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We study the lattice L of subgroups of a Chevalley group G(Φ, A)

over a ring A, containing its elementary subgroup E(Φ, S) over
a subring S ⊆ A. The standard description asserts that for any
H ∈ L there exists a unique subring R ⊇ S of A such that H
contains E(Φ, R) as a normal subgroup.
The standard description was obtained by Ya. Nuzhin for algebraic
field extensions. On the other hand, it was expected that the
standard description does not hold for transcendental extensions.
This was recently proved by the author for simply laced root
systems.
Now, suppose that Φ is doubly laced, i.e. Φ = Bl , Cl or F4, and that
2 is invertible in S . In the article we prove that in these settings
the standard description of L holds for an arbitrary pair of rings
S ⊆ A.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Let G = GP (Φ, ) denote a Chevalley–Demazure group scheme with root system Φ and weight
lattice P . All rings throughout the paper are commutative with the unit element and all ring ho-
momorphisms preserve the units. For a ring A denote by E(A) = EP (Φ, A) the elementary subgroup

✩ The work on this article has begun at the Bielefeld University under support of DAAD. The author acknowledges support of
INTAS project 03-51-3251, RFBR project 08-01-00756 and research program 6.38.74.2011 “The Structural Theory and Geometry
of Algebraic Groups and Their Applications in Representation Theory and Algebraic K-Theory” of St. Petersburg State University.
At the final stage the work was supported by RFBR projects 09-01-00878, 09-01-90304, 10-01-92651, 10-01-90016 and 11-01-
00811.

* Correspondence to: Department of Mathematics and Mechanics, Saint Petersburg State University, Russian Federation.
E-mail address: stepanov239@gmail.com.
0021-8693/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jalgebra.2012.04.007

http://dx.doi.org/10.1016/j.jalgebra.2012.04.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:stepanov239@gmail.com
http://dx.doi.org/10.1016/j.jalgebra.2012.04.007


A. Stepanov / Journal of Algebra 362 (2012) 12–29 13
of G(A), i.e. the subgroup generated by all elementary root unipotent elements xα(t), α ∈ Φ , t ∈ A. Let
S be a subring of A. We study the lattice L= L(E(S), G(A)) of subgroups of G(A), containing E(S).

The standard answer to this problem is called sandwich classification theorem. It asserts that for
each H ∈ L there exists a subring R between S and A such that H normalizes E(R). In other words,
L is partitioned into disjoint union of sandwiches L(E(R), N A(R)), where N A(R) is the normalizer of
E(R) in G(A).

In this article we prove the standard description of the lattice L for a doubly laced root system
and an arbitrary pair of rings S ⊆ A, provided that 2 is invertible in S (for Φ = B2k+1 we assume in
addition that −1 is a square in S).

Theorem. Let Φ = Bl, Cl or F4 and l � 2. Let S ⊆ A be a pair of rings such that 2 is invertible in S and if
Φ = B2k+1 , then −1 is a square in S. Then, given a subgroup H � G(A) containing E(S), there exists a unique
subring R ⊆ A containing S such that

E(R) � H � N A(R).

This result is very surprising. Indeed, for simply laced root systems the situation is dramatically
different. Namely, the author has recently proved in [24] and [25] that if A contains a transcendental
element over S and Φ is simply laced, then the lattice L is far from being standard. More precisely,
in the adjoint group G(A) = Gad(Φ, A) there exists a subgroup H ∈ L isomorphic to the free product
of E(S) and a cyclic subgroup C . Clearly, there is no hope to describe the lattice L(E(S), E(S) � C) ⊂L
in terms of sandwich classification.

Now, using the result by Nuzhin [17] we obtain an almost complete answer to the question: “When
the lattice L is standard?” for fields S ⊆ A of characteristic �= 2 and Φ �= A1, G2.

Corollary. Let A/S be a field extension. Suppose that char S �= 2, Φ �= A1, G2 and if Φ = B2k+1 , then −1 is a
square in S. The lattice L= L(E(S), G(A)) is standard if and only if A is algebraic over S or Φ = Bl, Cl, F4 .

Possible generalizations of these two results will be discussed below.

Background and history. The study of subgroup structure of linear groups over fields formed an
important part of the group theory. In the middle of the 20-th century, when the foundations of
the theory of algebraic groups were being developed, many outstanding mathematicians including
Bruhat, Borel, and Tits investigated various problems concerning lattices of Zariski closed subgroups
of reductive groups.

The subject got a new life in the 1970-ies from activity around the classification of finite sim-
ple groups. In this context, subgroups of classical and exceptional Chevalley groups over fields were
extensively studied by Aschbacher, Bashkirov, Cooperstein, Dye, King, Kantor, Liebeck, Li Shangzhi,
Nuzhin, Timmesfeld, Wagner, Zalesskii, Seitz, and many others. In 1984, in the framework of the Max-
imal Subgroup Classification Project M. Aschbacher defined classes C1, . . . , C8 of subgroups which were
expected to be maximal subgroups of the finite classical groups.

At the same time Borevich and Vavilov [9] initiated the study of subgroup structure of classical
groups over rings which extends later to a sort of Large Subgroup Classification Project in linear groups
over rings. It turns out that for a sufficiently large subgroup D of a Chevalley group G(A) = G(Φ, A)

the lattice L = L(D, G(A)) breaks into disjoint union of “sandwiches” L(Ei, Ni), where Ni is the nor-
malizer of Ei in G , and each Ei is generated by unipotent elements. If such a description holds, we
say that the lattice L is standard. Vavilov [33] picked out 5 classes of subgroups corresponding to
Aschbacher classes:

• C1 + C2 (subsystem subgroups);
• C3 (ring extension subgroups);
• C4 + C7 (tensor product subgroups);
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• C5 (subring subgroups);
• C8 (classical groups in natural representations).

For subgroups from these classes he conjectured that the lattice L is standard under certain natu-
ral assumptions. If this holds, then L= ⊔

L(Ei, Ni), and to describe all subgroups from L one studies
the properties of the quotients Ni/Ei . Usually, it turns out that these groups look like some nonstable
K1-groups and one can apply K-theoretic ideas to investigate them.

In survey [33] Vavilov described results on class C1 + C2 for classical groups over fields and rings
and on class C3 for GLn over fields. The results on class C8 for overgroups of classical groups in the
natural representations were obtained in [37] by Hong You and in a series of papers [30–32,19] by
Petrov and Vavilov. Quite recently substantial progress for the class C4 + C7 was obtained by Vavilov
and his students Ananievsii and Sinchuk [4]. A set of open questions in this subject can be found
in [35].

In the present paper we consider the lattice of overgroups of subring subgroups which constitute
the class C5. This lattice was known to be standard in the following situations.

0. A = S , Φ �= A1. In this case the standard description follows from normality of E(A) in G(A), i.e.
the whole lattice is one big sandwich (Taddei [26], 1986).

1. Φ = An , n � 2, A is the field of fractions of a Dedekind domain S (Shmidt [21], 1979).
2. Φ �= A1, A is the field of fractions of a principal ideal domain S (Nuzhin and Yakushevich [18],

2000).
3. Φ �= A1, a field A is an algebraic extension of a field S , provided that all structure constants

Nαβ i j are invertible in S or S is a perfect field, and that S is not too small for certain root
systems (Nuzhin [17], 1983). A weaker result was obtained 15 years later by Wang Dengyin and
Li Shangzhi in [36].

Our main result is a wide generalization of items (2) and (3) above for doubly laced root systems.

Techniques. The main technical tools in Sections 1–5 will be developed for all root systems of rank
greater than 1 under assumption that all structure constants Nαβ i j of the corresponding complex
Lie algebra are invertible in S , i.e. 2 is invertible if Φ = Cl, Bl, F4 and 6 is invertible if Φ = G2. In
subsequent papers, we plan to use these techniques to obtain the standard description of the lattice
L for all root systems under certain additional assumptions on the pair S ⊆ A.

