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Abstract

Jack polynomials in superspace, orthogonal with respect to a “combinatorial” scalar product, are con-
structed. They are shown to coincide with the Jack polynomials in superspace, orthogonal with respect to
an “analytical” scalar product, introduced in [P. Desrosiers, L. Lapointe, P. Mathieu, Jack polynomials in
superspace, Comm. Math. Phys. 242 (2003) 331-360] as eigenfunctions of a supersymmetric quantum me-
chanical many-body problem. The results of this article rely on generalizing (to include an extra parameter)
the theory of classical symmetric functions in superspace developed recently in [P. Desrosiers, L. Lapointe,
P. Mathieu, Classical symmetric functions in superspace, J. Algebraic Combin. 24 (2006) 209-238].
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Jack polynomials, J, (x; 1/8), are symmetric functions of commutative indeterminates x =
(x1,...,xy) that generalize the elementary (8 = 0o0), monomial (8 = 0), Schur (8 = 1), and
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zonal (8 = 1/2) symmetric functions. First introduced in statistics by Jack [9], they were later
studied in algebraic combinatorics, in particular by Kadell [10], Macdonald [13,14], Stanley [21],
and Knop and Sahi [11].

The standard definition of the (monic) Jack polynomials is the following [14]: they are the
unique functions such that

1 Jx=mx+zcm(ﬂ)mu and  (2) (Jaldudp X< 8ru; (1.1)
H<A

where X and p stand for partitions of size not larger than N, m; is the monomial symmetric
function, and < A means that the latter partition is larger than the former in the dominance
ordering. The scalar product involved in (2) is of a combinatorial nature. On the basis of power-
sum symmetric functions, it is defined as

(palpuhp =B Wby where z=[]i"m! ifa=(1m2m0).  (12)

i

However, alternative characterizations of the Jack polynomials exist. For instance, when the
indeterminate x; is a complex number lying on the unit circle and 8 is a nonnegative real number,
one can introduce another scalar product [13]:

d
(f@lemlyy= T 5= yg o (1——) F@gw), (1.3)
1<k, I<N o

1<j<N
k;él

where the bar denotes the complex conjugation. Then, it can be shown that Jack polynomials are
the unique symmetric functions that satisfy

Q) J;\zm;L+Zcm(ﬂ)mM and 2 (IalJu) N X 8- (1.4)
H<A

This analytical scalar product is rooted in the characterization of the Jack polynomials in terms of
an eigenvalue problem; that is, as the common eigenfunctions of N independent and commuting
differential operators that are self-adjoint with respect to the scalar product (1.3). These operators
are in fact the conserved quantities of a well-known N-body problem in quantum mechanics,
the trigonometric Calogero—Moser—Sutherland model. Every orthogonal and symmetric wave
function of this model is proportional to a particular Jack polynomial [7,12].

In this work, we provide an extension to the theory of classical symmetric functions in su-
perspace [6] that leads to a definition of Jack polynomials in superspace similar to (1.1). By
superspace, we refer to a collection of variables (x, 0) = (x1, ..., xn, 01, ..., 6n), called respec-
tively bosonic and fermionic (or anticommuting or Grassmannian), and obeying the relations

XiXj =XjXj, x,-ej = ij,' and 9,'9]' = _Qjei (=> 9[2 =0). (1.5)
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A function in superspace (or superfunction for short) is a function of all these variables. It is said
to be symmetric if it is invariant under the simultaneous interchange of x; <> x; and ; <> 6; for
any i, j. Symmetric polynomials in superspace are naturally indexed by superpartitions [3],

A= (A A°) = (A1, ooy A At -5 AN, (1.6)

where A? is a partition with distinct parts (one of them possibly equal to zero), and A* is an
ordinary partition. Every symmetric polynomial in x and 6 can be written as a linear combination
of the following monomial functions [3]:

! Ao (1) Aom) _Ag(m+1) Ag(N)
mA:ZaeSN O 1) O mxy xS (1.7)

where the prime indicates that the summation is restricted to distinct terms. Power sums with m
fermions are given by [6]

PAT=DA; " PAPAyys  Pay  With py i=m) and pi := m o). (1.8)
In the article, we define a simple extension of the combinatorial scalar product (1.2):

(palpep = (=D"" D22 ((B)sa.0,  za(B) =B Wz (1.9)

where A is of the form (1.6) and where £(A) is the length of A (given by the length of A*
plus m).

Jack polynomials in superspace were presented in [5] as the orthogonal eigenfunctions of a su-
persymmetric generalization of the quantum mechanical N-body problem previously mentioned
[2,20]. In this case, the analytical scalar product reads [3]

(A(x,0)|B(x, 9))/“,

1 dx]'
=[] === 050
2mi X

ISjSN

Xk P
I1 <1——> A(x,0)B(x,0), (1.10)

X
1<k ISN !
kotl

where the “bar conjugation” is defined such that x; = 1/x; and (6;, ---6;,)0;, ---6;,, = 1. Our
main result here is that these Jack polynomials in superspace are also orthogonal with respect to
the scalar product (1.9); i.e., the two scalar products are compatible. The following theorem is an

alternative formulation of this statement.

Theorem 1. There exists a unique family of functions {J4: Y ; A; < N} such that

(1) Ja=ma+ Z can(B)ma,
<A

Q) (JalJehpodae YA, 2 or  (2) (JalJelpn xéae VA,£2,

where the ordering involved in the triangular decomposition is the Bruhat ordering on superpar-
tition that will be defined in the next section.
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The article is organized as follows. In Section 2, we summarize the theory of symmetric
functions in superspace developed in [6]. We obtain a one-parameter deformation of the latter
construction in Section 3. Section 4 is essentially a review of relevant results concerning our
previous (analytical) construction of Jack polynomials in superspace. It is shown in Section 5 that
these polynomials are also orthogonal with respect to the product (1.9). Direct non-trivial limiting
cases (i.e., special values of the free parameter or particular superpartitions) of this connection
are presented in Section 6. This section also contains a discussion of a duality transformation on
the Jack superpolynomials, as well as a conjectured expression for their normalization constant.
We present, as a concluding remark (Section 7), a precise conjecture concerning the existence of
Macdonald polynomials in superspace.

In this work, we have relied heavily on the seminal paper [21], and on Section VI.10 of [14],
without always giving these references complete credit in the bulk of the paper.

