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Cornelia de Lange Syndrome (CdLS) is a genetic disorder linked to mutations in cohesin and its regulators. To
date, it is unclear which function of cohesin is more relevant to the pathology of the syndrome. A mouse hetero-
zygous for the gene encoding the cohesin loader Nipbl recapitulates many features of CdLS. We have carefully ex-
amined Nipbl deficient cells and here report that they have robust cohesion all along the chromosome. DNA
replication, DNA repair and chromosome segregation are carried out efficiently in these cells. While bulk cohesin
loading is unperturbed, binding to certain promoters such as the Protocadherin genes in brain is notably affected

lc(ce,}r,rvlveohrgze Lange Syndrome and alters gene expression. These results provide further support for the idea that developmental defects in CdLS
Nibpl are caused by deregulated transcription and not by malfunction of cohesion-related processes.

Cohesin © 2013 Elsevier B.V. All rights reserved.
Transcription

Mouse model

1. Introduction mouse model that recapitulates CdLS has been generated through

Cornelia de Lange Syndrome (CdLS) is a developmental disorder af-
fecting 1:30,000 newborns, that is characterized by mental retardation,
reduced body size, dysmorphic face and upper limb defects among ad-
ditional organ abnormalities [1]. This human syndrome has been linked
to dysfunction of cohesin, a four-subunit protein complex (Smc1, Smc3,
Rad21 and either SA1 or SA2) initially identified for its role in sister
chromatid cohesion [2-5]. Cohesion is essential for accurate chromo-
some segregation and for homologous recombination (HR)-mediated
DNA repair [6]. More recent studies have shown the ability of cohesin
to embrace two DNA segments not only in trans but also in cis, leading
to the formation of chromatin loops that allow efficient firing of DNA
replication origins [7], promote recombination-mediated locus
rearrangement [8,9] and are the basis of transcriptional regulation of a
number of loci [10-13]. To date, it is still unclear which of these func-
tions is most directly related to the pathology of CdLS.

In almost half of CdLS patients, the syndrome is caused by heterozy-
gous mutations in the cohesin loader Nipbl [14,15]. Metaphase spreads
from CdLS cells do not show consistently cohesion defects whereas mi-
croarray studies reveal altered patterns of gene expression [16,17]. A
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deletion of a NIPBL allele. Embryonic fibroblasts from these animals
lack overt centromeric cohesion defects and instead display altered
transcriptional profiles [18]. However, defects in telomere and arm
cohesion, which cannot be scored in metaphase spreads, have not
been analyzed in these cells and they have been shown to impact
DNA replication, DNA repair and chromosome segregation. Indeed,
we have recently reported that cells deficient in cohesin-SA1 show
robust centromeric cohesion, a task performed by cohesin-SA2, but
lack proper telomere cohesion. As a consequence, telomere replica-
tion is not efficient and leads to chromosome segregation defects
and aneuploidy [19]. It is also not known whether limiting amounts
of the cohesin loader may affect differentially cohesin-SA1 and
cohesin-SA2. Thus, we decided to evaluate arm/telomere cohesion,
chromosome segregation, DNA damage repair and cohesin loading
in Nipbl deficient mouse embryonic fibroblasts (MEFs) in order to
understand the contribution of these aspects of cohesin behavior to
the pathogenesis of CdLS.

2. Material and methods
2.1. Mouse handling and MEFs culture
Mice were housed in a pathogen-free animal facility according to the

institution standards for animal care. MEFs were isolated from E14.5
embryos as described [18] and cultured in DMEM/10% FBS.
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2.2. FISH (fluorescence in situ hybridization)

MEFs in culture were arrested in 0.1 pg/ml colcemide for 4 h and
harvested by trypsinization. Metaphases for FISH were prepared and
hybridized with a telomeric probe as previously described [19]. Images
were acquired using a Leica DM6000 microscope. In the indicated cases,
cells were cultured in 0.5 pM aphidicolin for 24 h.

