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This paper is organized as follows. In the first section we construct an 
ordered non-archimedean field whose unique automorphism is the identity. 
Obviously, archimedean ordered fields have a unique automorphism (order 
preserving). The converse was first studied in [ 11, and we show here that it 
not true. 

In the second section we are concerned with real closed fields. We prove 
that Bolzano’s theorem and the maximum principle for poynomials charac- 
terize real closed fields. 

In the last section we continue the study of fields with the extension 
property (EP) initiated in [7]. A field F has the extension property’if every 
automorphism of F(x), where x is transcendent over F, is the extension of 
an automorphism of F. These fields play a crucial role in the study of 
“homogeneity” conditions in the space of orderings of a field (see [7]). and 
we prove here some new results about them. In particular, we show that 
Pythagorean fields and n-maximal fields (see [6]) have the extension 
property. We end this section by proposing two questions about EP fields. 

1. A NON-ARCHIMEDEAN ORDERED FIELD 
WITH A UNIQUE AUTOMORPHISM 

Archimedean real closed fields have, of course, a unique automorphism. 
However, in the non-archimedean case one does not know that an 
automorphism has to fix a subfield over which the real closed field is 
algebraic. As far as I know, the following remains open: 
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QUESTION. Does there exist a non-archimedean real closed field with a 
unique automorphism? 

In the paper an ordered field is a couple (K, P), where K is a field and P 
is a subset of K, verifying 

P-kPcP; P.PcP; Pn (-P)= (0); Pu(-P)=K. 

We shall use a 6 p b (resp. a cp b) instead of b-aE P (resp. 
b-aEP\{O}). 

We devote this section to the construction of a non-archimedean ordered 
field (K, P) with a unique automorphism. 

We take K= R(x, y), where R is the field of real numbers and x, y are 
algebraically independent elements over R. 

Given an ordering P in K and f E K, we set the following [S]: 

D(f) = {aE R: a < .f>. 

Also we set 

and w = (f~ A: D(f) equals ( t, 0) or (t, 0] }. A is a valuation ring with 
maximal ideal m. 

Clearly, P* = (f+ w!, f~ P n A} is an ordering in the residual field 
A/M and (A/M, P*) is archimedean over R via R--f A/M,: r + r + m. So, 
we identify R with A/HZ and consider the signed place 
p: K + (A/H. = R) u ( + GO, - 00 > associated with P, i.e., 

f EK\A,f >pO, 

f EK\A,f c.0. 

If P is centered at the origin, i.e., p(x) = p(y) = 0, the place p admits a 
unique extension, which will also be called p, to F(y), F being the real 
closure of (R(x), P n R(x)), 

Let q be a large enough natural number. We have proved in [2] the 
existence of a unique ordering P in K such that 

(1) P(x)=P(Y)=O, x, YEC 

(2) sup 
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(3) y’-X50, sup i 
m&J+: (Y2-x5)~z~A ,2 
n X” 1 4’ 

II*1 

(4) (y2-x5)2-X4EP, 
i 

mEQ+: I(Y2-x’)‘-w$A =@ 
n X* 1 . 

Obviously, (K, P) is non-archimedean and we will show that (K, P) has 
a unique automorphism. Let c be an automorphism of (K, P). We will see 
that c(R) c R. Otherwise M = {a E R + : ~(a) = f,/g, E K\R > # 0 and we 
choose a E A4 such that [total degree of f, + total degree of g,] = s # 0 is 
minimum in M. Then, if b is the positive square root of a, we have b E n/r, 
f,/g, = ~(a) = o(b)’ = f g/g;, and s = 2s’, where s’ = (total degree of 
fh + total degree of gh), which contradicts the choice of a. Moreover, since 
o(R) c R and a;9 is dense in R, we conclude that B/R = id. 

