG,T is a toric fiber product. �
This allows us to deduce the main result from [15].

Corollary 28. If T is a trivalent tree the generators of IG,T can be explicitly determined from
the generators of IG,K1,3 where K1,3 is the three leaf claw tree.

Proof. If T is a trivalent tree, it can be successively decomposed by the ∗ operation until each
component tree is a K1,3. �
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