9 <

Remark 2. The terms “superanalogs of Jack polynomials,” “super-Jack polynomials” and “Jack
superpolynomials” have also been used in the literature for somewhat different polynomials.
In [18], superanalogs of Jack polynomials designated the eigenfunctions of the CMS Hamil-
tonian constructed from the root system of the Lie superalgebra su(m, N —m) (recall that to any
root system corresponds a CMS model [15]). The same objects are called super-Jack polyno-
mials in [19]. But we stress that such a Hamiltonian does not contain anticommuting variables,
so that the resulting eigenfunctions are quite different from our Jack superpolynomials. Notice
also that in [3,4], we used the term “Jack superpolynomials” for eigenfunctions of the super-
symmetric extension of the trigonometric Calogero—Moser—Sutherland model that decompose
triangularly in the monomial basis. However, these are not orthogonal. The construction of or-
thogonal Jack superpolynomials was presented in [5] and from now on, when we refer to “Jack
superpolynomials,” or equivalently, “Jack polynomials in superspace,” we refer to the orthogonal
ones.

2. Notation and background

A F (n|m) indicates that the superpartition A = (Ay, ..., Apy; Ap+1, ..., An) is of bosonic
degree n = |A| = Ay + --- + Ay and of fermionic degree m = A respectively (observe that
the bosonic and fermionic degree refer to the respective degrees in x and 6 of m ). To every
superpartition A, we can associate a unique partition A* obtained by deleting the semicolon and
reordering the parts in non-increasing order. A superpartition A = (A%; A*) can be viewed as the
partition A* in which every part of A“ is circled. If a part A%; = b is equal to at least one part
of A%, then we circle the leftmost b appearing in A*. We shall use C[A] to denote this special
notation.

To each A, we associate the diagram, denoted by D[ A], obtained by first drawing the Ferrers’
diagram associated to C[A], that is, by drawing a diagram with C[A]; boxes in the first row,
C[A], boxes in the second row and so forth, all rows being left justified. If, in addition, the
integer C[A]; = b is circled, then we add a circle at the end of the b boxes in the jth row.

This representation offers a very natural way to define a conjugation operation. The conjugate
of a superpartition A, denoted by A’, is obtained by interchanging the rows and the columns
in the diagram D[A]. We can thus write D[A’] = (D[A])" where t stands for the transposition
operation. For instance, we have



P. Desrosiers et al. / Advances in Mathematics 212 (2007) 361-388 365

|
D([3,0;4,3]) = O —  D(3,0;4,3])' = 2.1)
O @)

meaning that (3,0; 4, 3) = (3, 1; 3, 3).

We now formulate the Bruhat ordering on superpartitions. Recall that two partitions A and
w of n are such that A dominates p iff Ay +--- + A; > 1 + --- + w; for all i. The Bruhat
ordering on superpartitions of (n|m) can then be described most simply as: A > §2 iff A* > *
or A* = £2* and sh(D[A]) > sh(D[£2]), where sh(D[A]) is the shape (including circles) of the
diagram D[A] (see [6] for the connection between this ordering and the usual Bruhat ordering
on superpartitions). With this definition, it is then obvious that A > £ iff 2’ > A’.

We denote by 225> the ring of symmetric functions in superspace with coefficients in Q.
A basis for its subspace of homogeneous degree (n|m) is given by {m 4} Ar-(um) (now considered
to be functions of an infinite number of variables). In this ring, the elementary e,, homoge-
neous h,, and power sum p, symmetric functions possess fermionic counterparts which are
obtained trough the following generating functions:

o0 o0
E(t.7):=) t"(en+180) = [(1 +1x; +76)), (2.2)

n=0 i=1

o0
H(t = t" (hy, hy) = 2.3
(t,7):= ;)(H 1:[_”1_91 2.3)

o0
s tx; + t6;

P(t,7):= p,+nt" 5, ) = S B A 2.4
(t.7) ,;( Pn Pn1) El—m—re; 2.4)

where 7 is an anticommuting parameter (7> = 0). To be more explicit, this leads to

Go=moany, = Y (Ai+Dma,  pu=mumo). 2.5)
AF(n|1)

This construction furnishes three multiplicative bases f, of &5,

fai=Far - FanFamer Fans (2.6)

where f is either e, i or p.

With (y1,y2,...,¢1,¢2,...) representing another set of bosonic and fermionic variables
(with the additional understanding that ¢;0; = —0;¢;), the generalized Cauchy formula is shown
to satisfy

[T —xiyj—6i¢p)™ ZmA(x ha(y, ¢>)—ZzA PaG.Opa(y. @), (27

iJ
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where
ZA = ZAS :l_[imimi! lfASZ(lmlzmz) (28)
i
The arrows are used to encode signs resulting from reorderglg the fermionic Variablis: if the
fermionic degree of a polynomial f in superspace is m, then f = (—1)""=D/2f and f = f.

3. One-parameter deformation of the scalar product and the homogeneous basis

Let 225 (B) denote the ring of symmetric functions in superspace with coefficients in Q(8),
i.e., rational functions in 8. We first introduce the mapping,

(10 p: 2% (B) x 2%<(B) — Q(B) 3.D

defined by (1.9). This bilinear form can easily be shown to be a scalar product (using an argument
similar to the one given in [6] in the case 8 = 1).

We next introduce an endomorphism that generalizes the involution @ of [6], and which ex-
tends a known endomorphism in symmetric function theory. It is defined on the power sums
as:

Go(pn) = (=1)"""ap, and  @y(pn) = (—1)"apy, (3.2
where o is some unspecified parameter. This implies

Gu(pa)=wa@)ps with ws(a):=a'@(=1)A-A+A) (3.3)

Notice that @| = @. This homomorphism is still self-adjoint, but it is now neither an involution

(@5 ' = ®y-1) nor an isometry (||@g pa > = z4(B/a?)). Note also that

zaBwa(B) =zawa and za(B)'wa(B7) =24'wa. (34)
We now extend the Cauchy kernel introduced in (2.7).

Theorem 3. One has

1

ﬁ . L—
K030 =l T —gap

i,j

=Y B A OPan . (BS)
A

Proof. Starting from

1
1_[ N 0. =CXP{ﬁZIH[(1 —Xiyj — 9i¢j)l]}, (3.6)
(I —xiyj _9145])/5 i

i,j

the above identity can be obtained straightforwardly by proceeding as in the proof of [6,
Theorem 33]. 0O
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Remark 4. The inverse of K# satisfies:

K(=x,=0:y,0) P =[ [ +xiyj +6:6)" =D 24B) ' 0apalx,0)paly. ¢), (3.7)
i,j A

which is obtained by using
pal—x,—0)= (=DM p (x 0) and z4(=B) = (—1)!Dz4(B). (3.8)

Notice also the simple relation between the kernel K of [6] (equal to K B at B =1) and its
B-deformation

KFP(x,0:y.¢)=apK(—x,—0;y.¢)"", (3.9)
where it is understood that &g acts either on (x, ) or on (y, ¢).