Now, applying Theorem 5.2 of [lo], note that cr can be extended to an 
automorphism of K(n) = @(x. y), and we know that 

CT(x) = 
A,+B,x+C,y+D,x2+E,y2+F,xy 

A,+B,x+C,y+D,x2+E,y2iF,xy 

d.v)= 
A, + B,x + Cz y + D,.x’ + E2 y2 + F,xy 
A,+B,x+C,y+D,xZ+E,y2+F4xy’ 

where all the coefficients are real numbers. 
Clearly, if we write t = (T(X) and u = o(y), conditions [*] must hold, 

changing x and y by t and ~1, respectively. Thus p(t) = p(u) = 0 and so 
A,=A,=O. 

We will prove that A, and A, are not zero. For instance, suppose A, = 0. 
Then B, = 0 because p(t) = 0. Since B is an automorphism, B, and Bz 
cannot vanish simultaneously, and so B, # 0. But 0 = p(u/t’) = B, * B:. It 
follows that B, = 0. 

Now, p(t) = 0 implies C, = D, = 0, and so 

i 

(B2 + C, yJx + Dzx -t E, y2/x 
+ F2 y)(C, + D,x’/y + E&y + F3x) 

‘=p(“t)=’ (A,+B,x+C,y+D,x2+E4y2+F4xy)(E1y/x+FF,) 

\ 

implies D, = 0 and G(X) = (E, y + FIx)/(E3 p + F,x) = t. Again from 
p(t) = 0 we deduce now that F, = 0, E, # 0. Then, 

i (B, + C, y/x + D,x + E, y2/x 

+F,Y)~(&Y/x+F,)~ 
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together with B, # 0 allows us to conclude that F3 = 0, i.e., U(X) = E, /E3. 
Absurd. 

The case A, = 0 can be handled in a similar way; so, from now on, we 
suppose A, #O, A4#0. 

Now, for each rational number 8, we compute 

( 

(B,x+C,y+D,x2+E2y2+F2xy) 

u ~(A,+B,x+-C,~+D,X*+E~~~+F~~~)~ -_= 
te 

c 

(B,x+C, y+Dlx2+E1 y2+F,xy)’ 
1. 

x (A, + B,x + C, y + D,x2 + E4 y2 + F,xy) 1 

For 8 = 1, we have 0 = p(u/t) = B,A,/B,A,, so B,=O. For 0~2, 
0 = p(u/t’) = D,A:/BfA, implies D, = 0. 

Consequently, p(u/te) = (( C2 . At)/(A4 . By)) . p( y/x’) and, if 6’ = I, we 
conclude that 

C A5/2 = A&“. 2 3 (1) 

Next we must compute (u’ - t5)“ytY’ = (Mf’ . M)/(N. L . Nf), where 

M, = y2(C, + E, y + E;x)‘(A, + B,x+ C3 y -t D,x2 + E3 y2 + F3xy)’ 

-(B,x+C,~+D,X~+E~~~+F~X~)~ 

~(A,+B,x+C,~+D,X~+E~~~+F~X~)~, 

M=(A,+B,x+C,~+D,X~+E~~*+F~X~)~‘, 

N,=(B,x+C,y+D,x2+E~y2+F~xy), 

N=(A,+B,x+C~~+D~X~+E~~*+F~X~)~, 

L = (A, + B,x + C, y + D,x2 + E, y2 + F4xy)‘. 

Then, using (l), 

p ( (u’ -y ‘) 

= @:‘/A: %)(C; AZ/B:‘) p 
( y2 - x5 + U)P’ 

xy, 

> 
, (2) 

where, obviously, the degrees of monomials which appear in U are boun- 
ded. 

So, since p((u’- t5)P’/tY’) must equal 0, 1, or cc according to 
p(( y2 - xS)P’/tY’), we conclude that 1 = p(( y2 - x5)‘/_@) = 
p(( y2 - x5 + U)‘/x”‘), which implies, for a large enough choice of 4, that the 
only non-zero coefficients are C2, B, , A,, and A,. Moreover, from Eq. (2), 
we have ATCs=Ai,B’:. 
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Then t = ,%.x, u=py, with p, 1~ R, ,u2= d5, and ly= $, and, with q 
being different from 5, we get 

A5(14-5)=0, with 1 #O. 