For the proof of our main result we shall use the following strategy. Let H be a subgroup from L.
Denote by E H the group generated by all elementary root unipotent elements of H and let NH be its
normalizer in G(A). Let g be an arbitrary element of H . It suffices to prove that g belongs to NH .
Assume that we can find a generating set X = X(g) of the group E(S) such that for each x ∈ X
the conjugate xg lies in a standard parabolic subgroup (this trick is called “reduction to a proper
parabolic”). Then to finish the proof that the description of the lattice L is standard, it suffices to
prove the following statements.

Lemma 1. If E(S)g � NH , then g ∈ NH .

Lemma 2. If y ∈ H ∩ P for a standard parabolic subgroup P , then y ∈ NH .

Similar strategy was successfully used several times for investigation of certain classes of sub-
groups in Chevalley groups, see [33] and [35] for more details and references. For the reduction to
a proper parabolic subgroup we use the identity with constants (Lemma 6.2) obtained by Gordeev
in [11] (the existence of an identity with constants in classical groups was studied by Golubchik and
Mikhalev in [10]). The appropriate “short” identity for Φ = F4 was recently obtained by Nesterov and
the author in [16]. For other root systems the short identity does not hold. In fact, using an approach
suggested by Tomanov in [28], Gordeev in [11] proved that there are no identities with constants for
a simply laced root system Φ , and Nesterov with the author [16] have shown that short identity does
not hold for Φ = G2.
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Gordeev’s result was used by the author in [25] to show that the lattice L is not standard if
A = S[t] is a polynomial ring and Φ is simply laced. Thus, for extensions of transcendental type,
existence of the identity with constants is crucial.

Further problems. The current state of the problem for simply laced root systems is described in [25].
Here we discuss further problems for multiply laced root systems.

First, suppose Φ = B2k+1, 2 is invertible in S , and −1 is not a square in S . Then there are no
small semisimple elements in the group E(S). More precisely, in the simply connected case there are
no small semisimple elements in Gsc(Bl, S), in the adjoint case small semisimple elements exist but
does not belong to the elementary group. It seems that in both cases one can obtain a free product
subgroup (with amalgamated center) between E(S) and G(S[t]) with the same method as in [25].
On the other hand, for the adjoint group SO4k+3 sandwich classification should hold for the lattice of
subgroups of SO4k+3(A) containing EO4k+3(S) and a small semisimple element.

If 2 is not invertible in S , then the answer should be modified due to the existence of subgroups,
corresponding to form rings (see [6]). The problem is the same as for the normal structure of a
Chevalley group (see [1] and [29]). Namely, the bottom layer of a sandwich is generated by subgroups
xα(qα), where qα are additive subgroups of A which are equal to the same ideal of A if 2 is invertible;
otherwise they can be different for roots of different length. In our setting even the properties of qα

strongly depend on the root system and the proof is expected to be much more subtle. Nevertheless,
if Φ is doubly laced and 2 = 0, then the key place of the proof, reduction to a proper parabolic, still
works. Therefore, we believe that the description in this case is standard and expect only technical
difficulties.

If 2 is not invertible and 2 �= 0, one will have substantial problems in this place of the proof. In this
case the identity with constants containing small semisimple element ensures only that E(2S)g � NH
instead of E(S)g � NH . On the other hand, one can try to play with identity with constants containing
a small unipotent element over the quotient ring modulo 2 but result of this game is not quite clear
now.

If Φ = G2, then there is a “long” identity with constants which guarantees that there are no free
product subgroups inside L. On the other hand, without short identity the proof of the present paper
does not work. Using the long identity one can still extract some unipotent elements. Then one can
look to a representation of G(G2, A) to prove that there are enough unipotents or to discover an
obstruction.

The rest of the article is organized as follows. In the first section we investigate the structure of
the group E H . In Section 2 we develop some tools from representation theory to show that the group
N A(R)/G(R) is solvable. This is done at the beginning of Section 3. The rest of Section 3 is to prove
Lemma 1. The proof of this lemma bases on the result of A. Bak [7], R. Hazrat and N. Vavilov [12] on
nilpotent structure of the group K1(Φ, R) over a Noetherian commutative ring R .

In Section 4 we show that the representation of Gad(Φ, A) in an internal Chevalley module is faith-
ful. This result is used in Section 5 to prove Lemma 2. In Section 6 we prove the main result of the
article. In the last section we use group theoretic arguments to extend the description to subgroups
normalized by E(S) and to investigate the top layers of sandwiches, arising in this description.

Notation. Let H be a group. For two elements x, y ∈ H we write [x, y] = x−1 y−1xy for their commu-
tator and xy = y−1xy for the element, conjugate to x by y. For subgroups X, Y � H we let X Y denote
the normal closure of X in the subgroup generated by X and Y while [X, Y ] stands for their mutual
commutator subgroup. The commutator subgroup [X, X] of X will be denoted also by D(X) and we
set Dk(X) = [Dk−1(X), Dk−1(X)]. Recall that a group X is called perfect if D(X) = X .

Let Φ be a reduced irreducible root system and let P be a lattice between the root lattice Q (Φ)

and the weight lattice P (Φ). We denote by G = GP (Φ, ) the Chevalley–Demazure group scheme of
type (Φ, P ). For groups of adjoint types we write Gad instead of GQ (Φ) . By L(Φ, R) we denote the Lie
algebra of the group G(R).

All subschemes of G are assumed to be defined over Z. Fix a split maximal torus T of G . For a
root α ∈ Φ and an element r ∈ R we denote by xα(r) the corresponding elementary root unipotent
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element and by Xα = {xα(r) | r ∈ R} the root subgroup. Fix a set Π of fundamental roots. The set of
positive roots is denoted by Φ+ .

Let q be an ideal of a ring R . As usual, G(R,q) denotes the principal congruence subgroup of
G(R) of level q, i.e. the kernel of the reduction homomorphism G(R) → G(R/q). Denote by E(q) the
subgroup of E(R) generated by elementary root unipotents xα(t) for all α ∈ Φ and t ∈ q, and by
E(R,q) = E(q)E(R) the relative elementary subgroup.

Let ϕ : G → GLn be a faithful representation of G . In the proofs we identify the elements of G(R)

and its Lie algebra L(Φ, R) with their images in the matrix ring Mn(R) under homomorphisms in-
duced by ϕ . For a matrix g ∈ Mn(R) we write gij to denote its entry in position (i, j). For an invertible
g the entries of g−1 will be denoted by g′

i j .
Let X be a subset of a ring R . By 〈X〉 we denote the smallest multiplicative subset, containing X ,

and by 〈X〉−1 R the localization of R in this multiplicative subset.

1. Subgroups generated by elementary root unipotents

Let S be a subring of a ring A. Let H be a subgroup of G(A), normalized by E(S). The following
lemma shows that if the right hand side of a Chevalley commutator formula belongs to H , then each
factor also lies in H . It was obtained in [1, Lemma 2.2] for the case S = A. The proof is essentially the
same.

Lemma 1.1. Let α,β ∈ Φ be a set of fundamental roots for a subsystem Φ ′ of type C2 or G2 with α short. Let

g = xα+β(s)x2α+β(t), when Φ ′ = C2;
g = xα+β(s)x2α+β(t)x3α+β(u)x3α+2β(v), when Φ ′ = G2.

If g ∈ H, then each factor of g belongs to H.

Put qα = qα(H) = {t ∈ A | xα(t) ∈ H}. Since the Weyl group acts transitively on the set of roots of
the same length, it is easy to see that qα = qβ if |α| = |β|, in fact this has been already used in the
proof of the previous lemma.

Lemma 1.2. Suppose that Φ �= A1 , 2 is invertible in S if Φ = Bl, Cl, F4 , and 3 is invertible in S if Φ = G2 . For
any α,β ∈ Φ we have qα = qβ . Denote the set qα (α ∈ Φ) by q(H) or simply by q. Then q is an S-module
closed under multiplication.