Corollary 5. K#(x,0; v, ¢) is a reproducing kernel in the space of symmetric superfunctions
with rational coefficients in f:

(KP .0y, )| f .0y = f. ), Sforall f e P5<(B). (3.10)

Paralleling the construction of the function g, in Section VI.10 of [14], we now introduce
a B-deformation of the bosonic and fermionic complete homogeneous symmetric functions, re-
spectively denoted as g,(x) and g,(x, 6) (the B-dependence being implicit). Their generating
function is

1
. P n o —
G(t.t: )= _ 1"[gn(x) +18n(x.0)] = ]_[ TRl (3.11)
n>0 i1
Clearly, g, = h, and g, = fz,, when 8 = 1. As usual, we define
SA=EA,  BAnG Ay 8 AN- (3.12)
oo -—— >
Proposition 6. One has K# (x,0;y,¢) =3 yma(x,0)84(y, $).
Proof. The proof is similar to that of [6, Proposition 38]. O
Corollary 7. One has
gn= ) 2B 'pa and ZG= ) za(B) 'pa. (3.13)
A-(n]0) A(n|1)
Proof. On the one hand,
G(t,0:p) =Y 1"gu(x) = KP(x,0;,0)[ ,_ 0. (3.14)

n>0
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The previous proposition and Theorem 3 imply

> g —Zt‘“mﬁ) P = &=y uB) '

n=0 A=n

On the other hand,

0:G(t,T: B) =) 1"8u(x,0) =K' (x,60;y,9)| ,= ~e00..

n=0 ¢=(=7,0,0,. ')

Hence

Yog= Y tMzaB)pa = &= Y. 2B 'pa

n>0 A A=1 AF(|1)
as claimed. O

Applying wg-1 on Eq. (3.13), simplifying with the help of (3.4), and then using [6]

Y Z3'wapa and &= Y zZi'wapa,
A-(n]0) Ak(nll)

we get
wg-1(gn) =en and  @pg-1(gn) = &y.
Or equivalently,
gn=awp(en) and g, =awp(en).

Lemma 8. Let {u o} and {v 4} be two bases of 25 Then

KP(x.0:y.0) =) uslx.0)0a(v.0) < (iialvi)p =042
A

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Proof. The proof is identical to the one when the 6; variables are not present (see [14,

14.6)). O

This immediately implies the following.

Corollary 9. The set {ga} 4 constitutes a basis of P (B) dual to that of the monomial basis in

superspace; that is,

(3.22)
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We will need in the next section to make explicit the distinction between an infinite and a
finite number of variables. Therefore, we also let

(|- Np.n: PV (B) x PV (B) —> Q(B) (3.23)

where 275V is the restriction of 25~ to N variables, defined by requiring that the bases
{ga}ecaysv and {m a}ea)<n be dual to each other:

(ZAlmGNp N =684.02. (3.24)

whenever £(A) and £(£2) are not larger than N. From this definition, it is thus obvious that

(AN 1AM n = CALAIS (3.25)

if f1 and f> are elements of the ring of symmetric functions in superspace of bosonic degrees

smaller than N, and if fl(N) and fz(N) are their respective restriction to N variables. This is

because f1 and fl(N) (respectively f» and fz(N)) then have the same expansion in terms of the g
and m bases. Note that with this definition, we have that

KPN= 3" galx,0)ma(y, 9), (3.26)
AN

where K#-V is the restriction of K? to N variables and where (x, #) and (y, ¢) stand respectively

for(x17“'7xN’919"‘79N) and (yl?"’?yN?¢1""’¢N)'
We complete this section by displaying a relationship between the g-basis elements and the

bases of monomials and homogeneous polynomials.

Proposition 10. Let n 4! :=n os (1)1nps (2)! - - -, where n zs (i) is the multiplicity of i in A®, and

(ﬂ) = (i)n B :=pB—=1)---(B—n+1). (3.27)

n [

Then

o = Z l—[ (ﬂ + j‘l, — l)mA _ Z (ﬂ)a'A) ha. (3.28)

AF@|0) i Algo) A

~ B+ Ai—1 (Beca

&n= Z (/3+A1)H< A, mp = Z Y ha. (3.29)
A(n|1) i A(n|1)

Proof. We start with the generating function (3.11). The product on the right-hand side can also
be written as

I Z(—l)kcﬁ ) (tx; + 0

i>1k>0

= ]—[[Z (ﬁ +,]§ - 1)(zxi)" +16; Zk(ﬁ +]]§ - 1>(txi)k_1i|. (3.30)

i>1"k>0 k>1
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After some easy manipulations, (3.11) then becomes

Gt v =3 1 [Z]‘[(ﬁ“ >m - (ﬂ+A)]_[<ﬁ+Al )mA}

n>=0 Mmoo A(n|1)
(3.31)

and the first equality in the two formulas (3.28) and (3.29) are seen to hold.
To prove the remaining two formulas, we use the generating function of the homogeneous
symmetric functions and proceed as follows:

n(l—txl—TG) ﬁ—<l+Zt’”h —l—tZt h)

m>1 n>=0
k
=S (L) (S e X i)
k>0 m>=1 n>=0
:Z Z o (ﬂ)m)h/\_'_ Z Zt (ﬁ)tz<,\)+1h Z[ P
n>0 Abn m>0 AFm n=0
Z [ Z (/3)5('A)hA_|_r Z (ﬂ)e(:nh } (332)
>0 Larao) A Ay A

from which the desired expressions can be obtained. O
4. Jack polynomials in superspace: Analytical characterization

We review the main properties of Jack superpolynomials as they were defined in [5]. The
section is completed with the presentation of a technical lemma to be used in Section 6. All the
results of this section are independent of those of Section 3.