Therefore i = + 1. But .Y E P implies ;Ix = t = V(X) E P. 
Thus I = 1. Finally, from ,u2 = 1 and p. y = u = a(y) E P it follows that 

/i = 1, and the equality CT = id is proved. 

2. A CHARACTERIZATION OF REAL CLOSED FIELDS 

Given an ordered field (K, P), we will use K2 to denote the set of squares 
in K. If a, b E K with a -C P b we shall denote 

(a,b),={xEK:a <,x <pb) 

[a,b],=(xEK:a Gp.x qpb}. 

For any element a E K, we write Ial for the maximum of a and -a with 
respect to P. 

2.1. DEFINITION. Let (K, P) be an ordered field. 

(i) (K, P) verfies Bokano’s theorem if given f‘~ K[x], a, b E K with 
a cP b and f(a) .f(b) cP 0, there exists c E (a, b)P such that f(c) = 0. 

(ii) (K, P) verifies the maximum principle if, given f E K[x] and 
a,b~K, a<,b, there exists c~[a,b], such that f(~)<~f(c) for each 
XE [a, blp. 

Our goal in this section is to prove that each of the above properties 
characterizes real closed fields. 

2.2. THEOREM. Let (K, P) be an ordered field. The following statements 
are equiualen t : 

(1) (K, P) verifies Bolzano’s theorem. 

(2) (K, P) is real closed. 

(3) (K, P) verifies the maximum principle. 

Proof: (1) j (2). It is enough to check: 

(i) P= K2. 

(ii) If f E K[x] has odd degree, it has a root in K. 

Let us see (i); let a E P, a #O, and consider f(x) = x2 - a. Since 
f(O).f(a+ l)= -a(a2+a+ l)<,O, there exists ceK with c2=u. 
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To show (ii) we set f(x)=xzn+i+a,x2”+ ... +u~~+~. Then, if u~Kis 
greater than (2n + 1). max{ Iail: 1 <j< 2n + 1, 1 } with respect to P, it is 
easy to see that f(u) P> 0. Applying this argument to g(x) = -j’( -x), we 
find some v E K with g(v) P> 0. Consequently, if w = -v, we deduce that 
f(u) .f(w) cp 0 and apply Bolzano’s theorem to find a root of J: 

(2) + (3) It is well known (see [S, Ex. 3, p. 2831). 

(3) * (1) Let f(x) = Cy= ,, a,xi be a polynomial over K and a, b E K, 
a < ,, b, with f(a) *f(b) -cp 0. Clearly, the formal derivative of g(x) = 
c;=o(a,/j+ 1)x7+’ is J: By assumption, g attains its maximum in 
c E [a, b] p and, applying the hypothesis to -g, g reaches its minimum in 
de [a, blp. We claim that either c or (i belongs to (a, b)p. 

First, we prove that if CE {a, b}, then 

f(a) <p 0, f(b) p> 0 (*) 

Otherwise, since g’(a)=f(a) is positive, the same holds with 

and, if x E (a, a + E)~, we have 

n+ 1 g”(a)(x_ a)‘- 1 

c 
i=2 

j! 

so, since g(x) - g(a) = (x-a) C;=+j (g’(a)/j!)(x - a)‘-‘, for x E 
(a, a + F)~, we have [g(x) - g(a)](x - a) P> 0, whence c # a. 

The same argument above, replacing a by b, allows us to conclude that 

[g(x)-db)l(x-b)<.O 

for x E (b-q, b), q positive with respect to P, and so c # b. Thus, (*) is 
proved. 