2.3. mRNA isolation and quantitative RT-PCR analysis

Total RNA was isolated using RNeasy Kit (Qiagen) and cDNA was syn-
thesized with SuperScript™ II reverse transcriptase (Invitrogen) using
random hexamer primers. An Applied Biosystems 7900HT Fast qRT-PCR
was used to determine mRNA levels. GAPDH was used for normalization.
Primers used for mRNA amplification are listed in Supplementary
Table S1.

2.4. Extract preparation, immunoblotting and immunofluorescence

For whole-cell extracts, cells were collected by trypsinization,
washed once in PBS, resuspended in SDS-PAGE loading buffer and son-
icated. Equal amounts of protein were run in 7.5% Bis/Tris gels followed
by western blotting. Chromatin fractionation was performed as previ-
ously described [20]. For immunofluorescence, cells were cultured on
polylysine-coated coverslips, fixed in 2% formaldehyde for 10 min at
room temperature, permeabilized in 0.1% Sodium Citrate/0.1% Triton-
X100 for 5 min at room temperature and subjected to antibody incuba-
tion. Images were acquired using a Leica DM6000 microscope. Antibod-
ies used in this study were: SA1, SA2, Sororin [19], Smc1 and Smc3 [21],
Rad21 [4], Nipbl (Bethyl, A301-779A), 53BP1 (Novus Biologicals,
NB100-304), Histone 3 (phospho-Ser10) (Abcam, ab14955), a-tubulin
(Sigma, DM1A), Histone 3 (Abcam, AB1791), Mek2 (BD, M24520). An-
tibodies against Wapl and Scc4 were a kind gift from J.M. Peters (IMP,
Vienna) and E. Watrin (U. Rennes).

2.5. Survival upon damage induction

Exponentially growing cells were trypsinized and 50,000 cells per
well were seeded onto 6-well plates. The following day, cells were
subjected to irradiation (8 Gy) or treated for 24 h with aphidicolin, hy-
droxyurea or mitomycin C at different concentrations. Cells were col-
lected by trypsinization and counted on a Countess” Automated Cell
Counter device (Invitrogen) 5 days after drug withdrawal. Cell survival
is represented as percentage of survival relative to untreated cells.

2.6. ChIP-qPCR in embryonic brain

Brains form E17.5 embryos were dissected and minced in cold
PBS with protease inhibitors cocktail (Roche #11873580001). Small
tissue pieces were cross-linked for 20 min at room temperature in
1% formaldehyde and fixation was stopped by adding 1/20 volume
of 2.5 M glycine for 5 min at room temperature. Tissue pieces were
lysed, sonicated and further processed for ChIP analysis as we previ-
ously described [21]. Primers used for ChIP-qPCR are listed in Sup-
plementary Table S2.

2.7. Statistical analysis
Statistical analysis was performed using GraphPad Prism 5 software.

A two-tailed Student's t-test was applied. Data are shown as mean +
s.e.m. (standard error of the mean). P < 0.05 was considered significant.