Proof. Clearly, each qα is an additive subgroup of A. The first assertion is obvious if |α| = |β|. Let α
be a short root. We may assume that β is a long root such that α + β ∈ Φ . If Φ �= G2, then α + β is
short and 2α + β is long. For t ∈ qβ put

a = [
xα(1), xβ(t)

] = xα+β(±t)x2α+β(±t).

Since a ∈ H , by Lemma 1.1, xα+β(±t) ∈ H . Therefore, qβ ⊆ qα+β = qα . Conversely, for v ∈ S we have
[xα(u), xα+β(v)] = x2α+β(2uv) ∈ H , hence 2Sqα ⊆ q2α+β = qβ . Since 1

2 ∈ S , we obtain qα = qβ .
If Φ = G2, then we assume that α and β is a base of Φ with α short. Take t ∈ qβ . Then [xα(1),

xβ(t)] = xα+β(±t)x2α+β(±t)x3α+β(±t)x3α+2β(±t2) ∈ H and by Lemma 1.1 t ∈ qα+β = qα , hence
qβ ⊆ qα . Conversely, for s ∈ qα we have [x2α+β( 1

3 ), xα(s)] = x3α+β(±s) ∈ H , hence qα ⊆ q3α+β = qβ .
If Φ �= C2, then it contains a subsystem of type A2, where the second assertion of the lemma is

easy to prove. If Φ = C2, then the formula for a together with Lemma 1.1 show that st ∈ q whenever
s ∈ q and t ∈ S ∪ q. �
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Note that if H is a subgroup of G(A) containing E(S), then q(H) is a S-algebra. In other words,
q(H) is the largest subring of A such that E(q(H)) � H . The set q(H) will be called a subring associ-
ated with H .

The following lemma will be used for the proof of the uniqueness statement of the main theorem.
It is well known for the case S = A.

Lemma 1.3. Suppose that Φ �= A1 , 2 is invertible in A if Φ = Bl, Cl, F4 , and 3 is invertible in A if Φ = G2 .
Then [E(S), E(A)] = E(A).

Proof. The subgroup H = [E(S), E(A)] is normal in E(A). We have to show that q(H) = A. By
Lemma 1.2 it suffices to show that H contains xγ (1) for some γ ∈ Φ . This is clear if Φ contains a
subsystem of type A2. Otherwise Φ = C2 or Φ = G2. Take two short roots α and β and put γ = α+β .
Then xγ (1) = [xα(1), xβ(±ε)] ∈ H , where ε = 1

2 for Φ = C2 and ε = 1
3 for Φ = G2. �

2. Irreducibility of rational representations

Let R be a subring of a ring A. To describe the normalizer N A(R) of the group E(R) in G(A) we
use representation theory. A rational representation ϕ of an affine group scheme G over Z defines a
Hopf algebra homomorphism ϕ∗ : Z[GLn] → Z[G]. Let i : R ↪→ A be an embedding of rings. In general,
the square

G(R)
ϕR−−−−→ GLn(R)

G(i)

⏐⏐� ⏐⏐�GLn(i)

G(A)
ϕA−−−−→ GLn(A)

(�)

is not a pullback. But for a faithful representation it is.

Lemma 2.1. Let ϕ be a faithful representation of a group scheme G. Then the square (�) is a pullback square.
In other words, if we identify elements of G(R), G(A), and GLn(R) with their images in GLn(A), then

G(R) = G(A) ∩ GLn(R).

Proof. Recall that a representation ϕ is called faithful if it is a monomorphism in the category of
group schemes. In this case ϕ∗ is surjective. Take x ∈ GLn(R) = HomRings(Z[GLn], R) and y ∈ G(A) =
HomRings(Z[G], A) such that GLn(i)(x) = ϕA(y). The latter condition can be expressed in terms of a
commutative diagram of rings and ring homomorphisms

Z[GLn] −−−−−−−→ Z[G]

x

↓

�

�
↙

z

↓
y

R −−−−−−−→ A

To prove the lemma it suffices to find an element z ∈ G(R) = HomRings(Z[G], R) making the dia-
gram commute. Given a ∈ Z[G] there exists its preimage b ∈ Z[GLn], and we set z(a) = x(b). We have
i(z(a)) = i(x(b)) = y(a). Since i is injective, z(a) does not depend on the choice of b. The fact that z
is a ring homomorphism is trivial. �
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Next, we consider a notion of absolute irreducibility of a representation of a group scheme. We
call a representation ϕ : G → GLn absolutely irreducible over a ring S if the image of ϕS generates the
full matrix ring Mn(S) as an S-module. Since for any S-algebra R the matrix ring Mn(R) is generated
by the image of Mn(S) as an R-module, absolute irreducibility over S implies absolute irreducibility
over any S-algebra.

For an algebraically closed field our definition coincides with the usual one by the Burnside theo-
rem. We shall show that for a Chevalley group scheme a representation is absolutely irreducible over
S iff it is irreducible over any S-algebra, which is an algebraically closed field, provided that small
primes are invertible in S .

Let G = G(Φ, ) be a Chevalley group scheme, ϕ : G → GLn its representation. Denote by L(Φ, R)

the Chevalley algebra of type Φ over a ring R , i.e. the Lie algebra over R obtained from the simple
complex Lie algebra of type Φ . Denote by eα the root element of L(Φ,Z), corresponding to a root
α ∈ Φ . For a ring R we denote by the same symbol the image of eα in L(Φ, R) = L(Φ,Z) ⊗ R . The
elements of the group G(R) and its Lie algebra L(Φ, R) are identified with their images in Mn(R)

under the homomorphisms induced by ϕ . Denote by m(ϕ) the largest integer such that em(ϕ)
α �= 0

over Z for some α ∈ Φ .

Lemma 2.2. Let ϕ be a representation of a Chevalley group scheme G. Let P be a set of primes, containing
all primes p � m(ϕ), and S = 〈P〉−1Z. Representation ϕ is absolutely irreducible over S if and only if it is
irreducible over any S-algebra F which is an algebraically closed field. Moreover, in this case for any S-algebra
R the R-module generated by the image of the elementary subgroup E(R) already coincides with Mn(R).

Proof. Let K be a prime field with char K /∈ P and let K̄ be its algebraic closure. Since K ∼= S/

(char K )S or K ∼= Q, it is an S-algebra. By the Burnside lemma G(K̄ ) spans Mn(K̄ ) as a K̄ -vector
space. For an algebraically closed field G(K̄ ) = E(K̄ ). Since this group is generated by the root unipo-
tent elements xα(r), the set {xα(r) | α ∈ Φ, r ∈ K̄ } generates Mn(K̄ ) as a K̄ -algebra. We want to show
that the image of E(Z) in Mn(K ) generates this matrix ring as a K -module. With this end we express
xα(r) as a linear combination of xα( j), where j = 0, . . . ,m(ϕ). We have

xα(r) =
m∑

k=0

1

k! rkek
α,

where m = m(ϕ). By the condition on P we have char K > m, therefore the images of integers
0, . . . ,m in K are distinct. Since the Vandermonde determinant is nonzero, the system of linear equa-
tions

∑m
j=0 u j jk = rk , k = 0, . . . ,m, has a unique solution (here 00 = 1). Therefore, given r ∈ K̄ and

α ∈ Φ there are u0, . . . , um ∈ K̄ such that

xα(r) =
m∑

k=0

1

k!

(
m∑

j=0

u j jk

)
ek
α =

m∑
j=0

u jxα( j),

i.e. xα(r) belongs to the K̄ -subalgebra of Mn(K̄ ) generated by xα(1). Hence, the K̄ -subalgebra gener-
ated by {xα(1) | α ∈ Φ}, which is equal to the K̄ -subspace generated by the image of E(Z), coincides
with Mn(K̄ ). It follows that there exist n2 linearly independent over K̄ elements of the image of E(Z).
Thus, the image of E(Z) generates an n2-dimensional K -subspace of Mn(K ) which must coincide with
Mn(K ).