First, we define a scalar product in &2, the ring of polynomials in superspace in N variables.
Given

am=TJ [u] .1

1< j<kn b XXk
(:|-)g,n is defined (for B a positive integer) on the basis elements of & as

CT.[AP()AP(x)xHx* if =1,

<01x)\’9]x“)5’]v = { 0 (4.2)

otherwise,

where x; = 1/x;, and where C.T.[E] stands for the constant term of the expression E. (This is
another form of the scalar product (1.10). More precisely, the latter is the analytic deformation of
the former for all values of §.) This gives our first characterization of the Jack superpolynomials.
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Proposition 11. [5] There exists a unique basis {Ja} s of 25N such that

(1) Ja=ma+ Y cagBma and  (2) (Jallodpn X840
<A

In order to present the other characterizations, we need to introduce the Dunkl-Cherednik
operators (see [1] for instance):

Dj:=x;d,+BY Op+BY Oun—BG—1, 4.3)

k<j k> j

where

L (1-Kjp), k<]
Ojk: T / (44)
% (1—Kju), k> j.

Xj—Xk

Here K j; is the operator that exchanges the variables x; and x;:
Kk f(xj, xk,0;,00) = f(xk,xj,0;,00). 4.5)

The Dunkl-Cherednik operators can be used to define two families of operators that preserve the
elements of homogeneous degree (1|m) of 2?5V :

N
r 1 S —
Hy:=) D) and I, = T >~ Ko (6106, DK, (4.6)

j:1 oeSy

forre{1,2,3,...,N}and s € {0,1,2,..., N — 1} and where /X’ is built out of the operators
ICjx that exchange x; <> x; and 0; <> 6 simultaneously:

Kiiv1:=kii+1Kiit1 where ki f(xi,xj,0;,0;) = f(xi,xj,0;,0;). 4.7

The operators H, and Z; are mutually commuting when restricted to 225V ; that is,
(M, Hslf =[H,, Z1f =2, Z,1f =0 Vr,s, (4.8)
where f represents an arbitrary polynomial in 225V . Since they are also symmetric with respect
to the scalar product (-|-)s and have, when considered as a whole, a non-degenerate spectrum,

they provide our second characterization of the Jack superpolynomials.

Proposition 12. [5] The Jack superpolynomials {J s}z are the unique common eigenfunctions of
the 2N operators H, and Iy, forr € {1,2,3,...,N}ands €{0,1,2,...,N — 1}.

We will now define two operators that play a special role in our study:

H:=Hr+B(N—1)H; —cst and Z:=17i, (4.9)
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where cst = BN (1 — 3N — 2N?)/6. When acting on symmetric polynomials in superspace, the
explicit form of H is simply

H= Z(x,axl) +BY - ’+x’(xl Oy = xj0) =28 ) xix’

i<j i<j

)2 (I —kij). (4.10)

The operator ‘H is the Hamiltonian of the supersymmetric form of the trigonometric Calogero—
Moser—Sutherland model (see Section 1); it can be written in terms of two fermionic operators
Qand Qf as

H=00"+ 00, 4.11)

where

Q= Z@x, ., and Qf = Zag<xlax,+ﬁ2x’+x1) (4.12)

— X
ji TN

so that Q% = (Q")? = 0. Physically, Q is seen as creating fermions while Q' annihilates them.
A state (superfunction) which is annihilated by the fermionic operators is called supersymmetric.
In the case of polynomials in superspace, the only supersymmetric state is the identity.

Remark 13. The Hamiltonian H has an elegant differential geometric interpretation as a
Laplace—Beltrami operator. To understand this assertion, consider first the real Euclidean
space TV, where T = [0, 27). Then, set x = el for tj € T, and identify the Grassmannian
variable 6; with the differential form d¢;. This allows us to rewrite the scalar product (1.10) as a
Hodge—de Rham product involving complex differential forms; that is,

(A(t,9)|B(t,9)>ﬂ’N~/A(t,dt)/\>x<B(t,dt), (4.13)
TN

where the bar denotes the complex conjugation and where the Hodge duality operator * is for-
mally defined by

ti—1t
A(t,dt) A B, dt)_CﬂNl_[smzﬁ(l J)Z Y AiiBigdh A Adiy,

i<j k ip<--<iy

(4.14)

for some constant Cg y. Hence, we find that the fermionic operators Q and QT can be respec-
tively interpreted as the exterior derivative and its dual: Q@ ~ —id and O ~id*. Thus

H=A:=dd*+d"d. (4.15)
In consequence, the Jack superpolynomials can be viewed as symmetric, homogeneous, and

orthogonal eigenforms of a Laplace—Beltrami operator. This illustrates the known connection
between supersymmetric quantum mechanics and differential geometry [8,22].
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If the triangularity of the Jack polynomial J4 with respect to the monomial basis is imposed,
requiring that it be a common eigenfunction of H and 7 is sufficient to define it. This is our third
characterization of the Jack superpolynomials.

Theorem 14. [5] The Jack polynomials in superspace {J s} form the unique basis of 225N (B)
such that

HPB)YIa=ea(B)Ia, Z(B)Ja=€a(B)Ja and Jp=my+ Z cae(B)mg. (4.16)

2<A
The eigenvalues are given explicitly by
Al 2
ea(B) =Y [(A7)"+BIN +1-2j)A%], (4.17)
j=1
ea(B)=>_[Ai— Bm(m —1) — B#4], (4.18)

i=1

where #, denotes the number of pairs (i, j) such that A; < Aj for 1 <i <mand m+ 1<
J<N.

When no Grassmannian variables are involved, that is when Z = 0, our characterizations of
the Jack superpolynomials specialize to known characterizations of the Jack polynomials that can
be found for instance in [21]. However, in the usual case there is a more common characterization
of the Jack polynomials in which the scalar product appearing in Proposition 11 is replaced by
the scalar product (1.9). As already announced, this more combinatorial characterization can be
extended to the supersymmetric case. But before turning to the analysis of the behavior of J4
with respect to the combinatorial scalar product, we present a lemma concerning properties of
the eigenvalues €4 (8) and €4 ().

Lemma 15. Let A+ (n|m) and write . = A*. Let also € A(B) and € A(B) be the eigenvalues
given in Theorem 14. Then

ea(B)=2)_j(\;—BAr;)+Bn(N+1) —n, (4.19)
j

—1
ea(p) =A% = BlA"| —ﬁm%). (4.20)

Proof. The first formula is known (see [21] for instance). As for the second one, we consider
m
#A:Z#Ai’ 4.21)
i=1

where #,, denotes the number of parts in A® bigger than A;. But from the definition of the
conjugation, we easily find that

#a = Ay +1 -1, (4.22)
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so that

=~ m(m — 1)
Z (Ai+1=0) =[]+ ———, (4.23)

from which the second formula follows. O
5. Combinatorial orthogonality of the Jack superpolynomials

In terms of the scalar product (1.9), we can directly check the self-adjointness of our
eigenvalue-problem defining operators, H and Z.