Let us consider now F= --A G = -g. If c E {a, b > we know from (*) that 
F(a) p > 0, F(b) <p 0. Again using (*) we deduce that the maximum of G is 
[a, b], is neither a nor b. This maximum is d. Thus we have proved that g 
reaches its maximum or its minimum in 1 E (a, b)p. 
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Then, if g’(t) # 0, the argument used before also shows that there exists 
E p> 0 such that 

g’(t) * [g(x) - s(t)1 . (x - t) P > 0 

for x~(t--s, t+~)~, and this is absurd. So f(t) = g’(t) = 0. 

2.3. Remark. It has been proved [ 111 that there exist non-real closed 
fields which verify Rolle’s theorem. 

3. FIELDS WITW THE EXTENSION PROPERTY 

In the Introduction we recalled the definition of EP fields (or fields with 
the extension property). It is clear that a field K is an EP if G(K) c K for 
every automorphism CJ of K(x). The following result is stated in [7]: 

3.1. PROPOSITION. The following classes of fields are EP’s: 

(1) algebraically closed fields; 

(2) algebraic extensions of Q; 

(3 ) euclidean fields; 

(4) fields with a unique ordering, which are archimedean over Q. 

Our goal in this section is to show that several different classes of fields 
are also EP’s. 

3.2. PROPOSITION. Everyfinitefield is an EP. 

Proof Let F be a finite field, p = char F and cr E Aut(F((x)). Since F is 
algebraic over its prime field Z,, 0 fixes Z,, and F is algebraically closed in 
F(x), we deduce that o(F) c F. 

Statement (4) in Proposition 3.1 can be generalized in the following way: 

3.3. PROPOSITION. Let F be a field with a unique ordering such that 
card Hom(F, F) -=c card F. Then F is an EP. (Note that, if the unique 
ordering of F is archimedean, then Hom(F, F) = id.) 

We need a lemma before the proof of Proposition 3.3. 

3.4. LEMMA. Let F be a field with a unique ordering, R a real closure of 
F. Let o be an automorphism of F(x), a E F with a(a) = f/g, ,f, g E F[X) 
relatively prime. Then f and g have no roots in R. 

Proof. Since o( -a) = -o(a), we can suppose that a is positive, so 

a-a:+ ... +a:, a, positive. 
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Writing each a, as a sum of squares and using 12.8 in [9], we write a as a 
sum of fourth powers and, repeating this argument, 

n(k) 
a= C a$ for each k E N. 

I=1 i 

Let us write o(ak,) =fkjgk,? hk,= (n:Lk! gk,)/gk,, and H= x7!!‘, (fk,. hk,)*‘; 

we suppose that fk, and gk, are coprime. 
Then 

j-.(8 gk,)2h=g.H. (1) 
J=l 

We show first that, if k 3 deg( g), each gk, has no roots in R. Otherwise, 
let c E R be a root of g,, with multiplicity y1i # 0, and let us denote by nj the 
multiplicity of c as a root of g,,. Then, if 12 and m are the multiplicities of c 
as a root off and g, respectively, we deduce from (I) that 

= m + (multiplicity of c as root of H) 

< m + 2k ’ (multiplicity of c as root of fk,. hk,). 

If fk,(c) = 0, Irr(c, F) would be a common factor of fkl and gk,, which are 
coprime. Moreover, the multiplicity of c as a rOOt of hk, eqUdS ~$!!~ n,. 

Consequently, n + 2kn, + 2k. C;!!J nj < m + 2k . C,“!!i nJ, and so 2kn, G 
m < deg( g). Absurd. 

In particular, if t = deg( g), each g, has no “real” (in R) roots. Thus it 
follows from (1) that g has no real roots: for if g(c) = 0, c E R, then f(c) = 0 
and Irr(c, F) would be a common factor off and g. 

Finally, applying the argument above to a( l/a) = g/’ we conclude that f 
has no roots in R. 

Proof of 3.3. Let G be an automorphism of F(x). For each aE F, the 
map 0,: F -+ F which sends b E F to the value at a of the rational function 
a(b) is a well-defined homomorphism from 3.4. 