3. Results and discussion
3.1. Robust sister chromatid cohesion in Nipbl heterozygous MEFs

We prepared metaphase spreads from heterozygous Nipbl primary
MEFs. As previously reported, no centromeric cohesion defects can be
observed in these chromosomes (Fig. 1A; [18]). Cohesion mediated by
cohesin is important for the restart of stalled replication forks at regions
difficult to replicate like telomeres and fragile sites [19]. In the absence
of cohesin-SA1, telomere replication is impaired and mitotic chromo-
somes display an irregular telomeric structure, a phenotype that has
been called telomere fragility [22]. Telomere fragility can be observed
also at telomeres of wild-type cells treated with low doses of the repli-
cation inhibitor aphidicolin. As readout of telomere cohesion defects, we
determined the frequency of fragile telomeres by fluorescence in situ
hybridization (FISH) analysis of mitotic chromosomes with a telomeric
repeat probe. We observed no difference in the percentage of fragile
telomeres in Nipbl deficient MEFs in comparison to wild-type controls,
and a similar increase in its incidence upon treatment with aphidicolin
(Fig. 1B). Thus, telomere cohesion is not impaired in Nipbl heterozygous
cells. To examine arm cohesion, we measured the frequency of breaks
along the arms in mitotic chromosomes from cells either untreated or
treated with a low dose of aphidicolin. No differences were found be-
tween the two genotypes (Fig. 1C) suggesting that arm cohesion is
also properly maintained in the Nipbl deficient MEFs. Thus, the limited
amount of Nipbl present in these MEFs (Fig. S1A and B) is sufficient to
maintain the fraction of cohesin in charge of assuring robust sister chro-
matid cohesion at centromeres, telomeres and along chromosome arms.
Consistent with the absence of cohesion defects, we observed no chro-
mosome segregation anomalies upon careful examination of mitotic
progression (Fig. 1D) and no reduction in the proliferative capability
of Nipbl deficient MEFs (Fig. 1E). Therefore, we discard the contribution
of cohesion, chromosome segregation and proliferation defects to the
developmental delay and CdLS phenotypes observed in the Nipbl het-
erozygous mice.

3.2. DNA repair pathways work efficiently in Nipbl deficient MEFs

Next, we examined whether limiting amounts of Nipbl confers sensi-
tivity to DNA damaging agents. Short-term viability assays were used to
measure the effect of gamma irradiation as well as treatment with three
different drugs on wild-type and Nipbl deficient primary MEFs:
aphidicolin, hydroxyurea (both DNA replication inhibitors) and mitomy-
cin C (MMC, a DNA interstrand cross-linker). Nipbl deficient cells showed
dose-response survival curves similar to the wild-type controls in the
four different treatments (Fig. 2A). These results contrast with a previous
report of increased sensitivity to MMC in fibroblasts and B cells from CdLS
patients [23]. At present, we cannot discard the possibility that different
cell types display slightly different sensitivity to DNA damage and/or
that this sensitivity depends on the fraction of functional Nipbl present
in the cell, which may be different depending on the causative mutation.

Cohesin is also required for the DNA damage-induced G2/M-
checkpoint and for efficient recruitment of 53BP1 to double strand
breaks [24]. Thus, we also tested the effect of reduced amounts of
Nipbl to this function. Cells in G2, whose heterochromatin regions
appear labeled by phospho histone H3, were scored for foci forma-
tion by 53BP1 before, right after and three hours after irradiation
(8 Gy). We did not observe any delay or impairment in recruitment
of 53BP1 in Nipbl heterozygous cells (Fig. 2B). Therefore, it seems
unlikely that the CdLS-like phenotypes of the Nipbl mouse model de-
rive from defective HR-mediated DNA repair.

3.3. Bulk cohesin loading remains unchanged upon reduction of Nipbl

Embryos lacking cohesin-SA1 display phenotypes reminiscent of
CdLS and altered transcription patterns that coincide with those
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Fig. 1. Reduced Nipbl levels do not affect cohesion and progression through the cell cycle. (A) Metaphase spreads from wild-type and Nipbl heterozygous MEFs showing robust centromere
cohesion. (B) Telomere fragility measured in two clones each of wild-type and Nipbl heterozygous MEFs untreated or treated with 0.5 uM aphidicolin for 24 h. White arrows on the images
indicate the aberrant telomeres displaying two instead of a single dot. The number of chromosomes examined is indicated above each bar. (C) Quantification of breaks along the chromo-
some arms (white arrows) in cells treated as in (A). (D) Frequency of normal anaphases and aberrant anaphases showing lagging chromosomes or bridges in wild-type and Nipbl hetero-
zygous MEFs (n > 50 cells per clone from two independent clones per genotype). (E) Growth curves of wild-type and Nipbl heterozygous MEFs (n = 2 clones per genotype).