Put K = Q. It follows that each matrix unit ehj can be expressed as a rational linear combination
of some elements of E(Z). Denote by P ′ the set of all primes, dividing the denominators of the
coefficients of these linear combinations. Let s be the product of all primes from P ′ \ P . Then for
some d ∈ N all matrices sdehj belong to the S-module, generated by E(Z).
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The ring S/sS is isomorphic to the direct sum of fields Fp over all p ∈ P ′ \P . The first paragraph
of the proof with K = Fp shows that E(Fp) generates Mn(Fp) as Fp-vector space. Hence, the S/sS-
submodule generated by E(S/sS) coincides with Mn(S/sS). Taking inverse images, one concludes that
the elements (1 + svhj)ehj belong to the S-module spanned by E(S) for all h, j and for some vhj ∈ S .
Clearly, 1 + svhj and sd are relatively prime in S , hence all matrix units belong to the S-module
spanned by E(S). Thus, this S-module coincides with Mn(S).

The converse implication is trivial. �
Corollary 2.3. Let

• P = {2,3} if Φ = G2 or Φ = E6;
• P = {2} ∪ {prime divisors of l + 1} if Φ = Al;
• P = {2} otherwise.

Then the adjoint representation of the group scheme G(Φ, ) is absolutely irreducible over S = 〈P〉−1Z.

Proof. The center of the Chevalley algebra L(Φ, R) is trivial if and only if the kernel of the Cartan
matrix over R is trivial (see [14]). The determinant of the Cartan matrix is a power of 2 except for
Φ = E6 where it equals 3 and Al where it is l + 1. Thus, under the conditions of the Corollary the
center of L(Φ, S) is trivial.

For a field F of characteristic not 2 (and 3 if Φ = G2) the representation of G(Φ, F ) on L(Φ, F )/

Center is absolutely irreducible by [13].
Using description of a simple complex Lie algebra by generators and relations one shows that

m(adj) = 2. This can be also obtained using the weight diagrams of adjoint representations from [20].
Indeed, there are at most 2 adjacent edges with the same label in these diagrams which means that
the cube of each root element eα of L(Φ,Z) vanishes on each weight subspace.

Now, by Lemma 2.2 we conclude that the adjoint representation is absolutely irreducible
over S . �
3. The normalizer

Denote by N A(R) the normalizer of E(R) in G(A). By Taddei’s theorem [26] we know that E(R)

is normal in G(R), i.e. G(R) � N A(R). Moreover, the main theorem of Hazrat and Vavilov [12] asserts
that G(R)/E(R) is an extension of a nilpotent group by an abelian group provided R is Noetherian.
The following lemma gives a criterion for g ∈ G(A) to belong to N A(R) in terms of its matrix entries
in a faithful representation ϕ . As usual, g is identified with ϕ(g) and its matrix entries are denoted
by gij . The entries of g−1 are denoted by g′

i j .

Lemma 3.1. Let ϕ : G → GLn be a faithful representation which is absolutely irreducible over S and let R ⊆ A
be S-algebras. For an element g ∈ G(A) we have

E(R)g � G(R) ⇐⇒ g′
i j gkl ∈ R for all i, j,k, l ∈ {1, . . . ,n} ⇐⇒ G(R)g � G(R).

Proof. Since ϕ is absolutely irreducible over S , by Lemma 2.2 any matrix unit e jk can be written in
the form

∑
sma(m) for some sm ∈ R and a(m) ∈ E(R). If E(R)g � G(R), then g−1a(m) g ∈ G(R). There-

fore, g−1e jk g = ∑
sm g−1a(m) g ∈ Mn(R), hence g′

i j gkl ∈ R .

Suppose that g′
i j gkl ∈ R for all i, j,k, l ∈ {1, . . . ,n} and take a ∈ G(R). Then g−1ag, g−1a−1 g ∈

Mn(R). Hence g−1ag ∈ GLn(R), and by Lemma 2.1, g−1ag ∈ G(R). The remaining implication is triv-
ial. �

By Lemma 2.1 we have G(A)∩ GLn(R) = G(R). Therefore, to prove that g ∈ G(A) is defined over R ,
i.e. belongs to G(R), it suffices to show that g ∈ GL(n, R).
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Corollary 3.2. Under conditions of the previous lemma one has [N A(R), N A(R)] � G(R).

Proof. If g,h ∈ N A(R) and a = [g,h], then for all indexes p,q we have

apq =
n∑

i, j,k=1

g′
pih

′
i j g jkhkq =

n∑
i, j,k=1

(
g′

pi g jk
)(

h′
i jhkq

) ∈ R. �

Not for all weight lattices P the group scheme GP (Φ, ) has a faithful representation which is ab-
solutely irreducible over Z or Z[ 1

2 ]. But for each root system Φ there exists at least one weight lattice
P such that such a representation exists. Lemma 3.5 shows that in this case the group N A(R)/G(R)

is solvable. To prove this we need one more statement which is well known for specialists (although
I could not find an exact reference).

Lemma 3.3. Let Q ⊆ P be weight lattices and ρ : G P (Φ, ) → G Q (Φ, ) the corresponding mor-
phism of group schemes. Then for any commutative ring R the cokernel of ρR is an abelian group, i.e.
[G Q (Φ, R), G Q (Φ, R)] � ρR(G P (Φ, R)).

Proof. The group functor K (R) = KerρR is an affine group scheme. Since the kernel of ρR is central,
K is abelian. The exact sequence of group schemes 1 → K → H → GQ (Φ, ) → 1 gives rise to an
exact sequence (see [15, Lemma 2.6.1])

1 → K (R) → G P (Φ, R) → G Q (Φ, R) → Ȟ1
et(R, K )

where Ȟ1
et(R, K ) is the Čech cohomology pointed set. But, since K is abelian, Ȟ1

et(R, K ) is an abelian
group which implies that the cokernel of ρR is abelian. �

In the next corollary we need to include weight lattice P in the notation of the normalizer:
N A(R) = N P

A (R).

Corollary 3.4. Let ψA : N P
A (R) → N Q

A (R) be the homomorphism induced by ρA . Suppose that Φ �= A1 and if
Φ = C2 then 2 is invertible in R. Then the kernel and cokernel of ψA are abelian.

Proof. Since the restriction of ρA : EP (Φ, R) → EQ (Φ, R) is surjective, we have ρA(N P
A (R)) � N Q

A (R),

so the map ψA is correctly defined. Obviously, its kernel is abelian. By Lemma 3.3 for a,b ∈ N Q
A (R)

the commutator [a,b] lies in ρA(GP (Φ, A)). Let c be its preimage in GP (Φ, A). Since [a,b] normalizes
EQ (Φ, R), the image of the group EP (Φ, R)c lies in EQ (Φ, R). Therefore, EP (Φ, R)c � EP (Φ, R) · K (A),
where K (A) = KerρA is central. The conditions of the corollary imply that EP (Φ, R) is a perfect group
(see [22]). Thus,

EP (Φ, R)c = [
EP (Φ, R)c,EP (Φ, R)c] � [

EP (Φ, R) · K (A),EP (Φ, R) · K (A)
]
� EP (Φ, R).

Therefore, c ∈ N P
A (R) which means that [a,b] belongs to the image of ψA . �

Lemma 3.5. Suppose that Φ �= A1 , 2 is invertible in R if Φ = C2, F4 or E8 and 6 is invertible in R if Φ = G2 .
Then the group N A(R)/G(R) is solvable.

Proof. For Φ = G2, F4, E8 put Q = Q (Φ) so that GQ (Φ, ) = Gad(Φ, ). By Corollary 2.3 this group
scheme has a faithful representation, absolutely irreducible over R .

Otherwise, L(Φ,C) has a minuscule representation ϕ . Let Q be the weight lattice of ϕ (here
Q �= Q (Φ)). Then ϕ induces a faithful representation of GQ (Φ, ). This representation, which we
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denote also by ϕ , is known to be irreducible over all closed fields and has m(ϕ) = 1 (see, for in-
stance, [20]). By Lemma 2.2 ϕ is absolutely irreducible over Z.