Proposition 16. The operators H and T deﬁned in (4.9) are, when N — o0, self-adjoint (sym-
metric) with respect to the scalar product ((-|-)) g defined in (1.9).

Proof. We first rewrite the limit as N — oo of H and 7 in terms of power sums. Since these dif-
ferential operators are both of order two, it is sufficient to determine their action on the products
of the form p,, py, pm pn and p,, p,. Direct computations give

H="_[n*+Bn(N =) (pudp, + Pudp,) + B Y [(n+1)pmpndp,,, +2mPu i, ]
nzl nm>1

+ Z mn[pm+ndp, dp, +2ﬁn+maﬁmap”] 5.1
n,m>1

and

I= Z(l—ﬂ)(npna,,nw > Bubndj,

n>=0 m,n=>0

+ Y [Bwtndp,dp, + BPn B, ) (5.2)
m>=0,n>1

Note that these equations are valid when N is either infinite or finite. In the latter case, the sums
over the terms containing p,, and p, are respectively restricted such thatm < N —l andn < N.

Then, letting A+ denote the adjoint of a generic operator A with respect to the scalar product
(1.9), it is easy to check that

Bpy =ndp, and Bp; =9z, (5.3)

Hence, comparing the three previous equations, we obtain that H = and Z+ = 7. For these
calculations, we observe that (ab)™ = bra', even when a and b are both fermionic. O

In order to demonstrate the orthogonality of the Jack superpolynomials with respect to the
scalar product (1.9), the most natural path consists in establishing the self-adjointness of all the
operators H,, and Z,,. But proceeding as for H and Z above, by trying to reexpress them in terms
of pn, pn and their derivatives, seems hopeless. An indirect line of attack is mandatory.
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Let us first recall that the conserved operators (4.6) can all be expressed in terms of the Dunkl-
Cherednik operators defined in (4.3). The D;’s commute among themselves:

[D;, D;]=0. (5.4)
They obey the Hecke relations (correcting a misprint in Eq. (25) of [5])
D;Kii+1— Kii+1Diy1 = B. (5.5
We will also need the following commutation relations:
[D;, xi] = xi +ﬂ<2x,»1<,~j +qu,~1<,~{,~), (5.6)
j<i j>i
while if i # k,
[Di, xk] = —BXmax(i,k) Kik- (5.7

The idea of the proof of the orthogonality is the following: in a first step, we show that the
conserved operators H, and Z,, are self-adjoint with respect to the scalar product (1.9) and then
we demonstrate that this implies the orthogonality of the J,’s. The self-adjointness property is
established via the kernel: showing that F = F is the same as showing that

FOKBN — pO ghN (5.8)

where KV is the restriction of K# defined in Theorem 3 to N variables, and where F™ (re-
spectively F () stands for the operator F in the variable x (respectively y). In order to prove
this for our conserved operators H, and Z,, we need to establish some results on the action of
symmetric monomials in the Dunkl-Cherednik operators acting on the following expression:

N

N
2:= H(l—xzyl 1_:[ l_xly/)ﬁ 69

i=1 i,j

as well as some modification of £2. For that matter, we recall a result of Sahi [17]:
Proposition 17. The action of the Dunkl-Cherednik operators D ; on 2 defined by (5.9) satisfies:
DWW =DY3%. (5.10)
Before turning to the core of our argument, we establish the following lemma.

Lemma 18. Given a set J = {j1, ..., je}, denote by x; the product xj, ---xj,. Suppose xj =
Ksx1 for some o € Sy such that Ko FK ;-1 = F. Then

1 1 1 1
—F%2=—FYy Q2 = —FYx2=—FYy,0. (5.11)
Xr yi xJ YJ
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Proof. The proof is straightforward and only uses the simple property Kf,”fz = K((Ty_) ,£2. To be
more precise, we have

- 1 = 1 1
o F(X)XJQ — K[(TX)ZF(X))CIK((TX_)IQ - Kc(Ty)Kz(rX) o (X)x fo = K(Y)K(x)y F())y Q

=K — ! FOy K @ =— ! F®y, 2. 0O (5.12)
yi yi
We are now ready to attack the main proposition.
Proposition 19. The mutually commuting operators H, and L, satisfy
HOKPN = HP kPN ana IO RPN = P KN, (5.13)
with KPN the restriction to N variables of the kernel KP defined in Theorem 3.

Proof. We first expand the kernel as follows:

0ih; )
K =K 1 5.14
01—[( +ﬂ(1_xly]) (5.14)
big; bigj )}
= Kp31 _— _— 5.15
0{ +ﬂ“((l >>+ +Bey ((1—xiy,-) (>-15)

where K stands for K& (x, v,0,0),1i.e.,

N
1
Ko := —_—, (5.16)
i’lj__ll (I —xiyj)P
and where e, (u;, ;) is the elementary symmetric function e, in the variables
9. .
w =00 i, (5.17)
(I =xiyj)

Note that, in these variables, the maximal possible elementary symmetric function is ey given
that 92 = ¢2 0. In the following, we will use the compact notation I~ ={1,...,i — 1} and
It = { ., N} (and similarly for Ji) together with w;- = wyq---w;j—1 and w;+ = w; - - - wy.

The action of the operators on K# can thus be decomposed into their action on each monomial
in this expansion. Now observe that K is invariant under the exchange of any two variables x or
any two variables y. Therefore, if an operator F is such that Cp FIC = FforalloesS N, and
such that

FODy, Ko=FOPy, Ky withv; :=u;; (5.18)

foralli =1,..., N+ 1, then we immediately have by symmetry that F® KA = FO-®) KF We
will use this observation in the case of H,, and Z,,.
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We first consider the case F = H,. Recall from (4.6) that H, = p,(D;) is such that
KeHn K I'=H, (see [5]). Since H,, does not depend on the fermionic variables, we thus have
to prove from the previous observation that

1 1
HO — — gy=HY Ko, (5.19)
" =xy)- "= xy);-
or equivalently
HEOA = xy) e 2 =HP (1 = xy) 1+ 2, (5.20)

foralli=1,..., N+ 1 (the case i = N + 1 corresponds to the empty product).
The underlying symmetry of the problem implies the result will follow from showing

Y HO x50 2 = x ;0 HY 4 2, (5.21)
for j > i, or equivalently,
1 (x) 3 1 ) 3
—H x4 82 = —Hy, Ty +82. (5.22)
XJ+ Y+

This follows from Lemma 18 which assures us that all the different terms can be obtained from
these special ones.