observed in the Nipbl mouse model [21]. Thus, we asked whether the
loading of the two cohesin complexes, cohesin-SA1 and cohesin-SA2,
could be differentially affected by the reduction in the amount of loader.
Chromatin fractionation of two clones each of wild-type and Nipbl
heterozygous MEFs showed no significant differences in the amount
of either cohesin complex present on chromatin (Fig. 3). In contrast,
the amount of Nipbl itself, as well as its partner Scc4/Mau-2, was
clearly diminished both in total cell extract and in the chromatin-
enriched fraction from Nipbl heterozygous MEFs. Importantly, the
amount of cohesive complexes, marked by the presence of Sororin
[25], was identical among the four clones. The levels of another fac-
tor regulating cohesin dynamics, Wapl, were unaffected in Nipbl de-
ficient cells. Thus, bulk loading of both cohesin-SA1 and cohesin-SA2
is achieved normally with lower levels of Nipbl, being these com-
plexes competent for cohesion establishment and maintenance all
along the chromosome

3.4. Local effect on cohesin loading upon reduction of Nipbl levels affects
transcription

Next, we look at specific cohesin binding sites. We had previously
shown that the presence of cohesin at the promoters of Myc and the
protocadherins (Pcdhs) is required for their expression since we ob-
served a significant downregulation of such genes in the brains of SA1
null embryos [21]. Similar transcriptional changes are also detected in
the brains of the Nipbl heterozygous embryos (Fig. 4A, gray bars and
[18]). The reduced gene expression is most likely the consequence of
the decrease in the amount of cohesin present at all the promoters exam-
ined (Fig. 4B). Further support for this hypothesis comes from the obser-
vation that the expression of Myc and Pcdhs is unaltered in the brains
from SA1 heterozygous E17.5 embryos (Fig. 4A, white bars), consistent
with the fact that SA1 heterozygous mice do not present CdLS-like phe-
notypes [19]. The changes in cohesin binding at the corresponding gene
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Fig. 2. Nipbl deficiency does not increase DNA damage sensitivity in MEFs. (A) Survival of wild-type and Nipbl heterozygous cells after exposure to the DNA damaging agents aphidicolin,
hydroxyurea, mitomycin C and gamma irradiation at the indicated doses (n = 2 clones per genotype). (B) Left: 53BP1 staining of G2 irradiated (8Gy ) cells, identified as pH3(S10) positive,
was categorized in three different classes: homogenous nuclear staining (class I), few foci with diffuse staining (class II) and many strong foci without diffuse staining (class III). Right:
Quantification of these phenotypes before, immediately after and 3 h after irradiation of wild-type and Nipbl heterozygous MEFs (n > 50 G2-cells per condition and per clone from

two independent clones per genotype).

promoters in the brains from SA1 heterozygous embryos are much
milder and not always result in a net decrease in cohesin (Fig. 4C).

We found that ablation of one of the two alleles of Nipbl results in
a significant decrease in mRNA levels both in MEFs (around 50% left)
and embryonary brains (only 25% left; Fig. S1). As a consequence, the
amount of Nipbl protein bound to chromatin is also significantly de-
creased, but nevertheless sufficient to load the bulk of both cohesin-
SA1 and cohesin-SA2 (Fig. 3). We have also shown here that no sig-
nificant defects in sister chromatid cohesion along the chromosomes
(centromeres, arms and telomeres), in chromosome segregation or
in DNA repair can be observed in cells partially deficient for Nipbl.
However, we found reduced amounts of cohesin at specific genomic
locations that correlate with altered gene expression. It is known
that binding of cohesin to chromatin is dynamic and thus the amount
of cohesin at a given position at any given time depends on two an-
tagonistic actions, namely the loading by Nipbl and the unloading
by Wapl [26]. It is likely that cohesin, and in particular cohesin-
SA1, is more dynamic at certain locations depending on additional