In both cases, by Corollary 3.2, we have [N Q
A (R), N Q

A (R)] � GQ (Φ, R). Recall that for a group H we

denote by Dk(H) its k-th commutator subgroup. With this notation we have D1(N Q
A (R)) � GQ (Φ, R).

By Corollary 3.4 D1(Nad
A (R)) is a subgroup of the image of N Q

A (R) in Gad(Φ, A). Therefore, its
commutator subgroup D2(Nad

A (R)) lies in the image of GQ (Φ, R) in Gad(Φ, A). Thus, for the adjoint
group we have

D2(Nad
A (R)

)
� Gad(R).

In general, let P be an arbitrary weight lattice. Denote by M the image of N P
A (R) in Gad(A). Since

M � Nad
A (R), we have D2(M) � Gad(R). Then, D3(M) lies in the commutator subgroup of Gad(R)

which, by Lemma 3.3, lies in the image of GP (Φ, R) in Gad(A). Taking preimages under the homo-
morphism ρA : GP (Φ, A) → Gad(Φ, A), we obtain the inclusion D3(N P

A (R)) � GP (Φ, R)KerρA . Since
the kernel of ρA is central, D4(N P

A (R)) � GP (Φ, R), i.e. the group N P
A (R)/GP (Φ, R) is solvable. �

Remark. It seems that in fact the group N A(R)/G(R) is abelian and the condition that 2 is invertible
is extra at least for Φ = E8. Therefore, in the actual proof I did not take care on the solvable degree
of this group.

The following statement is crucial for the proof of our main theorem. For Noetherian rings it is an
almost immediate consequence of the previous proposition.

Lemma 3.6. Suppose that Φ �= A1 , 2 is invertible in R if Φ = F4 , C2 or Φ = E8 , and 6 is invertible in R if
Φ = G2 . For an element g ∈ G(A): if E(R)g � N A(R), then g ∈ N A(R). Moreover, E(R) is a characteristic
subgroup of N A(R).

Proof. Let θ be an automorphism of N A(R) or an automorphism of G(A) such that E(R)θ � N A(R)

(we denote by bθ the image of an element b ∈ N A(R) under the action of θ ).
Since E(R) is perfect (see [22]) and Dk(N A(R)) � G(R) for sufficiently large integer k (Lemma 3.5),

we have

E(R)θ = Dk(E(R)θ
)
� Dk(N A(R)

)
� G(R).

Fix r ∈ R and α ∈ Φ . We prove that xα(r)θ ∈ E(R).
Put Z = Z[1/2] if Φ = F4, C2 or Φ = E8, Z = Z[1/6] if Φ = G2, and Z = Z otherwise. Let S be

the image of Z in R . The ring R ′ = S[r] is a finitely generated Z-algebra. Therefore, the group E(R ′)
is finitely generated by the elements xα(ε) and xα(r) for all α ∈ Φ (here ε = 1/2 for Φ = C2, F4, E8,
ε = 1/6 for Φ = G2, and ε = 1 otherwise). Clearly, there exists a finitely generated R ′-algebra R ′′
such that the finite set {xα(ε)θ , xα(r)θ | α ∈ Φ} is contained in G(R ′′). Inclusion E(R)θ � G(R) shows
that R ′′ ⊆ R . Since R ′′ is Noetherian, by the main theorem of [12] the group G(R ′′)/E(R ′′) is solvable,
hence E(R ′′) is the largest perfect subgroup of G(R ′′). Since E(R ′)θ is perfect and (by the choice of R ′′)
lies in G(R ′′), we have E(R ′)θ � E(R ′′). In particular, xα(r)θ ∈ E(R). Thus, E(R)θ � E(R).

When θ is an automorphism of N A(R), this means that E(R) is a characteristic subgroup of
N A(R). When θ is an inner automorphism defined by g ∈ G(A), this proves the first assertion of
the lemma. �

The following straightforward corollary shows that the normalizers of all subgroups of the sand-
wich L(E(R), N A(R)) lie in the same sandwich.
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Corollary 3.7. Under the conditions of Lemma 3.6 for any H � N A(R) containing E(R) its normalizer is con-
tained in N A(R). In particular, the group N A(R) is self normalizing.

4. Internal Chevalley module

Our next goal is to prove Lemma 2 from the introduction (= Lemma 5.2). Denote by B the standard
Borel subgroup of G(Φ, ), i.e. the subgroup containing T with the root system Φ+ (recall that a
torus T and a set of positive roots Φ+ were fixed from the beginning). Let U be the unipotent radical
of B . A standard parabolic subgroup is a parabolic subgroup containing B . Let Γ ⊆ Π . We say that a
standard parabolic subgroup P has type Γ if its root system is a union of Φ+ with a closed subset of
roots generated by −Γ .

Let P be a standard maximal parabolic subgroup, i.e. a standard parabolic subgroup of type Π \{α}
for some α ∈ Π . To prove the lemma we need to show that the representation of L P in the internal
Chevalley module U P /[U P , U P ] is faithful. This will be done in this section.

For a root β ∈ Φ+ denote by mα(β) the coefficient at α in decomposition of β to a linear combi-
nation of simple roots. Put Yα(k) = {β ∈ Φ | mα(β) = k}.

Lemma 4.1. For a root β ∈ ±Yα(0) there exists a root γ ∈ Yα(1) such that β + γ ∈ Φ (in this case β + γ
automatically belongs to Yα(1)).

Proof. Let β ∈ Yα(0) and let β = ∑k
i=1 mkβk be its presentation as a linear combination of simple

roots. On the Dynkin diagram take a chain α0 = α,α1, . . . ,αn = β j connecting α with a nearest simple
root β j , so that αh �= βi for all h = 0, . . . ,n − 1 and i = 1, . . . ,k. Then γ = α0 +α1 +· · ·+αn−1 ∈ Yα(1)

and the inner product 〈γ ,β〉 = 〈αn−1,m jβ j〉 is negative. Therefore, β +γ ∈ Φ and, moreover, β +γ ∈
Yα(1).

If β ∈ −Yα(0), then by the first paragraph of the proof there exists γ ∈ Yα(1) such that γ − β ∈
Yα(1) and β + (γ − β) is a root. �
Lemma 4.2. The set Yα(1) generates the linear span of Φ .

Proof. By the previous lemma for any simple root β �= α there is a root γ ∈ Yα(1) such that γ + β =
δ ∈ Yα(1). Hence all simple roots lie in the span of Yα(1) which implies the result. �

Throughout this section we assume that all structure constants Nα,β,i, j in the Chevalley commu-
tator formula for G(Φ, ) are invertible in S , i.e. 2 is invertible if Φ = Cl, Bl, F4 and 6 is invertible if
Φ = G2.

Let α ∈ Π and let P be the maximal standard parabolic subgroup of type Π \ {α}. Then the Levi
subgroup L P of P (i.e. the reductive part of P ) has root system � = ±Yα(0). The root system of the
unipotent radical U P of P is equal to

⋃
i>0 Yα(i). It follows that the group of points U P (R) of U P

over a ring R is generated by xα(r) for all α ∈ ⋃
i>0 Yα(i) and r ∈ R .

By [5, Lemma 4] the group [U P (A), U P (A)] is generated by Xβ(A) for all β ∈ ⋃
i>0 Yα(i) and

U P (A)/[U P (A), U P (A)] ∼= ∏
β∈Yα(1) Xβ(A) has a natural structure of a free A-module (see [5, Theo-

rem 2]).1 The action of L P on U P by conjugation gives rise to the action of L P on this free module.
This action is called the representation of L P (A) in the internal Chevalley module, it is functorial with
respect to A.

Choose a basis of U P (A)/[U P (A), U P (A)] consisting of xγ (1) for all γ ∈ Yα(1). Thus, we get a
morphism of group schemes π : L P → GLm . Denote by K the kernel of π . First, we show that K ∩ T Xδ

is central for all δ ∈ �.