Now, instead of analyzing the family H, = p,(D;), it will prove simpler to consider the
equivalent family e, (D;). We will first show the case ey (D;); that is,

1 -1 .
X—Df‘) DW= —DY DYy 2. (5.23)
Jt Y+

Let us concentrate on the left-hand side. We note that

1 ~ 1 1 ~
—DY)’DE\);)XJJFQ: _D§X)x1+_,D§\)JC)xJ+Q (524)
X+ Xj+ X+

It thus suffices to study each term (x;+)~'D jx s+ separately. In each case we find that
Dixj+ = xj+15k. (5.25)
The form of D depends upon j and k. There are two cases:

N

k<j: Di=Di—BY_ Kex
t=j
j-1
k>j: Di=Di+14+BY Kux (5.26)

=1
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which can be easily checked using (5.6) and (5.7). We can thus write

1 - - <)
:DY) o DPxp 2 =D DY 2. (5.27)
J

Using Proposition 17 and Ki(]).c)[} = Kl.(jy )§2, the rightmost term 755\);) can thus be changed

into D;’}'). Since it commutes with the previous terms (i.e., it acts on the variables y while the
others act on x), we have

A (x) NEI NI A x) A A5 AN A O S
Dy’ Dy Dy 2=Dy'Dy"---Dy_2=Dy'Dy_,--- Dy 2

1o 1 -
=Dy —Dy 2

Y+ Y+

1 -1 b

=— Dy DYy @=—D . DYy 2, (528
i+ i+

which is the desired result.

At this point, we have only considered a single conserved operator, namely ey (D;). But by
replacing D; with D; 4+t in en (D;), we obtain a generating function for all the operators e, (D;).
Since to prove

en(DY +1)KPN = ey (DY) + 1) KAV

simply amounts to replacing D; by D;+1 inthe previous argument, we have completed the proof
of HV KAV =H KN

For the case of Z,, we start with the expression given in (4.6) which readily implies that
IC,,Z,JC;l = 7,,. Therefore, from the observation surrounding formula (5.18), and because the
derivative 010p, annihilates the K¢ term in the expansion of K BN we only need to show that

¢ Dv- Ko =2 v~ Ko, (5.29)
fori =2,..., N+ 1. Up to an overall multiplicative factor, the only contributing part in Z,,, when
acting on v;-, is

O, =D/ +KiuD|Kia+---+K1,;-1D{Kyi-1. (5.30)
It thus suffices to show that
O (1 —xy)+ 2 =01 = xy)+ 2. (5.31)

Once more, we can use Lemma 18 since O, commutes with K , for k, £ > i. Thus, we only
need to check that for j > i,

1 = 1 ~
_Olgx)xrr(): —Ofly)yjﬁ—g. (532)

X+ Y+
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Since the K1¢’s act trivially on the variables x; for j > £, the previous relation reduces to proving

R L[Dﬂ@)y 0. (5.33)
Xj+ yi+

The left-hand side takes the form

1

- 1 n_
—[D1]Vx, 9:{—D}x)x,+} Q. (5.34)
XJj+

XJj+

We then only have to evaluate (xﬁ)’lD%X)xﬁ. The result is given by the first case in (5.26)
(since j > 1) . The proof is completed as follows:

{_D(x)xj } [D(x)] [D(y)] y [D"]())yj Q. O (5.35)
J+

As previously mentioned, the proposition has the following corollary.

Corollary 20. The operators H, and L defined in (4.6) are self-adjoint (symmetric) with respect
to the scalar product {(-|-)) g, n given in (3.24).

This immediately gives our main result.

Theorem 21. The Jack superpolynomials {J 5} o are orthogonal with respect to the combinatorial
scalar product; that is,

(JaldJohp xda,0. (5.36)

Proof. The fact that in N variables ((J4|J@))g,n X 34,5 is a consequence of Corollary 20 and
Proposition 12, which says that the Jack superpolynomials are the unique common eigenfunc-
tions of the 2N operators appearing in Corollary 20. Given that the expansion coefficients of the
Jack superpolynomials in terms of supermonomials do not depend on the number of variables N
[5], the theorem then follows from (3.25). O

Remark 22. That the Jack superpolynomials are orthogonal with respect to the analytical and
combinatorial scalar products is certainly remarkable given their rather different nature. Even
in the absence of fermionic variables, the orthogonality of the Jack polynomials with respect to
both scalar products is a highly non-trivial observation. In that case, one can provide a partial
rationale for the compatibility between the two scalar products, by noticing their equivalence in
the following two circumstances [10,14]:

(f1g)p=1.8 = (flghp=1.N (m=0) (5.37)
(see, e.g., [14, VI.9, Remark 2]) and

. (flg)p _
I\IIEnOOW (flehp m=0) (5.38)
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(see, e.g., [14, VL9, (9.9)]) for f, g, two arbitrary symmetric polynomials. In superspace, when
m # 0, this compatibility between the two products is even more remarkable since the limiting-
case equivalences (5.37) and (5.38) are simply lost. This is most easily seen by realizing that,
after integration over the fermionic variables, we obtain

(PADnlPuDr) g, N = PrlPuDr—n)g,N, T >n, (5.39)

and thus the power sums cannot be orthogonal for any value of N and g. This shows that the
connection between the two scalar products is rather intricate.

Corollary 23. The following statements are direct consequences of the orthogonality property of
the Jack polynomials in superspace.

1. The Jack polynomials in superspace {J s} a form the unique basis of 25 such that

L1, Ja=ma+) g_pcae(B)ma (triangularity);

; (5.40)
1.2, {JalJelhp xda.0 (orthogonality).
2. Let KP be the reproducing kernel defined in Theorem 3. Then,
KPG, 05y, 00 =Y jalB)" Talx,0)Ta(y, 4, (5.41)
AeSPar
where
ja(B) = (TalT 1) (5:42)

3. Let {ga}a be the basis, defined in (3.12), dual to that of the monomials with respect to the
combinatorial scalar product. Then, the Jack superpolynomials expand upper triangularly
in this basis:

Ja= Y usoB)ga. withuas(p)#0. (5.43)
R2=A

Proof. 1. We have seen that the Jack polynomials in superspace satisfy 1.1 and 1.2. To prove
unicity, suppose {J4} satisfies 1.1 and 1.2. Tt was shown in [5] that the operators H and 7
act triangularly on the monomial basis. Thus, 7 and 7 also act triangularly on the basis {J4} 4.
Furthermore, from Proposition 16, they are self-adjoint with respect to the combinatorial scalar
product. Hence, we must conclude from the orthogonality of {J4} 4 that J4 is an eigenfunction
of ‘H and Z, from which Theorem 14 implies that J A=JA.