factors such as active transcription. In such scenario, cohesin may
need to be constantly reloaded by Nipbl to deal with the passage of
the transcriptional machinery and/or to maintain a higher-order
chromatin structure compatible with the dynamics of transcription
factories. In the SA1 heterozygous brains, despite the reduction in
cohesin-SA1 levels (Fig. S2), Nipbl maintains a fraction of cohesin-
SA1 at gene promoters that is sufficient to assure their proper gene
expression. In contrast, in the Nipbl heterozygous brains, the re-
duced levels of the loader produce modest changes in the binding
of cohesin at gene promoters that trigger dramatic transcriptional
changes. In an attempt to most likely compensate for its defective
loading, SA1 is upregulated in Nipbl deficient brains (Supplementary
Fig. S1C). How may increased levels of cohesin at a given promoter
favor transcription? We speculate that they may promote interac-
tion with an enhancer through stabilization of a chromatin loop be-
tween the two elements. They could also enhance the stability of
RNA polymerase binding and thus the efficiency of transcription, as
recently shown in Drosophila [27].


image of Fig.�2

S. Remeseiro et al. / Biochimica et Biophysica Acta 1832 (2013) 2097-2102

Nipbl +/+ Nipbl +/-

. #1 y #2 . #3 . #4 .
ot o oot ot ot o o Fob o

Nipbl =4 1 11 - B
Scc4 |- -- —-—— —— —‘
SA1 |\=. g ™ g}
sA2 [ HEp FpE = =
Rad2l |y ~w= W =W =
Sororin| we -y -4 Eelk & | -

Wl = BE E= =

MEk2 [wr = o v o T oy - |

H e - - -

Fig. 3. Nipbl deficiency does not affect bulk cohesin loading. Asynchronous cultures of two
clones per genotype were subjected to chromatin fractionation followed by immunoblot-
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The combinatorial expression of Pdch genes appears to provide a
sort of barcode for each neuron that allows self-recognition and is es-
sential for neural circuit assembly [28]. Cohesin and CCCTC-binding
factor (CTCF) contribute to specify these barcodes [29]. Mental retar-
dation associated to CdLS could be therefore related to anomalous
expression of protocadherins. Defects in myc expression could also
contribute to the growth retardation in CdLS [30]. The beta globin
locus is another example of a locus whose expression depends on
the amount of cohesin and is very sensitive to the partial reduction
on Nipbl [13]. A detailed knowledge of cohesin binding sites in differ-
ent tissues and how they are affected upon reduction of Nipbl levels
will therefore be of particular importance to further understand the
mechanisms that underlie CdLS pathogenesis.

4. Conclusions

Our careful examination of cohesion-dependent functions in cells
from Nipbl deficient mice, which recapitulate human CdLS, suggests
that these functions have little contribution to the etiology of the
syndrome. While bulk loading of cohesin and its interactors on chro-
matin is not noticeably changed, we did observe decreased binding
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Fig. 4. Nipbl deficiency alters cohesin binding at certain promoters and affects gene expression. (A) mRNA levels of the indicated genes in the brains from E17.5 Nipbl +/— (gray bars) and
SA1 +/— embryos (white bars). Three embryos per genotype were tested and three independent qPCR reactions per condition were performed. Values are represented as log, of FC versus
its respective wild-type controls. *P < 0.05, **P < 0.01, n.s. = not significant. (B) In vivo ChIP-qPCR of SA1 and SMC1 binding at the promoter of the indicated genes in E17.5 brains from
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to the promoters of Myc and Protocadherin genes, whose expression
is downregulated in the brains of Nipbl deficient mice. Thus, our re-
sults provide further support for the idea that developmental defects
in CdLS are caused by deregulated transcription of a subset of genes
highly sensitive to small variations in the amount of cohesin present
at their promoters.
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