Since card Hom(F, F) < card F, there exists 4 E Hom(F, F) and an 
infinite subset A4 of F such that 4 = (T, for every a E M. 

Let us prove that, for b E F, o(b) E F. If we write o(b) =flg, S, g E K[x], 
we know that 

qS(b)=cJb)=$$=c~rzF for every aEM, 

and so MC {roots off-c,g}. 
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Since A4 is infinite, f = cb. g and o(b) = f/g = cb E F. 
Our next goal is to prove that quadratically closed fields and 

Pythagorean fields are EP’s. In fact, we establish a more general result. 

3.5. DEFINITION. Let n 3 2 be a natural number, and let F be a field. We 
say that F is an n-field if x” -ax - 1 has a root in F, for each a E F. 

3.6. Remark. Let us suppose that char F # 2; F is a 24ield if and only if 
a2 + 4 E F2, a E F, i.e., if and only if F is Pythagorean. In particular, 
quadratically closed fields are 24ields. 

The result announced above says: 

3.7. PROPOSITION. If F is an n-field for some n, then F is an EP. 

Before giving the proof of Proposition 3.7, we introduce some notation 
that will be used in the remainder of the paper. 

3.8. Notation. Given a field F, an automorphism c of F(x), and an 
element UE F, we write ~(a) = f,/g,, with f,, g, coprime polynomials in 
F[x], and we denote by 6 the map 

Proof of Proposition 3.7. For each a E F let us choose h E F such that 
h” - ah - 1 = 0. Then a = h”’ - 1 Jh, m = n - 1. and so 

Since fh and g, are coprime, the same holds with f; - g’;, and fb * gr. 
Therefore deg f, = deg(f;: - g;) and 

degg,=degf,.g;=degf,+m.degg,. 

Consequently, 

6(a) = 6(b) + (m - 1) deg gh + deg(f; - g;). (2) 

We consider, first, the case n > 2. If F is not an EP, then 
M= (ae:F: a(a)$Fj #@. Let UEM be such that 6(a)=min{6(c): CEM), 
and Iet b denote, as above, a root of x” - ax - 1. 

Obviously bEA4, because o(a) = o(b)“- l/a(b). Now, from (2) and 
since nz- 1 >o, and 6(a) d 6(b), we conclude that deg g,= 0 = 
deg( f ;: - g;). But this means that fh, g, E F, hence o(b) E F, a contradiction. 

Now consider n = 2. Since a( l/a) = l/o(a), if F is not an EP, we deduce 
that 

L= (afF: o(a)$F, deg f,>deg gO> #Qr. 
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Let UE L be such that 6(a) = min{&c): CE L}. Since the roots of 
x2 - ax - 1 are b and - l/b, one of them belongs to L, e.g., b E L. Now, by 
(2) and since 6(a)d6(b), we have deg(fi- gi) =0 and so 

f;=c+g;> c E F. 

Consequently, f,/g, . fb/gb = o(a. b) = a(b2 - 1) = c/g;, and 

deg f, 3 deg g, 3 deg fb 3 deg gb since a, b EL. 

This shows that gi E F and also that f g = c + gi E F. Then gb, fb E F, i.e., 
o(b) E F. This is absurd because b E L. 

The proof above leads us to the following: 

3.9. COROLLARY. Let (F, v) be a henselian field whose residue class field 
R is real closed. Then F is an EP. 

ProoJ: Let A be the valuation ring of v. Clearly, it suflices to show that 
o(a) E F for every 0 E Aut F(x), a E A, a < 0, in the order induced in F by R. 
Then, if m is the maximal ideal of A, 

x3-(a+m)x-(l+m) 

has a simple root in R, and so there exists b E A such that 

a3-ab-l=O. 

If F is not an EP, the set 

M= (c~4:c<O,o(c)$F} 

is not empty. We choose a6M such that @a),<@~) for each CEM, and 
b E A with a3 - ab - 1 = 0 as above. Then d= b or d = -b verifies 
6(d) <6(a), dE A. This is absurd. 