2. The proof is similar to that of Lemma 8 (see also Section V1.2 of [14]).

3. Suppose that {(Ja|Je) g x84, 2,andlet J4 = ZQGS uA g, where S is some undefined
set. If A is not the smallest element of S, then there exists at least one element I" of S that does
not dominate any other of its elements. In this case, we have

(Jaldrdp =Y use(B) Y craB)lgalmals. (5.44)

eS8 AL
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Since I" does not dominate any element of S, the unique non-zero contribution in this expression
isthat of uar(B)err(B){gr,mr)g =uar(B). Since this term is non-zero by supposition, we
have the contradiction 0 = {Ja|Jr)g =uar(B) #0. O

Actually, it can be shown that all statements of Corollary 23 and Theorem 27 below are not
only consequences of Proposition 21 but are equivalent to it.

6. Further properties
6.1. Duality

In this subsection, we show that the homomorphism c?),g, defined in Eq. (3.2), has a simple
action on Jack superpolynomials. To avoid any confusion, we make explicit the 8 dependence

by writing Jl(xl/ 25
Remark 24. The rationale for this notation is to match the one used in [14] when m = 0:
1 1
140 0y = 13P @) = 15 (),

where o = 1/8. (Similarly, in our previous works [3,5], we denoted J/(\l/ﬁ) by Ja(x,0;1/8) to
keep our definition similar to the usual form introduced by Stanley [21] as J, (x; «) whenm = 0.)
We stress however, that when we need to make explicit the S-dependence of j4,H and Z, we
write j4(B8), H(B) and Z(B) respectively.

Proposition 25. One has
H(PBYop I P =en(Brapd P and T(B)apI P =enBraps . 6.1)

Proof. Let us rewrite the special form of the operator H () appearing in the proof of Proposi-
tion 16 as

HB) =D _[n*+Bn(N—m)]Ay+ Y (BBun + Cnn). (6.2)

n>1 mn>1
with

An = Pudp, + Pndj,.

Bunn = (m+ 1) pmPnp,,, + 2mPn P,

Conn = MmN (Pintndp, dpyy + 2Pntm5,, Opy)- (6.3)
From these definitions, we get

CU]/ﬂAnZAnCUl/ﬂ, wl/ﬂBmm:_E m,n@1/B and a)l/ﬂcm’nz—ﬂcm,na)uﬁ. (6.4)

These relations imply
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C?)1//‘3,}_{(13)é)ﬂ = Z[”z + Bn(N — n)]An - Z (émn + ﬂém,n)

n>1 m,n>1

=(1+ BN Y nA,—BH(1/B).

n>1

Now, considering Zn>1 nA,mp =|A|lmy and Lemma 15, we obtain

orpHBIp I =en (B (6.5)
as claimed. The relation involving Z(f) is proved in a similar way. 0O
For the next theorem, we will need the following result from [6]:
Proposition 26. Let A be a superpartition and A’ its conjugate. Then

Ea=my+ Y Nfmo. withNf el (6.6)
<N

Theorem 27. The homomorphism &g is such that

o175 7P = JA(ﬁ)J,({f), 6.7)

with ja(B) defined in (5.42).

Proof. Let us first prove that &g J/(‘ﬁ ) Jl(xl,/ ) From the third point of Corollary 23, we know
that J 7 = Yo 4 uae(B)ge. But Eq. (3.19) implies d1/pg4 = ea. Hence,

o1p(1"") =Y uaeBrea= Y us) Y. Nhitr= > varBir, (68)

2=2A 22>2A r<s’ r<a’

where we have used (3.19), Proposition 26 and the fact that 2 > A & 2’ < A'. Further since
N/’“/ =1 and us4(B) # 0, we have vy 4 # 0. Now, from Proposition 25, wl/ﬂ(JA /ﬁ)) is an

eigenfunction of H(1/8) and Z(1/8) with eigenvalues ¢ 4-(1/8) and € 4 (1/B) respectively. The

triangularity we just obtained ensures from Theorem 14, that 1 (Jl(ll 18 )) is proportional to J/({,s ),

Again from Proposition 26, we know that m 4 = (—1)""~D/2¢ ,, 4 higher terms, so that
JP = (—1ymm=D/2¢ ,, 4 higher terms. 6.9)
Moreover, from Eq. (3.19), we get
J(I/B) (—1)mm=D/24 , 1 higher terms. (6.10)
But the proportionality proved above implies

1
o1ypd P = AA(,B)JX?) = A4(B)inx + lower terms, 6.11)
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for some constant A 4(8). Finally, considering the duality between g4 and m 4, we obtain

(_1)m(m—1)/2jA (B) = «J}\l/ﬂ)"]/(\l/ﬂ)»ﬁ

= (@757 018737 )

=((=D"=DPgm AN BmA),

= (=)D A (B (6.12)
as desired. O
6.2. Limiting cases

In Section 5, we have proved that the Jack superpolynomials are orthogonal with respect to the
combinatorial scalar product. This provides a direct link with the classical symmetric functions
in superspace. Other links, less general but more explicit, are presented in this section, from the
consideration of J, for special values of g or for particular superpartitions.

Proposition 28. For A = (n) or (n; 0), one has (using the notation of Proposition 10):

n! n!

Jpy=—""-—"+ d  Ju0)= 2. 6.13
W= g ra—,% M Juo 8 (6.13)

(B +m)nt1 "

Proof. Since J, 17y = m ;1) = €,, we have on the one hand &g (J(o;17)) = & from (3.19). On
the other hand, from Proposition 25, c?)ﬁ(J(o;ln)) is an eigenfunction of H(B) and Z(B8) with
eigenvalues £(,,0y(B) and €(,.0y(B) respectively. Since (n; 0) is the highest partition with one
fermion in the order on superpartitions, we have from Theorem 14, that there exists a unique
eigenfunction of H and Z with such eigenvalues. We must thus conclude that g, is also propor-
tional to J(,.). Looking at Proposition 10 and considering that the coefficient of m1,.q) in J(,.0)
needs to be equal to one, we obtain (8 + n),+1J;0) = n!g,. The relation between J(,y and g, is
well known and can be proved in a similar way. O