Lemma 4.3. For any S-algebra A the intersection K (A) ∩ T (A)Xα(A) is central.

1 The fact that A = K is a field is not used in the proof of these statements.
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Proof. Let txβ(r) ∈ L P (A), for some β ∈ �, r ∈ A and t ∈ T . By Lemma 4.1 there exists γ ∈ Yα(1)

such that β +γ ∈ Yα(1). Calculation shows that xγ (1)txβ (r) = xγ (γ (t))xβ+γ (Nγ ,β,1,1γ (t)r) · · · · , where
dots denote a product of certain elements from other elementary root subgroups. If txβ(r) ∈ K (A),
then Nγ ,β,1,1γ (t)r = 0 and, since Nγ ,β,1,1 is invertible in A, we get r = 0. It follows that t central-
izes U P (A)/[U P (A), U P (A)], therefore xγ (1)t = xγ (γ (t)) = xγ (1), i.e. γ (t) = 1 for all γ ∈ Yα(1). By
Lemma 4.2 we conclude that γ (t) = 1 for all γ ∈ Φ , hence t lies in the center of G(A). �
Lemma 4.4. Let F be a field and an S-algebra. Then K (F ) is central.

Proof. Denote by F̄ the algebraic closure of F . Then L P ( F̄ ) = T ( F̄ )(H1 × H2), where each Hi is either
trivial or a Chevalley group over F̄ , and is normalized by the torus. By the main theorem of [27]
the quotient of Hi by the center Center(Hi) is a simple group. Suppose that there exists an element
th1h2 ∈ L P ( F̄ )∩ K ( F̄ ) such that h1 is not central in H1. By standard group theoretical arguments there
exists an element g ∈ H1 such that [g,h1] /∈ Center(H1). It follows that [K ( F̄ ), H1] is a noncentral nor-
mal subgroup of H1. It follows that it contains the product of a central element with an elementary
root unipotent element which is impossible by Lemma 4.3. Hence h1 is central. By the same argu-
ments h2 is central in H2. Since the center of H1 and H2 are contained in the torus, K ( F̄ ) � T ( F̄ ).
Again by Lemma 4.3 we deduce that K ( F̄ ) lies in the center of G( F̄ ).

Since the natural map G(F ) → G( F̄ ) is injective, K (F ) lies in the center of G(F ). �
The following lemma is proved in [34] for the unipotent radical of a Borel subgroup of a Chevalley

group. The proof for a Borel subgroup of a split reductive algebraic group is essentially the same.

Lemma 4.5. Let L be a split reductive algebraic group with a split maximal torus T . Suppose that the root
system Ψ of L is irreducible. Denote by B a Borel subgroup of L containing T . Let H be a normal subgroup
of L and R a commutative ring. If H(R) ∩ B(R) contains a noncentral element, then H contains a nontrivial
elementary root unipotent element.

Proposition 4.6. Let S = Z[ 1
2 ] if Φ = Bl, Cl, F4 , S = Z[ 1

6 ] if Φ = G2 , and S = Z otherwise. Let P be a
standard maximal parabolic subgroup of a Chevalley group G of adjoint type over S. Then the representation
of L P in the internal Chevalley module U P /[U P , U P ] is faithful.

Proof. We have to prove that K (A) is trivial for any S-algebra A. Let h ∈ K (A). Since K (A) is nor-
mal in L P (A), all commutators [h, xδ(r)] lie in K (A). If h is central, then it belongs to T (A) and by
Lemma 4.3 equals to 1. Otherwise, g = [h, xδ(r)] ∈ K (A) is not central in L(A, J ) for some δ ∈ � and
r ∈ A (see [2]). Note that g belongs to an irreducible component of L P (A). Denote this component by
L and its root system by Ψ .

By Lemma 4.4 K vanishes modulo all maximal ideals. Therefore g lies in the principle congru-
ence subgroup L(A, J ), where J denotes the Jacobson radical of A. Put Ψ + = Φ+ ∩ Ψ . By the Gauss
decomposition (see [3, Proposition 2.3]) g can be written in the form g = ub, where b lies in the
standard Borel subgroup of L and u in the unipotent radical of the opposite Borel subgroup. De-
note by V the free A-module U P (A)/[U P (A), U P (A)]. Let γ be a root of minimal height in the set
{δ ∈ Yα(1) | xδ(1)b �= xδ(1)}. Put Zγ = {δ ∈ Yα(1) | ht δ < htγ }. Since u is a product of xβ(rβ), as β

ranges over Ψ − and rβ ∈ A, we have

xγ (1)u ≡ xγ (1)
∏

δ∈Zγ

xδ(rδ) mod
[
U P (A), U P (A)

]

for some rδ ∈ A. In the module V we have

xγ (1) = xγ (1)g =
(

xγ (1)
∏

δ∈Zγ

xδ(rδ)

)b

.
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By minimality of γ the element b stabilizes all xδ(rδ). Therefore, xγ (1) = xγ (1)b which contradicts the
choice of γ . The contradiction shows that b acts trivially on V . It follows that both b and u belong
to K (A) ∩ L(A) which is a normal subgroup of a split reductive group L(A) with an irreducible root
system.

By Lemma 4.3 K (A) contains no elementary root unipotent elements. Now, Lemma 4.5 shows that
b and u lies in the center of L(A) which is contained in the torus T (A). Since K (A) ∩ T (A) is trivial,
g = 1. �
5. Inside a parabolic subgroup

In this section we prove Lemma 2 from the introduction (= Lemma 5.2). For this we still need
the assumption that all structure constants Nαβ i j are invertible in the ground ring S . Let H be an
overgroup of E(S) with associated subring R = q(H). Let P be a standard maximal parabolic subgroup,
and g ∈ P ∩ H . We have to prove that g ∈ N A(R).

Write g = ab, where a belongs to the Levi subgroup L P of P and b is in the unipotent radical
U P of P . The action of g on the internal Chevalley module U P /[U P , U P ] coincides with the action
of a. If xγ (1) ∈ U P , then xγ (1)a ∈ H ∩ U P . Lemma 5.1 shows that in this case xγ (1)a ∈ G(R). If G is
of adjoint type, then Proposition 4.6 shows that the representation of L P in the internal Chevalley
module U P /[U P , U P ] is faithful and by Lemma 2.1 a ∈ G(R). In general we use the fact that the
kernel of the canonical morphism G → Gad(Φ, ) is central to show that a ∈ N A(R). Finally we apply
Lemma 5.1 again to show that b ∈ N A(R).

Let U denote the unipotent radical of the standard Borel subgroup, i.e. U (A) is generated by all
xα(s), where α ∈ Φ+ and s ∈ A. Let H be a subgroup of G(A), normalized by E(S).

Lemma 5.1. Let R = q(H). Then U (A) ∩ H � E(R). Moreover, if g ∈ U and E(R)g � H, then g ∈ E(R).