3.10. Remark. (a) Using 3.8 and [4], we conclude that if a formally 
real field verifies Rolle’s theorem for any ordering, then it is an EP. 

(b) From 3.8 and Theorem 24 in [3], the generalized reai closure of 
a held with respect to an ordering of high level is an EP. 

(c) If F is an intersection of real closed fields, then F is Pythagorean. 
So, F is an EP. 

The following result improves part (3) in Proposition 3.1: 

3.11. PROPOSITION. Let F be a field, char(F) = 0, P= F\(O) and? the 
multiplicative subgroup of non-zero squares. Then, if [P : %] is finite, F is an 
EP. (Note that if F is euclidean, then [P : %] = 2.) 
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Proof. If F is not an EP there exists B E Aut F(x) such that M= 
{a E F: o(a) $ F, deg f, 3 deg gu} # 0 (note that B( l/a) = l/o(a)). 

Then we choose an element a E M such that 

deg f, < deg fb for every b E M. 

Since [P: %] is finite, we can choose a,,..., a, in F with 
F=a,F”v *.. va,,F2. 

Nowwecanfindi~(l,...,m),p~N,q~N,q>p,verifyinga+p~a,~~, 
a + q E a,F2, and deg f, = deg(f, + pg,). 

We set d = a + p. Clearly o(d) = (f, + pg,)/g,, whence d E M. Now, if 
r=q-p, then b=dl(d-+-r)=c2, c~F, and fb/gb=fd/fd+rg,, fb/gb= 
z/g;. Consequently, 2 deg fc = deg fb = deg fd= deg f,. Moreover b f M 
(and so c E M) because deg fb - deg g, = deg fd - deg(f, + rgd) > 0, since 
dEM. 

Finally, c E M, 2 deg f, = deg f, imply, by our choice of a, that f, E I; 
Since a E M we also have g, E F. Thus o(a) E F, a contradiction. 

3.12. EXAMPLE (following [6]). Let k be a field, Q its algebraic 
closure, and a, ,..., a, E k\k’. Let F be a maximal element in 

C={fieldsL,kcLcQ:a,$L’,i=1,..., m) 

(with the terminology of [6], 
of A,..., A). Then 

F is n-maximal with respect to the exclusion 
[p:p2]=n+ 1 and F is an EP from 

Proposition 3.11. 

In particular, if k is not Pythagorean, in the above construction we can 
take a, = 1 + f f, f, E k. Then, by replacing Sz by a real closure of k, we get a 
field F with a unique ordering which is not Pythagorean but is an EP. Even 
more, if k is non-archimedean so is F. 

Finally we establish a result which allows us to prove, for instance, that 
Q((x)) is an EP. 

3.13. PROPOSITION. Let F be a field with an ordering P such that 
PcQ-tF’. Then Fisan EP. 

Proof. As always, if F is not an EP the set 

M= (a6 P: cr(a)# F} 

is not empty. Let us take a EM such that 

deg go d deg gb for each b E M. 

Since a = q + c2, q E Q, c E F, we have deg g, = 2 deg g,, c E M. Absurd. 
The same proof above allows us to state: 
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3.14. COROLLARY. Let F be a field, Fc Cl + F2. Then F is an EP. 

Some things remain unanswered about EP fields. For example: 

Question 1. Is every field with a unique ordering an EP? Part (4) in 3.1 
gives us an affirmative answer in the archimedean case. 

We also know, from the first step in the proof of 1.4 in [7] and 
Lemma 3.3, that, if F admits a unique ordering and CT E Aut F(x), then o(F) 
is contained in the holomorphy ring of F(x) relative to F (see, for instance, 
[13] for a reference about holomorphy rings). 

Question 2. What can be said about the behaviour of the extension 
property under algebraic, finite, or quadratic extensions? 
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