Corollary 29. For A = (n) or (n; 0), the combinatorial norm of J 4 is

n! n!
Iyl = —————— d  {(Jmn:0)Jxn: =— 6.14
[ Ty D g Gin-1, (Jn:01n:00) B+t (6.14)
Proof. Using the previous proposition, we get
1) (gnlgn)p = (B +n = Dy S )
(D> (8nl8nNp = (B +m)p 1 (T i) ) p- (6.15)

From Proposition 10, we know that

nlgpn =P +n— 1)nm(n)+"'s n!gn:(ﬁ+n)n+lm(n;0)+"" (6.16)
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where the dots stand for lower terms in the order on superpartitions. Thus, considering Corol-
lary 9, we get

Gangahp = =D g, = LM (6.17)
and the proof follows. O
Theorem 30. For 8 =0, 1, or § — oo, the limiting expressions of Jl(xl/ﬂ) are
L e
and
I =hy and I} L. (6.19)

0 = 1

Proof. The case B — 0 is a direct consequence of Theorem 14, given that H(8) and Z(B) act
diagonally on supermonomials in this limit. The second case is also obtained from the eigen-
value problem. Indeed, when 8 — oo, B~ 'H(B) and B~'Z(B) behave as first order differential
operators. Then, it is easy to get

[r H(B)
m

Jim — }Qy:[—ZE:jM%ﬂNN—lﬁem where A = A* (6.20)

J

(A* being defined in Lemma 15) and

7 —1
[ﬁﬂ>fq“‘{_M”_ﬁgfl}”' (6.21)

These are the eigenvalues of J,4 in the limit where B — oo (cf. Lemma 15). The proportionality
constant between e 4/ and J, is fixed by Proposition 26 and Theorem 14. We have thus

R

&r = lim J{/P. (6.22)

B—00

Finally, we note that the property concerning /, and £, is an immediate corollary of Proposi-
tion 28. O

6.3. Normalization
In this subsection, m 4 shall denote the augmented supermonomial:
I”I';lA =nA!mA, (6.23)

where n 4! is defined in Proposition 10.
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It is easy to see that the smallest superpartition of degree (n|m) in the order on superpartitions
is

Amin = (83 160m), (6.24)

where

m(m —1)

Smi=m—1,m—=2,...,0), Lpm:=n—|0m| and [0n|= (6.25)

Now, let ¢i"(B) stand for the coefficient of 77 4, in the monomial expansion of ][(‘1/ P We will
establish a relation between this coefficient and the norm of the Jack superpolynomials J 4.

Proposition 31. The norm j(B) defined in (5.42), with A+ (n|m), is

. ity A" B)
ja(B) =g tnm m (6.26)
Proof. One readily shows that
M A = PAmin T higher terms. (6.27)
Since m 4, is the only supermonomial containing p 4 . , we can write
T3P = % (B) p oy, + higher terms. (6.28)
Let us now apply @1, on this expression. Using Eq. (3.3) we get
o1y P = g lum (—1ymn=D2min gy 4 higher terms. (6.29)

But if we apply @1,p on ng/ﬂ) by using first Theorem 27 to write it as (—1)"™"=1/2 (ﬂ)]l(ﬁ)
and expand J/(f,i ) using (6.28), we get instead

&1,V = jA(B)(=1)""=D2min 1 /8) p 4+ higher terms. (6.30)

Here we have used the fact that Anj,, being the smallest superpartition of degree (n|m) in the
ordering on superpartitions, labels the smallest supermonomial in both the decomposition of J4
and J, . The result follows from the comparison of the last two equations. O

The coefficient cr}‘lin (B) appears from computer experimentation to have a very simple form.
We will now introduce the notation needed to describe it. Recall (from the definition of conjuga-
tion in Section 2) that D[ A] is the diagram used to represent A. Given a cell s in D[A], let a4 (s)
be the number of cells (including the possible circle at the end of the row) to the right of s. Let
also £ 4 (s) be the number of cells (not including the possible circle at the bottom of the column)
below s. Finally, let A°, be the set of cells of D[A] that do not appear at the same time in a row
containing a circle and in a column containing a circle.
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Jﬁll/ﬂ)

Conjecture 32. The coefficient crxi“ (B) of m 4, in the monomial expansion of is given by

min _ 1
cah= [Lseae(@a(s)/B+Lals) + 1) (3D

with Anin is defined in (6.24).

For instance, if A = (3,1,0;4,2, 1), we can fill D[A] with the values (a(s)/8 + £4(s) + 1)
corresponding to the cells s € A°. This gives (using y = 1/8):

3y 4502y +3v+2| 1

Xe

y+31 1

O

(6.32)

1

O

Therefore, in this case,

1

. 6.33
B/B+52/B+3UA/B+2A/B+ DA/ +3) (039

Mgy =

Even though the Jack superpolynomials cannot be normalized to have positive coefficients
when expanded in terms of monomials, we nevertheless conjecture they satisfy the following
integrality property.

Conjecture 33. Let

TP =cming) 3 Eaq(Pyig. (6.34)
<A

Then ¢ g is a polynomial in 1/ with integral coefficients.
7. Outlook: Macdonald polynomials in superspace

In this work, we have highlighted the existence of a one-parameter (i.e., 8) deformation of
the scalar product as the key tool for defining Jack superpolynomials combinatorially. However,

there also exists a two-parameter deformation (¢ and ¢) of the combinatorial scalar product.
Again, this has a natural lift to the superspace, namely

(PalPG Vg =24(q, )840, (7.1)
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where

. £(A) .
_th+1 1 _qu

m
1
ZA(‘N):ZAHW T M7
i=1 i=m+1

N

(7.2)

This reduces to the previous scalar product ((-|-))g when g = t'/8 and r — 1. The generalized
form of the reproducing kernel reads

l—[ (txiyj + 109 @)oo

= D7 palx.0 ) 7.3
(X y; +0i0): @)oo XA:ZA(q 1) patr.0)pa(y. 4) (73)

i,j

with (a; ¢) oo 1= ]_[”20(1 —aq").
Now, the scalar product (7.1) leads directly to a conjectured definition of Macdonald super-
polynomials.

Conjecture 34. In the space of symmetric superfunctions with rational coefficients in q and t,
there exists a basis {M p} o, where My = M4 (x,0; q,t), such that

(1) Ma=ma+ Y Caglg.hms  and  (2) (MalMg)g:ocdag. (14
<A

Note that in this context, the combinatorial construction cannot be compared with the analyt-
ical one since the corresponding supersymmetric eigenvalue problem has not been formulated
yet. In other words, the proper supersymmetric version of the Ruijsenaars—Schneider model [16]
is still missing.
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