Proof. We prove the “moreover” statement. Let g = ∏
α∈Φ+ xα(sα) ∈ U and E(R)g ∈ H . Here we as-

sume that the ordering of factors agrees with the height of roots. We have to prove that sα ∈ R for
any α ∈ Φ+ . Denote by U (h) the subgroup of G(A) generated by all xα(s) with s ∈ A and α ∈ Φ+ of
height � h. Let n be the largest integer such that g ∈ U (n) . We proceed by induction on m − n where
m denotes the height of the maximal root. If m − n = 0, then g = xγ (s), where γ is the maximal root
which is long. There exists a root δ such that γ + δ ∈ Φ . Then [g, xδ(1)] = xγ +δ(±s)

∏
i>1 xγ +iδ(∗) ∈ H

and Lemma 1.1 shows that xγ +δ(±s) ∈ H , i.e. s ∈ R .
Now, let m − n > 0. Take a factor xβ(sβ) of g with β of height n. There exists a simple root

δ ∈ Π such that β + δ is a root. Consider the element g′ = [g, xδ(1)] ∈ H ∩ U (n+1) . Modulo U (n+2)

this element is a product of commutators [xα(sα), xδ(1)] ≡ xα+δ(±Nαδ11sα) mod U (n+2) over all α of
height n such that α+δ ∈ Φ . Therefore, xβ+δ(±Nβδ11sβ) is a factor of g′ and, by induction arguments,
±Nβδ11sβ ∈ R . Since Nβδ11 is invertible in R , we get sβ ∈ R for any root β of height n. Multiplying g

by xβ(−sβ) for all β of height n we get an element g′′ ∈ U (n+1) such that E(R)g′′ ∈ H . By induction
hypothesis g′′ ∈ E(R). Thus, g ∈ E(R). �
Lemma 5.2. Let H be a subgroup of G(A), containing E(S), and let R = q(H) be an S-algebra, associated
with H. Suppose that g ∈ H belongs to a standard maximal parabolic subgroup P of G(A). Then g ∈ N A(R).

Proof. Let U P be the unipotent radical of P and L P its Levi subgroup. Then g = ab for some b ∈ U P (A)

and a ∈ L P (A). For any d ∈ U P (R) the element dg belongs to H ∩ U P (A). By Lemma 5.1, dg ∈ E(R).
First, suppose that G = Gad(Φ, ). Consider a representation π of the group P in the internal

Chevalley module U P /[U P , U P ]. Clearly, U P lies in Kerπ . By Proposition 4.6 the restriction of π on L P

is faithful. We have π(a) = π(g) ∈ GLm(R). By Lemma 2.1 a ∈ G(R). In particular, a normalizes E(R),
and therefore, E(R)b = E(R)g � H . Now, Lemma 5.1 shows that b ∈ E(R), and thus, g ∈ G(R).

Now, let G have an arbitrary weight lattice and let ρ : G → Gad(Φ, ) be the canonical morphism
of schemes. Then C(A) = KerρA is central for any ring A. Let H̄ = ρA(H). Note that q(H̄) = R . Indeed,
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if xα(r) ∈ H̄ , then cxα(r) ∈ H for some central element c. Take β ∈ Φ such that α + β ∈ Φ . Then
[cxα(r), xβ(1)] = [xα(r), xβ(1)] and Lemma 1.1 shows that xα+β(r) ∈ H , i.e. r ∈ R .

We have already proved that ρA(g) belongs to Gad(Φ,q(H̄)) = Gad(Φ, R). In particular, Ead(Φ, R)g =
Ead(Φ, R). Since the image of E(R) under ρA is equal to Ead(Φ, R), we have E(R)g � E(R)C(A). It fol-
lows that E(R)g = [E(R)g , E(R)g] � [E(R)C(A), E(R)C(A)] = E(R), i.e. g ∈ N A(R). �
6. Sandwich classification theorem

Recall that a noncentral semisimple element h of G(A) is called small if it is annihilated by all
long roots, see [11]. In other words, h is conjugate to an element h′ ∈ T such that h′ commutes
with all long root subgroups. Clearly, if all roots in Φ have the same length, then there are no small
semisimple elements.

Lemma 6.1. Let R be a ring such that 2 �= 0 in R. Let Φ = Bn, Cn, F4 . Suppose that if Φ = B2k+1 (k � 1), then
−1 is a square in R. Then, there exists a small semisimple element h ∈ T (R)∩ E(R) defined over Z or Z[√−1 ].

For any root α ∈ Φ we have α(h) = ±1.

Proof. Any root semisimple element hα(−1) ∈ T (R) by definition belongs to E(R) and is noncentral
if Φ �= A1. Note that hα(−1) commutes with Xα . If Φ = Cn (n � 2), then hα(−1) is small semisimple
for any long root α. Indeed, all long roots in Cn are orthogonal, therefore hα(−1) commutes with all
long root subgroups.

In the case Φ = B2k consider the element h = ∏k
i=1 hα2i−1(−1), where α1, . . . ,α2k−1 ∈ Π are long

fundamental roots. Since α2i−1 ⊥ α2 j−1 for all i �= j, the element h commutes with root subgroups
Xα2i−1 . On the other hand,

α2i(h) = α2i
(
hα2i−1(−1)hα2i+1(−1)

) = (−1)(−1) = 1.

Thus, h is small semisimple.
The set of all long roots in Φ = F4 is contained in a root system of type B4. Clearly, the image in

E(F4, R) of the small semisimple element of E(B4, R) constructed above is small semisimple.
Finally, if Φ = B2k+1 and −1 is a square in R , then a small semisimple element in T (R) ∩ E(R) is

shown in Section 2 of Gordeev.
Since h is defined over Z or over Z[√−1 ], to prove the last assertion of the lemma it suffices to

show that β(h)2 = 1 for all short roots β ∈ Φ . Indeed, as our root system is doubly laced, there exists
a long root α ∈ Φ such that α + 2β ∈ Φ is a long root. Then β(h)2 = (α + 2β)(h) = 1. �

The following lemma is a key technical step for the proof of the main theorem. It shows why we
can prove the theorem only for doubly laced root systems.

Lemma 6.2. (See Gordeev [11], Nesterov and Stepanov [16].) Let Φ = Bn, Cn or F4 . Let T be a split maximal
torus, α a long root, and g ∈ G(A). If h ∈ T (R) is a small semisimple element, then Xhg

α commutes with Xα .
Hence Xhg

α is contained in a standard proper parabolic subgroup of G(A).

Remark. The lemma was proved in [11,16] over an algebraically closed field. But it is easy to see that
an identity with constants is inherited by subrings and quotient rings, and any ring is a quotient of a
polynomial ring which is a subring of a closed field.

The following result is a consequence of the normal structure of a Chevalley group, see [1] or [29].
However, it is easier to give a direct proof than to deduce the lemma from the normal structure
theorem.
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Lemma 6.3. Let G be a Chevalley–Demazure group scheme with root system Φ = Bl, Cl, F4 and E its ele-
mentary subgroup functor. Let R be a ring, T a split maximal torus, and h ∈ T (R) a small semisimple element
defined over Z or Z[√−1 ]. Suppose that 2 is invertible in R. If H is a subgroup of G(R) normalized by E(R)

and h ∈ H, then H � E(R).

Proof. Since h is noncentral, by Lemma 6.1 there exists β ∈ Φ such that β(h) = −1. Then [xβ( 1
2 ),h] =

xβ(−1) ∈ H . By Lemma 1.2 with S = R we have H � E(R). �
Now we are prepared to prove the main result of the article.

Theorem 6.4. Let G be a Chevalley–Demazure group scheme with root system Φ , where Φ = Bl, Cl or F4 and
l � 2. Let S ⊆ A be a pair of rings such that 2 is invertible in S. In the case Φ = B2k + 1 (k � 1) suppose in
addition that −1 is a square in S. Then, given a subgroup H � G(A) containing E(S) there exists a unique
subring R ⊆ A containing S such that

E(R) � H � N A(R).

Proof. Let R = q(H) be the subring associated with H , so that E(R) � H . For an element g ∈ H we
show that g ∈ N A(R).

Let h ∈ G(R) be a small semisimple element from a chosen split maximal torus T . Let α be a
long root. Take two arbitrary elements a,b from E(R) and consider the element c = xα(1)hagb ∈ H .
By Lemma 6.2 this element belongs to a standard proper parabolic subgroup and by Lemma 5.2
c ∈ N A(R). Rewrite c in the form

c = b−1(g−1(a−1h−1a
)

g
(
bxα(1)b−1)g−1(a−1ha

)
g
)
b ∈ N A(R).

Since b ∈ E(R), we have

bcb−1 = (
bxα(1)b−1)g−1(a−1ha)g ∈ N A(R).

Fix a and let b vary. The subgroup generated by {bxα(1)b−1 | b ∈ E(R)} is normal in E(R) and
contains xα(1). By Lemma 1.2 with S = R it must coincide with E(R). Thus, E(R)g−1(a−1ha)g � N A(R),
and by Lemma 3.6 (a−1ha)g ∈ N A(R).

Again, elements of the form a−1ha generate a subgroup normalized by E(R) as a ranges over E(R).
Since this subgroup contains h, by Lemma 6.3 it contains E(R). Therefore, E(R)g ∈ N A(R). By
Lemma 3.6 one has g ∈ N A(R). Thus, an arbitrary element from H is contained in N A(R), i.e. H �
N A(R).

It remains to show that each subgroup H belongs to a unique sandwich L(E(R), N A(R)). By
Lemma 1.3 the normal closure of E(S) in E(R) equals to E(R). Therefore,

E(R) = E(S)E(R) � E(S)H � E(R)N A(R) = E(R),

i.e. E(S)H = E(R). Since E(R) = E(R ′) implies R = R ′ , two sandwiches L(E(R), N A(R)) and L(E(R ′),
N A(R ′)) have empty intersection for different subrings R and R ′ . �
7. Subgroups normalized by E(S)

Here we use group theoretic arguments developed in [23] to extend the description of subgroups,
containing E(S), to subgroups, normalized by E(S).

Recall some definitions introduced by Z.I. Borevich in [8]. Let D be a subgroup of G . A subgroup F
of G is called D-full if D F = F . A subgroup D is called polynormal in G if for each subgroup H
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between D and G the subgroup D H is D-full, i.e. D D H = D H . In terms of distribution of intermediate
subgroups the definition of polynormality can be reformulated as follows. A subgroup D is polynormal
in G if given a subgroup H such that D � H � G there exists a unique D-full subgroup F such
that F � H � NG(F ). One notice that Theorem 6.4 asserts that E(S) is polynormal in E(A) and the
subgroups E(R) for all subrings R: A ⊆ R ⊆ S exhaust all E(S)-full subgroups.

The notion of polynormality was extended in [23] to take into account all subgroups normalized
by D . Namely, a subgroup F of G is called D-perfect if [F , D] = F . A subgroup D is called strongly
polynormal in G if for any subgroup H � G , normalized by D , the group [H, D] is D-perfect. In other
words, given H � G , normalized by D , there exists a unique D-perfect subgroup F such that F �
H � CG,D(F ), where C = CG,D(F ) is the largest subgroup normalizing F and satisfying the property
[C, D] � F .

It is an exercise to show, using the Hall–Witt commutator identity, that a polynormal perfect
subgroup is strongly polynormal, see Theorem 1 of [23]. In the following proposition we observe that
in this case D-perfect subgroups are known as soon as the normal structure of each D-full subgroup
is established.

Proposition 7.1. Let D be a perfect polynormal subgroup of G with the set {Fi | i ∈ I} of D-full subgroups.
Then for any subgroup H � G, normalized by D, there exist i ∈ I and an Fi -perfect subgroup F � Fi such that
F � H � CG,D(F ). Moreover, CG,D(F ) is the largest subgroup of G such that [CG,D(F ), Fi] = F .

Proof. By Theorem 1 of [23] D is strongly polynormal in G . Thus, it suffices to show that a D-perfect
subgroup F is an Fi -perfect subgroup of Fi for some index i. Indeed, F D is a D-full subgroup, and
therefore, coincides with Fi for some index i. Thus, [Fi, F ] = [D, F ] · [F , F ] = F .

Since Fi = F D , the characterization of CG,D(F ) in the proposition is equivalent to its definition. �
Now we return to the study of subgroups in a Chevalley group and formulate the corollary of the

main theorem for subgroups normalized by E(S). Recall that E(R,q) denotes the relative elementary
subgroup of E(R) corresponding to an ideal q.

Theorem 7.2. Let G be a Chevalley–Demazure group scheme with root system Φ , where Φ = Bl, Cl or F4 and
l � 2. Let S ⊆ A be a pair of rings such that 2 is invertible in S. In the case Φ = B2k + 1 (k � 1) suppose
in addition that −1 is a square in S. Given a subgroup H � G(A) normalized by E(S) there exists a unique
subring R ⊆ A containing S and an ideal q of R such that

E(R,q) � H � C A(R,q),

where C A(R,q) is the largest subgroup of G(A) satisfying condition [C A(R,q), E(R)] = E(R,q).

Proof. By Theorem 6.4 the group E(S) is polynormal in G(A) and {E(R) | S ⊆ R ⊆ A} is the set of
all E(S)-full subgroups. By the normal structure of E(R) (see [29] or [1]) we know that only relative
elementary subgroups are E(R)-perfect. Now the result follows from Proposition 7.1. �

Finally, we characterize elements of the group C A(R,q) in a faithful absolutely irreducible repre-
sentation by congruences. As usual, δi j denotes the Kronecker symbol.

Proposition 7.3. Let ϕ : G → GLn be a faithful representation, absolutely irreducible over S. Under conditions
of the corollary the group C A(R,q) is an abelian extension of the principal congruence subgroup G(R,q) and
its elements can be characterized as follows. An element g ∈ G(A) belongs to C A(R,q) if and only if for all
indexes h, i, j,k ∈ {1, . . . ,n}

g′
hi g jk ≡ δhiδ jk mod q.
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Moreover, both E(R,q) and G(R,q) are normal in N A(R) and C A(R,q) is the full preimage of the center
under the canonical homomorphism N A(R) → N A(R)/G(R,q).

Proof. Since ϕ is absolutely irreducible, E(R) generates Mn(R) as an R-module. In particular, given
i, j ∈ {1, . . . ,n} a matrix unit is a linear combination ei j = ∑m

p=1 spap for some s1, . . . , sm ∈ R and

a1, . . . ,am ∈ E(R). For g ∈ C A(R,q) we have g−1ap g ∈ ap E(R,q). It follows that g−1ap g ∈ ap + Mn(q).
Conjugating ei j by g we get

g−1eij g =
m∑

p=1

sp g−1ap g ≡
m∑

p=1

spap ≡ eij mod M(q).

Hence g′
hi g jk ≡ δhiδ jk mod q.

Now, let C be the subset of G(A) consisting of matrices satisfying the above congruences. It is easy
to see that C is a subgroup and we have already proved that C A(R,q) � C . Let g ∈ C and a ∈ N A(R).
Put b = [g,a]. Then bhm = ∑n

i, j,k=1 g′
hia

′
i j g jkakm . If h �= i or j �= k, then g′

hi g jk ∈ q, and by Lemma 3.6
a′

i jakm ∈ R . Therefore,

bhm ≡
n∑

k=1

g′
hha′

hk gkkakm ≡
n∑

k=1

a′
hkakm ≡ δhm mod q,

which means that b ∈ G(R,q). Hence [C, N A(R)] � G(R,q). In particular, C and G(R,q) are normal
in N A(R), C is an abelian extension of G(R,q), and [C, E(R)] � G(R,q). By the standard commutator
formula (see [29])

[[
C, E(R)

]
, E(R)

]
�

[
G(R,q), E(R)

] = E(R,q)

and the converse inclusion is obvious. Being perfect normal subgroup, E(R) is strongly polynormal
in N A(R). Therefore,

[
C, E(R)

] = [[
C, E(R)

]
, E(R)

] = E(R,q).

It follows from the maximality of C A(R,q) that C = C A(R,q).
Now, let C ′ be the full preimage of the center of N A(R)/G(R,q). The inclusion [C, N A(R)] � G(R,q)

shows that C � C ′ . Conversely, since [C ′, N A(R)] � G(R,q) we have

[
C ′, E(R)

] = [[
C ′, E(R)

]
, E(R)

]
�

[
G(R,q), E(R)

] = E(R,q).

Since C = C A(R,q) is the largest subgroup with this property, we have C ′ = C .
Finally, since G(R,q) and E(R) are normal in N A(R), we conclude that E(R,q) = [G(R,q), E(R)] is

also normal. �
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